Decision Trees

Example Decision Tree Married? y n Own dog? Own home? y n y n Bad Own home? Good Own dog? y n y n Bad Own home? Good Own dog? y n y n Bad ?? Good Bad

Applications

- ◆Credit-card companies and banks develop DT's to decide whether to grant a card or loan.
- ◆Medical apps, e.g., given information about patients, decide which will benefit from a new drug.
- ◆Many others.

3

Issues

- ◆How do you use a decision tree?
 - I.e., given a record, how do you decide whether it is good or bad?
- ◆How do you design decision trees?
 - Ad-hoc: decide yourself.
 - Training: algorithm to construct "best" DT from given data.
 - Hope future records match the training set.

Designing a Decision Tree

- ◆Typically, we are given data consisting of a number of records, perhaps representing individuals.
- Each record has a value for each of several attributes.
 - Often binary attributes, e.g., "has dog."
 - Sometimes numeric, e.g. "age", or discrete, multiway, like "school attended."

Designing a Decision Tree 2

- ◆Records are classified into "good" or "bad."
 - More generally: some number of outcomes.
- ◆The goal is to make a small number of tests involving attributes to decide as best we can whether a record is good or bad.

6

Using a Decision Tree

- ◆Given a record to classify, start at the root, and answer the question at the root for that record.
 - E.g., is the record for a married person?
- ◆Move next to the indicated child.
- ◆Recursively, apply the DT rooted at that child, until we reach a decision.

7

Training Sets

- ◆ Decision-tree construction is today considered a type of "machine learning."
- ◆We are given a *training set* of example records, properly classified, with which to construct our decision tree.

8

Example

◆Here is the data on which our example DT was based:

Married?	Home?	Dog?	Rating
0	1	0	G
0	0	1	G
0	1	1	G
1	0	0	G
1	0	0	В
0	0	0	В
1	0	1	В
1	1	0	B 9

Binary Attributes

- ◆When all attributes are binary, we can pick an attribute to place at the root by considering how nonrandom are the sets of records that go to each side.
- ◆Branches correspond to the value of the chosen attribute.

10

Entropy: A Measure of Goodness

- ◆Consider the pools of records on the "yes" and "no" sides.
- ◆If fraction p on on a side are "good," the entropy of that side is

 $-(p \log_2 p + (1-p) \log_2 (1-p)).$

- $= p \log_2(1/p) + (1-p) \log_2(1/(1-p))$
- ◆Pick attribute that minimizes maximum entropies of the sides.

Shape of Entropy Function

2

Intuition

- ◆Entropy 1 = random behavior, no useful information.
- ◆Low entropy = significant information.
 - At entropy = 0, we know exactly.
- ◆Ideally, we find an attribute such that most of the "good's" are on one side, and most of the "bad's" are on the other.

◆Our Married, Home, Dog, Rating data:

Example

• 010G, 001G, 011G, 100G, 100B, 000B, 101B, 110B.

◆Married: 1/4 of Y is G; 1/4 of N is B.

• Entropy = $((1/4) \log_2 4 + (3/4) \log_2 (4/3)) =$.81 on both sides.

14

Example, Continued

- ♦010G, 001G, 011G, 100G, 100B, 000B, 101B,
- ♦Home: 1/3 of Y is B; 2/5 of N is G.
 - Entropy is $(1/3) \log_2 3 + (2/3) \log_2 (3/2) = .92$ on Y
 - Entropy is $(2/5) \log_2(5/2) + (3/5) \log_2(5/3) = .98$
 - Max = .98, greater than for Married.
- ◆Dog is similar, so Married "wins."

The "Training" Process

Handling Numeric Data

- ◆While complicated tests at a node are permissible, e.g., "age = 30 or age < 50 and age > 42," the simplest thing is to pick one breakpoint, and divide records by value ≤ breakpoint and value > breakpoint.
- ◆Rate an attribute and breakpoint by min-max entropy of the two sides.

Overfitting

- ◆A major problem in designing decision trees is that one tends to create too many levels.
 - The number of records reaching a node is small, so significance is lost.
 - Extreme example: our data was generated by coin-flips; the tree is unlikely to reflect additional data that it would be used to classify.

Possible Solutions

- 1. Limit depth of tree so that each decision is based on a sufficiently large pool of training data.
- 2. Create several trees independently (needs randomness in choice of attribute).
 - Decision based on vote of D.T.'s.
 - Filters out irrelevant factors.

19