Sampling




Area-Coverage

 Real-world sensors obtain a signal based on the fraction their area “covered” by objects

o . ' ‘
o . .

 Aray tracer only gets a sample of the geometry, using a ray-geometry intersection point

A scanline renderer projects the entire triangle onto the image plane

 Testing pixel centers against triangles only samples information from the geometry
 Computing area overlap between triangles and (square) pixels would better mimic real-world sensors




Missing Information

* Eyes/cameras don’t collect all the information either

 The staggered spatial layout of real-world sensors means that there are gaps in information

Fhotareceptor mosaic

O S eods S50 8%
.0.0..:0:0:':.;..:0 .... layered approaches could help to
circumvent this:
b o

The Foveon X3*® Direct Image Sensor

&..
s # \
§.

P
\\

NN
N
- _ The Foveon X3+ has three layers of
R: 100%, G: 100%. B: 100% photosensors, enabling It to capture 100

of the RGB color data at once




Aliasing
* Testing only the pixel center (with ray-tracing or scanline rasterization) leads to jagged edges

* This sampling causes aliasing artifacts
* Analias/imposter takes the place of the correct feature
 Ajagged line appears as an imposter, instead of the correct straight line

* Anti-aliasing strategies aim to reduce aliasing artifacts, caused by sampling information

! ! ! !

| | | |

| P, I |
-—---t20--0 -1 --0-—|--

. r..'f., |

I T | | ‘1.,

L Vo

st it ) B Ok BELEE BB SE b

I e, I [ 1 e°

| .'P.. | | L"

I ‘Ao, I ol
et A=t _.¢_'_~J..._¢._ - - =|- -

| | o, |

0, ¢

| | | |

| | | |

I | I I




Aliasing: Shaders & Textures

* Aliased normal vectors can cause erroneous sparkling highlights (top left)

e Aliasing can occur when texture mapping objects (top right)




Temporal Aliasing

* A spinning wheel can appear to spin backwards, when the motion is insufficiently sampled in
time (“wagon wheel” effect)

Actual Motion

Percieved
Motion

o First Frame

s Second Frame



Sampling Rate

* Artifacts can be reduced by increasing the number of samples

* This can be accomplished by increasing the number of pixels in the image; but:
* |t takes longer to render the scene (because there are more pixel colors to determine)
* Displaying higher-resolution images requires additional storage and computation

* Thus: Choose the lowest possible sampling rate that doesn’t create “noticeable” artifacts

* What is the optimal sampling rate?



4 samples per period

f(x) =cos(2mx)

A

—  cos(2mx)

® samples




samples

f(x) =cos(2mx)

A

® samples

o—n= T



reconstruction

f(x) =cos(2mx)

A

- - cos(2nmx)

® ® samples




2 samples per period

f(x) =cos(2mx)

A

—  cos(2mx)

® samples

VAN
VvV VIV




samples

f(x) =cos(2mx)

A

® samples




reconstruction

f(x) =cos(2mx)

A

- - cos(2nmx)

® ® samples




1 sample per period

f(x) =cos(2mx)

A

—  cos(2mx)

AN
VAVILERY




samples

f(x) =cos(2mx)

A

® samples




reconstruction

f(x) =cos(2mx)

A

- - cos(Omzx)

® ® samples

- - - - - - — - @ - - —----- - - ------- e - - - - ---- «

=T

e Appears to be a different
function







samples

f(x) =cos(bmz +3)

® samples




reconstruction

f(x) :COSl(67T$ +3)

® ® samples
- = 0.5cos(2mx)

e Appears to be a different
function




Aliasing

f(x) :coi(ﬁﬂm +3)

—  cos(6mr +3)

® e samples
- - (.5cos(2mx)

 These two cosine waves
appear identical to the
sample points




Sampling Rate

 Sampling at too low a rate results in aliasing, where two different signals become
indistinguishable (or aliased)

* Nyquist-Shannon Sampling Theorem

* If f(t) contains no frequencies higher than W hertz, it can be completely
determined by samples spaced 1/(2W') seconds apart

* That is, a minimum of 2 samples per period are required to prevent aliasing




Anti-Aliasing

* The Nyquist frequency is defined as half the sampling frequency

* If the function being sampled has no frequencies above the Nyquist frequency,
then no aliasing occurs

 Real world frequencies above the Nyquist frequency appear will appear as
aliases to the sampler

 Before sampling, remove frequencies higher than the Nyquist frequency




Fourier Transform

* Transform between the spatial domain f(x) and the frequency domain F (k)

Spatial to Frequency Domain: F(k) = f_oooo () 2 Tl

Frequency to Spatial Domain:  f(x) = ffooo F(k)e?™kxdk

e = cos@ +isind

ei9+e—i9 _ ei@ —16
cos @ = sinf@ = ,
2 21

e




Constant Function

F(k)




Low Frequency Cosine

N/

\V

=)

Fik)




High Frequency Cosine




Narrow Gaussian

fla)=Le ™ Fk)

N4

Narrow Wide



Wider Gaussian

f(a) =g=e F(k)
—
Wider Narrower



sum of two different cosine functions

f(x)

/\ — cos(3mx) +0.5cos(1mx)
\ e e samples
\/\/% \/\/ J




samples

e ® samples




reconstruction

—  cos(3mz) +0.5cos(1mx)
e o samples f

1.5cos(mz)




Fourier transform

Flk)

f(z) ;
\ /\“ e e




identify Nyquist frequency bounds

k
1 ._k




remove the high frequencies

Al




inverse Fourier transform

9(z) G(k)
—  0.5cos(1nz)
e ® samples

AT -




samples

e o samples




reconstruction

9(x)
- - 0.5cos(1mx)
e e samples
® |
//
. pf—n—ﬁ
®-

No Aliasing!



Anti-Aliasing
Sampling causes higher frequencies to masquerade as lower frequencies
After sampling, can no longer untangle the mixed high/low frequencies

Remove the high frequencies before sampling (in order to avoid aliasing)

Part of the signal is lost
But, that part of the signal was not representable by the sampling rate anyways



Blurring vs. Anti-Aliasing

blurring jaggies after sampling removing high frequencies before sampling




Images

* Images have discrete values (and are not continuous functions)
* Use a discrete version of the Fourier transform

* The Fast Fourier Transform (FFT) computes the discrete Fourier transform (and its inverse)
in 0(n log n) complexity (where n is the number of samples)

* Images are 2D (not 1D)
* A 2D discrete Fourier transform can computed using 1D transforms along each dimension

1. Transform into the frequency domain
 Discrete image values are transformed into another array of discrete values

2. Remove high frequencies that would alias onto lower frequencies
3. Inverse transform back out of the frequency domain



Constant Function




sin(2m/32) x




sin(2m/16) x

:




sin(2m/16) y




sin(2m/32) x *sin(2m/16) y




An obvious star!




lowest frequencies




intermediate frequencies




larger intermediate frequencies




(edges)

€S

ighest frequenci

h

st

s 2GR




What about Ray Tracing?

e Unlike 1D functions and 2D images, there is no good way to put the 3D scene
(made up of triangles) into the frequency domain

* If we sample the scene before removing the higher frequencies, those higher
frequencies will alias onto lower frequencies

* So, we need a way to remove higher frequencies without transforming into the
frequency domain

e That’s called convolution



Convolution

* Let f and g be functions in the spatial domain
* Let F(f) and F(g) be transformations of f and g into the frequency domain
* In our prior examples: f was on the left and F(f) was on the right

» Removing higher frequencies of F(f) is equivalent to multiplying by a Heaviside
function F(g)

* F(g) = 1 for smaller frequencies, and F(g) = 0 for larger frequencies
* Then, the inverse transform F~Y(F(f)F(g)) gave the final result

* Thus, the convolution of f and g is defined via:

frg=F'F(F(@)




Convolution Integral

e Convolution can be achieved without the Fourier Transform:

(f * ) () = f Fegls b = j A DG

* A narrower g makes the integral more efficient to compute
* A narrower F(g) better removes high frequencies (as we have seen)

e But, they can’t both be narrow

* Recall: the narrower Gaussian had wider frequencies, and the wider Gaussian had
narrower frequencies



Recall: Narrow Gaussian

Narrow

Wide



Recall: Wider Gaussian

Wider

Narrower



Box Filter

* Let g have nonzero values in an NxN block of pixels (surrounding the origin), and
be zero elsewhere

* The discrete convolution integral can be computed via:

* overlay the filter g on the image; then, multiply the corresponding entries, and sum the
results

e The final result is (typically) defined to be at the center of the filter

Ve | Ve | e | Y

Ve | Ve | e | Vs

Y16 | e Y6 | Ve

e | the | e | Vs




Narrow Box Filter
g F(g)

reasonable size for the convolution integral removes most but not all of the high frequencies



Wider Box Filter

more expensive convolution integral removes more of the high frequencies



 Collect extra information/samples (in each pixel), and average the result (e.g. with a box filter)
e Rendering a 100x100 image with 4x4 super-sampling is equivalent to rendering a 400x400 image
* That properly represents (without aliasing) frequencies up to 4 times higher than the 100x100 image would

Super-Sampling for Ray Tracing

* Then, apply a 4x4 box filter to remove as much of those higher frequencies as possible

e Converges to the area coverage integral, as the number samples per pixel increases
 Efficiency: only super-sample pixels that have high frequencies (e.g. edges)
* Better to use pseudo-random Monte-Carlo super-sampling, instead of uniform super-sampling

® 6 060
C ®© 060

OO ee

O« 0-- 8 O

OO ee
ORNOIN BN J

O O O0Oe

OO ee
O O Oe
O O OO
O O OO




Comparison

Point Sampling Ax4 Super-Sampling Exact Area Coverage



Super-Sampling for Ray Tracing

Jaggies Anti-Aliased



	Slide 1: Sampling
	Slide 2: Area-Coverage
	Slide 3: Missing Information
	Slide 4: Aliasing
	Slide 5: Aliasing: Shaders & Textures
	Slide 6: Temporal Aliasing
	Slide 7: Sampling Rate
	Slide 8: 4 samples per period
	Slide 9: samples
	Slide 10: reconstruction
	Slide 11: 2 samples per period
	Slide 12: samples
	Slide 13: reconstruction
	Slide 14: 1 sample per period
	Slide 15: samples
	Slide 16: reconstruction
	Slide 17: 2/3 sample per period
	Slide 18: samples
	Slide 19: reconstruction
	Slide 20: Aliasing
	Slide 21: Sampling Rate
	Slide 22: Anti-Aliasing
	Slide 23: Fourier Transform
	Slide 24: Constant Function
	Slide 25: Low Frequency Cosine
	Slide 26: High Frequency Cosine
	Slide 27: Narrow Gaussian
	Slide 28: Wider Gaussian
	Slide 29: sum of two different cosine functions
	Slide 30: samples
	Slide 31: reconstruction 
	Slide 32: Fourier transform
	Slide 33: identify Nyquist frequency bounds
	Slide 34: remove the high frequencies
	Slide 35: inverse Fourier transform
	Slide 36: samples
	Slide 37: reconstruction
	Slide 38: Anti-Aliasing
	Slide 39: Blurring vs. Anti-Aliasing
	Slide 40: Images
	Slide 41: Constant Function
	Slide 42: sine open paren 2 pi over 32 , close paren x 
	Slide 43: sine open paren 2 pi over 16 , close paren x 
	Slide 44: sine open paren 2 pi over 16 , close paren y 
	Slide 45: sine open paren 2 pi over 32 , close paren x , asterisk operator sine open paren 2 pi over 16 , close paren y 
	Slide 46: An obvious star!
	Slide 47: lowest frequencies
	Slide 48: intermediate frequencies
	Slide 49: larger intermediate frequencies
	Slide 50: highest frequencies (edges)
	Slide 51: What about Ray Tracing?
	Slide 52: Convolution
	Slide 53: Convolution Integral
	Slide 54: Recall: Narrow Gaussian
	Slide 55: Recall: Wider Gaussian
	Slide 56: Box Filter
	Slide 57: Narrow Box Filter
	Slide 58: Wider Box Filter
	Slide 59: Super-Sampling for Ray Tracing
	Slide 60: Comparison
	Slide 61: Super-Sampling for Ray Tracing

