Ray Tracing

Constructing Rays

* For each pixel: create a ray and intersect it with objects in the scene
* The first intersection is used to determine a color for the pixel

 Therayis R(t) = A+ (P — A)t where A is the aperture and P is the pixel location

* Theray is defined by t € [0,), although only t € [1, t¢,,] is inside the viewing frustum
 We only care about the first intersection witht > 1

film plane

pixel / :
apert:e/ray/g/

t=20

Parallelization

e Ray tracing is a per pixel operation (scanline rendering is per triangle)
e Ray tracing is inherently parallel (the ray for each pixel is independent of the rays for other
pixels)

* Can utilize parallel CPUs/Clusters/GPUs for code acceleration
* Threading - distributes rays across CPU cores

e Message Passing Interface (MPI) - distributes rays across CPUs on different machines (unshared memory)
e OptiX/CUDA - distributes rays on the GPU

 Memory coherency is important, when distributing rays to various threads/processors

 Assign spatially neighboring rays (passing through neighboring pixels) to the same core/processor
* These rays tend to intersect with the same objects in the scene, and thus tend to access the same memory

* Note: Scanline rendering is parallelized to handle one triangle at a time (usually on a GPU)

Ray-Triangle Intersection

* Given the enormous number of triangles, many approaches have been implemented and
tested in various software/hardware settings:

* QOption 1: Triangles are contained in planes, so consider a Ray-Plane intersection first
* A Ray-Plane intersection yields a point, and a subsequent test determines if that point lies inside the triangle
e Option 1A: Project both the triangle and the intersection point into 2D; then, use the 2D triangle rasterization
test (to the left of all 3 rays)
* Can project into the xy, xz, yz plane by just dropping the z, y, x coordinate (respectively) from the triangle
vertices and the intersection point
* Most robust to drop the coordinate with the largest component in the triangle’s normal (so that the
projected triangle has maximal area)
 QOption 1B: There is a fully 3D version of the 2D rasterization

* Option 2: Skip the Ray-Plane intersection and consider Ray-Triangle intersection directly
e This is similar to how ray tracing works for non-triangle geometry (ray tracers handle non-triangle geometry far
better than scanline rendering does)

Ray-Plane Intersection

* A planeis defined by a point p, (that lies on it) and a normal direction N
* Apointpisonthe planeif (p —p,) N =0
e ArayR(t) = A+ (P — A)t intersects the plane when:
(R(t) —p,) -N =0

A+ P-At—p,) N=0
¥ (po i A) - N
~ (P-A)-N
* Asalways, ift & [1, tfar] or another intersection has a smaller t value, then this intersection is
ighored

t

Notes:

* The length of N cancels, so it need not be unit length

e Compute N by taking the cross product of any two edges, as long as the triangle has nonzero area
* Any triangle vertex can be used as a point on the plane

3D Point Inside a 3D Triangle (Option 1B)

: ~A)-N . . :
Given tj,; = ((Z;O—A))-N , compute R(t;,,;) = R, as the intersection point

e

ell

Given edge e = p, — py, compute its normal n = (py — p3) — ((po —P2) IIEII> [

R, is to the left of to e when (R, — py) - n < 0
If R, is to the left of all three edges, it is interior to the triangle

Po

P1 = 5
(Po —P2) 157) i
P2

Recall: Triangle Basis Vectors

Compute edge vectorsu = py — v, and v = p; — p,

Points in the triangle have the formp = p, + fou + ;v with 5y, 5, € [0, 1]and Sy + /1 < 1
Substitutions give p = Bypo + f1p1 + (1 — By — B1)p, implying that: ag = By, a1 = b4,
a,=1—-pp—p1=1—-ay—a;

P1

Vi el
Po

P2

Direct Ray-Triangle Intersection (Option 2)

* Triangle Basis Vectors: p = p, + fou + f1v with 5y, 51 € [0,1]and By + 1 < 1
* Ray:R(t) =A+ (P —-A)t
* Anintersection point has:

A+ (P - At =p, + Bou+ pyv

Bo
(u v A—P)<[31>=A—p2

3x3 matrix £ 3x1 vector

* 3 equations with 3 unknowns:
* The 3x3 coefficient is degenerate when its columns are not full rank
* That happens when the triangle has zero area or the ray direction, P — A, is perpendicular to the plane’s normal
* Otherwise, there is a unique solution

R(t;,;) is inside the triangle, when: By, B; € [0,1]and By + B < 1
 Asalways,ift & [1, tfar] or another intersection has a smaller t value, then this intersection is
ignored

Solving via Cramer’s Rule

e Solving the 3x3 linear system via Cramer’s Rule allows for code optimization:

« Compute the determinant of the 3x3 coefficient matrix A = |[(u v A — P)|, whichis

nonzero when a solution exists

A : :
e Computet = Xt where the numerator is the determinant A, = |(u v A —py)|

When t & [1, tfar] or there is an earlier intersection, quit early (ignoring this intersection)

A
 Compute [, = %where Ag, =|(A—py v A—P)]
 When S, € [0,1], quit early

A
* Compute [= %where Ag, =|(u A—py A—P)]
* When f3; € 0,1 — S|, the intersection is marked as true

Ray-Object Intersections

* Aslong as a Ray-Geometry intersection routine can be written, ray tracing can be applied to

any representation of object geometry
* |n contrast to scanline rendering, where objects need to be turned into triangles

* Besides triangles, ray tracers readily use: analytic descriptions of geometry, implicitly defined
surfaces, parametric surfaces, etc.

Implicitly defined geometry:
 Define an implicit function f where f(p) = 0 defines a surface (e.g. the equation for a plane)
 Sometimes there are additional constraints (such as on the barycentric weights for triangles)

e Ray-Object intersection routines then proceed as follows:

* substitute the ray equation in for the point: f(R(t)) =0
 solvefort
* check the solution against any additional constraints

Ray-Sphere Intersections

* A sphere with center C and radius r can be defined via ||p — C||, = r
« Square bothsides: (p —C) - (p — C) =1?
* Substitute R(t) = A+ (P — A)t in for p to get a quadratic equation in t:

(P=A) - (P-At?’+2(P-4)-A-0Ot+A-0C)-(4A-0C)—-1*=0
 When the discriminant is positive, there are two solutions (choose the one the ray hits first)
 When the discriminant is zero, there is one solution (the ray tangentially grazes the sphere)
 When the discriminant is negative, there are no solutions

o y y

Two solutions One solution Imaginary

Ray Tracing Transformed Objects

* |tis typically preferable to ray trace in object space, rather than world space
 Geometry is typically kept in object space
* The object space representation is typically simpler to deal with
* E.g., spheres can be centered at the origin, objects are not sheared, coordinates may be non-dimensionalized
for numerical robustness, there may be (auxiliary) geometric acceleration structures, more convenient color
and texture information, etc.

* Transform the ray into object space and find the ray-object intersection
* Then, transform the relevant information back to world space

/ » - M - Robject(tint)

Recall: Bounding Box Acceleration

* Checking every pixel against every triangle is computationally expensive
* Calculate a bounding box around the triangle, with diagonal corners:

(min(x,, x4, X2) , min(yy, y1, y2)) and (max(x,, x1, x,) , max(yo, 1, ¥2))
* Then, round coordinates upward to the nearest integer to find all relative pixels

1 Pl
L i

J
-

Il i
w1/

Aside: Code Acceleration (Bounding Volumes)

* Ray-Object intersections can be expensive

* So, put complex objects inside simpler objects, and first test for intersections against the
simpler object (potentially skipping tests against the complex object)

* Simple bounding volumes: spheres, axis-aligned bounding boxes (AABB), or oriented bounding
boxes (OBB)

Aside: Code Acceleration (Hierarchical Bounding Volumes)

* For complex objects, build a hierarchical tree structure in object space

 The lowest levels of the tree contain the primitives used for intersections (and have simple
geometry bounding them); then, these are combined hierarchically into a logn height tree

e Starting at the top of a Bounding Volume Hierarchy (BVH), one can prune out many
nonessential (missed) ray-object collision checks

Aside: Code Acceleration (Hierarchical Bounding Volumes)

* |nstead of a bottom-up bounding volume hierarchy approach, octrees and K-D trees take a
top-down approach to hierarchically partitioning objects (and space)

al)

B d \A]\

(O OI0@

e

Normals

* The surface normal at the intersection point R(t;,;) can be used to approximate a plane
(locally) tangent to the surface

* Objects tilted towards the light are bombarded with more photons than those tilted away
from the light
e Compare the (unit) incoming light direction L with the (unit) normal N to approximate the tilt:
—L-N =cos8
* Incoming light with intensity I is scaled down to I max(0, cos 6)
* the max with O prunes surfaces facing away from the light

* If (kg, k¢, kg) is the RGB color of a triangle, where kg, k¢, kg € |0,1] are surface reflection
coefficients, then the pixel color would be (ky, k¢, kz) I max(0, cos 6)

Ambient vs. Diffuse Shading

 Ambient shading colors a pixel when its ray intersects the object
» Diffuse shading attenuates object color based on how far the unit normal is tilted away from
the incoming light (note how your eyes/brain imagine a 3D shape)

Ambient Diffuse

Computing Unit Normals

 The unit normal to a plane is used in the plane’s definition, and is thus readily accessible
* though, it might need to be normalized to unit length

* The unit normal to a triangle is computed by normalizing the cross product of two edges
e Be careful with the edge ordering to ensure that the normal points outwards from the object
(as opposed to inwards)

IR(tine)—Cll2

e The (outward) unit normal of a sphere is computed via N =

* For other objects, need to provide a function that returns an (outward) unit normal for any
intersection point

Ray Tracing Transformed Objects

 When ray tracing in object space, the object space normal needs to be transformed back into
world space (along with the intersection point)

 Let u and v be edge vectors of an object space triangle
e Let Mu and Mv be the corresponding world space edges
* The object space normal N is transformed to world space via M~ TN

e Mu-MT'TN=u"MTMTN=u"N=u-N=0,andMv-M TN =0
« M~TN needs to be normalized to make it unit length

e Careful, DO NOT USE MN as the world space normal:
T AN
T

N
\< scale y > N’ is not the normal

Shadows

* Shadow rays are used to determine whether photons from a light source are blocked by other
objects or by parts of the same object

* Ashadow ray is cast from the intersection point R(t;,,;) = R, in the direction of the light —L
S(t) =R, — Lt where t € (0,t;;4nc)

* If nointersections are found in (0, t;; ;5.), the light source is unobscured
* Otherwise, the point is shadowed, and the light source is ignored

Notes:
e Every light source is checked with a separate shadow ray
 Ambient shading is often used for points shadowed from all lights, so that they are not completely black

Spurious Self-Occlusion

* t =0isnotincludedint € (0, t;;,nt), to avoid incorrect self-intersections near R,
e This can still happen because of issues with numerical precision
* Note: Some shadow rays should self-intersect, such as those on the back-side of an object

incorrect self-shadowing correct self-shadowing

Fixing Spurious Self-Occlusion

* Uset € (€, t4n:) With an € > 0 large enough to avoid numerical precision issues

* This works well for many cases
 However, grazing shadow rays may still incorrectly re-intersect the object

Fixing Spurious Self-Occlusion

* Perturb the starting point of the shadow ray (typically in the normal direction), i.e. from R, to
R, + €N
e The ray direction needs to be modified too, to go from R, + €N to the light

* The new shadow rayis S(t) = R, + €N — L, 4t
* Need to be careful that the new starting point isn’t inside (or too close to) any other geometry

Aside: Code Acceleration (Scene Partitioning)

 When there are many objects in the scene, checking rays against all of their top level simple
bounding volumes can become expensive

* Thus, bounding volume hierarchies (octrees, K-D trees, etc..) are used to partition the world
space scene

e Also useful (but flat instead of hierarchical) are uniform spatial partitions (uniform grids) and
viewing frustum partitions

ray

Aside: Code Acceleration (Scene Partitioning)

 There are many variants: rectilinear grids with movable lines, hierarchies of uniform grids, and
a structure proposed by [Losasso et al. 2006] that allows octrees to be allocated inside the cells
of a uniform spatial partition

	Slide 1: Ray Tracing
	Slide 2: Constructing Rays
	Slide 3: Parallelization
	Slide 4: Ray-Triangle Intersection
	Slide 5: Ray-Plane Intersection
	Slide 6: 3D Point Inside a 3D Triangle (Option 1B)
	Slide 7: Recall: Triangle Basis Vectors
	Slide 8: Direct Ray-Triangle Intersection (Option 2)
	Slide 9: Solving via Cramer’s Rule
	Slide 10: Ray-Object Intersections
	Slide 11: Ray-Sphere Intersections
	Slide 12: Ray Tracing Transformed Objects
	Slide 13: Recall: Bounding Box Acceleration
	Slide 14: Aside: Code Acceleration (Bounding Volumes)
	Slide 15: Aside: Code Acceleration (Hierarchical Bounding Volumes)
	Slide 16: Aside: Code Acceleration (Hierarchical Bounding Volumes)
	Slide 17: Normals
	Slide 18: Ambient vs. Diffuse Shading
	Slide 19: Computing Unit Normals
	Slide 20: Ray Tracing Transformed Objects
	Slide 21: Shadows
	Slide 22: Spurious Self-Occlusion
	Slide 23: Fixing Spurious Self-Occlusion
	Slide 24: Fixing Spurious Self-Occlusion
	Slide 25: Aside: Code Acceleration (Scene Partitioning)
	Slide 26: Aside: Code Acceleration (Scene Partitioning)

