Photon Mapping

Henrik Wann Jensen

Realistic Image
Sunthesis
Using Photon

Mapping ﬁ
G "-
.’ ' r &)

! " {
| |
- \ [_,_M_ J
Foreword by Pat Hanrahan




Photon Map (a type of light map

* Photon maps store lighting information on points (“photons”) in 3D space
* Stored on or near 2D surfaces

* In the last lecture, we (instead) stored information on surface patches

TE W o o) Y (33 @ EYISS

y »Hw

smd)

V] TR




Photon Maps

* Emit photons from light sources and bounce them around the scene, storing light
information in the photon map (left image)
* Later (right image), use the photon map to estimate global illumination

Specular

camera ray

Specular

Emission

Nonspecular

Specular/Nonspecular



Tractability

* In the last lecture, we discretized surfaces and hemispheres into “chunks”

* This discretization into “elements” is a Newton-Cotes style approximation to the integral

» 2D space + 2D angles = 4D (or 5D for participating media)

* Since Newton-Cotes approaches suffer from the curse of dimensionality, a purely diffuse
lighting assumption was used to reduce the dimensionality for the sake of tractability

* Integrating over angles (to obtain radiosity/albedo) reduced the problem to 2D (or to 3D for
participating media)

* But direction/angle dependent specular lighting needed to be addressed separately

* Monte Carlo integration (although less accurate than Newton-Cotes) scales well to higher
dimensions (i.e., no curse of dimensionality)

* Monte Carlo integration can be used on the full 4D (or 5D) lighting equation

* The purely diffuse lighting assumption is no longer required, and specular lighting can be
treated too!




A Simple Example

e Consider approximating m = 3.1415926535 ...
e Use a compass to construct a circle with radius =1

e Since A = mr?, the area of this unit circle is 7

* Integrate f(x,y) = 1 over the unit circle to obtain ffA flx,y)dA =m

Area =1



Newton-Cotes Approach

* |Inscribe triangles inside the circle
* Sum the area of all the triangles (no need to trivially multiply by the height = 1)
* The difference between the area A and its approximation with triangles leads to errors

T =2 T~ 2.8284



Monte Carlo Approach

e Construct a square with side length 4 containing the circle

 Randomly generate N points in the square (color points inside the circle blue)

: Aci T ' N
e Since —&r%€ — — can approximate T = 16( blue )
Apox 16 NpiuetNred




Review: Random Numbers

 Random variables — expressions whose value is the outcome of a random experiment

» Sample space — set of all possible outcomes

* Probability distribution - probability p(x) of selecting an outcome x in the sample space

* Sampling — selection of a subset of a sample space (valid when it reflects p(x))

* Pseudo-Random Number Generator (PRNG) - deterministic algorithm that generates a
sequence of quasi-“random” numbers based on an initial seed (a starting point in the pre-
determined sequence)

* PRNGs typically generate real numbers between 0 and 1 aiming for equal (uniform)
probability

* The ability to uniformly sample from [0,1] enables sampling from other sample spaces that
have non-uniform probabilities

see CS109



Monte Carlo Integration

* Typically used in higher dimensions (5D or more)

 Random (pseudo-random) numbers generate sample points that are multiplied
by “element size” (e.g. length, area, volume, etc.)

1

* Error decreases like T where N is the number of samples (only %2 order accurate)

e E.g. 100 times more sample points are needed to gain one more digit of accuracy

* Very slow convergence, but independent of the number of dimensions!

* Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only
tractable approach for high dimensional problems




Monte Carlo Integration in 1D
e Consider: f:f(x)dx

* Generate N random samples X; in the interval |a, b]

e Estimate the integral via:

N [p— NS Ok
Fy = Z:l(T“>f<xi> sl

 This is a simple averaging of all the sample results



Importance Sampling

(A Trivial) Motivating Case:
e Suppose f(x) is only nonzeroin [a{, b;] < [a, b], i.e. ff fx)dx = f;ll f(x)dx

* Then, X; & [ay, b;] do not contribute to the integral

* Thus, it’s more efficient to change p(x) to be a uniform distribution over [a4, b, ] instead of
over all of [a, b]

* Conclusion: p(x) should prefer areas with higher contributions to (or higher importance to)
the integral

General Case:

* Given any p(x) with ff p(x)dx = 1, estimate the integral via:

Lnciihiiiig
o= s R &

8D e e Tit1 f(XD)
* When p(x) = i e uniform sampling, this revertsto: Fy = (b — a) e




Importance Sampling (an example)

* Monte Carlo estimates for fol x“dx with N = 100 samples:

1 0.33671 1.01%
2x 0.33368 0.105%
3x?2 0.33333 0.000%

* Typically, the error is lower when p(x) better “resembles” f (x)

* So, choose p(x) based on physical/known principles or an approximate solution

e Caution: importance sampling does not necessarily reduce error (and can make errors worse)



Photon Emission

* Choose some number of photons, and divide them amongst the lights based on relative power
* For efficiency/implementation, every photon has the same strength
* So, brighter lights emit more (not stronger) photons

* Emission Position:
* Point light - all photons are emitted from a single point

* Area light - randomly select a point on the surface to emit each photon from

* Semi-random: Divide a rectangular light into a uniform 2D grid; emit a set number of photons from each grid cell
(randomly choosing the position within a cell)

* Emission Direction:
 Randomly choose a direction on a sphere, a hemisphere, a subset of the sphere (for spotlights), etc.

* In some cases (e.g. consider the sun), a large number of photons would miss the scene entirely
* Ignore those photons (never emit them)
* Restrict the light to an appropriate sub-light
» Scale down the light’s energy to match that of the sub-light (when dividing up photons)



Creating a Light Map

* Use a ray tracer to trace the photon’s path, until it intersects scene geometry

e Each time a photon intersects geometry, add its data to the light map as
incoming light
* Make a copy of the photon’s data to store in the light map
 Don’t delete the photon, or move it into the light map
* The photon might still bounce around a bit more (if it doesn’t get absorbed)

e Store (in the light map):
* The point of impact (a location in 3D space)
* The incoming direction (the ray direction from the ray tracer)
* Don’t need to store the energy (since all photons have the same energy)



Absorption

e After storing the photon’s data in the light map, determine what happens next:

* Objects absorb some incoming light (which is why they have a color)

* There is a chance that the photon is absorbed:

* Absorbing a fraction of the photon’s energy would lead to unequal energy photons

* |Instead, use the fraction of light energy that would be absorbed to calculate a probability
that the (entire) photon is absorbed

* Generate a random number (between 0 and 1), and compare it to the probability
of absorption (i.e., use Russian Roulette)
* If absorbed, the process stops (for this photon)
* Otherwise, the photon bounces/reflects



Reflection

 Compute a bounce direction by mapping probabilities to BRDF directions
* E.g. a purely diffuse BRDF has equal probabilities for every hemisphere direction

 Generate a random number, and use it to determine the bounce direction
* Then, use the ray tracer to (again) trace the photon’s path

e At the next intersection, (again) store the photon’s data in the light map
* Then (once again), check for absorption; if not absorbed, bounce again, etc.

* Use a pre-determined maximum number of bounces (before termination)

* Can usually be set rather high, as photons typically have a diminishing overall chance of
avoiding absorption as the number of bounces increases



Photon Map

Physically Based Rendering by Pharr and Humphreys



Rendered Image

i

Physically Based Rendering by Pharr and Humphreys



Direct Lighting

* Direct Lighting can be estimated more accurately via shadow rays than via a light
map

* So, the first time a photon emitted from a light source hits an object, it is not
stored in the light map
 This is instead accounted for with direct lighting

* lgnoring direct lighting in light maps makes them more efficient, since less
information is being stored



Separating Diffuse and Specular

* It’s more efficient to treat diffuse and specular lighting separately

 When bouncing a photon, first determine (randomly) if the photon undergoes:
* absorption (deleted)
e or a diffuse bounce
* or a specular bounce
 The bounce direction is determined randomly (as usual) with the aid of a (diffuse
or specular) BRDF
e Two light maps:
e Caustic Map: stores photons that have had specular bounces only
* Indirect Lighting Map: for photons that have had at least one diffuse bounce




Diffuse/Specular Photon Maps

Specular

Specular

Emission

Nonspecular

Specular/Nonspecular



Caustics




Aside: Code Acceleration

* Photons are typically stored in an octree or K-D tree acceleration structure, so that they
contain can be retrieved efficiently

il
y | 4

4 OO OO OC L)

e




Computing Radiance from the Photon Map)

* Trace rays from the camera and intersect them with objects (as usual)
e Use shadow rays for direct lighting (as usual)

e Estimate the radiance contribution from caustics and indirect lighting using the
respective light maps:

* Use the N closest photons to the point of intersection (found with the aid of an
acceleration structure)

camera ray




Color

* Create 3 photon maps, one for each color channel: Red, Green, Blue

* Objects of a certain color better absorb photons of differing colors, creating
differences in the photon maps

* This gives color bleeding and related effects




	Slide 1: Photon Mapping
	Slide 2: Photon Map (a type of light map)
	Slide 3: Photon Maps
	Slide 4: Tractability
	Slide 5: A Simple Example
	Slide 6: Newton-Cotes Approach
	Slide 7: Monte Carlo Approach
	Slide 8: Review: Random Numbers
	Slide 9: Monte Carlo Integration
	Slide 10: Monte Carlo Integration in 1D
	Slide 11: Importance Sampling
	Slide 12: Importance Sampling (an example)
	Slide 13: Photon Emission
	Slide 14: Creating a Light Map
	Slide 15: Absorption
	Slide 16: Reflection
	Slide 17: Photon Map
	Slide 18: Rendered Image
	Slide 19: Direct Lighting
	Slide 20: Separating Diffuse and Specular
	Slide 21: Diffuse/Specular Photon Maps
	Slide 22: Caustics
	Slide 23: Aside: Code Acceleration
	Slide 24: Computing Radiance from the Photon Map) 
	Slide 25: Color

