Global lllumination

rchstuffs

CTION CAPTURES NEED TO BE REBUILT (1 unbuilt)

i

pe 40 "'"'“l!\

i
— i
SS———— T

il 1)

=y

et 1

Level: NewMap_01 (Persistent)

|dea 1: Following Photons

* For each light, choose a number of outgoing directions (on the hemisphere or
sphere):
* Emit a photon in each direction

e Each photon travels in a straight line, until it intersects an object
* If Absorbed: Terminate the photon

o |f Reflected/Transmitted/Scattered: The photon goes off in a new direction,
until it intersects an object

* When a photon goes through the camera aperture and hits a pixel on the film, it
contributes to the color of that pixel

|dea 1: Following Photons

 Most of the photons never hit the film (far too inefficient, impractical)

N
s

N\

ldea 2: Backward Tracing of Photons

* For each pixel, send a ray through the aperture to backward trace a photon that
would have hit the pixel (same as in ray tracing)

* If the ray hits an object, cast rays in all directions of the hemisphere in order to
backwards trace incoming photons

* Every new ray that hits another surface spawns an entire hemisphere of rays of its own
(exponential growth makes this impractical)

* Follow all rays until they hit a light source

* Once a ray hits a light source, a path for photons (from the light source to the
pixel) has been created

* Emit photons along this path, bounce them off all the objects along the path, check to see
if absorbed (if not absorbed, the photon continues on towards the pixel)

* The absorption of photons results in a specific color/brightness of light hitting the pixel

ldea 2: Backward Tracing of Photons

* Most paths take too long to find their way back to the light source (inefficient)

Ray Tracing (as an efficient Backward Tracing)

* Ignore most incoming directions on the hemisphere, only keeping the most
Important ones:

e Rays incoming directly from the light source have a lot of photons
* A Shadow Ray is used to account for this incoming light
* This is called direct illumination, since the light is coming directly from a light source
» Reflective objects bounce a lot of photons in the mirror reflection direction
* This incoming light is accounted for with a Reflected Ray
* Transparent objects transmit a lot of photons along the transmitted ray
direction
* This incoming light is accounted for with a Transmitted Ray

* Downside: ray tracing ignores a lot of the incoming light, and thus cannot
reproduce many visual effects

Solution: Bidirectional Ray Tracing

* Combine forward and backward tracing:

* Step 1: Emit photons from the light sources, bathe objects in those photons,
and record the result in a light map
* Photons bounce around illuminating shadowed regions, bleeding color, etc.
* Note: light maps don’t change when the camera moves (so they can be precomputed)
» Step 2: Ray trace the scene, using the light map to estimate indirect lighting
(from the ignored directions of the hemisphere)

* IMPORTANT: Still treat the most important directions on the hemisphere with ray
tracing, for increased accuracy
e Shadow Rays for direct illumination
» Reflected Rays
* Transmitted Rays

Light Maps

* Light maps work great for soft shadows, color bleeding, etc.

* They can also generate many other interesting effects:

Recall: Lighting Equation

* Multiplying the BRDF by an incoming irradiance gives the outgoing radiance
ALy gue to i(Wi W) = BRDF((UL’» wo)dEi (w;)

* For even more realistic lighting, we’ll bounce light all around the scene

dE

* |t's tedious to convert between E and L, souse L = to obtain:
dw cos 6

AL, gue to i(Wi, w,) = BRDF(w;, w,) L; cos 6; dw;

* Then,

i o= f BRDF (w;, w,)L; cos 6; dw;

IEhemi

Lighting Equation

* Explicitly add the dependencies on surface location x and incoming angle w;
* Add an emission term L, so x can be a location on the surface of an actual light too

Lo (X, (1)0) =% (x: (1)0) s f BRDF(X; Wi, wo)Li(x: (Ui) cos 0 dwi

iEhemi
* Incoming light from direction w; left some other surface point x’ going in direction —w);

* So, replace L;(x, w;) with L, (x', —w;)

L,(x,w,) = L,(x,w,) + j BRDF (x, w;, w,)L,(x",—w;) cos 8; dw;

IEhemi

An Implicit Equation

» Computing the outgoing radiance L, (x, w,) on a particular surface requires knowing the
outgoing radiance L,(x', —w;) on all the other (relevant) surfaces

* But the outgoing radiance from those other surfaces (typically) depends on the outgoing
radiance from the surface under consideration (circular dependencies)

L,(x,w,) =L.(x,w,) + j L,(x",—w;)IBRDF(x, w;, w,) cos 0; dw;

IEhemi
Reflected Light Emission Reflected Light BRDF incident angle

UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

* Fredholm Integral Equation of the second kind (extensively studied) given in canonical form

ith kernel k(u, v) by:
gditigd gl SVGIHE b [(u) = e(w) +fl(17)

Aside: Participating Media
e “Air” typically contains participating
media (e.g. dust, droplets, smoke, etc.)

e [should actually be defined over all of 3D
space (not just on 2D surfaces)

e The incoming light should be considered
in a sphere centered around each point in
3D space

e Neglecting this assumes that “air” is a
vacuum

e That restricts L to surfaces

Discretization of the Lighting Equation

« Choose p points, each representing a chunk of surface area
* This is a 2D discretization (for participating media, volume chunks are 3D)

* For each of the p points: Choose g outgoing directions, each representing a

chunk of solid angles of the hemisphere (or sphere)
* This is a 2D discretization

* L, and L, then each have p * ¢ unknowns
* This a 4D (or 5D) discretization

* The linear system of equationsis: L = E + KLor(I — K)L = E
* L and E are length p * g, and the light transport “kernel” matrix K has sizep * g by p * g
Solution: L= —-K)'E=(U+K+K+-)E
 Since K bounces only a fraction of the light (the rest is absorbed), higher powers are smaller
(and the infinite series can be truncated)

Power Series

L=FE L+t KE+K2E BKFE e

Emission directly
from Light Sources

Direct lllumination
(light bounces

only once) Global lllumination
(indirect lighting,
two bounces) Global

Illumination Etc.

(indirect lighting,
three bounces)

Power Series

E + KE E+KE+K?E E+KE+K?*E+K3E

Tractability

* A typical scene might warrant thousands or tens of thousands of area chunks
* So, p could be 1e3, 1e4, 1e5, 1e6, etc.

* Incoming light could vary significantly across the hemisphere
* S0, g might need to be 1le2, 1e3, 1e4, etc.

* I and E would then range in length from 1e5 to 1e10
* The matrix K would then range in size from 1e5 by 1e5 up to 1e10 by 1e10

* K would have between 1e10 and 1e20 entries!
* This tractability analysis is for the 4D problem (the 5D problem is even worse)

* The curse of dimensionality makes problems in 4D and 5D (and higher) hard to
discretize with this numerical quadrature

In order to addressing tractability...

« Separate the diffuse and specular contributions, and treat them separately

Diffuse Approximation:

e Assume all materials are purely diffuse (i.e. with no specular contributions)
* Compute the view-independent global illumination for the entire scene

* This can be done in a pre-processing step

Specular Approximation:
* Compute (view-dependent) specular illumination on-the-fly as the camera moves
e Use the Phong Shading model (or any other model)

Radiosity & Albedo

e Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing
instead of incoming):

dd
B(x)=—= j L,(x,w,)cosB8,dw,
dA hemi
* When L, is independent of w, (an approximation for purely diffuse surfaces):

dd
I i et B cos 6, dw, = mL(x)
dA hemi

* Albedo: a “reflection coefficient” relating incoming light hitting a surface patch (irradiance E;)
to outgoing light emitted in all possible directions

p(x) = J BRDF (x, w,, w;) cos 8, dw,
hemi

* When the BRDF is independent of w, and w; (an approximation for purely diffuse surfaces):

p(x) = BRDF (x) cos 6, dw, = m BRDF (x)

hemi

Purely Diffuse Surface Lighting Equation
* Multiply

L (x, @, = Lalx) @)i+ j L,(x',—w;)BRDF(x, w;, w,) cos 0; dw;
iEhemi
through by cosf,dw, and integrate over the hemisphere (i.e. over dw,):

B(x) = E(x) + j B(x")BRDF(x, w;, w,) cos 8; dw;

IEhemi

* B is a 2D function (of x), whereas L was a 4D function (of x and w,)

* In addition, assume that all surfaces have a diffuse BRDF independent of angle:

B(x) = E(x) + @ B(x") cos 0; dw;

IEhemi

Recall: Solid Angle vs. Cross-Sectional Area

dAsphere

7"2
 From the previous slide: the (orthogonal) cross-
sectional area of the surface patch is dA cos 6

* So, given a sphere of radius 7 (in the figure):

e Definition of solid angle: dw =

dA cos 6
dw =

r2

 The solid angle decreases as the surface tilts away
from the light (increasing 8, decreasing cos 0)
 The solid angle decreases as the surface is moved
further from the light (increasing r)

unit
sphere

Ay

surface
patch

Replace Solid Angle with Surface Area

dA cos 6 dA’ cos 0
as dw; = 2

* Rewrite dw = : =
r e =-5e ”2
e Substituting this into the equation from the last (orange)

slide:

B(x) = E(x) + p(x) B(x')

LEhemi

cos 8; cos 6,

!

m|lx — x'||5

e Let V(x,x') = 1 when x and x’ are mutually visible and
V(x,x") = 0 otherwise, then:

cos 0; cos 6,

B(x) = E(x) + p(x) B(x")HV(x,x") e
all x' T[“X — X ”2

A Tractable Discretization

* Choose p points, each representing a chunk of surface area (a 2D discretization)
0;cos 0;
* Then B; = E; + p; 2.+ B; Fi; with a purely geometric F;; = V(xi,xj) it S)

S
ml|xi—a|) "

* Rearrange to B; — p;). ;»; Bj Fi; = E; and put into matrix form:

1 —p1F1, 0 —Pifp\ /B Eq
—pP2F74 1 e =Pk, B, E,

_pprl _pprz oo 1 Bp Ep

* For p ranging from 1e3 to 1e6: B and E have the same size, and the matrix has 1e6 to 1el2
entries (still large, but 1e4 to 1e8 times smaller than previously)

Form Factor

* Write f;; = V(xl, x]) and F;; = V(xl-, xj) % with the
J

symmetric form factor:

i cos 6; cos 0;

Fij — > ALA]
||, — ;]

N

* F;j represents how the light energy leaving one surface
impacts the other surface, and vice versa (and only
depends on the geometry, not on the light)

Surface i

* The visibility between between x; and x;, i.e. V(x;, xj),
also only depends on the geometry (and can be included in
F"l-j if desired)

Understanding the Form Factor

* Place a unit hemisphere at a surface point x;

* Project a surface onto the unit hemisphere, noting

dAcos6 . Ajcos@O;
that dw = gives —2 J as the result

e =41
* Project the result downwards onto the circular base
of the hemisphere, which multiples by cos 6;

12

* Recall fiehemi cos 0; dw; = m, the area of the unit circle

* Divide the result by the total area i to get the
fraction of the circle occupied

cos 6 cos 0

* Overall, this gives: F;; = TR ”2 j
T i—Xj 2

Implementation

Precomputation:

* Create a hemicube, and divide each face into sub-squares
(as small as desired)

* For each sub-square, use the hemisphere projection
(from the last slide) to pre-compute its contribution to F;;

For each surface chunk:

* Place the hemicube at a surface point x;

* Surface patches (from other objects) are projected onto
the hemicube in order to approximate F;; (using the pre-

computed values for the sub-squares)
* The five hemicube faces can each be treated as a film

plane where sub-squares are pixels
* This is then just standard scanline rasterization

* The depth buffer is used for the visibility term

Hemicube Scanline Rasterization

Iterative Solvers

* For large matrices, iterative solvers are typically far more accurate than direct methods (like
Cramer’s rule for computing inverses)
* [terative methods start with an initial guess, and subsequently iteratively improve it

i ot icler (i %) (;) = (180) with solution (;) = (i)

e Start with an initial guess of (;) -2 (8)

* Jacobi iteration (solve both equations, using the old values to get the new values):

° xneW — 3 and yneW —

2

e Gauss Seidal iteration (always use the most up to date values):

current 10_xcur1‘ent

8_
o yCurrent — 7Y ; and ycurrent L

2

Jacobi vs. Gauss-Seidal

Iteration Jacobi Gauss Seidel
1 0 0 0 0
2 4 5 4 3
3 1.5 3 25 3.75
4 25 4.25 2.125 3.9375
5 1.875 3.75 2.03125 3.984375
6 2.125 4.0625 2.007813 3.996094
7 1.96875 3.9375 2.001953 3.999023
8 2.03125 4.015625 2.000488 3.999756
9 19921875 3984375 2.000122 3.999939
10 2.0078125 4.00390625 2.000031 3.999985
11 1.998046875 3.99609375 2.000008 3.999996
12 2.001953125 4.000976563 2.000002 3.999999
13 1.999511719 3.999023438 2 4
14 2.000488281 4.000244141 2 4
15 1.99987793 3.999755859 2 4
16 2.00012207 4.000061035 2 4
17 1.999969482 3.999938965 2 4
18 2.000030518 4.000015259 2 4
19 1.999992371 3.999984741 2 4
20 2.000007629 4.000003815 2 4

Better Initial Guess

Iteration Jacobi Gauss Seidal
X
il 2 3 2 3
2 2.5 4 2.5 3.75
3 2 3.75 2.125 3.9375
4 2.125 4 2 03125 3984375
5 2 3.9375 2.007813 3.996094
6 2.03125 4 2.001953 3.999023
7 2 3.984375 2.000488 3.999756
8 2.0078125 4 2.000122 3.999939
9 2 3.99609375 2.000031 3.999985
10 2.001953125 4 2.000008 3.999996
11 2 3.999023438 2.000002 3.999999
12 2.000488281 4 2 4
13 2 3.999755859 2 4
14 2.00012207 4 2 4
15 2 3.999938965 2 4
16 2.000030518 4 2 4
17 2 3.999984741 2 4
18 2.000007629 4 2 4
19 2 3.999996185 2 4
20 2.000001907 4 2 4

lterative Radiosity

e Gathering - update one surface by collecting light energy from all surfaces
e Shooting - update all surfaces by distributing light energy from one surface

e Sorting and Shooting - choose the surface with the greatest un-shot light energy and use
shooting to distribute it to other surfaces
e Start by shooting light energy out of the lights onto objects (the brightest light goes first)

e Then, the object that would reflect the most light goes next, etc.

e Sorting and Shooting with Ambient - start with an initial guess for ambient lighting and do

sorting and shooting afterwards

){{x

Gathering

{Xxxxxxw{

el el

|

>

»:

>< ///

‘X\\//

Shooting

N —
+
1
PR R A K

|

lterative Radiosity

	Slide 1: Global Illumination
	Slide 2
	Slide 3: Idea 1: Following Photons
	Slide 4: Idea 1: Following Photons
	Slide 5: Idea 2: Backward Tracing of Photons
	Slide 6: Idea 2: Backward Tracing of Photons
	Slide 7: Ray Tracing (as an efficient Backward Tracing)
	Slide 8: Solution: Bidirectional Ray Tracing
	Slide 9: Light Maps
	Slide 10: Recall: Lighting Equation
	Slide 11: Lighting Equation
	Slide 12: An Implicit Equation
	Slide 13: Aside: Participating Media
	Slide 14: Discretization of the Lighting Equation
	Slide 15: Power Series
	Slide 16: Power Series
	Slide 17: Tractability
	Slide 18: In order to addressing tractability…
	Slide 19: Radiosity & Albedo
	Slide 20: Purely Diffuse Surface Lighting Equation
	Slide 21: Recall: Solid Angle vs. Cross-Sectional Area
	Slide 22: Replace Solid Angle with Surface Area
	Slide 23: A Tractable Discretization
	Slide 24: Form Factor
	Slide 25: Understanding the Form Factor
	Slide 26: Implementation
	Slide 27: Hemicube Scanline Rasterization
	Slide 28: Iterative Solvers
	Slide 29: Jacobi vs. Gauss-Seidal
	Slide 30: Better Initial Guess
	Slide 31: Iterative Radiosity
	Slide 32: Iterative Radiosity

