
The Virtual World



Building a Virtual World
• Goal: mimic human vision in a virtual world (with a computer)

• Cheat for efficiency, using knowledge about light physics and human perception (e.g. from lecture 2)

• Create a virtual camera: place it somewhere and point it at something
• Put film (containing pixels, each with RGB values ranging from 0-255) into the camera
• Place objects into the world, including a floor/ground, walls, ceiling/sky, etc.

• Two step process: (1) make objects, (2) place objects (transformations)
• Making objects is itself a two-step process: (1a) build geometry (geometric modeling), (1b) paint 

geometry (texture mapping)

• Put lights into the scene (so it’s not completely dark)
• Finally, snap the picture:

• “Code” emits light from (virtual) light sources, bounces that light off of (virtual) geometry, and 
follows that bounced light into the (virtual) camera and onto the (virtual) film

• Taking a picture creates film data as the final image
• We will consider two methods (scanline rendering and ray tracing) for taking a picture



Pupil
• Light emanates from every point of an object outwards in every direction

• That’s why we can all see the same spot on the same object
• Light leaving that spot/point (on the object) is entering each of our eyes

• Without a pupil, light from every point on an object would hit the same cone on our eye, 
averaging/blurring the light information

• The (small) pupil restricts the entry of light so that each cone only receives light from a small 
region on the object, giving interpretable spatial detail



Aperture

• Cameras are similar to the eye (with mechanical as opposed to biological components)
• Instead of cones, the camera has mechanical pixels
• Instead of a pupil, the camera has a small (adjustable) aperture for light to pass through 
• Cameras also typically have a hefty/complex lens system



Aside: Lens Flare
• Many camera complexities are (typically) not properly accounted for in virtual worlds
• Thus, certain effects (depth of field, motion blur, chromatic aberration, lens flare, etc.) have to 
be approximated/modeled in other ways (as we will discuss later)
• Example: Lens flare is caused by a complex lens system that reflects and scatters light

• It depends on material inhomogeneities in the lenses, the imperfect geometry of lens surfaces, 
absorption/dispersion of lenses, antireflective coatings, diffraction, etc.



Pupil/Aperture Size
• The pupil/aperture has a finite size, big enough for light to pass through it
• When too small, not enough light enters and the image is too dark/noisy

• In addition, light can diffract (instead of traveling in straight lines) distorting the image

• When too large, light from a large area of an object hits the same cone (causing blurring)
• A virtual camera can use a single point for the aperture (without worrying about dark, 

distorted, or blurred images)



Aside: Diffraction
• Light spread out as it goes through small openings

• This happens when the camera aperture is too small (diffraction limited)

• It leads to constructive/destructive interference of light waves (the Airy disk effect)
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Pinhole Camera
• Light leaving any point travels in straight lines
• We only care about the lines that hit the pinhole (a single point)

• Using a single point gives infinite depth of field (everything is in focus, no blurring)

• An upside-down image is formed by the intersection of these lines with an image plane
• More distant objects subtend smaller visual angles and appear smaller
• Objects occlude objects behind them

image 
plane

pinhole

closer objects 
appear bigger 

further objects 
can be occluded 



Virtual Camera
• Trick: Move the film out in front of the pinhole, so that the image is not upside down
• Only render (compute an image for) objects further away from the camera than the film plane
• Add a back clipping plane, for efficiency
• The volume between the film (front clipping plane) and the back clipping plane is called the 

viewing frustum (shown in blue)
• Make sure that the near/far clipping planes have enough space between them to contain the scene
• Make sure objects are inside the viewing frustum
• Do not set the near clipping plane to be at the camera aperture!



Camera Distortion depends on Distance
• Do not put the camera too close to objects of interest!
• Significant grade deductions for poor camera placement, fisheye, etc. (because distortion looks bad)

• Set up the scene like a real-world scene!
• Get very familiar with the virtual camera!



Eye Distortion?
• Your eye also has distortion

• Unlike a camera, you don’t actually ”see” the signal received by the cones
• Instead, you “perceive” an image (highly) processed by your brain
• Your eyes constantly move around obtaining multiple images for your brain to work with 
• You have two eyes, and see two images (in stereo), so triangulation can be used to estimate 
depth and to undo distortion

• If your skeptical about all this processing, remember that your cones see this:



Dealing with Objects

• Let’s start by moving a single 3D point Ԧ𝑥 =
𝑥
𝑦
𝑧

 around in the virtual world

• Since an object is just a collection of points, methods for handling a single point extend to 
handling entire objects

• Objects are created in a reference space, which we refer to as object space
• After creation, we place objects into the virtual scene, which we refer to as world space
• This may require rotation, translation, resizing of the object

• Taking a (virtual) picture projects the object’s points onto the 2D film plane, which we refer to 
as screen space
• Unlike rotation/translation/resizing, projection onto screen space is highly nonlinear and a 
source of distortion



Rotation

• Given a 3D point, Ԧ𝑥 =
𝑥
𝑦
𝑧

• In 2D, can rotate a point counter-clockwise about the origin via:

• This is equivalent to rotating a 3D point around the z-axis using (i.e. multiplying by):

𝑥𝑛𝑒𝑤

𝑦𝑛𝑒𝑤 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦 = 𝑅(𝜃)

𝑥
𝑦

𝑅𝑧 𝜃 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1



Rotation
• To rotate a 3D point around the x-axis, y-axis, z-axis (respectively), multiply by:

• Matrix multiplication doesn’t commute, i.e. 𝐴𝐵 ≠ 𝐵𝐴, so the order of rotations matters!
• Rotating about the x-axis and then the y-axis is different than rotating about the y-axis and 
then the x-axis:
• 𝑅𝑦 𝜃𝑦 𝑅𝑥 𝜃𝑥 Ԧ𝑥 ≠ 𝑅𝑥 𝜃𝑥 𝑅𝑦 𝜃𝑦 Ԧ𝑥 because 𝑅𝑦 𝜃𝑦 𝑅𝑥 𝜃𝑥 ≠ 𝑅𝑥 𝜃𝑥 𝑅𝑦 𝜃𝑦

𝑅𝑧 𝜃 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

𝑅𝑦 𝜃 =
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

𝑅𝑥 𝜃 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃



Line Segments are Preserved
• Consider two points Ԧ𝑝 and Ԧ𝑞 and the line segment between them:

• 𝑢 0 = Ԧ𝑝 and 𝑢 1 = Ԧ𝑞, and each point on the line segment is specified by some 𝛼 ∈ [0,1]

• Multiplying a point on the line segment by a rotation matrix 𝑅 gives:

• So, that point lives on the line segment between 𝑅 Ԧ𝑝 = 𝑅𝑢 0  and 𝑅 Ԧ𝑞 = 𝑅𝑢 1 ; in fact, it’s 
the same distance from 𝑅 Ԧ𝑝 and 𝑅 Ԧ𝑞 that it is was from Ԧ𝑝 and Ԧ𝑞
• i.e., only need to rotate the endpoints in order to construct the new line segment (connecting them)

• 𝑅 Ԧ𝑝1 − 𝑅 Ԧ𝑝2 2
2 = 𝑅 Ԧ𝑝1 − Ԧ𝑝2 2

2 = Ԧ𝑝1 − Ԧ𝑝2
𝑇𝑅𝑇𝑅 Ԧ𝑝1 − Ԧ𝑝2 = Ԧ𝑝1 − Ԧ𝑝2 2

2 shows that the 
distance between rotated endpoints is equivalent to the distance between the original (un-
rotated) endpoints

𝑢 𝛼 = 1 − 𝛼 Ԧ𝑝 + 𝛼 Ԧ𝑞

𝑅𝑢 𝛼 = 1 − 𝛼 𝑅 Ԧ𝑝 + 𝛼𝑅 Ԧ𝑞



Angles are Preserved
• Consider line segments 𝑢 and Ԧ𝑣 with 𝑢 ⋅ Ԧ𝑣 = 𝑢 2 Ԧ𝑣 2 cos(𝜃) where 𝜃 is the angle between 
them

• 𝑅𝑢 ⋅ 𝑅 Ԧ𝑣 = 𝑢𝑇𝑅𝑇𝑅 Ԧ𝑣 = 𝑢𝑇 Ԧ𝑣 = 𝑢 2 Ԧ𝑣 2 cos 𝜃 = 𝑅𝑢 2 𝑅 Ԧ𝑣 2 cos(𝜃)
• So, the angle between 𝑢 and Ԧ𝑣 is the same as the the angle between 𝑅𝑢 and 𝑅 Ԧ𝑣 



Shape is Preserved
• In continuum mechanics, material deformation is measured by a geometric strain tensor
• The 6 unique entries in the nonlinear Green strain tensor are computed by comparing an 
undeformed tetrahedron to its deformed counterpart
• Given a tetrahedron in 3D, it is fully determined by one point and 3 line segments (the dotted 
lines in the figure)

• The 3 lengths of these 3 line segments and the 3 angles between any two of them are used to 
compare the undeformed tetrahedron to its deformed counterpart
• Since we proved these were all identical under rotations, rotations preserve shape   



Shape is Preserved
• Thus, we can rotate entire objects without changing them  



Scaling/Resizing

• A scaling matrix 𝑆 =

𝑠1 0 0
0 𝑠2 0
0 0 𝑠3

 can both scale and shear an object

• Shearing changes lengths/angles creating distortion

• When 𝑠1 = 𝑠2 = 𝑠3, then 𝑆 =
𝑠 0 0
0 𝑠 0
0 0 𝑠

= 𝑠𝐼 is pure scaling

• The distributive law of matrix multiplication (again) guarantees that line segments map to line 
segments
• 𝑆 Ԧ𝑝1 − 𝑆 Ԧ𝑝2 2

2 = 𝑠2 Ԧ𝑝2 − Ԧ𝑝2 2
2 implies that the distance between scaled points is 

increased/decreased by a factor of 𝑠
• 𝑆𝑢 ⋅ 𝑆 Ԧ𝑣 = s2𝑢 ⋅ Ԧ𝑣 = 𝑠2 𝑢 2 Ԧ𝑣 2 cos 𝜃 = 𝑆𝑢 2 𝑆 Ԧ𝑣 2 cos(𝜃) shows that angles between 
line segments are preserved
• Thus, uniform scaling grows/shrinks objects proportionally (they are mathematically similar)



Scaling (or Resizing)

non-uniform
𝑠1 ≠ 𝑠2

uniform
0 < 𝑠 < 1 

uniform
 𝑠 > 1 



Homogenous Coordinates
• Homogeneous coordinates allow translation to use matrix multiplication (instead of addition)

• The homogeneous coordinates of a 3D point Ԧ𝑥 =
𝑥
𝑦
𝑧

 are Ԧ𝑥𝐻 =

𝑥𝑤
𝑦𝑤
𝑧𝑤
𝑤

 for any 𝑤 ≠ 0

• Dividing homogenous coordinates by the fourth component (i.e. 𝑤) gives 

𝑥
𝑦
𝑧
1

 or Ԧ𝑥
1

 

• We convert 3D points to Ԧ𝑥𝐻 =

𝑥
𝑦
𝑧
1

, with 𝑤 = 1

• We convert 3D vectors 𝑢 =

𝑢1

𝑢2

𝑢3

 to 𝑢𝐻 =

𝑢1

𝑢2
𝑢3

0

 or 𝑢
0

, noting that there is no dividing by 𝑤 

for vectors



Homogenous Coordinates
• Let 𝑀3𝑥3 be a 3x3 rotation or scaling matrix (as discussed previously)

• The transformation of a point Ԧ𝑥 is given by 𝑀3𝑥3 Ԧ𝑥

• To obtain the same result for Ԧ𝑥
1

, use a 4x4 matrix 
𝑀3𝑥3

0
0
0

0 0 0 1

𝑥
𝑦
𝑧
1

= 𝑀3𝑥3 Ԧ𝑥
1

• Similarly, for a vector 
𝑀3𝑥3

0
0
0

0 0 0 1

𝑢1

𝑢2
𝑢3

0

= 𝑀3𝑥3𝑢
0



Translation

• A 3D point Ԧ𝑥 is translated by Ԧ𝑡 =

𝑡1

𝑡2

𝑡3

 via 
𝐼3𝑥3

𝑡1

𝑡2

𝑡3

0 0 0 1

𝑥
𝑦
𝑧
1

= Ԧ𝑥 + Ԧ𝑡
1

 

• 𝐼3𝑥3 =
1 0 0
0 1 0
0 0 1

 is the 3x3 identity matrix

• For vectors, 
𝐼3𝑥3

𝑡1

𝑡2

𝑡3

0 0 0 1

𝑢1

𝑢2
𝑢3

0

= 𝑢
0

 has no effect (as desired)

• Translation preserves line segments and the angles between them, and thus preserves shape



Shape is Preserved
• We can translate entire objects without changing them  



Combining Transforms
• Rotate 45 degrees about the point (1,1)

• Multiply these transforms together to get a single matrix M=T(1,1)R(45)T(-1,-1)
• Then, just multiply every relevant point in the (entire) object by M:

T(-1,-1)
R(45)

T(1,1)



Order Matters
• Matrix multiplication does not commute: 𝐴𝐵 ≠ 𝐵𝐴
• The rightmost transform is applied to the points first

R(45)T(1,1)T(1,1)R(45) ≠



Hierarchical Transforms
• M1 transforms the teapot from its object space to the table’s object space (puts it on the table)
• M2 transforms the table from its object space to world space
• M2M1 transforms the teapot from its object space to world space (and onto the table)

http://www.fritzhansen.com/Frontend/Images/Linedrawings/TableSpanlegs.jpg
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Using Transformations
• Create objects (or parts of objects) in convenient modeling coordinate systems
• Assemble objects from their parts (using transformations)
• Transform the assembled object into the scene (via hierarchical transformations)

• Can make multiple copies (even of different sizes) of the same object (simply) by adding 
another transform stack (avoiding the creation of a new copy of the object geometry)

• Helpful Hint: Always compute combined transforms for objects or sub-objects, and apply the 
single resulting transform to all relevant points (it’s a lot faster)

• Helpful Hint: Orientation is best done first:
• Place an object at the center of the target coordinate system, and rotate it into the desired orientation
• Afterwards, translate the object to the desired location



Screen Space Projection

•
1

𝑧
 is highly nonlinear, so projection from world space into screen space can create significant 

distortion

film plane

pinhole

z-axis

(x’,y’,h)

(x,y,z)

z

h

x
x’

and



Matrix Form

• Writing the screen space result as 

𝑥′𝑤′
𝑦′𝑤′

𝑧′𝑤′
𝑤′

 gives a 
1

𝑧
 after dividing by 𝑤′ = 𝑧

• Consider: 

𝑥′𝑤′
𝑦′𝑤′

𝑧′𝑤′
𝑤′

=

ℎ 0
0 ℎ

0 0
0 0

0 0
0 0

𝑎 𝑏
1 0

𝑥
𝑦
𝑧
1

• This has 𝑤′ = 𝑧, 𝑥′𝑤′ = ℎ𝑥 or 𝑥′ =
ℎ𝑥

𝑧
, and 𝑦′𝑤′ = ℎ𝑦 or 𝑦′ =

ℎ𝑦

𝑧
  (as desired)

• Homogenous coordinates allows the nonlinear
1

𝑧
 to be expressed via linear matrix 

multiplication, so the projection can be added to the matrix multiplication stack!



Choosing 𝑎 and 𝑏
• The third equation is 𝑧′𝑤′ = 𝑎𝑧 + 𝑏 or 𝑧′𝑧 = 𝑎𝑧 + 𝑏
• New 𝑧 values aren’t required, since projected points all lie on the 𝑧 = ℎ image plane
• However, if 𝑧′ is a monotonically increasing function of 𝑧, can be used to determine 
occlusions (or for alpha channel transparency)

• The near (𝑧 = 𝑛) and far (𝑧 = 𝑓) clipping planes can be preserved via 𝑧′ = 𝑛 and 𝑧′ = 𝑓
• 2 equations in 2 unknowns: 𝑛2 = 𝑎𝑛 + 𝑏 and 𝑓2 = 𝑎𝑓 + 𝑏; so, 𝑎 = 𝑛 + 𝑓 and 𝑏 = −𝑓𝑛

• Then, 𝑧′ = 𝑎 +
𝑏

𝑧
= 𝑛 + 𝑓 −

𝑓𝑛

𝑧

• This transforms the viewing frustum into a distorted orthographic volume in screen space
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