
Texture Mapping

Similar to Putting Stickers onto Geometry

texture

geometry

Texture Mapping
• Adds back details lost by treating the BRDF as non-varying across an object’s surface
• RGB reflectance modifications are stored in an image, referred to as a texture
• Image colors are mapped to the object’s surface, one triangle at a time

texture
(an image)

geometry

Texture Coordinates
• A texture is defined by an image in a 2D coordinate system: (𝑢, 𝑣)
• Texture Mapping assigns a 𝑢, 𝑣 coordinate to each triangle vertex
• The texture is then “stuck” onto the triangle (potentially, with distortion):

• Let 𝑝 be a point inside the triangle, with barycentric weights 𝛼0, 𝛼1, 𝛼2

• The color assigned to 𝑝 is the texture color at 𝑢𝑝 , 𝑣𝑝 = 𝛼0 𝑢0, 𝑣0 + 𝛼1 𝑢1, 𝑣1 + 𝛼2(𝑢2, 𝑣2)
• That is, texture coordinates are barycentrically interpolated

texture (an image)
geometry (2 triangles)

(0,0)

(0,1)

(1,1)

(1,0)

Recall: Screen Space vs. World Space Barycentric Weights

• Express the pixel 𝑝′ terms of its (computable) screen space barycentric weights: 𝛼0
′ , 𝛼1

′ , 𝛼2
′

• Express the point 𝑝 that projects to 𝑝′ in terms of its unknown world space barycentric weights: 𝛼𝑜, 𝛼1, 𝛼2

• Project 𝑝 into screen space and set the result equal to 𝑝′

• Can solve for 𝛼𝑜, 𝛼1, 𝛼2 to obtain:

𝛼0 =
𝑧1𝑧2𝛼0

′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′

𝛼1 =
𝑧0𝑧2𝛼1

′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′

𝛼2 =
𝑧0𝑧1𝛼2

′

𝑧1𝑧2𝛼0
′ +𝑧0𝑧2𝛼1

′ +𝑧0𝑧1𝛼2
′

(see Class 4: purple slides)

Distortion from Screen Space Projection
• Consider a single edge of one triangle
• Uniform increments along the edge in screen space (orange/red) do not correspond to uniform
increments along the edge in world space (green/purple)

Screen Space vs. World Space Barycentric Weights
• Perspective transformation (nonlinearly) changes triangle shape
• So, interpolating texture coordinates in screen space (nonlinealy) distorts textures

screen space
barycentric weights

mesh refinement helps

(less
1

𝑧
 variance per triangle)

world space
barycentric weights

texture

Interpolating within the Texture
• 𝑢𝑝, 𝑣𝑝 is surrounded by 4 pixels in the texture image

• Use bilinear interpolation to interpolate values for T = R, G, B, 𝛼, etc.
• First, linearly interpolate in the u-direction; then, in the 𝑣-direction (or vice versa)

texture image close-up view (of the 4 surrounding pixels) bilinear interpolation

𝑇 𝑢𝑝, 𝑣𝑃 = 1 − 𝑎 1 − 𝑏 𝑇𝑖,𝑗 + 𝑎 1 − 𝑏 𝑇𝑖+1,𝑗 + 1 − 𝑎 𝑏𝑇𝑖,𝑗+1 + 𝑎𝑏𝑇𝑖+1,𝑗+1

Assigning Texture Coordinates
• Assign texture coordinates on complex objects one part/component at a time

Assigning Texture Coordinates
• Manually assigning 𝑢, 𝑣 one vertex at a time can be tedious

• For some surfaces, the (𝑢, 𝑣) texture coordinates can be generated procedurally
• E.g. Cylinder - wrap the image around the outside

• map the [0,1] values of the 𝑢 coordinate to [0,2𝜋] for 𝜙
• map the 0,1 values of the 𝑣 coordinate to [0, ℎ] for 𝑦

𝜙

𝑦

Using Proxy Objects – Step 1
• Assign texture coordinates to proxy objects:

• Example: Cylinder
• wrap texture coordinates around the outside of the cylinder
• not the top or bottom (to avoid texture distortion)

• Example: Cube
• unwrap cube, and map texture coordinates over the unwrapped cube
• texture is seamless across some of the edges, but not other edges

Using Proxy Objects – Step 2
• Transfer texture coordinates from the proxy object to the final object
• Various approaches:

• Use the proxy object’s surface normal
• Use the target object’s surface normal
• Use rays emanating from a “center”-point/line of the target or proxy object

proxy
cylinder

proxy
cylinder

proxy
cylinder

target
object

target
object target

object

Distortion
• It’s difficult to find low-distortion mappings (back and forth) from a 2D plane to 3D surfaces

DEBUG with checkerboard textures

Aliasing
• Textures often alias when viewed from a distance

incorrect correct

Aliasing
• Recall: aliasing occurs when the sampling frequency is too low compared to the signal
frequency (which is the texture resolution here)

• At an optimal distance, there is a 1 to 1 mapping from triangle pixels to texels (texture pixels)

• At closer distances, the sampling frequency is higher than the texture resolution, which is the
signal frequency; so, there is no aliasing
• In this case, triangle pixels (correctly) interpolate from the surrounding texels

As was discussed in
the prior (blue) slide

Aliasing
• At far distances, the sampling frequency is too low compared to the texture resolution
• Thus, the interpolation will result in aliasing
• In this case, interpolating values for triangle pixels from the surrounding texels causes aliasing

• Instead, a triangle pixel should contain (and average together) all the information from the
several texels that it overlaps

• Interpolation ignores all but the neighboring texels, resulting in aliasing)

Anti-Aliasing
• Need to pre-process the texture image to remove the frequencies that are too high for the
sampling rate to properly capture, before doing interpolation
• This is accomplished via MIP and RIP maps…

MIP Maps
• Multum in Parvo (much in little)
• Precompute texture images at multiple resolutions, using averaging as a low pass filter
• Averaging “bakes-in” nearby texels that would otherwise be ignored by the interpolation
• When texture mapping, choose the image size that (approximately) gives a 1 to 1 pixel to texel
correspondence

Storing MIP Maps
• 4 neighboring texels of one level are averaged to form a single texel at the next level

• Since 1 +
1

4
+

1

16
+ ⋯ =

4

3
 , can store all coarser resolutions with 1/3 additional space

Using MIP Maps
• Find the MIP map image just above and just below the screen space pixel resolution
• Use bilinear interpolation on both of the chosen MIP map images
• Then, linearly interpolate between the two results (using weights that relate the screen space
resolution to that of the two MIP map images)

RIP Maps
• A triangle tilted away from the camera has different texel sampling rates in the horizontal and
vertical directions
• MIP map images can only match one of those two sampling rates
• Anisotropic RIP maps are designed to account for this RIP map

MIP map

• RIP maps require 4 times the storage:

1 +
1

4
+

1

16
+ ⋯ 1 + 2

1

2
+

1

4
+

1

8
+ ⋯ = 4

	Slide 1: Texture Mapping
	Slide 2: Similar to Putting Stickers onto Geometry
	Slide 3: Texture Mapping
	Slide 4: Texture Coordinates
	Slide 5: Recall: Screen Space vs. World Space Barycentric Weights
	Slide 6: Distortion from Screen Space Projection
	Slide 7: Screen Space vs. World Space Barycentric Weights
	Slide 8: Interpolating within the Texture
	Slide 9: Assigning Texture Coordinates
	Slide 10: Assigning Texture Coordinates
	Slide 11: Using Proxy Objects – Step 1
	Slide 12: Using Proxy Objects – Step 2
	Slide 13: Distortion
	Slide 14: DEBUG with checkerboard textures
	Slide 15: Aliasing
	Slide 16: Aliasing
	Slide 17: Aliasing
	Slide 18: Anti-Aliasing
	Slide 19: MIP Maps
	Slide 20: Storing MIP Maps
	Slide 21: Using MIP Maps
	Slide 22: RIP Maps

