
Triangles

Lots of Triangles

Stanford Bunny

69,451 triangles

David (Digital Michelangelo Project)

56,230,343 triangles

Why Triangles?
• Can specialize/optimize for just triangles
• Optimize software and algorithms for just triangles
• Optimize hardware (e.g. GPUs) for just triangles

• Triangles have many inherent benefits:
• Complex objects are well-approximated using enough triangles (piecewise linear

convergence)
• Easy to break other polygons into triangles
• Triangles are guaranteed to be planar (unlike quadrilaterals)
• Transformations (from last lecture) only need be applied to triangle vertices
• Barycentric interpolation can be used to interpolate information stored on vertices to the

interior (of the triangle)
• Etc.

OpenGL
• Blender uses OpenGL for real-time scanline rendering

• OpenGL was started by SGI in 1991 (went into the public domain in 2006)
• It's a drawing API for 2D/3D graphics
• Designed to be implemented mostly on hardware
• Many books and other documentation
• Competitors: DirectX (Microsoft), Metal (Apple), Vulkan (Khronos)

• OpenGL is highly optimized for triangles:

Individual

Vertices

Shaded

Fragments
FragmentsTransformed

Vertices
Primitives Framebuffer Display

GPUs and Gaming Consoles
• GPUs and Consoles are highly optimized for the graphics geometry pipeline
• They now support ray tracing (as does Blender)

Rasterization

• Transform the vertices to screen space (with the matrix stack)
• Find all the pixels inside the 2D screen space triangle
• Color those pixels with the RGB-color of the triangle

Aside: Bounding Box Acceleration

• Checking every pixel against every triangle is computationally expensive
• Calculate a bounding box around the triangle, with diagonal corners:

min 𝑥𝑜, 𝑥1, 𝑥2 , min 𝑦0, 𝑦1, 𝑦2 and max 𝑥𝑜, 𝑥1, 𝑥2 , max 𝑦0, 𝑦1, 𝑦2
• Then, round coordinates upward to the nearest integer to find all relative pixels

Implicit Equation for a 2D line
• Compute a directed edge vector 𝑒 = 𝑝1 − 𝑝0 = 𝑥1 − 𝑥0, 𝑦1 − 𝑦0

• Compute a 2D normal 𝑛 = 𝑦1 − 𝑦0, −(𝑥1 − 𝑥0) , which doesn’t need be unit length

• This 2D normal is “rightward” with respect to the 2D ray direction (“leftward” normal is −𝑛)

• Points 𝑝 lying exactly on the 2D line have: 𝑝 − 𝑝0 ⋅ 𝑛 = 0
• Same way planes are defined in 3D

𝒑𝟎 = (𝐱𝟎, 𝐲𝟎)

𝒑𝟏 = (𝒙𝟏, 𝒚𝟏)

𝒆

𝒏

(“Leftward”) Interior Side of a 2D Ray
• Points 𝑝 on the interior side of the 2D ray have: 𝑝 − 𝑝0 ⋅ 𝑛 < 0

• Points 𝑝 exactly on the 2D line have: 𝑝 − 𝑝0 ⋅ 𝑛 = 0

• Points 𝑝 on the exterior side of the 2D ray have: 𝑝 − 𝑝0 ⋅ 𝑛 > 0

• This same concept can be used for planes in 3D

𝒑𝟎 = (𝐱𝟎, 𝐲𝟎)

𝒑𝟏 = (𝒙𝟏, 𝒚𝟏)

𝒆

𝒏

𝒑 − 𝒑𝟎 ⋅ 𝒏 < 𝟎
“interior” side

𝒑 − 𝒑𝟎 ⋅ 𝒏 > 𝟎
“exterior” side

2D Point Inside a 2D Triangle

• A 2D point is considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
• Vertex ordering matters: backward facing triangles are not rendered, since no points are to

the left of all three rays

v0 v1

v2

v0

v1

v2

Counter-Clockwise vertex ordering

(facing camera)
Clockwise vertex ordering

(facing away from camera)

Adjacent Triangles

• Pixels on the boundary with 𝑝 − 𝑝0 ⋅ 𝑛 = 0 for one of the edges won’t be
rendered
• This causes gaps between adjacent edge-sharing triangles, when the edge overlaps a pixel

• Can fix by using 𝑝 − 𝑝0 ⋅ 𝑛 ≤ 0 instead of 𝑝 − 𝑝0 ⋅ 𝑛 < 0, but then both
triangles aim to color the same pixel
• Inefficient, and disagreements can cause artifacts

• Instead, render points on the shared edge (consistently) using only one of the
two triangles:
• Note: edge normals point in opposite directions for adjacent triangles
• When 𝑛𝑥 > 0 or (𝑛𝑥 = 0 and 𝑛𝑦 > 0), rasterize pixels on that edge

• When 𝑛𝑥 < 0 or (𝑛𝑥 = 0 and 𝑛𝑦 < 0), do not rasterize pixels on that edge

• Note: 𝑛𝑥 and 𝑛𝑦 are only both zero for a degenerate triangle

Overlapping Triangles
• When one object is in front of another, two triangles can aim to color the same pixel

• Recall: screen space projection computes 𝑧′ = 𝑛 + 𝑓 −
𝑓𝑛

𝑧
 for occlusion/transparency

• Color each pixel using the triangle with the smallest 𝑧′ value at that pixel
• Need to interpolate 𝑧′ values from triangle vertices to pixel locations
• In order to do this, we use screen space barycentric weight interpolation

Linear Interpolation for Functions
• Linearly interpolate between 𝑥1, 𝑦1 and 𝑥2, 𝑦2 via:

𝑦 𝑥 =
𝑦2−𝑦1

𝑥2−𝑥1
(𝑥 − 𝑥1) + 𝑦1 or 𝑦 𝑥 = 1 −

𝑥−𝑥1

𝑥2−𝑥1
𝑦1 +

𝑥−𝑥1

𝑥2−𝑥1
𝑦2

• Alternatively, 𝑦 𝛼 = 1 − 𝛼 𝑦1 + 𝛼𝑦2 where 𝛼 =
𝑥−𝑥1

𝑥2−𝑥1
∈ [0,1] is the fraction of the way

from 𝑥1 to 𝑥2 or equivalently from 𝑦1 to 𝑦2

𝑦1

𝑦2

𝑥1 𝑥2

𝑦

𝑥

𝛼 = 0

𝛼 = 1

𝛼 = .5

2D/3D Line Segments

• Linearly interpolate between 𝑝0 and 𝑝1 via 𝑝 𝛼 = 1 − 𝛼 𝑝0 + 𝛼𝑝1 where 𝛼 =
𝑝−𝑝0 2

𝑝1−𝑝0 2
 is

the fraction of the distance from 𝑝0 to 𝑝1

• Barycentric weights: Any point 𝑝 on the segment can be written as 𝑝(𝛼0, 𝛼1) = 𝛼0𝑝0 + 𝛼1𝑝1
with 𝛼0, 𝛼1 ∈ [0,1] and 𝛼0 + 𝛼1 = 1

• Weights are computed via lengths: 𝛼0 =
𝑝−𝑝1 2

𝑝1−𝑝0 2
= 1 − 𝛼 and 𝛼1 =

𝑝−𝑝0 2

𝑝1−𝑝0 2
= 𝛼

𝑝0

𝑝1

𝑝 𝛼0

𝛼1

2D/3D Triangles
• Barycentric weights: Points 𝑝 in the triangle can be written as 𝑝(𝛼0, 𝛼1, 𝛼2) = 𝛼0𝑝0 + 𝛼1𝑝1 +

𝛼2𝑝2 with 𝛼0, 𝛼1, 𝛼2 ∈ [0,1] and 𝛼0 + 𝛼1 + 𝛼2 = 1

• Weights are computed via areas: 𝛼0 =
𝐴𝑟𝑒𝑎(𝑝,𝑝1,𝑝2)

𝐴𝑟𝑒𝑎(𝑝0,𝑝1,𝑝2)
, 𝛼1 =

𝐴𝑟𝑒𝑎(𝑝0,𝑝,𝑝2)

𝐴𝑟𝑒𝑎(𝑝0,𝑝1,𝑝2)
, 𝛼2 =

𝐴𝑟𝑒𝑎(𝑝0,𝑝1,𝑝)

𝐴𝑟𝑒𝑎(𝑝0,𝑝1,𝑝2)

• Triangle Area: 𝐴𝑟𝑒𝑎 𝑝0, 𝑝1, 𝑝2 =
1

2
𝑝0𝑝1 × 𝑝0𝑝2 2

𝑝0

𝑝1

𝑝
𝛼2

𝛼1

𝑝2

𝛼0

Algebraic (instead of Geometric) Approach

• Write 𝛼0𝑝0 + 𝛼1𝑝1 + 𝛼2𝑝2 = 𝑝 as 𝛼0

𝑥0

𝑦0

𝑧0

+ 𝛼1

𝑥1

𝑦1

𝑧1

+ (1 − 𝛼0 − 𝛼1)

𝑥2

𝑦2

𝑧2

=
𝑥
𝑦
𝑧

• Assemble into matrix form:

𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

𝑧0 − 𝑧2 𝑧1 − 𝑧2

𝛼0

𝛼1
=

𝑥 − 𝑥2

𝑦 − 𝑦2

𝑧 − 𝑧2

• The coefficient matrix is rank 1 when the columns (i.e. triangle edges) are colinear, implying
infinite solutions for triangles with zero area (one can still embed 𝑝 on an appropriate edge)

• In 2D, this is a 2x2 coefficient matrix; in 3D, use the normal equations to convert 𝐴
𝛼0

𝛼1
= 𝑏

into 𝐴𝑇𝐴
𝛼0

𝛼1
= 𝐴𝑇𝑏 with a 2x2 coefficient matrix 𝐴𝑇𝐴

• Invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns to
obtain 𝛼0 and 𝛼1; then, 𝛼2 = 1 − 𝛼0 − 𝛼1 gives the same answer

as the previous slide

Triangle Basis Vectors (a Linear Algebra approach)
• Compute edge vectors 𝑢 = 𝑝0 − 𝑝2 and 𝑣 = 𝑝1 − 𝑝2

• Points in the triangle have the form 𝑝 = 𝑝2 + 𝛽0𝑢 + 𝛽1𝑣 with 𝛽0, 𝛽1 ∈ [0,1] and 𝛽0 + 𝛽1 ≤ 1
• Substitutions give 𝑝 = 𝛽0𝑝0 + 𝛽1𝑝1 + (1 − 𝛽0 − 𝛽1)𝑝2 implying that: 𝛼0 = 𝛽0, 𝛼1 = 𝛽1,

𝛼2 = 1 − 𝛽0 − 𝛽1 = 1 − 𝛼0 − 𝛼1

𝑝2

𝑝0

𝑝1

𝑣 = 𝑝1 − 𝑝2

𝑢 = 𝑝0 − 𝑝2

𝑝

equivalent to the
previous two slides

Ray Tracing vs. Scanline Rendering
Ray Tracing:
• Creates a ray for each a pixel, and intersects that ray with world space triangles
• Barycentric weights can be used to interpolate 𝑧 values to the point of intersection
• When two triangles intersect a ray, the one with the smaller 𝑧 value is used
• Aside: operating in world space is a huge advantage for the ray tracer, as it can “look around”
in world space to figure out what’s going on (resulting in higher quality images)

Scanline Rendering:
• Operates in screen space, where triangles have been distorted by the screen space projection
• Thus, barycentric weight interpolation of 𝑧 values gives incorrect results
• Aside: operating in screen space with more limited information makes scanline rendering a
good candidate for hardware acceleration (only recently have hardware implementations of ray
tracing become more feasible)

Working in Screen Space
• Project triangle vertices 𝑝0, 𝑝1, 𝑝2 into screen space to get 𝑝0

′ , 𝑝1
′ , 𝑝2

′

• For each vertex 𝑖 = 0, 1, 2, write 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 and 𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′ =

ℎ𝑥𝑖

𝑧𝑖
,

ℎ𝑦𝑖

𝑧𝑖
, 𝑛 + 𝑓 −

𝑓𝑛

𝑧𝑖

• Given a pixel at 𝑝′ with barycentric weights 𝑝′ = 𝛼0
′ 𝑝0

′ + 𝛼1
′ 𝑝1

′ + 𝛼2
′ 𝑝2

′ , we need to compute
𝑧 ≠ 𝛼0

′ 𝑧0 + 𝛼1
′ 𝑧1 + 𝛼2

′ 𝑧2 in order to handle occlusion/transparency

• Let 𝑝 be the world space point that projects to 𝑝′, noting that world space barycentric weight
interpolation can be used to correctly calculate 𝑧 at 𝑝

• Using triangle basis vectors:

𝑝 = 𝑝2 + 𝛼0 𝑝0 − 𝑝2 + 𝛼1 𝑝1 − 𝑝2 =

𝑥2

𝑦2

𝑧2

+

𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

𝑧0 − 𝑧2 𝑧1 − 𝑧2

𝛼0

𝛼1

where 𝛼0 and 𝛼1 are unknowns
that need to be determined

Working in Screen Space
• Since the point 𝑝 projects to the pixel 𝑝′:

 𝑝′ =

ℎ𝑥

𝑧
ℎ𝑦

𝑧

=
ℎ

𝑧

𝑥2

𝑦2
+

𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

𝛼0

𝛼1

• Pixel 𝑝′ is in a screen space triangle with basis vectors 𝑢′ = 𝑝0
′ − 𝑝2

′ and 𝑣′ = 𝑝1
′ − 𝑝2

′ where it
has screen space barycentric weights 𝛼0

′ , 𝛼1
′ , 𝛼2

′ ; thus,

𝑝′ = 𝑝2
′ + 𝛼0

′ 𝑢′ + 𝛼1
′ 𝑣′ =

𝑥2
′

𝑦2
′ +

𝑢1
′ 𝑣1

′

𝑢2
′ 𝑣2

′

𝛼0
′

𝛼1
′

• Set these two expressions for 𝑝′ equal to each other:
ℎ

𝑧

𝑥2

𝑦2
+

𝑥0 − 𝑥2 𝑥1 − 𝑥2

𝑦0 − 𝑦2 𝑦1 − 𝑦2

𝛼0

𝛼1
=

𝑥2
′

𝑦2
′ +

𝑢1
′ 𝑣1

′

𝑢2
′ 𝑣2

′

𝛼0
′

𝛼1
′

Solve for 𝛼0 and 𝛼1
in terms of 𝛼0

′ and 𝛼1
′

Working in Screen Space

• Rewrite the first term on the right hand side as

𝑥2
′

𝑦2
′ =

ℎ

𝑧2

𝑥2

𝑦2
=

ℎ

𝑧

𝑧

𝑧2

𝑥2

𝑦2
=

ℎ

𝑧

𝑥2

𝑦2
+

𝑧0

𝑧2
𝑥2 − 𝑥2

𝑧1

𝑧2
𝑥2 − 𝑥2

𝑧0

𝑧2
𝑦2 − 𝑦2

𝑧1

𝑧2
𝑦2 − 𝑦2

𝛼0

𝛼1

• After cancellation of the blue terms and moving the green terms to the left hand side:

ℎ

𝑧

𝑥0 −
𝑧0

𝑧2
𝑥2 𝑥1 −

𝑧1

𝑧2
𝑦2

𝑦0 −
𝑧0

𝑧2
𝑦2 𝑦1 −

𝑧1

𝑧2
𝑦2

𝛼0

𝛼1
=

𝑢1
′ 𝑣1

′

𝑢2
′ 𝑣2

′

𝛼0
′

𝛼1
′

1

𝑧

𝑥0
′ − 𝑥2

′ 𝑥1
′ − 𝑥2

′

𝑦0
′ − 𝑦2

′ 𝑦1
′ − 𝑦2

′

𝑧0𝛼0

𝑧1𝛼1
=

𝑢1
′ 𝑣1

′

𝑢2
′ 𝑣2

′

𝛼0
′

𝛼1
′

1

𝑧

𝑧0𝛼0

𝑧1𝛼1
=

𝛼0
′

𝛼1
′

𝑧0𝛼0

𝑧1𝛼1
− 𝛼0 𝑧0 − 𝑧2

𝛼0
′

𝛼1
′ − 𝛼1 𝑧1 − 𝑧2

𝛼0
′

𝛼1
′ = 𝑧2

𝛼0
′

𝛼1
′

𝑧0 − 𝑧0 − 𝑧2 𝛼0
′ − 𝑧1 − 𝑧2 𝛼0

′

− 𝑧0 − 𝑧2 𝛼1
′ 𝑧1 − 𝑧1 − 𝑧2 𝛼1

′

𝛼0

𝛼1
=

𝑧2𝛼0
′

𝑧2𝛼1
′

Notice that all the 𝑥 and 𝑦 terms vanished!

Finding the World Space Barycentric Weights
• Invert the 2x2 coefficient matrix:

𝛼0

𝛼1
=

1

𝑧0𝑧1−𝑧1 𝑧0−𝑧2 𝛼0
′ −𝑧0 𝑧1−𝑧2 𝛼1

′

𝑧1 − 𝑧1 − 𝑧2 𝛼1
′ 𝑧1 − 𝑧2 𝛼0

′

𝑧0 − 𝑧2 𝛼1
′ 𝑧0 − 𝑧0 − 𝑧2 𝛼0

′

𝑧2𝛼0
′

𝑧2𝛼1
′

=
1

𝑧1𝑧2𝛼0
′ + 𝑧0𝑧2𝛼1

′ + 𝑧0𝑧1𝛼2
′

𝑧1𝑧2𝛼0
′

𝑧0𝑧2𝛼1
′

• In summary, given the barycentric weights 𝛼0
′ and 𝛼1

′ of pixel 𝑝′, we can compute:

𝛼0 =
𝑧1𝑧2𝛼0

′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′ and 𝛼1 =

𝑧0𝑧2𝛼1
′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′

• In addition, 𝛼2 =
𝑧0𝑧1𝛼2

′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′ from 𝛼2 = 1 − 𝛼0 − 𝛼1

• Then, 𝛼0, 𝛼1, 𝛼2 can be used to find 𝑝 = 𝛼0𝑝0 + 𝛼1𝑝1 + 𝛼2𝑝2 on the world space triangle

Depth Buffer
• Given word space barycentric weights 𝛼0, 𝛼1, 𝛼2 for the point 𝑝 that projects to a pixel located at 𝑝′, the 𝑧 value
at 𝑝 can be computed via 𝑧 = 𝛼0𝑧0 + 𝛼1𝑧1 + 𝛼2𝑧2

• When two triangles overlap the same pixel, there are two different points 𝑝 (one on each triangle) and the one
with the smaller 𝑧 value is used to color the pixel

• Since 𝑧 = 𝛼0𝑧0 + 𝛼1𝑧1 + 𝛼2𝑧2 =
𝑧0𝑧1𝑧2

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′ , we have

1

𝑧
= 𝛼0

′ 1

𝑧0
+ 𝛼1

′ 1

𝑧1
+ 𝛼2

′ 1

𝑧2

• That is,
1

𝑧
 can be interpolated correctly with screen space barycentric weights (in contrast to most other quantities)

• Using 𝑧𝑖
′ = 𝑛 + 𝑓 −

𝑓𝑛

𝑧𝑖
 , we have:

 z′ = 𝑛 + 𝑓 −
𝑓𝑛

𝑧
= 𝑛 + 𝑓 − 𝑓𝑛 𝛼0

′ 1

𝑧0
+ 𝛼1

′ 1

𝑧1
+ 𝛼2

′ 1

𝑧2
= 𝛼0

′ 𝑧0
′ + 𝛼1

′ 𝑧1
′ + 𝛼2

′ 𝑧2
′

• That is, z′ can also be interpolated correctly with screen space barycentric weights!

• Since
𝑑𝑧′

𝑑𝑧
=

𝑓𝑛

𝑧2 > 0, comparing 𝑧′ values is as valid as comparing 𝑧 values

• Note: Even though the 𝛼0, 𝛼1, 𝛼2 aren’t needed for the final result (only to derive it), we will need them for
texture mapping (later in the quarter)

Lighting and Shading
• After identifying that a pixel is inside a triangle, its color can be set to the color of the triangle
• This ignores all the nuances of how light works (we’ll discuss that later)
• If you rendered a sphere using this simplistic approach, it would look like this:

	Slide 1: Triangles
	Slide 2: Lots of Triangles
	Slide 3: Why Triangles?
	Slide 4: OpenGL
	Slide 5: GPUs and Gaming Consoles
	Slide 6: Rasterization
	Slide 7: Aside: Bounding Box Acceleration
	Slide 8: Implicit Equation for a 2D line
	Slide 9: (“Leftward”) Interior Side of a 2D Ray
	Slide 10: 2D Point Inside a 2D Triangle
	Slide 11: Adjacent Triangles
	Slide 12: Overlapping Triangles
	Slide 13: Linear Interpolation for Functions
	Slide 14: 2D/3D Line Segments
	Slide 15: 2D/3D Triangles
	Slide 16: Algebraic (instead of Geometric) Approach
	Slide 17: Triangle Basis Vectors (a Linear Algebra approach)
	Slide 18: Ray Tracing vs. Scanline Rendering
	Slide 19: Working in Screen Space
	Slide 20: Working in Screen Space
	Slide 21: Working in Screen Space
	Slide 22: Finding the World Space Barycentric Weights
	Slide 23: Depth Buffer
	Slide 24: Lighting and Shading

