
More Texture Mapping

Recall: Averaged Vertex Normals
• Each vertex belongs to a number of triangles, each with their own normal
• Averaging those normals (weighted averaging, based on: area, angle, etc.) gives a unique
normal for each vertex

Recall: Smooth Shading
• Use barycentric weights to interpolate averaged vertex normals to the interior of a triangle:

෡𝑁𝑝 =
𝛼0

෡𝑁0 + 𝛼1
෡𝑁1 + 𝛼2

෡𝑁2

𝛼0
෡𝑁0 + 𝛼1

෡𝑁1 + 𝛼2
෡𝑁2 2

faceted
silhouette

Perturbing the Normal
• Store a normal vector in the texture (instead of a color)
• A perturbed normal can be used to make “fake” geometric details

using real normal using fake normal

Normal Map
• A normalized vector has each component in [−1,1], so can convert back and forth to a color format via:

𝑅, 𝐺, 𝐵 = 255
𝑁+(1,1,1)

2
 and 𝑁 =

2

255
𝑅, 𝐺, 𝐵 − (1,1,1)

normal mapping on a plane
 (note the variation in specular highlights created by variation of the normal)

Bump Map (variation of a Normal Map)
• Single-channel (grey-scale) height map ℎij, representing the height at location (𝑢𝑖 , 𝑣𝑗)

• The tangent plane at a point (𝑢𝑖 , 𝑣𝑗 , ℎ𝑖𝑗) is: −
𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑢
𝑢 − 𝑢𝑖 −

𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑣
𝑣 − 𝑣𝑗 + ℎ − ℎ𝑖𝑗 = 0

• So, the outward pointing (non-unit) normal is: −
𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑢
, −

𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑣
, 1

• Compute the partial derivatives via finite differences:
𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑢
=

ℎ𝑖+1,𝑗 −ℎ𝑖−1,𝑗

𝑢𝑖+1−𝑢𝑖−1
 and

𝜕ℎ 𝑢𝑖,𝑣𝑗

𝜕𝑣
=

ℎ𝑖,𝑗+1−ℎ𝑖,𝑗−1

𝑣𝑗+1−𝑣𝑗−1

Displacement Mapping
• Subdivide geometry at render time, and use a height map ℎ 𝑢, 𝑣 to perturb vertices in the normal
direction
• Pros: self-occlusion, self-shadowing, detailed silhouettes
• Cons: expensive, requires adaptive tessellation, still need bump/normal map for sub-triangle detail

bump map displacement map

𝒉(𝒖, 𝒗)original geometry displacement map

Displacement Mapping

bump map displacement map

Inferencing Displacement Maps
• Train a neural network to inference a texture (based on the shape of a skeleton)
• Use the texture as a displacement map to drive cloth deformations

inferenced texture image

vertices look up colors displace vertices to get
folding & wrinkling

Texture Acquisition via Imaging

Light Stage

Texture Acquisition via Imaging

Face Texture

A Democratized Approach using Gaussian Splatting

cell phone images de-lit images
via portrait editing

de-lit texture in-painted texture
(removing hair/eyebrows, etc.)

Texture Acquisition via Medical Imaging

Sky Boxes
• Take pictures of the sky, and use them as textures on the inside of a cube (or hemisphere, etc.)

Recall: Measuring Incoming Light
• Light Probe: a small reflective chrome sphere
• Photograph it, in order to record the incoming light (at its location) from all directions

Recall: Using the Measured Incoming Light

• The measured incoming light can be used to render a synthetic object with realistic lighting

Environment Mapping
• Place a coordinate system at the center of the sphere; then, the surface normal is: 𝑵 =

𝒙 , 𝒚 , 𝒛

𝒙𝟐+𝒚𝟐+𝒛𝟐

• Let 𝑹 be the direction from the light probe to the camera
• 𝑰 and 𝑹 are equal-angle from 𝑵 (because of mirror reflection)
• Thus, 𝑵 has a one-to-one correspondence with 𝑰 (i.e., 𝑵 encodes the incoming light direction)

Environment Mapping
• Compute the normal (𝒏𝒙, 𝒏𝒚, 𝒏𝒛) at the point on the geometry that is being rendered

• Use 𝒏𝒙 and 𝒏𝒚 (in the interval [-1, 1]) to obtain texture coordinates 𝒖, 𝒗 =
𝟏

𝟐
(𝒏𝒙 + 𝟏, 𝒏𝒚 + 𝟏)

• Then, the incoming light can be “looked up” in the texture (which is a picture of the chrome sphere)

(𝑛𝑥, 𝑛𝑦) = (1,0)

𝑢, 𝑣 = (1, . 5)

(𝑛𝑥, 𝑛𝑦) = (−1,0)

𝑢, 𝑣 = (0, . 5)

(𝑛𝑥, 𝑛𝑦) = .71, . 71

𝑢, 𝑣 = .85, .85
(𝑛𝑥, 𝑛𝑦) = (0,0)

𝑢, 𝑣 = (.5, . 5)

Environment Mapping

Texture Synthesis: Pixel Based
• Create a larger texture (one pixel at a time) from a small sample (using its structural content)
• Generate the texture in a raster scan ordering
• To generate the texture for pixel p:
• Compare p’s neighboring pixels in the (red) stencil to all potential choices in the sample
• Choose the stencil position with the smallest difference to fill pixel p

• When the stencil needs values outside the domain, use periodic boundaries (so, fill the last few
rows/columns with random values)

stencil texture sample raster scan ordering (with randomly generated periodic boundaries)

Texture Synthesis: Pixel Based

Heeger and Bergen Efros and Leung Wei and Levoy

Sample

Texture Synthesis: Patch Based
• For each patch:
• Search the original sample to find the candidate that best matches the overlap boundaries
• Choose the best candidate
• Blend overlapped regions to remove “seams”

sample texture

matching
boundary

regions

Texture Synthesis: Patch Based

Texture Synthesis: AI Methods

CS231N

Texture Synthesis: AI Methods

CS231N

Texture Synthesis: AI Methods

CS231N

Texture Synthesis: ChatGPT

Don’t Stretch Textures!
• Stretching out 10 bricks to cover an entire wall of a building is going to look unrealistic!
• Instead, tile the texture (requires periodic boundaries)

Marble Texture
• Define layers of different colors
• Use a function to map layer colors to 𝑢, 𝑣 texture locations
• For example:

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘𝑢𝑢 + 𝑘𝑣𝑣

Marble Texture
• 𝑘𝑢 and 𝑘𝑣 are spatial frequencies

• 𝑘𝑢, 𝑘𝑣 determines the direction, and
2𝜋

𝑘𝑢
2+𝑘𝑣

2
 determines the periodicity

• Problem: too regular (still need to add noise/randomness)

higher frequency lower frequency

Perlin Noise
• Noise should have both coherency and structure, in order to look more natural
• Ken Perlin proposed a specific (and amazing!) method for doing this

Perlin Noise
• Place a 2D grid over the texture image, and assign a random (unit) gradient 𝑔 𝑢𝑖 , 𝑣𝑗 to each grid point
• For each pixel, compute the dot-products between vectors from the grid corners and the corresponding gradients
• Take a weighted average of the result:

𝑛𝑜𝑖𝑠𝑒 𝑢, 𝑣 = ෍
𝑖=0,1;𝑗=0,1

𝑤
𝑢 − 𝑢𝑖

Δ𝑢
𝑤

𝑣 − 𝑣𝑗

Δ𝑣
𝑔 𝑢𝑖 , 𝑣𝑗 ⋅ 𝑢 − 𝑢𝑖 , 𝑣 − 𝑣𝑗

• Cubic weighting (for smoothness): 𝑤 𝑡 = 2 𝑡 3 − 3 𝑡 2 + 1 for t ∈ (−1,1)

Multiple Scales
• Natural textures tend to contain a variety of feature sizes
• Mimic this by adding together noises with different frequencies and amplitudes:

𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣 = ෍
𝑘

𝑛𝑜𝑖𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑘 ∗ 𝑢, 𝑣 ∗ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑘

• Each successive noise function is twice the frequency of the previous one:

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑘 = 2𝑘

• The amplitude of higher frequencies is measured by a persistence parameter (≤ 1)
• Higher frequencies have a diminished contribution:

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑘 = 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑘

1D Examples
• Smaller persistence gives less higher frequency noise and thus a smoother result

(from: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm)

2D Examples

Marble Texture + Perlin Noise
• Set the value of 𝐴 to scale the amount of noise:

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘𝑢𝑢 + 𝑘𝑣𝑣 + 𝐴 ∗ 𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣

3D Marble Texture
• “Carve” an object out of a 3D texture
• Marble texture function w/Perlin noise (for 3D):

𝑚𝑎𝑟𝑏𝑙𝑒𝐶𝑜𝑙𝑜𝑟 𝑢, 𝑣, 𝑤 = 𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑙𝑜𝑟 sin 𝑘𝑢𝑢 + 𝑘𝑣𝑣 + 𝑘𝑤𝑤 + 𝐴 ∗ 𝑝𝑒𝑟𝑙𝑖𝑛 𝑢, 𝑣, 𝑤

3D Wood Texture
• Procedurally generate tree rings (and cut the object out of the 3D texture)

• Cylindrical coordinates for (𝑥, 𝑦, 𝑧) object points: 𝐻 = 𝑦, 𝑅 = 𝑥2 + 𝑧2, 𝜃 = tan−1 𝑧

𝑥

3D Wood Texture

Machine Learning: Deep Fakes

Machine Learning: Text to Video

	Slide 1: More Texture Mapping
	Slide 2: Recall: Averaged Vertex Normals
	Slide 3: Recall: Smooth Shading
	Slide 4: Perturbing the Normal
	Slide 5: Normal Map
	Slide 6: Bump Map (variation of a Normal Map)
	Slide 7: Displacement Mapping
	Slide 8: Displacement Mapping
	Slide 9: Inferencing Displacement Maps
	Slide 10: Texture Acquisition via Imaging
	Slide 11: Texture Acquisition via Imaging
	Slide 12: A Democratized Approach using Gaussian Splatting
	Slide 13: Texture Acquisition via Medical Imaging
	Slide 14: Sky Boxes
	Slide 15: Recall: Measuring Incoming Light
	Slide 16: Recall: Using the Measured Incoming Light
	Slide 17: Environment Mapping
	Slide 18: Environment Mapping
	Slide 19: Environment Mapping
	Slide 20: Texture Synthesis: Pixel Based
	Slide 21: Texture Synthesis: Pixel Based
	Slide 22: Texture Synthesis: Patch Based
	Slide 23: Texture Synthesis: Patch Based
	Slide 24: Texture Synthesis: AI Methods
	Slide 25: Texture Synthesis: AI Methods
	Slide 26: Texture Synthesis: AI Methods
	Slide 27: Texture Synthesis: ChatGPT
	Slide 28: Don’t Stretch Textures!
	Slide 29: Marble Texture
	Slide 30: Marble Texture
	Slide 31: Perlin Noise
	Slide 32: Perlin Noise
	Slide 33: Multiple Scales
	Slide 34: 1D Examples
	Slide 35: 2D Examples
	Slide 36: Marble Texture + Perlin Noise
	Slide 37: 3D Marble Texture
	Slide 38: 3D Wood Texture
	Slide 39: 3D Wood Texture
	Slide 40: Machine Learning: Deep Fakes
	Slide 41: Machine Learning: Text to Video

