
More Geometric Modeling

Implicit Surfaces
• Define a function 𝜙(𝑥) over ∀𝑥 ∈ 𝑅3
• Interior Ω− is defined by 𝜙 𝑥 < 0, and exterior Ω+ is defined by 𝜙 𝑥 > 0
• The surface 𝜕Ω is defined by 𝜙 𝑥 = 0

• As we have already seen, planes/spheres (and lines/rays/circles in 2D) are defined by implicit functions
• Easy to ray trace implicitly defined geometry

• Easy to check whether a point 𝑥 is inside/outside: just evaluate 𝜙 𝑥
• Constructive Solid Geometry (CSG) operations: union, difference, intersection, etc.

Topological Change
• Greatly superior to triangle meshes for topological change!

Blobbies
• Each blob is defined as a density function around a particle
• Blob kernels can be: 2D ellipses, 2D diamonds, 3D spheres, etc.
• For each pixel, the aggregate density is summed from all overlapping blobs
• Also known as:

• Metaballs (in Japan), Soft objects (in Canada and New Zealand)
• Slightly different density kernel functions

Topological Change

Blobby Modeling

Marching Cubes (or Marching Tetrahedra)
• Turns an implicit surface into triangles

• Define the implicit surface on a 3D grid
• For each grid cell, use the topology of the volume to construct surface triangles

Netwon’s Second Law (for Physics Simulations)
• Kinematics describe position 𝑋 𝑡 and velocity 𝑉(𝑡) as function of time 𝑡

•
𝑑𝑋(𝑡)

𝑑𝑡
= 𝑉(𝑡) or 𝑋′ 𝑡 = 𝑉(𝑡)

• Dynamics describe responses to external stimuli
• Newton’s second law 𝐹(𝑡) = 𝑀𝐴(𝑡) is a dynamics equation

• 𝑉′ 𝑡 = 𝐴 𝑡 implies 𝑉′ 𝑡 =
𝐹 𝑡

𝑀
 as well as

d2𝑋(𝑡)

𝑑𝑡2
= 𝑋′′ 𝑡 =

𝐹 𝑡

𝑀

• Combining kinematics and dynamics gives:
𝑋′(𝑡)

𝑉′(𝑡)
=

𝑉(𝑡)
𝐹 𝑡,𝑋 𝑡 ,𝑉(𝑡)

𝑀
• Note: forces often depend on position/velocity

• Much of the physical world can be simulated with Newton’s second law: computational
mechanics (FEM), computational fluid dynamics (CFD), etc.
• Create degrees of freedom, specify forces, and solve the resulting ordinary differential equations (ODEs)

• Spatially interdependent forces lead to partial differential equations (PDEs)

Computational Mechanics (FEM)

Computational Fluid Dynamics (CFD)

Computational Biomechanics

Classical
Computer Vision

Range Scanners
• Senses 3D positions on an object’s surface, and returns a range image:

• 𝑚× 𝑛 grid of distances (𝑚 points per laser sheet, 𝑛 laser sheets)

• Multiple range images are aligned with transformations
• Transformations determined via Iterative Closest Point (ICP) and related/similar methods

• Aligned range images are combined using a zippering algorithm

Range Scanners
• Each sample point in the 𝑚 × 𝑛 range image is a potential vertex in a triangle mesh

• Special care is required to avoid joining together vertices separated by depth discontinuities

Scanning w/Mobile Devices

Structure Sensor for iPad Autodesk 123D Catch

Voxel Carving
• Requires multiple images (from calibrated cameras) taken from different directions
• Construct a voxelized 3D model:

• For each image, delete (carve away) voxels outside the object silhouette
• Colors can be projected onto the geometry

Discretized
scene volume,
to be assigned
RGBA values

Input images
(calibrated)

Voxel Carving
Original image Extracted silhouettes

Carved out voxels
Back-projecting colors

Reconstruction from Large Photo Collections
• Collect a large number of photos (e.g. from google images)
• Predict relative camera position/orientation for each image
• The position of a point that is visible in multiple images can be triangulated
• Obtain a sparse point cloud representation of the object
• Dense reconstruction algorithms can be used to improve the results

2D photos 3D geometry

Drones for Trees

Drones for Trees

Drones for Trees

Drones for Trees

Noise & De-Noising
• Computer Vision algorithms use real-world sensors/data
• This results in noise corruption, which is the biggest drawback to such methods
• Denoising/smoothing algorithms are very important in order to alleviate these issues

Laplacian Smoothing
• Compute a Laplacian estimate using the one ring of vertices about a point

• Similar to differential coordinates

• E.g., on a curve: 𝐿 𝑝𝑖 =
1

2
𝑝𝑖+1 − 𝑝𝑖 + 𝑝𝑖−1 − 𝑝𝑖 =

𝑝𝑖+1−2𝑝𝑖+𝑝𝑖−1

2

• Then, update 𝑝𝑖
𝑛𝑒𝑤 = 𝑝𝑖 + 𝜆𝐿(𝑝𝑖) where 𝜆 ∈ (0,1)

• Repeat several iterations

Taubin Smoothing
• Laplacian smoothing suffers from volume loss
• Taubin smoothing periodically performs an inflation step to add back volume:

𝑝𝑖
𝑛𝑒𝑤 = 𝑝𝑖 − 𝜇𝐿(𝑝𝑖) with 𝜇 > 0

Laplacian smoothing (only)

Taubin smoothing

Procedural Methods (for Geometry Construction)
• Generate geometry with an algorithm

• Typically used for complex or tedious-to-create models
• Perturb the algorithm to make variations of the geometry

• Start with a small set of data
• Use rules to describe high level properties of the desired geometry
• Add randomness, and use recursion

L-Systems
• Developed by a biologist (Lindenmayer) to study algae growth
• A recursive formal grammar:

• An alphabet of symbols (terminal and non-terminal)
• Production rules: non-terminal symbols recursively create new symbols (or sequences of symbols)

• Start with an initial string (axiom), and apply production rules
• A translator turns symbols into geometric structures

Nonterminals: A and B both mean “draw forward”
Terminals: +/- mean "turn” right/left (respectively) by 60 degrees
Production Rules: A → B + A + B and B → A − B − A

Intial Axiom: A B+A+B A-B-A + B+A+B + A-B-A B+A+B-(A-B-A)-(B+A+B)
+A-B-A +B+A+B +A-B-A

+B+A+B-(A-B-A)-(B+A+B)

Etc. Sierpinski
Triangle

L-System + Stack = Branches

• Nonterminals: X is no action, F is draw forward
• Terminals: +/- means turn right/left by 25 degrees

• [means to store current state on the stack
•] means to load the state from the stack

• Initial Axiom: X
• Production Rules: X → F − [[X]+X] + F [+FX] − X, F → FF

L-Systems

• Easily extended to 3D
• Model trunk/branches as cylinders
• As recursion proceeds:
• shrink cylinder size
• vary color (from brown to green)

• Add more variety with a stochastic L-system
• Multiple (randomly-chosen) rules for each symbol

• Practice and experimentation is required in
order to obtain good results

Fractals
• Initiator: start with a shape
• Generator: replace subparts with a (scaled) generator
• Repeat

Fractals
• Add randomness to the new vertex locations

• E.g., can create an irregular 2D silhouette (for far away mountains)

Height Fields
• Start with a 2D fractal (or any 2D grey-scale image)
• Place the image on top of a ground plane (subdivided into triangles)
• For each triangle vertex, displace its height based on the local pixel intensity

3D Landscapes
• Initiator: start with a shape
• Generator: replace random subparts with a self-similar (somewhat random) pattern

• Similar to subdivision, but with much more interesting rules for setting vertex positions

3D Landscapes

Fractal Worlds

Machine Learning
• Interactive Example-Based Terrain Authoring with Generative Adversarial Networks

• Siggraph 2017

Generative AI

Nvidia

Generative AI

https://huggingface.co/spaces/
TencentARC/InstantMesh
 (dead link)

https://huggingface.co/spaces/TencentARC/InstantMesh
https://huggingface.co/spaces/TencentARC/InstantMesh

Meshy

Hyper3D

Text to Image to Geometry

ChatGPT Hyper3D

Text to MetaHuman

	Slide 1: More Geometric Modeling
	Slide 2: Implicit Surfaces
	Slide 3: Topological Change
	Slide 4: Blobbies
	Slide 5: Topological Change
	Slide 6: Blobby Modeling
	Slide 7: Marching Cubes (or Marching Tetrahedra)
	Slide 8: Netwon’s Second Law (for Physics Simulations)
	Slide 9: Computational Mechanics (FEM)
	Slide 10: Computational Fluid Dynamics (CFD)
	Slide 11: Computational Biomechanics
	Slide 12: Classical Computer Vision
	Slide 13: Range Scanners
	Slide 14: Range Scanners
	Slide 15: Scanning w/Mobile Devices
	Slide 16: Voxel Carving
	Slide 17: Voxel Carving
	Slide 18: Reconstruction from Large Photo Collections
	Slide 19: Drones for Trees
	Slide 20: Drones for Trees
	Slide 21: Drones for Trees
	Slide 22: Drones for Trees
	Slide 23: Noise & De-Noising
	Slide 24: Laplacian Smoothing
	Slide 25: Taubin Smoothing
	Slide 26: Procedural Methods (for Geometry Construction)
	Slide 27: L-Systems
	Slide 28: L-System + Stack = Branches
	Slide 29: L-Systems
	Slide 30: Fractals
	Slide 31: Fractals
	Slide 32: Height Fields
	Slide 33: 3D Landscapes
	Slide 34: 3D Landscapes
	Slide 35: Fractal Worlds
	Slide 36: Machine Learning
	Slide 37: Generative AI
	Slide 38: Generative AI
	Slide 39: Meshy
	Slide 40: Hyper3D
	Slide 41: Text to Image to Geometry
	Slide 42: Text to MetaHuman

