More Texture Mapping

Recall: Averaged Vertex Normals

* Each vertex belongs to a number of triangles, each with their own normal
* Averaging those normals (weighted averaging, based on: area, angle, etc.) gives a unique
normal for each vertex

Recall: Smooth Shading

* Use barycentric weights to interpolate averaged vertex normals to the interior of a triangle:
e aoﬁo ar alﬁl A azﬁz

p T P A~ -~

||a0N0 + a;N;y + a2N2||2

e

faceted
silhouette

Perturbing the Normal

e Store a normal vector in the texture (instead of a color)
* A perturbed normal can be used to make “fake” geometric details

using real normal using fake normal

Normal Map

* A normalized vector has each component in [—1,1], so can convert back and forth to a color format via:

(R.G, B) = 255 ”“;'1'1) and N =—(R,G,B) — (1,1,1)

normal mapping on a plane
(note the variation in specular highlights created by variation of the normal)

Bump Map (variation of a Normal Map)

* Single-channel (grey-scale) height map h;;, representing the height at location (u;, v;)

; _ 0 h(ui,vj) d h(ui,vj) =
* The tangent plane at a point (u;, v, h;;) is: — e (u—u;) — = (v — vj) g (h — hij) =)
oh(u;v; oh(u;,v;
* So, the outward pointing (non-unit) normal is: (— (a;]) = (a;]) ; 1)

On(uivj) _ hissj —hi-ij OR(wiv)) _ Rijsi—hij-

* Compute the partial derivatives via finite differences:

du Uj+1~Uj—1 v Vit17Vj—1

Displacement Mapping

* Subdivide geometry at render time, and use a height map h(u, v) to perturb vertices in the normal
direction

* Pros: self-occlusion, self-shadowing, detailed silhouettes

* Cons: expensive, requires adaptive tessellation, still need bump/normal map for sub-triangle detail

S~ S D

original geometry h(u,v) displacement map

bump map displacement map

Displacement Mapping

bump map displacement map

Inferencing Displacement Maps

* Train a neural network to inference a texture (based on the shape of a skeleton)
* Use the texture as a displacement map to drive cloth deformations

AV

u
—

inferenced texture image

vertices look up colors displace vertices to get
folding & wrinkling

Texture Acquisition via Imaging

Rrg 5 |
&y &
/.'/'.'17.' |
' S b

Light Stage

Texture Acquisition via Imaging

Face Texture

A Democratized Approach using Gaussian Splatting

cell phone images de-lit images de-lit texture in-painted texture
via portrait editing (removing hair/eyebrows, etc.)

Texture Acquisition via Medical Imaging

e

7 g

Sky Boxes

 Take pictures of the sky, and use them as textures on the inside of a cube (or hemisphere, etc.)

Recall: Measuring Incoming Light

* Light Probe: a small reflective chrome sphere
* Photograph it, in order to record the incoming light (at its location) from all directions

Recall: Using the Measured Incoming Light

* The measured incoming light can be used to render a synthetic object with realistic lighting

Environment Mapping

* Place a coordinate system at the center of the sphere; then, the surface normalis: N = *.y.2

Jx2+y2+22

* Let R be the direction from the light probe to the camera
e I and R are equal-angle from N (because of mirror reflection)
* Thus, N has a one-to-one correspondence with I (i.e., N encodes the incoming light direction)

light probe (side view)

Environment Mapping

* Compute the normal (n,, n,, n,) at the point on the geometry that is being rendered

* Use n, and n,, (in the interval [-1, 1]) to obtain texture coordinates (u, v) = % L n, + 1)
* Then, the incoming light can be “looked up” in the texture (which is a picture of the chrome sphere)

1,1)

,) =0
(u,v) = (.85, 85)

(M, ny) = (-1 0) | ' . (N, ny) = (1,0)
(w,v) = (0,.5) ‘ (w,v) = (1,.5)

Environment Mapping

Texture Synthesis: Pixel Based

* Create a larger texture (one pixel at a time) from a small sample (using its structural content)
* Generate the texture in a raster scan ordering
* To generate the texture for pixel p:
 Compare p’s neighboring pixels in the (red) stencil to all potential choices in the sample
* Choose the stencil position with the smallest difference to fill pixel p
 When the stencil needs values outside the domain, use periodic boundaries (so, fill the last few
rows/columns with random values)

A

o

stencil texture sample

raster scan ordering (with randomly generated periodic boundaries)

Texture Synthesis: Pixel Based

Heeger and Bergen Efros and Leung Wei and Levoy

Texture Synthesis: Patch Based

* For each patch:
e Search the original sample to find the candidate that best matches the overlap boundaries
* Choose the best candidate
* Blend overlapped regions to remove “seams”

Blenglg W

A 'i_,
f, .ﬁ L s , 4 f; matching

e _fl sl o (,r .'..__.._.'. 4 ".,- s L- L : : !
S e ”____——————‘ﬁ'* R IR boundary (a))
'«’:' " ;? f"’-—"’.—-,_q :-:_ﬁ e ’ re gl oNns : s

R] E, Blending

sample texture © (d)

Texture Synthesis: Patch

a1 Hefts rlogiof Ut s ringiog quests roging ques
g quears of Mondd Les of Moaies Lewat Monica Le

—

)

S

!

nica Lripp?tself itselp?™ ks House Dars otselfjue 1 - —
 nowialy seoms; oornd el Hodrisaliomwa £ ye ——
30 Al Al Fd itled it itself, 3t "1, boocnd it 132 T - ww.
yrary cycarsfia rafs of Mov,” 33 Bed rug rodtns, Ttot ——
Tripps Tripng toeipp?” Thatst falleftaibed it lazdia —— :—-
2000W SIg 1ooms jund fta rieg q ———
At ftbecoones hardes to 130 (Al Fanica Ihe Lestibed Al Bcribed it lzing res of hica Y
ound itself, at “this daily €ars o30S, e yeaze yeund ftself, at "thag ropp?T Tey “—_— ‘._"“ L -
ving r00ms," 23 House Dex fripp? it last Trida Ting roocas,” as Heried comda 1 S -
acribed it last fall. He fai agiagLa rieg xotng rocribede lefst fald itself, atlf,: e Y -
1the lefta ricging questio tfoics of ibed yibed be letyoarnaios rooms "398, b
ore years of Monica Lewk aica Lop?™ B¢ 1ef™ thizee yea b leself, at “theft a szl e "
inda Tripp?” That cow seer . now! coome years Honda Trsawsygoe.” 33 Horeatds T
2olitical comedian Al Frat an Albed 1o Trigan Alfticaelf, ata Lest fall fiself, T

sxct obue of the storv will yrars ¢ Wl VAR o ect 2 nound o nagrpp! roomad

Texture Synthesis: Al Methods
e

. . CS231N
Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors
Efficient to compute; reshape features from
Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence CxHxWto =C x HW

Average over all HW pairs of vectors, giving then compute G = FFT
Gram matrix of shape C x C

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -57 May 1C, 2017

Texture Synthesis: Al Methods
e

. : . CS231N
Neural Texture Synthesis z-mpX(ci-¢) rc@d-3wn

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, 512 ’_A_\ ,
record activations on every layer; layer i " ‘conv5_3; = g N P ﬂ
gives feature map of shape C; x H; x W, =0 OE, OE,
3. At each layer compute the Gram matrix o2 |) OF" or £ T
giving outer product of features: F2iconva_s3= = 1] > l:l |:| - 5 [L1 u
Gij = ZﬂlkF;k (shape C,; x C)) 256 £ T
1 r [
k freomnzzz L) L] | 1
4. Ini’fialize generated image from random ooz ﬁ T
noise 128 <
5. Pass generated image through CNN, " F-oomzj------- H -] [] — | | H
compute Gram matrix on each layer (1
6. Compute loss: weighted sum of L2 ffp_com — — (] [~ 5]
distance between Gram matrices — — oz (yE— T
7. Backprop to get gradient on image " dx descent
8. Make gradient step on image '
9. GOTO 5 ¢ y

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015 Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 61 May 1C, 2017

Texture Synthesis: Al Methods
e

. CS231N
Neural Texture Synthesis -

ga il

Reconstructing texture
from higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -62 May 1C, 2017

Texture Synthesis: ChatGPT

generate a brick texture

Which image do you like more?

© Image 1is better

@ Image 2 is better

Don’t Stretch Textures!

« Stretching out 10 bricks to cover an entire wall of a building is going to look unrealistic!
* Instead, tile the texture (requires periodic boundaries)

Marble Texture

* Define layers of different colors
* Use a function to map layer colors to (u, v) texture locations
* For example:

marbleColor(u,v) = LayerColor(sin(kuu + kvv))

T T S A
.z.\: ;w a‘&\“’)“('-.z \. ‘Y.;’&‘ .g.('az iy;;’ \3’3“(; t\: -y ;' L) .f\fl ‘\'-‘.Y "&fﬁ
oy A SR A SRR Gty SR s SR

Marble Texture

 k,, and k,, are spatial frequencies
2TT

* (k,, k,) determines the direction, and J— determines the periodicity

kZ+k=

* Problem: too regular (still need to add noise/randomness)

s

N

higher frequency lower frequency

4

Perlin Noise

* Noise should have both coherency and structure, in order to look more natural
* Ken Perlin proposed a specific (and amazing!) method for doing this

Perlin Noise

* Place a 2D grid over the texture image, and assign a random (unit) gradient g(ui, vj) to each grid point
* For each pixel, compute the dot-products between vectors from the grid corners and the corresponding gradients

» Take a weighted average of the result:

- = Ly "_”f) P Ems s
nOLse(u,v)—Zizo,m:o’lw(T)W(- g(ul,v]) (u U;, v v])

* Cubic weighting (for smoothness): w(t) = 2|t|® — 3|t|* + 1 fort € (—1,1)

A
guy,vy) / T T

Z __g_(uO' 171) ,!‘// {u‘ 1?] — I:“ﬂ: 1:1] - {-'-l-li,. 'H':I — ':Hl.u 1?1}

M v f AR |

lE' (u, v) — (up, vp) o (w v) — (U4, vg)

g(uo, Vo) V| 9y, v0) l AN l

- |
T |
— ll
—
. \

- &

Vectors from the grid points to (u,v)

4 pseudorandom gradients associated with the grid points

Multiple Scales

« Natural textures tend to contain a variety of feature sizes
* Mimic this by adding together noises with different frequencies and amplitudes:

perlin(u,v) = Z noise(frequency(k) * (u, v)) * amplitude(k)
k

* Each successive noise function is twice the frequency of the previous one:
frequency(k) = 2%

* The amplitude of higher frequencies is measured by a persistence parameter (< 1)
* Higher frequencies have a diminished contribution:

amplitude(k) = persistence”

1D Examples

* Smaller persistence gives less higher frequency noise and thus a smoother result

Frequency

Persistence = 1/4

Amplitude:

Persistence = 1/2

Amplitude:

Persistence = 1 / root2 —

Amplitude:

Persistence = 1

Amplitude:

1

2
+ ——

Ya
+ 2

2
3

1/1.414

i -

1

4 8 16 32
% + =

116 Y64 1256 11024 result
T T |
s s 116 /32 result
i TR |
s 112 828 14 15,656 result
I + + MI'I\ 'l(HI! h‘l'JII — !l‘l"‘"‘._"""',li ".".‘,
1 1 1 1 result

(from: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm)

2D Examples

Marble Texture + Perlin Noise

 Set the value of A to scale the amount of noise:

marbleColor(u,v) = LayerColor (sin(kuu + k,v + A = perlin(u, v)))

3D Marble Texture

» “Carve” an object out of a 3D texture
* Marble texture function w/Perlin noise (for 3D):

marbleColor(u,v,w) = LayerColor (sin(kuu + k,v + k,w + A * perlin(u, v, W)))

3D Wood Texture

 Procedurally generate tree rings (and cut the object out of the 3D texture)

» Cylindrical coordinates for (x, y, z) object points: H = y, R = Vx2 + z2,0 = tan™! (—)

I

L '—\-___. 2] »
P ﬁ “ Concentric *growth ring

| cylinders

| — Object point (x,vy,2)

Object to be “carved™ frnmk“--;.

wood

A

3D Wood Texture

added eccentricity

added twist

Machine Learning: Deep Fakes

Machine Learning: Text to Video

	Slide 1: More Texture Mapping
	Slide 2: Recall: Averaged Vertex Normals
	Slide 3: Recall: Smooth Shading
	Slide 4: Perturbing the Normal
	Slide 5: Normal Map
	Slide 6: Bump Map (variation of a Normal Map)
	Slide 7: Displacement Mapping
	Slide 8: Displacement Mapping
	Slide 9: Inferencing Displacement Maps
	Slide 10: Texture Acquisition via Imaging
	Slide 11: Texture Acquisition via Imaging
	Slide 12: A Democratized Approach using Gaussian Splatting
	Slide 13: Texture Acquisition via Medical Imaging
	Slide 14: Sky Boxes
	Slide 15: Recall: Measuring Incoming Light
	Slide 16: Recall: Using the Measured Incoming Light
	Slide 17: Environment Mapping
	Slide 18: Environment Mapping
	Slide 19: Environment Mapping
	Slide 20: Texture Synthesis: Pixel Based
	Slide 21: Texture Synthesis: Pixel Based
	Slide 22: Texture Synthesis: Patch Based
	Slide 23: Texture Synthesis: Patch Based
	Slide 24: Texture Synthesis: AI Methods
	Slide 25: Texture Synthesis: AI Methods
	Slide 26: Texture Synthesis: AI Methods
	Slide 27: Texture Synthesis: ChatGPT
	Slide 28: Don’t Stretch Textures!
	Slide 29: Marble Texture
	Slide 30: Marble Texture
	Slide 31: Perlin Noise
	Slide 32: Perlin Noise
	Slide 33: Multiple Scales
	Slide 34: 1D Examples
	Slide 35: 2D Examples
	Slide 36: Marble Texture + Perlin Noise
	Slide 37: 3D Marble Texture
	Slide 38: 3D Wood Texture
	Slide 39: 3D Wood Texture
	Slide 40: Machine Learning: Deep Fakes
	Slide 41: Machine Learning: Text to Video

