Data Mining: Associations

@ Frequent itemsets, market baskets
@ A-priori algorithm

®Hash-based improvements

€4 One- or two-pass approximations
@ High-correlation mining

Purpose

@ If people tend to buy A and B together,
then a buyer of A is a good target for
an advertisement for B.

@ The same technology has other uses,
such as detecting plagiarism and
organizing the Web.

The Market-Basket Model

@A large set of jtems, e.g., things sold in
a supermarket.

@A large set of baskets, each of which is
a small set of the items, e.g., the things
one customer buys on one day.

Support

@ Simplest question: find sets of items
that appear “frequently” in the baskets.

@ Support for itemset 7 = the number of
baskets containing all items in L

@ Given a support threshold s, sets of
items that appear in >= sbaskets are
called frequent itemsets.

Example

¢ Items={milk, coke, pepsi, beer, juice}.
@ Support = 3 baskets.

Bl ={m, c, b} B2 ={m, p, j}
B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 ={m, c, b, j}
B7 ={c, b, j} B8 = {b, c}
@ Frequent itemsets: {m}, {c}, {b}, {i},
{m, b}, {c, b}, {i, ¢}

Applications 1

@ Real market baskets: chain stores keep
terabytes of information about what
customers buy together.

+ Tells how typical customers navigate
stores, lets them position tempting items.

+ Suggests tie-in “tricks,” e.g., run sale on
hamburger and raise the price of ketchup.

@ High support needed, or no $$’s .

Applications 2

€ "Baskets” = documents; “items"” =
words in those documents.
+ Lets us find words that appear together
unusually frequently, i.e., linked concepts.
€ "Baskets” = sentences, “items” =
documents containing those sentences.

+ Items that appear together too often could
represent plagiarism.

Applications 3

@"Baskets” = Web pages; “items” =
linked pages.
* Pairs of pages with many common
references may be about the same topic.
& "Baskets” = Web pages p; “items” =
pages that link to p.

+ Pages with many of the same links may be
mirrors or about the same topic.

Scale of Problem

4 WalMart sells 100,000 items and can
store hundreds of millions of baskets.

4 The Web has 100,000,000 words and
several billion pages.

Association Rules

@ If-then rules about the contents of
baskets.
&{il,i2,..., ik} ->j
+ Means: “if a basket contains all of i1,...,ik,
then it is likely to contain j.
@& Confidence of this association rule is
the probability of j given ii,...,ik.

Example
+Bl = {m, (o8 b} B2 = {mr P,]}
-B3={m, b} B4 = {c, j}
“B5={m, p, b} +B6 ={m, ¢, b, j}
B7 ={c, b, j} B8 = {b, c}

@ An association rule: {m, b} -> c.
+ Confidence = 2/4 = 50%.

1

Finding Association Rules

@A typical question is “find all association
rules with support >= sand confidence
>= C..Il

@ The hard part is finding the high-
support itemsets.

+ Once you have those, checking the
confidence of association rules involving
those sets is relatively easy.

Computation Model

@ Typically, data is kept in a “flat file”
rather than a database system.
+ Stored on disk.

+ Stored basket-by-basket.

* Expand baskets into pairs, triples, etc. as you
read baskets.

& True cost = # of Disk I/O’s.
+ Count # of passes through the data.

13

Main-Memory Bottleneck

€ In many algorithms to find frequent
itemsets we need to worry about how
main-memory is used.

+ As we read baskets, we need to count
something, e.g., occurrences of pairs.

+ The number of different things we can
count is limited by main memory.

+ Swapping counts in/out is a disaster.

Finding Frequent Pairs

& The hardest problem often turns out to
be finding the frequent pairs.

@ We'll concentrate on how to do that,
then discuss extensions to finding
frequent triples, etc.

15

A HweAboitm

@A simple way to find frequent pairs is:
+ Read file once, counting in main memory
the occurrences of each pair.
* Expand each basket of nitems into its /(r+1)/2
pairs.
@ Fails if #items-squared exceeds main
memory.

A-Priori Algorithm 1

@ A two-pass approach called a-priori
limits the need for main memory.

®Key idea: monotonicity : if a set of
items appears at least s times, so does
every subset.

+ Converse for pairs: if item /7 does not
appear in s baskets, then no pair including
/ can appear in s baskets.

17

A-Priori Algorithm 2

@®Pass 1: Read baskets and count in main
memory the occurrences of each item.
+ Requires only memory proportional to #items.

@ Pass 2: Read baskets again and count in
main memory only those pairs both of
which were found in Pass 1 to have
occurred at least s times.

+ Requires memory proportional to square of
frequent items only.

18

Picture of A-Priori

[vemcoms || [Pt

PCY Algorithm 1

@ Hash-based improvement to A-Priori.

@ During Pass 1 of A-priori, most memory is
idle.

@ Use that memory to keep counts of buckets
into which pairs of items are hashed.
+ Just the count, not the pairs themselves.

@ Gives extra condition that candlidate pairs
must satisfy on Pass 2.

20

PCY Algorithm 2

@ PCY Pass 1:
+ Count items.
+ Hash each pair to a bucket and increment its
count by 1.
@ PCY Pass 2:
+ Summarize buckets by a bitmap : 1 = frequent
(count >= s5); 0 = not.
+ Count only those pairs that (a) are both
frequent and (b) hash to a frequent bucket.

22

Counts of
candidate
pairs
Pass 1 Pass 2
19
Picture of PCY
I |[_Bitmap |
Hash
table Counts of
candidate
pairs
Pass 1 Pass 2
21
Multistage Algorithm

& Key idea: After Pass 1 of PCY, rehash
only those pairs that qualify for Pass 2
of PCY.

4 0n middle pass, fewer pairs contribute
to buckets, so fewer false drops ---
buckets that have count s, yet no pair
that hashes to that bucket has count s.

23

Multistage Picture

*tem count% ‘Freq. items‘ ‘Freq. item#
Bitmap 1 Bitmap 1
First Second
hash table hash table
Counts of
Candidate
pairs

Finding Larger Itemsets

4 We may proceed beyond frequent pairs to
find frequent triples, quadruples, . . .

+ Key a-priori idea: a set of items S can only be
frequent if S- {a} is frequent for all 2 in S.

+ The kth pass through the file is counts the
candidate sets of size & : those whose every
immediate subset (subset of size k - 1) is
frequent.

+ Cost is proportional to the maximum size of a
frequent itemset.

25

Approximations

All Frequent Itemsets
At Most Two Passes

All Frequent Itemsets in <= 2
Passes

@ Simple algorithm.
@ SON (Savasere, Omiecinski, and Navathe).
¢ Toivonen.

27

Simple Algorithm 1

& Take a main-memory-sized random sample
of the market baskets.

@ Run a-priori or one of its improvements
(for sets of all sizes, not just pairs) in main
memory, so you don't pay for disk I/O each
time you increase the size of itemsets.

+ Be sure you leave enough space for counts.

Simple Algorithm 2

@ Use as your support threshold a suitable,
scaled-back number.

+ E.g., if your sample is 1/100 of the baskets, use

5/100 as your support threshold instead of s.

@ Verify that your guesses are truly frequent
in the entire data set by a second pass.

@ But you don't catch sets frequent in the
whole but not in the sample.

29

SON Algorithm 1

@ Repeatedly read small subsets of the
baskets into main memory and perform
the simple algorithm on each subset.

@ An itemset becomes a candidate if it is
found to be frequent in any one or
more subsets of the baskets.

SON Algorithm 2

€4 0n a second pass, count all the
candidate itemsets and determine
which are frequent in the entire set.

¥ Key “monotonicity” idea: an itemset
cannot be frequent in the entire set of

baskets unless it is frequent in at least
one subset.

31

Toivonen'’s Algorithm 1

& Start as in the simple algorithm, but
lower the threshold slightly for the
sample.

+ Example: if the sample is 1% of the

baskets, use 0.008s as the support
threshold rather than 0.01s.

+ Goal is to avoid missing any itemset that is
frequent in the full set of baskets.

Toivonen'’s Algorithm 2

€ Add to the itemsets that are frequent in the
sample the negative border of these
itemsets.

€ An itemset is in the negative border if it is
not deemed frequent in the sample, but all
its immediate subsets are.
+ Example: ABCD is in the negative border if and

only if it is not frequent, but all of ABC, BCD,
ACD, and ABD are.

33

Toivonen'’s Algorithm 3

€ 1n a second pass, count all candidate
frequent itemsets from the first pass,
and also count the negative border.

€ If no itemset from the negative border
turns out to be frequent, then the
candidates found to be frequent in the
whole data are exactly the frequent
itemsets.

Toivonen’s Algorithm 4

& What if we find something in the negative
border is actually frequent?

@ We must start over again!

@ But by choosing the support threshold for
the sample wisely, we can make the
probability of failure low, while still keeping
the number of itemsets checked on the
second pass low enough for main-memory.

35

Low-Support, High-Correlation

Finding rare, but very similar
items

Assumptions

1. Number of items allows a small amount
of main-memory/item.

2. Too many items to store anything in
main-memory for each pair of items.

3. Too many baskets to store anything in
main memory for each basket.

4. Data is very sparse: it is rare for an
item to be in a basket.

37

Applications

@ While marketing may require high-
support, or there’s no money to be
made, mining customer behavior is
often based on correlation, rather than
support.

+ Example: Few customers buy Handel’s

Watermusick, but of those who do, 20%
buy Bach’s Brandenburg Concertos.

Matrix Representation

¢ Columns = items.

@ Baskets = rows.

®Entry (r, ¢) = 1if item c is in basket
r; = 0if not.

4 Assume matrix is almost all 0's.

39

In Matrix Form

Similarity of Columns

®Think of a column as the set of rows in
which it has 1.

®The similarity of columns C1 and C2,
sim (C1,C2), is the ratio of the sizes of
the intersection and union of C1 and
C2. (Jaccard measure)

@ Goal of finding correlated columns
becomes finding similar columns.

4

m ¢ p b i
{m,c,b} 1 1 0 1 0
{m,p,b} 1 0 1 1 0
{m,b} 1 0 0 1 0
{cj} 0o 1 0 0 1
{m,p.j} i 0 1 o0 1
{m,c,b,j} 1 1 0 1 1
{c,b,j} o 1 o0 1 1
{c,b} 0 1 0 1 0
Example
G
01
10
11 sim (C1, C2) =
00 2/5=04
11
01

42

Signatures

@Key idea: “hash” each column Cto a
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a
signature in main memory for each
column.

2. Sim (C1, C2) is the same as the
“similarity” of Sig (C1) and Sig (C2).

An Idea That Doesn’t Work

@ Pick 100 rows at random, and let the
signature of column C be the 100 bits
of C in those rows.

@ Because the matrix is sparse, many
columns would have 00. . .0 as a
signature, yet be very dissimilar
because their 1's are in different rows.

Four Types of Rows

€ Given columns C1 and C2, rows may be
classified as:

Cl 2
a 1 1
b 1 0
c 0 1
d 0 0

@®Also, a = # rows of type a, etc.
®Note Sim(C1,C2) = a/(a+b+c).

Min Hashing

@ Imagine the rows permuted randomly.

@ Define “hash” function 4 (C) = the
number of the first (in the permuted
order) row in which column C has 1.

Surprising Property

@ The probability (over all permutations
of the rows) that #(C1) = A(C2) is the
same as Sim (C1, C2).

®Bothare a/(a+b+c)!

& Why?

+ Look down columns C1 and C2 until we see
al.

+ Ifit's a type @ row, then A (C1) = A (C2).
If a type b or ¢ row, then not.

47

Min-Hash Signatures

@ Pick (say) 100 random permutations of the
rows.

®Let Sig (C) = the list of 100 row numbers
that are the first rows with 1 in column C,
for each permutation.

@ Similarity of signatures = fraction of
permutations for which minhash values
agree = (expected) similarity of columns.

48

Important Trick

@ Don't actually permute the rows.
+ The number of passes would be prohibitive.
@ Rather, in one pass through the data:
1.Pick (say) 100 hash functions.
2.For each column and each hash function, keep a “slot”
for that min-hash value.
3.For each row r, and for each column ¢ with 1 in row r,
and for each hash function /# do: if A(r) is a smaller
value than slot(#,¢), replace that slot by A(r).

Example
Cl C2 C3 S1 S2 S3
11 0 1 Perm 1 =(12345)|1 2 1
210 1 1 Perm2=(54321)|4 5 4
31100 Perm3=(34512) |3 5 4
41 01
5001 0
Similarities:
1-2/1-3 | 2-3
Col.-Col. {0 |0.5 |0.25
Sig.-Sig. |0]0.67]0
49
Example
hi)=1 1 -
g)=3 3 -
Row Cl1 C2 h2)=2 1 2
1 1 0 9(2)=0 3 0
2 0 1
3 1 1 h3)=3 1 2
4 1 0 gi3)=2 2 0
5 0 1 h4)=4 1 2
g4) =4 2 0
h(x) = xmod 5 h(5)=0 1 0
g(x) = 2x+1 mod 5 g5)=1 2 0

51

Locality-Sensitive Hashing

@ Problem: signature schemes like
minhashing may let us fit column
signatures in main memory.

@ But comparing all pairs of signatures
may take too much time (quadratic).
@LSH is a technique to limit the number

of pairs of signatures we consider.

Partition into Bands

@ Treat the minhash signatures as columns,
with one row for each hash function.

@ Divide this matrix into 6 bands of rrows.

@ For each band, hash its portion of each
column to k& buckets.

@ Candidate column pairs are those that hash
to the same bucket for >= 1 band.

@ Tune b and rto catch most similar pairs,
few nonsimilar pairs.

53

Example

@ Suppose 100,000 columns.
@ Signatures of 100 integers.
& Therefore, signatures take 40Mb.

4 But 5,000,000,000 pairs of signatures
can take a while to compare.

@ Choose 20 bands of 5 integers/band.

Suppose C1, C2 are 80% Similar

@ Probability C1, C2 identical in one
particular band: (0.8)> = 0.328.

@ Probability C1, C2 are not similar in
any of the 20 bands: (1-0.328)%0 =
.00035 .

+ i.e., we miss about 1/3000 of the 80%
similar column pairs.

55

Suppose C1, C2 Only 40% Similar

@ Probability C1, C2 identical in any one
particular band: (0.4)° = 0.01.

@ Probability C1, C2 identical in >= 1 of
20 bands: <= 20 * 0.01 =0.2.

4 Small probability C1, C2 not identical in
a band, but hash to the same bucket.

@ But false positives much lower for
similarities < < 40%.

LSH Summary

@ Tune to get almost all pairs with similar
signatures, but eliminate most pairs
that do not have similar signatures.

@ Check in main memory that candidate
pairs really do have similar signatures.

@ Then, in another pass through data,
check that the remaining candidate
pairs really are similar columns .

57

Amplification of 1’s

@ If matrices are not sparse, then life is
simpler: a random sample of (say) 100 rows
serves as a good signature for columns.

& Hamming LSH constructs a series of
matrices, each with half as many rows, by
OR-ing together pairs of rows.

& Candidate pairs from each matrix have
between 20% - 80% 1's and are similar in
selected 100 rows.

58

Example

-0 -

- -—-_—00

59

Using Hamming LSH

@ Construct all matrices.
« If there are R rows, then log,R matrices.
+ Total work = twice that of reading the
original matrix.
@ Use standard LSH to identify similar
columns in each matrix, but restricted
to columns of “medium” density.

10

Summary

@ Finding frequent pairs:

* A-priori --> PCY (hashing) --> multistage.
@ Finding all frequent itemsets:

+ Simple --> SON --> Toivonen.
@ Finding similar pairs:

¢ Minhash + LSH, Hamming LSH.

61

11

