
Global Illumination

Idea 1: Following Photons
• For each light, choose a number of outgoing directions (on the hemisphere or

sphere):

• Emit a photon in each direction

• Each photon travels in a straight line, until it intersects an object

• If Absorbed: Terminate the photon

• If Reflected/Transmitted/Scattered: The photon goes off in a new direction,
until it intersects an object

• When a photon goes through the camera aperture and hits a pixel on the film, it
contributes to the color of that pixel

Idea 1: Following Photons
• Most of the photons never hit the film (far too inefficient, impractical)

Idea 2: Backward Tracing of Photons
• For each pixel, send a ray through the aperture to backward trace a photon that

would have hit the pixel (same as in ray tracing)

• If the ray hits an object, cast rays in all directions of the hemisphere in order to
backwards trace incoming photons
• Every new ray that hits another surface spawns an entire hemisphere of rays of its own

(exponential growth makes this impractical)

• Follow all rays until they hit a light source

• Once a ray hits a light source, a path for photons (from the light source to the
pixel) has been created
• Emit photons along this path, bounce them off all the objects along the path, check to see

if absorbed (if not absorbed, the photon continues on towards the pixel)

• The absorption of photons results in a specific color/brightness of light hitting the pixel

Idea 2: Backward Tracing of Photons
• Most paths take too long to find their way back to the light source (inefficient)

Ray Tracing (as an efficient Backward Tracing)

• Ignore most incoming directions on the hemisphere, only keeping the most
important ones:

• Rays incoming directly from the light source have a lot of photons
• A Shadow Ray is used to account for this incoming light

• This is called direct illumination, since the light is coming directly from a light source

• Reflective objects bounce a lot of photons in the mirror reflection direction
• This incoming light is accounted for with a Reflected Ray

• Transparent objects transmit a lot of photons along the transmitted ray
direction
• This incoming light is accounted for with a Transmitted Ray

• Downside: ray tracing ignores a lot of the incoming light, and thus cannot
reproduce many visual effects

Solution: Bidirectional Ray Tracing
• Combine forward and backward tracing:

• Step 1: Emit photons from the light sources, bathe objects in those photons,
and record the result in a light map
• Photons bounce around illuminating shadowed regions, bleeding color, etc.

• Note: light maps don’t change when the camera moves (so they can be precomputed)

• Step 2: Ray trace the scene, using the light map to estimate indirect lighting
(from the ignored directions of the hemisphere)

• IMPORTANT: Still treat the most important directions on the hemisphere with ray
tracing, for increased accuracy
• Shadow Rays for direct illumination

• Reflected Rays

• Transmitted Rays

Light Maps
• Light maps work great for soft shadows, color bleeding, etc.

• They can also generate many other interesting effects:

Recall: Lighting Equation

• Multiplying the BRDF by an incoming irradiance gives the outgoing radiance
𝑑𝐿𝑜 𝑑𝑢𝑒 𝑡𝑜 𝑖(𝜔𝑖 , 𝜔𝑜) = 𝐵𝑅𝐷𝐹 𝜔𝑖 , 𝜔𝑜 𝑑𝐸𝑖(𝜔𝑖)

• For even more realistic lighting, we’ll bounce light all around the scene

• It’s tedious to convert between 𝐸 and 𝐿, so use 𝐿 =
𝑑𝐸

𝑑𝜔 cos 𝜃
to obtain:

𝑑𝐿𝑜 𝑑𝑢𝑒 𝑡𝑜 𝑖 𝜔𝑖 , 𝜔𝑜 = 𝐵𝑅𝐷𝐹 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

• Then,

𝐿𝑜 𝜔𝑜 = න
𝑖∈ℎ𝑒𝑚𝑖

𝐵𝑅𝐷𝐹 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

Lighting Equation
• Explicitly add the dependencies on surface location 𝑥 and incoming angle 𝜔𝑖

• Add an emission term 𝐿𝑒, so 𝑥 can be a location on the surface of an actual light too

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
𝑖∈ℎ𝑒𝑚𝑖

𝐵𝑅𝐷𝐹 𝑥, 𝜔𝑖 , 𝜔𝑜 𝐿𝑖(𝑥, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖

• Incoming light from direction 𝜔𝑖 left some other surface point 𝑥′ going in direction −𝜔𝑖

• So, replace 𝐿𝑖 𝑥, 𝜔𝑖 with 𝐿𝑜(𝑥′, −𝜔𝑖)

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
𝑖∈ℎ𝑒𝑚𝑖

𝐵𝑅𝐷𝐹 𝑥, 𝜔𝑖 , 𝜔𝑜 𝐿𝑜(𝑥′, −𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖

An Implicit Equation
• Computing the outgoing radiance 𝐿𝑜 𝑥, 𝜔𝑜 on a particular surface requires knowing the
outgoing radiance 𝐿𝑜(𝑥′, −𝜔𝑖) on all the other (relevant) surfaces
• But the outgoing radiance from those other surfaces (typically) depends on the outgoing
radiance from the surface under consideration (circular dependencies)

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
𝑖∈ℎ𝑒𝑚𝑖

𝐿𝑜(𝑥′, −𝜔𝑖) 𝐵𝑅𝐷𝐹 𝑥, 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖

• Fredholm Integral Equation of the second kind (extensively studied) given in canonical form
with kernel 𝑘 𝑢, 𝑣 by:

𝑙 𝑢 = 𝑒 𝑢 + ׬ 𝑙 𝑣 𝑘 𝑢, 𝑣 𝑑𝑣

Reflected Light

UNKNOWN

Emission

KNOWN

Reflected Light

UNKNOWN

BRDF

KNOWN

incident angle

KNOWN

Aside: Participating Media
• “Air” typically contains participating

media (e.g. dust, droplets, smoke, etc.)

• 𝐿 should actually be defined over all of 3D
space (not just on 2D surfaces)

• The incoming light should be considered
in a sphere centered around each point in
3D space

• Neglecting this assumes that “air” is a
vacuum

• That restricts 𝐿 to surfaces

Discretization of the Lighting Equation

• Choose 𝑝 points, each representing a chunk of surface area
• This is a 2D discretization (for participating media, volume chunks are 3D)

• For each of the 𝑝 points: Choose 𝑞 outgoing directions, each representing a
chunk of solid angles of the hemisphere (or sphere)

• This is a 2D discretization

• 𝐿𝑜 and 𝐿𝑒 then each have 𝑝 ∗ 𝑞 unknowns
• This a 4D (or 5D) discretization

• The linear system of equations is: 𝐿 = 𝐸 + 𝐾𝐿 or 𝐼 − 𝐾 𝐿 = 𝐸
• 𝐿 and 𝐸 are length 𝑝 ∗ 𝑞, and the light transport “kernel” matrix 𝐾 has size 𝑝 ∗ 𝑞 by 𝑝 ∗ 𝑞

• Solution: 𝐿 = 𝐼 − 𝐾 −1𝐸 = 𝐼 + 𝐾 + 𝐾2 + ⋯ 𝐸
• Since 𝐾 bounces only a fraction of the light (the rest is absorbed), higher powers are smaller
(and the infinite series can be truncated)

Power Series

𝐿 = 𝐸 + 𝐾𝐸 + 𝐾2𝐸 + 𝐾3𝐸 + ⋯

Emission directly
from Light Sources

Direct Illumination
 (light bounces

only once) Global Illumination
 (indirect lighting,

two bounces) Global
Illumination

 (indirect lighting,
three bounces)

Etc.

Power Series

Tractability

• A typical scene might warrant thousands or tens of thousands of area chunks
• So, 𝑝 could be 1e3, 1e4, 1e5, 1e6, etc.

• Incoming light could vary significantly across the hemisphere
• So, 𝑞 might need to be 1e2, 1e3, 1e4, etc.

• 𝐿 and 𝐸 would then range in length from 1e5 to 1e10
• The matrix 𝐾 would then range in size from 1e5 by 1e5 up to 1e10 by 1e10

• 𝐾 would have between 1e10 and 1e20 entries!

• This tractability analysis is for the 4D problem (the 5D problem is even worse)
• The curse of dimensionality makes problems in 4D and 5D (and higher) hard to
discretize with this numerical quadrature

In order to addressing tractability…

• Separate the diffuse and specular contributions, and treat them separately

Diffuse Approximation:
• Assume all materials are purely diffuse (i.e. with no specular contributions)
• Compute the view-independent global illumination for the entire scene
• This can be done in a pre-processing step

Specular Approximation:
• Compute (view-dependent) specular illumination on-the-fly as the camera moves
• Use the Phong Shading model (or any other model)

Radiosity & Albedo
• Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing
instead of incoming):

𝐵 𝑥 =
𝑑Φ

𝑑𝐴
= න

ℎ𝑒𝑚𝑖

𝐿𝑜(𝑥, 𝜔𝑜) cos 𝜃𝑜 𝑑𝜔𝑜

• When 𝐿𝑜 is independent of 𝜔𝑜 (an approximation for purely diffuse surfaces):

𝐵 𝑥 =
𝑑Φ

𝑑𝐴
= 𝐿(𝑥) න

ℎ𝑒𝑚𝑖

 cos 𝜃𝑜 𝑑𝜔𝑜 = 𝜋𝐿 𝑥

• Albedo: a “reflection coefficient” relating incoming light hitting a surface patch (irradiance 𝐸𝑖)
to outgoing light emitted in all possible directions

𝜌 𝑥 = න
ℎ𝑒𝑚𝑖

𝐵𝑅𝐷𝐹(𝑥, 𝜔𝑜 , 𝜔𝑖) cos 𝜃𝑜 𝑑𝜔𝑜

• When the BRDF is independent of 𝜔𝑜 and 𝜔𝑖 (an approximation for purely diffuse surfaces):

𝜌 𝑥 = 𝐵𝑅𝐷𝐹(𝑥) න
ℎ𝑒𝑚𝑖

 cos 𝜃𝑜 𝑑𝜔𝑜 = 𝜋 𝐵𝑅𝐷𝐹(𝑥)

Purely Diffuse Surface Lighting Equation
• Multiply

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 + න
𝑖∈ℎ𝑒𝑚𝑖

𝐿𝑜(𝑥′, −𝜔𝑖)𝐵𝑅𝐷𝐹 𝑥, 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖

through by cos𝜃𝑜𝑑𝜔𝑜 and integrate over the hemisphere (i.e. over 𝑑𝜔𝑜):

𝐵 𝑥 = 𝐸 𝑥 + න
𝑖∈ℎ𝑒𝑚𝑖

𝐵(𝑥′)𝐵𝑅𝐷𝐹 𝑥, 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖

• 𝐵 is a 2D function (of 𝑥), whereas 𝐿 was a 4D function (of 𝑥 and 𝜔𝑜)

• In addition, assume that all surfaces have a diffuse BRDF independent of angle:

𝐵 𝑥 = 𝐸 𝑥 +
𝜌(𝑥)

𝜋
න

𝑖∈ℎ𝑒𝑚𝑖

𝐵 𝑥′ cos 𝜃𝑖 𝑑𝜔𝑖

Recall: Solid Angle vs. Cross-Sectional Area

• Definition of solid angle: 𝑑𝜔 =
𝑑𝐴𝑠𝑝ℎ𝑒𝑟𝑒

𝑟2

• From the previous slide: the (orthogonal) cross-
sectional area of the surface patch is 𝑑𝐴 cos 𝜃
• So, given a sphere of radius 𝑟 (in the figure):

𝑑𝜔 =
𝑑𝐴 cos 𝜃

𝑟2

• The solid angle decreases as the surface tilts away
from the light (increasing 𝜃, decreasing cos 𝜃)
• The solid angle decreases as the surface is moved
further from the light (increasing 𝑟)

unit

sphere

surface

patch



Ad

d

0S

r N̂

Replace Solid Angle with Surface Area

• Rewrite 𝑑𝜔 =
𝑑𝐴 cos 𝜃

𝑟2 as 𝑑𝜔𝑖 =
𝑑𝐴′ cos 𝜃𝑜

𝑥−𝑥′
2
2

• Substituting this into the equation from the last (orange)
slide:

𝐵 𝑥 = 𝐸 𝑥 + 𝜌(𝑥) න
𝑖∈ℎ𝑒𝑚𝑖

𝐵 𝑥′
cos 𝜃𝑖 cos 𝜃𝑜

𝜋 𝑥 − 𝑥′
2
2 𝑑𝐴′

• Let 𝑉 𝑥, 𝑥′ = 1 when 𝑥 and 𝑥′ are mutually visible and
𝑉 𝑥, 𝑥′ = 0 otherwise, then:

𝐵 𝑥 = 𝐸 𝑥 + 𝜌(𝑥) න
𝑎𝑙𝑙 𝑥′

𝐵 𝑥′ 𝑉 𝑥, 𝑥′
cos 𝜃𝑖 cos 𝜃𝑜

𝜋 𝑥 − 𝑥′
2
2 𝑑𝐴′

'x

'dA

x

i

i−
o

i

A Tractable Discretization
• Choose 𝑝 points, each representing a chunk of surface area (a 2D discretization)

• Then 𝐵𝑖 = 𝐸𝑖 + 𝜌𝑖 σ𝑗≠𝑖 𝐵𝑗 𝐹𝑖𝑗 with a purely geometric 𝐹𝑖𝑗 = 𝑉 𝑥𝑖 , 𝑥𝑗
cos 𝜃𝑖 cos 𝜃𝑗

𝜋 𝑥𝑖−𝑥𝑗 2

2 𝐴𝑗

• Rearrange to 𝐵𝑖 − 𝜌𝑖 σ𝑗≠𝑖 𝐵𝑗 𝐹𝑖𝑗 = 𝐸𝑖 and put into matrix form:

1 −𝜌1𝐹12

−𝜌2𝐹21 1

⋯ −𝜌1𝐹1𝑝

⋯ −𝜌2𝐹2𝑝

⋮ ⋮
−𝜌𝑝𝐹𝑝1 −𝜌𝑝𝐹𝑝2

⋱ ⋮
⋯ 1

𝐵1

𝐵2

⋮
𝐵𝑝

=

𝐸1

𝐸2

⋮
𝐸𝑝

• For 𝑝 ranging from 1e3 to 1e6: 𝐵 and 𝐸 have the same size, and the matrix has 1e6 to 1e12
entries (still large, but 1e4 to 1e8 times smaller than previously)

Form Factor

• Write 𝐹𝑖𝑗 = 𝑉 𝑥𝑖 , 𝑥𝑗

෠𝐹𝑖𝑗

𝐴𝑖
 and 𝐹𝑗𝑖 = 𝑉 𝑥𝑖 , 𝑥𝑗

෠𝐹𝑖𝑗

𝐴𝑗
 with the

symmetric form factor:

෠𝐹𝑖𝑗 =
cos 𝜃𝑖 cos 𝜃𝑗

𝜋 𝑥𝑖 − 𝑥𝑗 2

2 𝐴𝑖𝐴𝑗

• ෠𝐹𝑖𝑗 represents how the light energy leaving one surface

impacts the other surface, and vice versa (and only
depends on the geometry, not on the light)

• The visibility between between 𝑥𝑖 and 𝑥𝑗, i.e. 𝑉 𝑥𝑖 , 𝑥𝑗 ,

also only depends on the geometry (and can be included in
෠𝐹𝑖𝑗 if desired)

Understanding the Form Factor
• Place a unit hemisphere at a surface point 𝑥𝑖

• Project a surface onto the unit hemisphere, noting

that 𝑑𝜔 =
𝑑𝐴 cos 𝜃

𝑟2 gives
𝐴𝑗 cos 𝜃𝑗

𝑥𝑖−𝑥𝑗 2

2 as the result

• Project the result downwards onto the circular base
of the hemisphere, which multiples by cos 𝜃𝑖

• Recall ׬
𝑖∈ℎ𝑒𝑚𝑖

cos 𝜃𝑖 𝑑𝜔𝑖 = 𝜋, the area of the unit circle

• Divide the result by the total area 𝜋 to get the
fraction of the circle occupied

• Overall, this gives: 𝐹𝑖𝑗 =
cos 𝜃𝑖 cos 𝜃𝑗

𝜋 𝑥𝑖−𝑥𝑗 2

2 𝐴𝑗

Implementation
Precomputation:
• Create a hemicube, and divide each face into sub-squares
(as small as desired)
• For each sub-square, use the hemisphere projection
(from the last slide) to pre-compute its contribution to 𝐹𝑖𝑗

For each surface chunk:
• Place the hemicube at a surface point 𝑥𝑖

• Surface patches (from other objects) are projected onto
the hemicube in order to approximate 𝐹𝑖𝑗 (using the pre-

computed values for the sub-squares)
• The five hemicube faces can each be treated as a film
plane where sub-squares are pixels

• This is then just standard scanline rasterization

• The depth buffer is used for the visibility term

Hemicube Scanline Rasterization

Iterative Solvers
• For large matrices, iterative solvers are typically far more accurate than direct methods (like
Cramer’s rule for computing inverses)
• Iterative methods start with an initial guess, and subsequently iteratively improve it

• Consider
2 1
1 2

𝑥
𝑦 =

8
10

 with solution
𝑥
𝑦 =

2
4

• Start with an initial guess of
𝑥
𝑦 =

0
0

• Jacobi iteration (solve both equations, using the old values to get the new values):

• 𝑥𝑛𝑒𝑤 =
8−𝑦𝑜𝑙𝑑

2
 and 𝑦𝑛𝑒𝑤 =

10−𝑥𝑜𝑙𝑑

2

• Gauss Seidal iteration (always use the most up to date values):

• 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
8−𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2
 and 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

10−𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2

Jacobi vs. Gauss-Seidal
Iteration Jacobi Gauss Seidel

x y x y

1 0 0 0 0

2 4 5 4 3

3 1.5 3 2.5 3.75

4 2.5 4.25 2.125 3.9375

5 1.875 3.75 2.03125 3.984375

6 2.125 4.0625 2.007813 3.996094

7 1.96875 3.9375 2.001953 3.999023

8 2.03125 4.015625 2.000488 3.999756

9 1.9921875 3.984375 2.000122 3.999939

10 2.0078125 4.00390625 2.000031 3.999985

11 1.998046875 3.99609375 2.000008 3.999996

12 2.001953125 4.000976563 2.000002 3.999999

13 1.999511719 3.999023438 2 4

14 2.000488281 4.000244141 2 4

15 1.99987793 3.999755859 2 4

16 2.00012207 4.000061035 2 4

17 1.999969482 3.999938965 2 4

18 2.000030518 4.000015259 2 4

19 1.999992371 3.999984741 2 4

20 2.000007629 4.000003815 2 4

Better Initial Guess

Iteration Jacobi Gauss Seidal

x y x y

1 2 3 2 3

2 2.5 4 2.5 3.75

3 2 3.75 2.125 3.9375

4 2.125 4 2.03125 3.984375

5 2 3.9375 2.007813 3.996094

6 2.03125 4 2.001953 3.999023

7 2 3.984375 2.000488 3.999756

8 2.0078125 4 2.000122 3.999939

9 2 3.99609375 2.000031 3.999985

10 2.001953125 4 2.000008 3.999996

11 2 3.999023438 2.000002 3.999999

12 2.000488281 4 2 4

13 2 3.999755859 2 4

14 2.00012207 4 2 4

15 2 3.999938965 2 4

16 2.000030518 4 2 4

17 2 3.999984741 2 4

18 2.000007629 4 2 4

19 2 3.999996185 2 4

20 2.000001907 4 2 4

Iterative Radiosity
• Gathering - update one surface by collecting light energy from all surfaces
• Shooting - update all surfaces by distributing light energy from one surface
• Sorting and Shooting - choose the surface with the greatest un-shot light energy and use

shooting to distribute it to other surfaces
• Start by shooting light energy out of the lights onto objects (the brightest light goes first)
• Then, the object that would reflect the most light goes next, etc.

• Sorting and Shooting with Ambient - start with an initial guess for ambient lighting and do
sorting and shooting afterwards

Iterative Radiosity

	Slide 1: Global Illumination
	Slide 2
	Slide 3: Idea 1: Following Photons
	Slide 4: Idea 1: Following Photons
	Slide 5: Idea 2: Backward Tracing of Photons
	Slide 6: Idea 2: Backward Tracing of Photons
	Slide 7: Ray Tracing (as an efficient Backward Tracing)
	Slide 8: Solution: Bidirectional Ray Tracing
	Slide 9: Light Maps
	Slide 10: Recall: Lighting Equation
	Slide 11: Lighting Equation
	Slide 12: An Implicit Equation
	Slide 13: Aside: Participating Media
	Slide 14: Discretization of the Lighting Equation
	Slide 15: Power Series
	Slide 16: Power Series
	Slide 17: Tractability
	Slide 18: In order to addressing tractability…
	Slide 19: Radiosity & Albedo
	Slide 20: Purely Diffuse Surface Lighting Equation
	Slide 21: Recall: Solid Angle vs. Cross-Sectional Area
	Slide 22: Replace Solid Angle with Surface Area
	Slide 23: A Tractable Discretization
	Slide 24: Form Factor
	Slide 25: Understanding the Form Factor
	Slide 26: Implementation
	Slide 27: Hemicube Scanline Rasterization
	Slide 28: Iterative Solvers
	Slide 29: Jacobi vs. Gauss-Seidal
	Slide 30: Better Initial Guess
	Slide 31: Iterative Radiosity
	Slide 32: Iterative Radiosity

