
Ray Tracing

Constructing Rays
• For each pixel: create a ray and intersect it with objects in the scene
• The first intersection is used to determine a color for the pixel

• The ray is 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 where 𝐴 is the aperture and 𝑃 is the pixel location
• The ray is defined by 𝑡 ∈ 0, ∞ , although only 𝑡 ∈ [1, 𝑡𝑓𝑎𝑟] is inside the viewing frustum
• We only care about the first intersection with 𝑡 ≥ 1

aperture

pixel

film plane

ray

?

𝑡 = 0

𝑡 = 1

Parallelization
• Ray tracing is a per pixel operation (scanline rendering is per triangle)
• Ray tracing is inherently parallel (the ray for each pixel is independent of the rays for other
pixels)

• Can utilize parallel CPUs/Clusters/GPUs for code acceleration
• Threading - distributes rays across CPU cores

• Message Passing Interface (MPI) - distributes rays across CPUs on different machines (unshared memory)

• OptiX/CUDA - distributes rays on the GPU

• Memory coherency is important, when distributing rays to various threads/processors
• Assign spatially neighboring rays (passing through neighboring pixels) to the same core/processor

• These rays tend to intersect with the same objects in the scene, and thus tend to access the same memory

• Note: Scanline rendering is parallelized to handle one triangle at a time (usually on a GPU)

Ray-Triangle Intersection
• Given the enormous number of triangles, many approaches have been implemented and
tested in various software/hardware settings:

• Option 1: Triangles are contained in planes, so consider a Ray-Plane intersection first
• A Ray-Plane intersection yields a point, and a subsequent test determines if that point lies inside the triangle
• Option 1A: Project both the triangle and the intersection point into 2D; then, use the 2D triangle rasterization

test (to the left of all 3 rays)
• Can project into the xy, xz, yz plane by just dropping the z, y, x coordinate (respectively) from the triangle

vertices and the intersection point
• Most robust to drop the coordinate with the largest component in the triangle’s normal (so that the

projected triangle has maximal area)
• Option 1B: There is a fully 3D version of the 2D rasterization

• Option 2: Skip the Ray-Plane intersection and consider Ray-Triangle intersection directly
• This is similar to how ray tracing works for non-triangle geometry (ray tracers handle non-triangle geometry far

better than scanline rendering does)

Ray-Plane Intersection
• A plane is defined by a point 𝑝𝑜 (that lies on it) and a normal direction 𝑁
• A point 𝑝 is on the plane if 𝑝 − 𝑝𝑜 ⋅ 𝑁 = 0
• A ray 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 intersects the plane when:

𝑅 𝑡 − 𝑝𝑜 ⋅ 𝑁 = 0
𝐴 + 𝑃 − 𝐴 𝑡 − 𝑝𝑜 ⋅ 𝑁 = 0

𝑡 =
𝑝𝑜 − 𝐴 ⋅ 𝑁

𝑃 − 𝐴 ⋅ 𝑁
• As always, if 𝑡 ∉ 1, 𝑡𝑓𝑎𝑟 or another intersection has a smaller 𝑡 value, then this intersection is

ignored

Notes:
• The length of 𝑁 cancels, so it need not be unit length
• Compute 𝑁 by taking the cross product of any two edges, as long as the triangle has nonzero area
• Any triangle vertex can be used as a point on the plane

3D Point Inside a 3D Triangle (Option 1B)

• Given 𝑡𝑖𝑛𝑡 =
𝑝𝑜−𝐴 ⋅𝑁

𝑃−𝐴 ⋅𝑁
, compute 𝑅 𝑡𝑖𝑛𝑡 = 𝑅𝑜 as the intersection point

• Given edge 𝑒 = 𝑝1 − 𝑝0, compute its normal 𝑛 = 𝑝0 − 𝑝2 − 𝑝0 − 𝑝2 ⋅
𝑒

𝑒

𝑒

𝑒

• 𝑅𝑜 is to the left of to 𝑒 when 𝑅𝑜 − 𝑝0 ⋅ 𝑛 < 0
• If 𝑅𝑜 is to the left of all three edges, it is interior to the triangle

𝒑𝟎

𝒑𝟏

𝒑𝟐

𝒆

𝒑𝟎 − 𝒑𝟐 ⋅
𝒆

𝒆

𝒆

𝒆

𝒏

Recall: Triangle Basis Vectors
• Compute edge vectors 𝑢 = 𝑝0 − 𝑝2 and 𝑣 = 𝑝1 − 𝑝2

• Points in the triangle have the form 𝑝 = 𝑝2 + 𝛽0𝑢 + 𝛽1𝑣 with 𝛽0, 𝛽1 ∈ [0,1] and 𝛽0 + 𝛽1 ≤ 1
• Substitutions give 𝑝 = 𝛽0𝑝0 + 𝛽1𝑝1 + (1 − 𝛽0 − 𝛽1)𝑝2 implying that: 𝛼0 = 𝛽0, 𝛼1 = 𝛽1,

𝛼2 = 1 − 𝛽0 − 𝛽1 = 1 − 𝛼0 − 𝛼1

𝑝2

𝑝0

𝑝1

𝑣 = 𝑝1 − 𝑝2

𝑢 = 𝑝0 − 𝑝2

𝑝

Direct Ray-Triangle Intersection (Option 2)
• Triangle Basis Vectors: 𝑝 = 𝑝2 + 𝛽0𝑢 + 𝛽1𝑣 with 𝛽0, 𝛽1 ∈ [0,1] and 𝛽0 + 𝛽1 ≤ 1
• Ray: 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡
• An intersection point has:

𝐴 + 𝑃 − 𝐴 𝑡 = 𝑝2 + 𝛽0𝑢 + 𝛽1𝑣

𝑢 𝑣 𝐴 − 𝑃
𝛽0

𝛽1

𝑡

= 𝐴 − 𝑝2

• 3 equations with 3 unknowns:
• The 3x3 coefficient is degenerate when its columns are not full rank
• That happens when the triangle has zero area or the ray direction, 𝑃 − 𝐴, is perpendicular to the plane’s normal
• Otherwise, there is a unique solution

• 𝑅 𝑡𝑖𝑛𝑡 is inside the triangle, when: 𝛽0, 𝛽1 ∈ [0,1] and 𝛽0 + 𝛽1 ≤ 1

• As always, if 𝑡 ∉ 1, 𝑡𝑓𝑎𝑟 or another intersection has a smaller 𝑡 value, then this intersection is

ignored

3x3 matrix 3x1 vector

Solving via Cramer’s Rule
• Solving the 3x3 linear system via Cramer’s Rule allows for code optimization:

• Compute the determinant of the 3x3 coefficient matrix Δ = | 𝑢 𝑣 𝐴 − 𝑃 |, which is
nonzero when a solution exists

• Compute 𝑡 =
Δ𝑡

Δ
 where the numerator is the determinant Δ𝑡 = | 𝑢 𝑣 𝐴 − 𝑝0 |

• When 𝑡 ∉ 1, 𝑡𝑓𝑎𝑟 or there is an earlier intersection, quit early (ignoring this intersection)

• Compute 𝛽0 =
Δ𝛽0

Δ
 where Δ𝛽0

= | 𝐴 − 𝑝0 𝑣 𝐴 − 𝑃 |

• When 𝛽0 ∉ [0,1], quit early

• Compute 𝛽1 =
Δ𝛽1

Δ
 where Δ𝛽1

= | 𝑢 𝐴 − 𝑝0 𝐴 − 𝑃 |

• When 𝛽1 ∈ [0,1 − 𝛽0], the intersection is marked as true

Ray-Object Intersections
• As long as a Ray-Geometry intersection routine can be written, ray tracing can be applied to
any representation of object geometry
• In contrast to scanline rendering, where objects need to be turned into triangles

• Besides triangles, ray tracers readily use: analytic descriptions of geometry, implicitly defined
surfaces, parametric surfaces, etc.

Implicitly defined geometry:
• Define an implicit function 𝑓 where 𝑓 𝑝 = 0 defines a surface (e.g. the equation for a plane)
• Sometimes there are additional constraints (such as on the barycentric weights for triangles)
• Ray-Object intersection routines then proceed as follows:
• substitute the ray equation in for the point: 𝑓 𝑅(𝑡) = 0
• solve for 𝑡
• check the solution against any additional constraints

Ray-Sphere Intersections
• A sphere with center 𝐶 and radius 𝑟 can be defined via 𝑝 − 𝐶 2 = 𝑟
• Square both sides: 𝑝 − 𝐶 ⋅ (𝑝 − 𝐶) = 𝑟2

• Substitute 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 in for 𝑝 to get a quadratic equation in 𝑡:

𝑃 − 𝐴 ⋅ 𝑃 − 𝐴 𝑡2 + 2 𝑃 − 𝐴 ⋅ 𝐴 − 𝐶 𝑡 + 𝐴 − 𝐶 ⋅ 𝐴 − 𝐶 − 𝑟2 = 0
• When the discriminant is positive, there are two solutions (choose the one the ray hits first)
• When the discriminant is zero, there is one solution (the ray tangentially grazes the sphere)
• When the discriminant is negative, there are no solutions

Ray Tracing Transformed Objects
• It is typically preferable to ray trace in object space, rather than world space
• Geometry is typically kept in object space
• The object space representation is typically simpler to deal with
• E.g., spheres can be centered at the origin, objects are not sheared, coordinates may be non-dimensionalized

for numerical robustness, there may be (auxiliary) geometric acceleration structures, more convenient color
and texture information, etc.

• Transform the ray into object space and find the ray-object intersection
• Then, transform the relevant information back to world space

𝑴 ⋅ 𝑹𝒐𝒃𝒋𝒆𝒄𝒕(𝒕𝒊𝒏𝒕)

Recall: Bounding Box Acceleration

• Checking every pixel against every triangle is computationally expensive
• Calculate a bounding box around the triangle, with diagonal corners:

min 𝑥𝑜, 𝑥1, 𝑥2 , min 𝑦0, 𝑦1, 𝑦2 and max 𝑥𝑜, 𝑥1, 𝑥2 , max 𝑦0, 𝑦1, 𝑦2
• Then, round coordinates upward to the nearest integer to find all relative pixels

Aside: Code Acceleration (Bounding Volumes)
• Ray-Object intersections can be expensive
• So, put complex objects inside simpler objects, and first test for intersections against the
simpler object (potentially skipping tests against the complex object)
• Simple bounding volumes: spheres, axis-aligned bounding boxes (AABB), or oriented bounding
boxes (OBB)

Aside: Code Acceleration (Hierarchical Bounding Volumes)
• For complex objects, build a hierarchical tree structure in object space
• The lowest levels of the tree contain the primitives used for intersections (and have simple
geometry bounding them); then, these are combined hierarchically into a log 𝑛 height tree
• Starting at the top of a Bounding Volume Hierarchy (BVH), one can prune out many
nonessential (missed) ray-object collision checks

Aside: Code Acceleration (Hierarchical Bounding Volumes)
• Instead of a bottom-up bounding volume hierarchy approach, octrees and K-D trees take a
top-down approach to hierarchically partitioning objects (and space)

Normals
• The surface normal at the intersection point 𝑅 𝑡𝑖𝑛𝑡 can be used to approximate a plane
(locally) tangent to the surface

• Objects tilted towards the light are bombarded with more photons than those tilted away
from the light
• Compare the (unit) incoming light direction ෠𝐿 with the (unit) normal ෡𝑁 to approximate the tilt:

 −෠𝐿 ⋅ ෡𝑁 = cos 𝜃
• Incoming light with intensity 𝐼 is scaled down to 𝐼 max(0, cos 𝜃)
• the max with 0 prunes surfaces facing away from the light

• If (𝑘𝑅 , 𝑘𝐺 , 𝑘𝐵) is the RGB color of a triangle, where 𝑘𝑅 , 𝑘𝐺 , 𝑘𝐵 ∈ 0,1 are surface reflection
coefficients, then the pixel color would be 𝑘𝑅 , 𝑘𝐺 , 𝑘𝐵 𝐼 max 0, cos 𝜃

Ambient vs. Diffuse Shading
• Ambient shading colors a pixel when its ray intersects the object
• Diffuse shading attenuates object color based on how far the unit normal is tilted away from
the incoming light (note how your eyes/brain imagine a 3D shape)

Ambient Diffuse

Computing Unit Normals
• The unit normal to a plane is used in the plane’s definition, and is thus readily accessible
• though, it might need to be normalized to unit length

• The unit normal to a triangle is computed by normalizing the cross product of two edges
• Be careful with the edge ordering to ensure that the normal points outwards from the object
(as opposed to inwards)

• The (outward) unit normal of a sphere is computed via ෡𝑁 =
𝑅 𝑡𝑖𝑛𝑡 −𝐶

𝑅 𝑡𝑖𝑛𝑡 −𝐶 2

• For other objects, need to provide a function that returns an (outward) unit normal for any
intersection point

Ray Tracing Transformed Objects
• When ray tracing in object space, the object space normal needs to be transformed back into
world space (along with the intersection point)

• Let 𝑢 and 𝑣 be edge vectors of an object space triangle
• Let 𝑀𝑢 and 𝑀𝑣 be the corresponding world space edges
• The object space normal ෡𝑁 is transformed to world space via 𝑀−𝑇 ෡𝑁
• 𝑀𝑢 ⋅ 𝑀−𝑇 ෡𝑁 = 𝑢𝑇𝑀𝑇𝑀−𝑇 ෡𝑁 = 𝑢𝑇 ෡𝑁 = 𝑢 ⋅ ෡𝑁 = 0, and 𝑀𝑣 ⋅ 𝑀−𝑇 ෡𝑁 = 0
• 𝑀−𝑇 ෡𝑁 needs to be normalized to make it unit length

• Careful, DO NOT USE 𝑀 ෡𝑁 as the world space normal:

scale y N’ is not the normal

Shadows
• Shadow rays are used to determine whether photons from a light source are blocked by other
objects or by parts of the same object

• A shadow ray is cast from the intersection point 𝑅 𝑡𝑖𝑛𝑡 = 𝑅𝑜 in the direction of the light −෠𝐿
𝑆 𝑡 = 𝑅𝑜 − ෠𝐿𝑡 where 𝑡 ∈ (0, 𝑡𝑙𝑖𝑔ℎ𝑡)

• If no intersections are found in (0, 𝑡𝑙𝑖𝑔ℎ𝑡), the light source is unobscured

• Otherwise, the point is shadowed, and the light source is ignored

Notes:
• Every light source is checked with a separate shadow ray
• Ambient shading is often used for points shadowed from all lights, so that they are not completely black

Spurious Self-Occlusion
• 𝑡 = 0 is not included in 𝑡 ∈ (0, 𝑡𝑙𝑖𝑔ℎ𝑡), to avoid incorrect self-intersections near 𝑅𝑜

• This can still happen because of issues with numerical precision

• Note: Some shadow rays should self-intersect, such as those on the back-side of an object

incorrect self-shadowing correct self-shadowing

Fixing Spurious Self-Occlusion
• Use 𝑡 ∈ (𝜖, 𝑡𝑙𝑖𝑔ℎ𝑡) with an 𝜖 > 0 large enough to avoid numerical precision issues

• This works well for many cases
• However, grazing shadow rays may still incorrectly re-intersect the object

Fixing Spurious Self-Occlusion
• Perturb the starting point of the shadow ray (typically in the normal direction), i.e. from 𝑅𝑜 to

𝑅𝑜 + 𝜖 ෡𝑁
• The ray direction needs to be modified too, to go from 𝑅𝑜 + 𝜖 ෡𝑁 to the light
• The new shadow ray is 𝑆 𝑡 = 𝑅𝑜 + 𝜖 ෡𝑁 − ෠𝐿𝑚𝑜𝑑𝑡
• Need to be careful that the new starting point isn’t inside (or too close to) any other geometry

Aside: Code Acceleration (Scene Partitioning)
• When there are many objects in the scene, checking rays against all of their top level simple
bounding volumes can become expensive
• Thus, bounding volume hierarchies (octrees, K-D trees, etc..) are used to partition the world
space scene
• Also useful (but flat instead of hierarchical) are uniform spatial partitions (uniform grids) and
viewing frustum partitions

Aside: Code Acceleration (Scene Partitioning)
• There are many variants: rectilinear grids with movable lines, hierarchies of uniform grids, and
a structure proposed by [Losasso et al. 2006] that allows octrees to be allocated inside the cells
of a uniform spatial partition

	Slide 1: Ray Tracing
	Slide 2: Constructing Rays
	Slide 3: Parallelization
	Slide 4: Ray-Triangle Intersection
	Slide 5: Ray-Plane Intersection
	Slide 6: 3D Point Inside a 3D Triangle (Option 1B)
	Slide 7: Recall: Triangle Basis Vectors
	Slide 8: Direct Ray-Triangle Intersection (Option 2)
	Slide 9: Solving via Cramer’s Rule
	Slide 10: Ray-Object Intersections
	Slide 11: Ray-Sphere Intersections
	Slide 12: Ray Tracing Transformed Objects
	Slide 13: Recall: Bounding Box Acceleration
	Slide 14: Aside: Code Acceleration (Bounding Volumes)
	Slide 15: Aside: Code Acceleration (Hierarchical Bounding Volumes)
	Slide 16: Aside: Code Acceleration (Hierarchical Bounding Volumes)
	Slide 17: Normals
	Slide 18: Ambient vs. Diffuse Shading
	Slide 19: Computing Unit Normals
	Slide 20: Ray Tracing Transformed Objects
	Slide 21: Shadows
	Slide 22: Spurious Self-Occlusion
	Slide 23: Fixing Spurious Self-Occlusion
	Slide 24: Fixing Spurious Self-Occlusion
	Slide 25: Aside: Code Acceleration (Scene Partitioning)
	Slide 26: Aside: Code Acceleration (Scene Partitioning)

