Triangles

Lots of Triangles

Stanford Bunny

69,451 triangles

)
-
(©)
=
o
o
O
7]
o5
© 5
D om
< =
O
S <
-_—
A=
oaN
A ©
~ LM
i)
S
o
()

Why Triangles?

e Can specialize/optimize for just triangles
e Optimize software and algorithms for just triangles
* Optimize hardware (e.g. GPUs) for just triangles

* Triangles have many inherent benefits:

 Complex objects are well-approximated using enough triangles (piecewise linear
convergence)

* Easy to break other polygons into triangles

* Triangles are guaranteed to be planar (unlike quadrilaterals)

* Transformations (from last lecture) only need be applied to triangle vertices

e Barycentric interpolation can be used to interpolate information stored on vertices to the
interior (of the triangle)

I S o

OpenGL

Blender uses OpenGL for real-time scanline rendering

OpenGL was started by SGI in 1991 (went into the public domain in 2006)

It's a drawing APl for 2D/3D graphics

Designed to be implemented mostly on hardware

Many books and other documentation

Competitors: DirectX (Microsoft), Metal (Apple), Vulkan (Khronos)

OpenGL is highly optimized for triangles:

Indivi.dual Transformed Primitives Fragments
Vertices Vertices

L 1]

Shaded
Fragments

BACK
BUFFER

o)
BACK /

BUFFER

Framebuffer

FRONT
BUFFER

GPUs and Gaming Consoles

 GPUs and Consoles are highly optimized for the graphics geometry pipeline
 They now support ray tracing (as does Blender)

Q
m
n
0
2
N
m
2
-
x

Rasterization

* Transform the vertices to screen space (with the matrix stack)
* Find all the pixels inside the 2D screen space triangle
* Color those pixels with the RGB-color of the triangle

B & & & & & ® & & & ¥ W
g &% & & & & & & & @

& & & & & & & @

¥ & & & & & & & ¥

& & & & & & & & & @

* & & & & & & & & & ¥ @

L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]

& & & & & & & & & & & & & & & W
& & & & & & & & & & & & & & & W
*® & & # & & & & & & & & & & & ¥
& & & & & & & & & & & & & & & W

Aside: Bounding Box Acceleration

* Checking every pixel against every triangle is computationally expensive
* Calculate a bounding box around the triangle, with diagonal corners:

(min(x,, x4, X2) , min(yy, y1, y2)) and (max(x,, x1, x,) , max(yo, 1, ¥2))
* Then, round coordinates upward to the nearest integer to find all relative pixels

1 Pl
L i

J
-

Il i
w1/

Implicit Equation for a 2D line

Compute a directed edge vector e = p; — py = (X1 — X9, Y1 — Vo)
Compute a 2D normaln = (y; — vy, —(x; — X)), which doesn’t need be unit length
This 2D normal is “rightward” with respect to the 2D ray direction (“leftward” normal is —n)

Points p lying exactly on the 2D line have: (p — py) -n =0
* Same way planes are defined in 3D

Po = (X0, Y0)

°
P1 = (X1,¥1)

(“Leftward”) Interior Side of a 2D Ray

Points p on the interior side of the 2D ray have: (p — py) - n < 0
Points p exactly on the 2D line have: (p —py) -n =0
Points p on the exterior side of the 2D ray have: (p — py) - n > 0

This same concept can be used for planes in 3D

Po = (Xo,Yo)
n
(p—po) n>0
“exterior” side
= (p—po) n<O
o “interior” side

P1 = (X1,¥1)

2D Point Inside a 2D Triangle

v2 v
vO vi vO v2
Counter-Clockwise vertex ordering Clockwise vertex ordering
(facing camera) (facing away from camera)

e A 2D pointis considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
 Vertex ordering matters: backward facing triangles are not rendered, since no points are to
the left of all three rays

Adjacent Triangles

Pixels on the boundary with (p — py) - n = 0 for one of the edges won’t be
rendered

* This causes gaps between adjacent edge-sharing triangles, when the edge overlaps a pixel
Can fix by using (p — py) - n < 0 instead of (p — py) - n < 0, but then both
triangles aim to color the same pixel

* Inefficient, and disagreements can cause artifacts

Instead, render points on the shared edge (consistently) using only one of the
two triangles:

 Note: edge normals point in opposite directions for adjacent triangles
* Whenn, > 0or(n, = 0andn, > 0), rasterize pixels on that edge

* Whenn, <0or(n, =0andn, <0),do not rasterize pixels on that edge
* Note: n, and n,, are only both zero for a degenerate triangle

Overlapping Triangles

« When one object is in front of another, two triangles can aim to color the same pixel

: . n F
e Recall: screen space projection computesz' =n + f — f; for occlusion/transparency

)
e
‘ ‘- T
~ -) N
B o ¢)
A ‘ - |] i < J
y ¢) - + ®' - |
») N |
" | LA -
| $ - - = -
N y A\ - . .
| - | . AL » ~
\ 7 ~
[- -
| ()

* Color each pixel using the triangle with the smallest z’ value at that pixel

* Need to interpolate z’ values from triangle vertices to pixel locations
 |n order to do this, we use screen space barycentric weight interpolation

Linear Interpolation for Functions

* Linearly interpolate between (x4, y;) and (x,, y,) via:
yo) = () @ —x)+y or y) =(1-Z25)y + (222) x,

X2—X1 X2—X1 XD ==X

e Alternatively, y(a) = (1 — a)y; + ay, where a = ;_9;1 € [0,1] is the fraction of the way
2=]
from x; to x, or equivalently from y; to y,
y
S @ =1
///,/ a=.5

Y1 o

a=0

S

2D/3D Line Segments

lp—poll2 .

Linearly interpolate between p, and p; viap(a) = (1 — a)p, + ap; where o = T
17 P02

the fraction of the distance from p, to p;
Barycentric weights: Any point p on the segment can be written as p(ay, 1) = agpg + a1p;

with g, a1 € [0,1]and ay + a; = 1

lp—poll
__ IP—=Doll2 =8

__Nlp=p1ll2
lp1—poll2

Weights are computed via lengths: ay = T 1—a and a;
17 Foll2

P1

Po a1

2D/3D Triangles

Barycentric weights: Points p in the triangle can be written as p (g, a1, @y) = agpg + a1p; +

a,p, wWith ay, a;,a, € [0,1]anday +a; + a, =1
Area(p,p1,P2) _ Area(po,p.p2) _ Area(po,p1,p0)

Weights are computed via areas: a, = Oy = =
5 P % Area(po,p1,02)’ . Area(po,p1,02) 4 Area(po,p1,P2)

} gl (et an S —
e Triangle Area: Area(py, p1,02) = 5 | Pop1 X Pop2 ll2

P2

P1
Po

Algebraic (instead of Geometric) Approach

XO X1 xz X
Write agpy + a@1p1 + a>p, = p as ay ()’o) + a4 (3’1) S i e ()’2) = <y>

Zo Zq Zy Z

xO_xZ xl_xz a x_xz
Assemble into matrix form: ()’o bl 7o i i 3’2) (ao) = ()’ o)’2)
ZO_ZZ Zl_ZZ 1 Z_Z2

The coefficient matrix is rank 1 when the columns (i.e. triangle edges) are colinear, implying
infinite solutions for triangles with zero area (one can still embed p on an appropriate edge)

a
In 2D, this is a 2x2 coefficient matrix; in 3D, use the normal equations to convert A (a(l)) =D
1 0 aO T : Rt ; T

into A" A (a1) = A" b with a 2x2 coefficient matrix A" A

Invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns to

Obtain ao and al,' then, az — 1 ST CZO = C(l gives the same answer
as the previous slide

Triangle Basis Vectors (a Linear Algebra approach)

Compute edge vectorsu = py — v, and v = p; — p,

Points in the triangle have the formp = p, + fou + [yv with 5y, 5, € |0, 1]and Sy + ; = 1
Substitutions give p = Bypo + f1p1 + (1 — By — B1)p, implying that: ag = By, a1 = b4,

0o - : ,BO B ,31 =1— Xg — X1 equivalentto the
previous two slides

P1

Vi P 2
Po

P2

Ray Tracing vs. Scanline Rendering

Ray Tracing:

 Creates aray for each a pixel, and intersects that ray with world space triangles

* Barycentric weights can be used to interpolate z values to the point of intersection

« When two triangles intersect a ray, the one with the smaller z value is used

 Aside: operating in world space is a huge advantage for the ray tracer, as it can “look around”
in world space to figure out what’s going on (resulting in higher quality images)

Scanline Rendering:

 Operates in screen space, where triangles have been distorted by the screen space projection
* Thus, barycentric weight interpolation of z values gives incorrect results

* Aside: operating in screen space with more limited information makes scanline rendering a
good candidate for hardware acceleration (only recently have hardware implementations of ray
tracing become more feasible)

Working in Screen Space

Project triangle vertices py, p1, p, into screen space to get p;, p1, Py

e Foreachvertexi = 0,1, 2, write (x;,y;,2;) and (x;,y;,z;) = (ﬂ ion+ i];_n)
l

’)
Zi Zj

Given a pixel at p’ with barycentric weights p’ = a,p, + a;p; + a;p5, we need to compute
Z #+ a,Zy + a;Z, + a2z, in order to handle occlusion/transparency

Let p be the world space point that projects to p’, noting that world space barycentric weight
interpolation can be used to correctly calculate z at p
Using triangle basis vectors:

X2 Xo — X2 X1 — X g
p=p;+ag(po—p2) +as(p1—p2) =Yz |+|{Yo— Y2 Y1—Y2 (a)
Zy Zo —Zpy 727 — Zp :

where ag and a4 are unknowns
that need to be determined

Working in Screen Space

* Since the point p projects to the pixel p’:

hx

=g I e b v o)

Z
 Pixel p’ is in a screen space triangle with basis vectors u' = pj, — p, and v’ = p; — p; where it

has screen space barycentric weights «,, a1, a5; thus,
o= e +ai = ()4 (4 2)(2)
Y2 Uy V7 \q
« Set these two expressions for p»' equal to each other:
Sl e o0 e L

Solve for oy and a4
in terms of @y and ag

Rewrite the first term on the right hand side as

(

X7
!
Y2

)

Working in Screen Space

h

Zy

h

Z |z,

() =326

Zg
XO __xz X1
h Z
Z
VA 0
8\ i F U] 1
Zy
!/ !/ 4
l(xo 4 4 Al il
/ 4 !/
Z \ Yo T3V o= Yo
1

h

AT g
i)
Zl al

- SE=Sd
Z?

Xé (Zoao) (
v,) \Z1%
Zo g

Zg Zq

ly, e < e e
Y2 Zo Z1

T2 Y T VaAEr Vo

Zy Zy

After cancellation of the blue terms and moving the green terms to the left hand side:

V1) ag
14 !/
U,/ \

Uy v{) a
= 14 14 4
U, U/ \y

(o) ==(2)
=

(
aq

)

Finding the World Space Barycentric Weights

Invert the 2x2 coefficient matrix:
14 / !/
(“0)__ 1 z; = (21 — 2) (z1 — 22) Z2Q
A1) 2921-21(20~Z2)ag~20(z1-22)a1 \ (z, — Zz,) Zo — (2o — zy)a | \ zya1

/
) 1 Z1Z3 Uy
Z1Z500 + ZoZ, 01 + 2o 2,5 \ZgZo 04

In summary, given the barycentric weights a; and a; of pixel p’, we can compute:

!/ 14
lezao Zozzal

Ay = and a4 =

leza6+ZOZza1+Zozla£ leza(l)+ZOZza1+Zozla£

!/
Z()Zlafz

In addition, &, = - froma, =1—ay — a3

Z1ZQy+Z0Z2 A1 +Z0Z1 X

Then, ay, a1, a, can be used to find p = aypy + a1p; + a,p, on the world space triangle

Depth Buffer

Given word space barycentric weights a,, a4, a, for the point p that projects to a pixel located at p’, the z value

at p can be computed via z = ayzy + @121 + @, 2,

When two triangles overlap the same pixel, there are two different points p (one on each triangle) and the one

with the smaller z value is used to color the pixel

: ZoZ1Z 1 1 1
Since z = apzy + @121 + Ay 2z, = 2 ,,wehave——ao()+a1()+a2()
leza0+2022a1+2021a2 Zy Zq Zy

it ; gt
e Thatis, ~ can be interpolated correctly with screen space barycentric weights (in contrast to most other quantities)

Using z; = n+f—];—n we have:

2 —n+f———n+f fn[a0(1)+a1()+a2(zl)]=aéz(’)+aiz{+aéz§
Z1 2

 Thatis, z’' can also be interpolated correctly with screen space barycentric weights!

! dz’ f
Since E = zz > 0 comparlng z' values is as valid as comparmg Z values

1

Note: Even though the a, a;, @, aren’t needed for the final result (only to derive it), we will need them for

texture mapping (later in the quarter)

Lighting and Shading

 Afteridentifying that a pixel is inside a triangle, its color can be set to the color of the triangle
 This ignores all the nuances of how light works (we’ll discuss that later)
* If you rendered a sphere using this simplistic approach, it would look like this:

	Slide 1: Triangles
	Slide 2: Lots of Triangles
	Slide 3: Why Triangles?
	Slide 4: OpenGL
	Slide 5: GPUs and Gaming Consoles
	Slide 6: Rasterization
	Slide 7: Aside: Bounding Box Acceleration
	Slide 8: Implicit Equation for a 2D line
	Slide 9: (“Leftward”) Interior Side of a 2D Ray
	Slide 10: 2D Point Inside a 2D Triangle
	Slide 11: Adjacent Triangles
	Slide 12: Overlapping Triangles
	Slide 13: Linear Interpolation for Functions
	Slide 14: 2D/3D Line Segments
	Slide 15: 2D/3D Triangles
	Slide 16: Algebraic (instead of Geometric) Approach
	Slide 17: Triangle Basis Vectors (a Linear Algebra approach)
	Slide 18: Ray Tracing vs. Scanline Rendering
	Slide 19: Working in Screen Space
	Slide 20: Working in Screen Space
	Slide 21: Working in Screen Space
	Slide 22: Finding the World Space Barycentric Weights
	Slide 23: Depth Buffer
	Slide 24: Lighting and Shading

