
Sampling

Area-Coverage
• Real-world sensors obtain a signal based on the fraction their area “covered” by objects

Coverage:

Signal:

• A ray tracer only gets a sample of the geometry, using a ray-geometry intersection point

• A scanline renderer projects the entire triangle onto the image plane
• Testing pixel centers against triangles only samples information from the geometry

• Computing area overlap between triangles and (square) pixels would better mimic real-world sensors

Missing Information
• Eyes/cameras don’t collect all the information either

• The staggered spatial layout of real-world sensors means that there are gaps in information

layered approaches could help to
circumvent this:

Aliasing
• Testing only the pixel center (with ray-tracing or scanline rasterization) leads to jagged edges

• This sampling causes aliasing artifacts
• An alias/imposter takes the place of the correct feature

• A jagged line appears as an imposter, instead of the correct straight line

• Anti-aliasing strategies aim to reduce aliasing artifacts, caused by sampling information

Aliasing: Shaders & Textures
• Aliased normal vectors can cause erroneous sparkling highlights (top left)

• Aliasing can occur when texture mapping objects (top right)

Temporal Aliasing
• A spinning wheel can appear to spin backwards, when the motion is insufficiently sampled in

time (“wagon wheel” effect)

Sampling Rate
• Artifacts can be reduced by increasing the number of samples

• This can be accomplished by increasing the number of pixels in the image; but:

• It takes longer to render the scene (because there are more pixel colors to determine)

• Displaying higher-resolution images requires additional storage and computation

• Thus: Choose the lowest possible sampling rate that doesn’t create “noticeable” artifacts

• What is the optimal sampling rate?

4 samples per period

samples

reconstruction

2 samples per period

samples

reconstruction

1 sample per period

samples

reconstruction

• Appears to be a different
function

2/3 sample per period

samples

reconstruction

• Appears to be a different
function

Aliasing

• These two cosine waves
appear identical to the
sample points

Sampling Rate
• Sampling at too low a rate results in aliasing, where two different signals become

indistinguishable (or aliased)

• Nyquist-Shannon Sampling Theorem

• If 𝑓(𝑡) contains no frequencies higher than 𝑊 hertz, it can be completely
determined by samples spaced 1/(2𝑊) seconds apart

• That is, a minimum of 2 samples per period are required to prevent aliasing

Anti-Aliasing
• The Nyquist frequency is defined as half the sampling frequency

• If the function being sampled has no frequencies above the Nyquist frequency,
then no aliasing occurs

• Real world frequencies above the Nyquist frequency appear will appear as
aliases to the sampler

• Before sampling, remove frequencies higher than the Nyquist frequency

Fourier Transform
• Transform between the spatial domain 𝑓 𝑥 and the frequency domain 𝐹 𝑘

Spatial to Frequency Domain: 𝐹 𝑘 = ׬
−∞

∞
𝑓 𝑥 𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥

Frequency to Spatial Domain: 𝑓 𝑥 = ׬
−∞

∞
𝐹 𝑘 𝑒2𝜋𝑖𝑘𝑥𝑑𝑘

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

cos 𝜃 =
 𝑒𝑖𝜃+𝑒−𝑖𝜃

2
 sin 𝜃 =

 𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖

Constant Function

Low Frequency Cosine

High Frequency Cosine

Narrow Gaussian

Narrow Wide

Wider Gaussian

Wider Narrower

sum of two different cosine functions

samples

reconstruction

Aliasing!

Fourier transform

identify Nyquist frequency bounds

remove the high frequencies

inverse Fourier transform

samples

reconstruction

No Aliasing!

Anti-Aliasing
• Sampling causes higher frequencies to masquerade as lower frequencies

• After sampling, can no longer untangle the mixed high/low frequencies

• Remove the high frequencies before sampling (in order to avoid aliasing)

• Part of the signal is lost

• But, that part of the signal was not representable by the sampling rate anyways

Blurring vs. Anti-Aliasing

blurring jaggies after sampling removing high frequencies before sampling

Images
• Images have discrete values (and are not continuous functions)

• Use a discrete version of the Fourier transform

• The Fast Fourier Transform (FFT) computes the discrete Fourier transform (and its inverse)
in 𝑂 𝑛 log 𝑛 complexity (where 𝑛 is the number of samples)

• Images are 2D (not 1D)
• A 2D discrete Fourier transform can computed using 1D transforms along each dimension

1. Transform into the frequency domain

• Discrete image values are transformed into another array of discrete values

2. Remove high frequencies that would alias onto lower frequencies

3. Inverse transform back out of the frequency domain

Constant Function

sin 2𝜋/32 𝑥

sin 2𝜋/16 𝑥

sin 2𝜋/16 𝑦

sin 2𝜋/32 𝑥 ∗ sin 2𝜋/16 𝑦

An obvious star!

lowest frequencies

intermediate frequencies

larger intermediate frequencies

highest frequencies (edges)

What about Ray Tracing?
• Unlike 1D functions and 2D images, there is no good way to put the 3D scene

(made up of triangles) into the frequency domain

• If we sample the scene before removing the higher frequencies, those higher
frequencies will alias onto lower frequencies

• So, we need a way to remove higher frequencies without transforming into the
frequency domain

• That’s called convolution

Convolution
• Let 𝑓 and 𝑔 be functions in the spatial domain

• Let 𝐹 𝑓 and 𝐹 𝑔 be transformations of 𝑓 and 𝑔 into the frequency domain

• In our prior examples: 𝑓 was on the left and 𝐹 𝑓 was on the right

• Removing higher frequencies of 𝐹 𝑓 is equivalent to multiplying by a Heaviside
function 𝐹 𝑔
• 𝐹 𝑔 = 1 for smaller frequencies, and 𝐹 𝑔 = 0 for larger frequencies

• Then, the inverse transform 𝐹−1(𝐹 𝑓 𝐹 𝑔) gave the final result

• Thus, the convolution of 𝑓 and 𝑔 is defined via:

𝑓 ∗ 𝑔 = 𝐹−1(𝐹 𝑓 𝐹 𝑔)

Convolution Integral
• Convolution can be achieved without the Fourier Transform:

𝑓 ∗ 𝑔 𝑡 = න
−∞

∞

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 = න
−∞

∞

𝑓 𝑡 − 𝜏 𝑔 𝜏 𝑑𝜏

• A narrower 𝑔 makes the integral more efficient to compute

• A narrower 𝐹 𝑔 better removes high frequencies (as we have seen)

• But, they can’t both be narrow
• Recall: the narrower Gaussian had wider frequencies, and the wider Gaussian had

narrower frequencies

Recall: Narrow Gaussian

Narrow Wide

Recall: Wider Gaussian

Wider Narrower

Box Filter
• Let 𝑔 have nonzero values in an NxN block of pixels (surrounding the origin), and

be zero elsewhere

• The discrete convolution integral can be computed via:
• overlay the filter 𝑔 on the image; then, multiply the corresponding entries, and sum the

results

• The final result is (typically) defined to be at the center of the filter

Narrow Box Filter
𝐹 𝑔𝑔

reasonable size for the convolution integral removes most but not all of the high frequencies

Wider Box Filter
𝐹 𝑔𝑔

more expensive convolution integral removes more of the high frequencies

Super-Sampling for Ray Tracing
• Collect extra information/samples (in each pixel), and average the result (e.g. with a box filter)

• Rendering a 100x100 image with 4x4 super-sampling is equivalent to rendering a 400x400 image

• That properly represents (without aliasing) frequencies up to 4 times higher than the 100x100 image would

• Then, apply a 4x4 box filter to remove as much of those higher frequencies as possible

• Converges to the area coverage integral, as the number samples per pixel increases
• Efficiency: only super-sample pixels that have high frequencies (e.g. edges)

• Better to use pseudo-random Monte-Carlo super-sampling, instead of uniform super-sampling

Comparison

Point Sampling 4x4 Super-Sampling Exact Area Coverage

Super-Sampling for Ray Tracing

Jaggies Anti-Aliased

	Slide 1: Sampling
	Slide 2: Area-Coverage
	Slide 3: Missing Information
	Slide 4: Aliasing
	Slide 5: Aliasing: Shaders & Textures
	Slide 6: Temporal Aliasing
	Slide 7: Sampling Rate
	Slide 8: 4 samples per period
	Slide 9: samples
	Slide 10: reconstruction
	Slide 11: 2 samples per period
	Slide 12: samples
	Slide 13: reconstruction
	Slide 14: 1 sample per period
	Slide 15: samples
	Slide 16: reconstruction
	Slide 17: 2/3 sample per period
	Slide 18: samples
	Slide 19: reconstruction
	Slide 20: Aliasing
	Slide 21: Sampling Rate
	Slide 22: Anti-Aliasing
	Slide 23: Fourier Transform
	Slide 24: Constant Function
	Slide 25: Low Frequency Cosine
	Slide 26: High Frequency Cosine
	Slide 27: Narrow Gaussian
	Slide 28: Wider Gaussian
	Slide 29: sum of two different cosine functions
	Slide 30: samples
	Slide 31: reconstruction
	Slide 32: Fourier transform
	Slide 33: identify Nyquist frequency bounds
	Slide 34: remove the high frequencies
	Slide 35: inverse Fourier transform
	Slide 36: samples
	Slide 37: reconstruction
	Slide 38: Anti-Aliasing
	Slide 39: Blurring vs. Anti-Aliasing
	Slide 40: Images
	Slide 41: Constant Function
	Slide 42: sine open paren 2 pi over 32 , close paren x
	Slide 43: sine open paren 2 pi over 16 , close paren x
	Slide 44: sine open paren 2 pi over 16 , close paren y
	Slide 45: sine open paren 2 pi over 32 , close paren x , asterisk operator sine open paren 2 pi over 16 , close paren y
	Slide 46: An obvious star!
	Slide 47: lowest frequencies
	Slide 48: intermediate frequencies
	Slide 49: larger intermediate frequencies
	Slide 50: highest frequencies (edges)
	Slide 51: What about Ray Tracing?
	Slide 52: Convolution
	Slide 53: Convolution Integral
	Slide 54: Recall: Narrow Gaussian
	Slide 55: Recall: Wider Gaussian
	Slide 56: Box Filter
	Slide 57: Narrow Box Filter
	Slide 58: Wider Box Filter
	Slide 59: Super-Sampling for Ray Tracing
	Slide 60: Comparison
	Slide 61: Super-Sampling for Ray Tracing

