Texture Mapping

Similar to Putting Stickers onto Geometry

U ﬂ'
d_---liiilllllﬂilﬂ

FaE ARCEIANNCEIAN

geometry

texture

Texture Mapping

» Adds back details lost by treating the BRDF as non-varying across an object’s surface
* RGB reflectance modifications are stored in an image, referred to as a texture
* Image colors are mapped to the object’s surface, one triangle at a time

& Lexture
y (an image)

Texture Coordinates

* A texture is defined by an image in a 2D coordinate system: (u, v)

* Texture Mapping assigns a (u, v) coordinate to each triangle vertex

* The texture is then “stuck” onto the triangle (potentially, with distortion):
* Let p be a point inside the triangle, with barycentric weights «,, a4, @,

* The color assigned to p is the texture color at (up, vp) = ay(ug, Vo) + a;(uy, vy) + a,(uy, vy)
* That is, texture coordinates are barycentrically interpolated

(1,0)

geometry (2 triangles)

texture (an image)

Recall: Screen Space vs. World Space Barycentric Weights

(see Class 4: purple slides)

Express the pixel p’ terms of its (computable) screen space barycentric weights: «(, a1, @)

Express the point p that projects to p’ in terms of its unknown world space barycentric weights: «,, a, @,
Project p into screen space and set the result equal to p’

Can solve for «,, o, o, to obtain:

!/

i Z1Z2x
aO T / / /
Z1Zy CZO +Z()Z2 C(l +Z0Z1a2

!/

st ZoZ2x4q
al ! ! /
21Z2 ao +Z022 al +Z0Z1a2

!/

ZpZ1

az —

Z1Zy CZ6+Z0Z2 C(£+Z()Z1a£

Distortion from Screen Space Projection

» Consider a single edge of one triangle
* Uniform increments along the edge in screen space (orange/red) do not correspond to uniform
increments along the edge in world space (green/purple)

screen

2.

b
AW
| SN
my A

’.‘. ('&'.L/('

screen

Screen Space vs. World Space Barycentric Weights

* Perspective transformation (nonlinearly) changes triangle shape
* So, interpolating texture coordinates in screen space (nonlinealy) distorts textures

texture screen space mesh refinement helps world space
barycentric weights (Iessi variance per triangle) barycentric weights

Interpolating within the Texture

. (up, vp) is surrounded by 4 pixels in the texture image

» Use bilinear interpolation to interpolate values for T =R, G, B, «, etc.
* First, linearly interpolate in the u-direction; then, in the v-direction (or vice versa)

T(up,vp) =(1-a)(1-Db)T;j+a(l=b)Tj4q1,; + (1 —a)bT; j41 + abTiyq j4q

1 e ‘, —— i « =" Tli+1,j+1]
A II/ 1 l‘ I_/ T I] T l;
® . o ®
& (1 .

. ® . .

b a
[* . * b T[i+1

..A,'. o | . _'. .
(2 - ')

>—o * PRy I'\z,7) {s+1,) T

texture image close-up view (of the 4 surrounding pixels) bilinear interpolation

Assigning Texture Coordinates

* Assign texture coordinates on complex objects one part/component at a time

Assigning Texture Coordinates

- Manually assigning (u, v) one vertex at a time can be tedious

* For some surfaces, the (u, v) texture coordinates can be generated procedurally
 E.g. Cylinder - wrap the image around the outside

* map the [0,1] values of the u coordinate to [0,2m] for ¢

* map the [0,1] values of the v coordinate to [0, h] for y

* Assign texture coordinates to proxy objects:

Using Proxy Objects — Step 1

* Example: Cylinder
* wrap texture coordinates around the outside of the cylinder

* not the top or bottom (to avoid texture distortion)

* Example: Cube
* unwrap cube, and map texture coordinates over the unwrapped cube
* texture is seamless across some of the edges, but not other edges

P

-5

C

t
A

5

Back

Left

Bottonl. Right

Top

Front

Using Proxy Objects — Step 2

* Transfer texture coordinates from the proxy object to the final object
e Various approaches:
 Use the proxy object’s surface normal
 Use the target object’s surface normal
* Use rays emanating from a “center”-point/line of the target or proxy object

Proxy

_ proxy proxy
cylinder

cylinder cylinder

Distortion

e It’s difficult to find low-distortion mappings (back and forth) from a 2D plane to 3D surfaces

o
e \;\
e 7)
)’0" [\> ‘E%\ =
.'/’
".'. PN |
W\ | .)
N] LD /
= N {
NN \
+—Equakie { =

DEBUG with checkerboard textures

Aliasing

 Textures often alias when viewed from a distance

incorrect correct

Aliasing

* Recall: aliasing occurs when the sampling frequency is too low compared to the signal
frequency (which is the texture resolution here)

e At an optimal distance, there is a 1 to 1 mapping from triangle pixels to texels (texture pixels)

* At closer distances, the sampling frequency is higher than the texture resolution, which is the
signal frequency; so, there is no aliasing
* In this case, triangle pixels (correctly) interpolate from the surrounding texels

As was discussed in
the prior (blue) slide

Aliasing
* At far distances, the sampling frequency is too low compared to the texture resolution

* Thus, the interpolation will result in aliasing
* In this case, interpolating values for triangle pixels from the surrounding texels causes aliasing

* Instead, a triangle pixel should contain (and average together) all the information from the
several texels that it overlaps

* Interpolation ignores all but the neighboring texels, resulting in aliasing)

Anti-Aliasing

* Need to pre-process the texture image to remove the frequencies that are too high for the
sampling rate to properly capture, before doing interpolation
* This is accomplished via MIP and RIP maps...

MIP Maps

* Multum in Parvo (much in little)

* Precompute texture images at multiple resolutions, using averaging as a low pass filter

* Averaging “bakes-in” nearby texels that would otherwise be ignored by the interpolation

* When texture mapping, choose the image size that (approximately) gives a 1 to 1 pixel to texel
correspondence

Storing MIP Maps

« 4 neighboring texels of one level are averaged to form a single texel at the next level

) Tl 1 4 . . {3
*Since 1 + ;- + = + o0 = 5+ can store all coarser resolutions with 1/3 additional space

Q

Qo0 o000

aopoann

oo o d oo

Ao R >anod
oo oo aood
aooDd o adoaa
Qo000 aodqd
aooDooaooa

Using MIP Maps

* Find the MIP map image just above and just below the screen space pixel resolution

* Use bilinear interpolation on both of the chosen MIP map images

* Then, linearly interpolate between the two results (using weights that relate the screen space
resolution to that of the two MIP map images)

RIP Maps

* A triangle tilted away from the camera has different texel sampling rates in the horizontal and
vertical directions

* MIP map images can only match one of those two sampling rates
* Anisotropic RIP maps are designed to account for this
* RIP maps require 4 times the storage:

(1434 =+)[1+2(G+53+2+)] =4

RIP map

	Slide 1: Texture Mapping
	Slide 2: Similar to Putting Stickers onto Geometry
	Slide 3: Texture Mapping
	Slide 4: Texture Coordinates
	Slide 5: Recall: Screen Space vs. World Space Barycentric Weights
	Slide 6: Distortion from Screen Space Projection
	Slide 7: Screen Space vs. World Space Barycentric Weights
	Slide 8: Interpolating within the Texture
	Slide 9: Assigning Texture Coordinates
	Slide 10: Assigning Texture Coordinates
	Slide 11: Using Proxy Objects – Step 1
	Slide 12: Using Proxy Objects – Step 2
	Slide 13: Distortion
	Slide 14: DEBUG with checkerboard textures
	Slide 15: Aliasing
	Slide 16: Aliasing
	Slide 17: Aliasing
	Slide 18: Anti-Aliasing
	Slide 19: MIP Maps
	Slide 20: Storing MIP Maps
	Slide 21: Using MIP Maps
	Slide 22: RIP Maps

