
CS242 Midterm
Fall 2024

• Please read all instructions (including these) carefully.

• There are 3 questions on the exam, all with multiple parts. You have 80 minutes to work
on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Write your answers in the boxes provided on the exam. We will grade what is in the
answer boxes.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 20
2 20
3 16

TOTAL 56

1

1. Combinator Calculus (20 points)

Recall the definitions of the combinators S, K, and I (lecture 2, slide 4):

I x −→ x

K x y −→ x

S x y z −→ (x z) (y z)

and that the abstraction algorithm A is defined as follows (lecture 2, slide 29):

A(x, x) = I

A(E, x) = K E if x does not appear in E

A(E1 E2, x) = S A(E1, x) A(E2, x)

In this problem, we consider variants of the SKI calculus and derive some of their prop-
erties.

(a) Consider replacing K with the following M combinator (M for “middle”):

M x y z −→ y

We first show that the SMI calculus is equivalent to the SKI calculus:
i. Express M in the SKI calculus (i.e., as a combinator composed of S, K, and I).

M = smallest expression: K K
from using abstraction: K (S (K K) I)

ii. Express K in the SMI calculus (i.e., as a combinator composed of S, M , and I).

K = smallest expression: M I

2

iii. Let AM be the abstraction algorithm for the SMI calculus (i.e., AM(E, x) x =
E). Fill in the following missing case.

AM(x, x) = I

AM(E, x) =
(M I) E

if x does not appear in E

AM(E1 E2, x) = S AM(E1, x) AM(E2, x)

(b) Now let’s replace K by the following L combinator (L for “left”):

L x y z −→ x

We’ll also show that the SLI calculus is equivalent to the SKI calculus:
i. Express L in the SKI calculus (i.e., as a combinator composed of S, K, and I).

L =
smallest expression: S (K K) K
from using abstraction: ((S (K K)) ((S (K K)) I))

ii. Express K in the SLI calculus (i.e., as a combinator composed of S, L, and I).

K =
smallest expression: ((S L) L)

3

(c) Extra Credit: (5 points)
Do not attempt this problem unless you have finished the rest of the exam!
Initially, it may appear that argument order doesn’t have any impact on the SKI
calculus as both M and L lead to equivalent calculi, but it actually turns out that if
we replace K instead with a combinator R (R for “right”):

R x y z −→ z

that we actually get a calculus that is not equivalent to the SKI calculus! To show
this result, prove that K cannot be expressed in the SRI calculus (i.e., that there
does not exist any combinator C in the SRI calculus such that C x y →∗ x).
Hint: Evaluate some SRI calculus expressions in tree form. Do you see a pattern?

Claim: for any expression e −→∗ e′ in the SRI calculus, the rightmost node of e is
the same as the rightmost node of e′.
Proof: by structural induction on the rewrite rules. For any reductions not applied
at a parent of the rightmost node, the rightmost node trivially stays the same, so
all we have to consider is rewrites at parents of the rightmost node. There are three
reductions that can occur: I z → z, R x y z → z, and S x y z → (x z) (y z). In each
of these cases, we see that the rightmost node of the left hand side of the reduction
(i.e., z) is the same as the rightmost node of the right hand size of the reduction (i.e.,
z).

Claim: There does not exist an SRI calculus expression KR such that KR x y →∗ x.
Proof: KR x y is by assumption an expression in the SRI calculus, and as such cannot
change the rightmost node of the expression, but the definition of KR does just that
(changing y to x). Thus, no such combinator KR can exist.

4

2. Lambda Calculus (20 points)
In this problem, we write part of an interpreter for the lambda calculus in the lambda
calculus itself. For all parts of this problem, you may use the following definitions in your
solutions:

tt = λx. λy. x

ff = λx. λy. y

and = λx. λy. x y ff
0 = λf. λx. x

succ = λn. λf. λx. f (n f x)
pair = λx. λy. λz. z x y

fst = λx. λy. x

snd = λx. λy. y

is-zero = λn. n (λx. ff) tt
pred-helper = λp. pair (p snd) (succ (p snd))

pred = λn. (n pred-helper (pair 0 0)) fst
sub = λn. λm. m pred n

eq = λn. λm. and (is-zero (sub n m)) (is-zero (sub m n))

All of these combinators have been introduced previously in class or homeworks, with
the exception of eq, which takes two natural numbers and returns a boolean, true if the
numbers are equal and false otherwise. Recall the structure of the lambda calculus:

Term e ::= x | λx. e | e1 e2

We will use an algebraic data type Term to represent lambda calculus terms. Instead
of representing variables as strings, e.g. “x” or “y”, we will represent them as natural
numbers Nat.

type Term = var Nat | abs Nat Term | app Term Term

5

(a) Encode each constructor of the Term algebraic data type as a lambda
term using the construction given in class (lecture 4, slide 31).

var = λn. λf. λg. λh. f n

abs = λn. λe. λf. λg. λh. g n (e f g h)

app = λe1. λe2. λf. λg. λh. h (e1 f g h) (e2 f g h)

(b) Define a function subst that takes a term e1, a variable (natural number) n, and
another term e2, and performs substitution (lecture 4, slide 9), returning e1[n := e2].
You may assume that:

• All variables in e1 and e2 are distinct (you do not need to worry about name
collisions between variables in e1 and variables in e2 when performing substitu-
tion).

• The variable n is not bound by a lambda abstraction in e1 — i.e., no subterm
of the form λn. e′ appears inside e1.

You should not need helper functions beyond those defined above and the three
constructors var, abs, and app. If you wish to define additional functions you
may, but new functions may only refer to previously defined functions—no recursive
definitions are permitted.

subst = λe1. λn. λe2. e1 (λm. (eq m n) e2 (var m)) abs app

6

3. Typed Lambda Calculus (16 points)

In this question we will work in the polymorphic lambda calculus and, in some parts, the
simply typed subset.

Type t ::= α | t → t | Int
Quantified Type o ::= ∀α. o | t

Term e ::= x | λx. e | e1 e2 | let f = λx. e1 in e2 | i

Recall the type rules of the simply typed lambda calculus with integers (lecture 5, slide
22):

A ⊢ i : Int
(Int)

A, x : t ⊢ x : t
(Var)

A, x : t ⊢ e : t′

A ⊢ λx. e : t → t′ (Abs)

A ⊢ e : t → t′

A ⊢ e′ : t

A ⊢ e e′ : t′ (App)

Also recall the additional rules for the polymorphic lambda calculus (lecture 6, slides 10
and 12):

A ⊢ λx. e : t A, f : ∀α1, . . . , αn. t ⊢ e′ : t′ α1, . . . , αn /∈ FV(A)
A ⊢ let f = λx. e in e′ : t′ (Let)

A, f : ∀α. t ⊢ f : t[α := t′]
(Inst)

7

Fill in a valid type or write untypable if there is no way to type the term.

(a) ((λx. x) (λx. x)) λx. x : α → α

(b) (λf. λg. f g) 0 (λx. x) : untypable

(c) (λf. λg. g f) 0 (λx. x) : Int

(d) (λf. λg. g f f) (λx. x) (λx. x) : untypable

(e) let f = λx. x in (f f) f : α → α

(f) let f = λx. x in (λg. g g) f : untypable

(g) let f = λx. x in (f (λx. x)) (f 0) : Int

(h) let f = λx. x in (λf. (f (λx. x)) (f 0)) f : untypable

8

