
Combinator Calculus
CS242

Lecture 2

Alex Aiken CS 242 Lecture 2

Combinator:
A function without free variables

Calculus:
A method of computation or calculation in a special notation

Alex Aiken CS 242 Lecture 2

Overview

• A variable-free programming language using only functions

• A simple Turing-complete computational formalism

• A starting point for more involved languages

• And something different!

Alex Aiken CS 242 Lecture 2

SKI Calculus

I x → x

K x y → x

S x y z → (x z) (y z)

Identity function

Constant functions

Generalized function application

Alex Aiken CS 242 Lecture 2

A function call is written by juxtaposing two
expressions

The function The argument

The result

The arrow indicates a
step of computation

Multiple Arguments

K

K x

K x y → x

K x y z → x z

A function by itself is a well-formed
program. No rules apply.

No rules apply to K with one argument

K only ``executes” when it has two
arguments

K only uses the first two arguments

Alex Aiken CS 242 Lecture 2

What is S?

S x y z → (x z) (y z)

For a general functional language:

Need a way to program function calls
(applications).

Need to reuse values (make copies).

S combines both.

Alex Aiken CS 242 Lecture 2

Creates a function
application.

Duplicates z

Definition

• The terms of the SKI calculus are the smallest set such that
• S, K, and I are terms
• If x and y are terms, then x y is a term

• Terms are trees, not strings
• Parentheses show association where necessary
• In the absence of parentheses, association is to the left

• i.e., S x y z = (((S x) y) z)

Alex Aiken CS 242 Lecture 2

Example

Alex Aiken CS 242 Lecture 2

S K x y

S K x y

(((S K) x) y)

Example

Alex Aiken CS 242 Lecture 2

S K

x
y

(((S K) (K x)) (S y))

K
S

Context Free Grammar

Expr → S
Expr → K
Expr → I
Expr → Expr Expr
Expr → (Expr)

Expr → S | K | I | Expr Expr | (Expr)

Alex Aiken CS 242 Lecture 2

Rewrite Rules

• The three rules of the SKI calculus are an example of a rewrite system
• Any expression (or subexpression) that matches the left-hand side of a rule can be replaced

by the right-hand side

• The symbol → stands for a single rewrite
• The symbol →* stands for the reflexive, transitive closure of →

• i.e., zero or more rewrites

I x → x
K x y → x

S x y z → (x z) (y z)

Alex Aiken CS 242 Lecture 2

Example

S K x y → (K y) (x y) → y

Alex Aiken CS 242 Lecture 2

Example

S K x y → (K y) (x y) → y

Alex Aiken CS 242 Lecture 2

S K x y K y x y

y

What Do These Do?

• K x → ?
• S x y → ?

• Answer: Nothing!
• No rewrite rules apply until the combinator has all its arguments
• K x is a partially applied function
• A partially applied function is a function, and can be passed around, copied,

etc.

Alex Aiken CS 242 Lecture 2

Another Example

S I I x →(I x) (I x) → x (I x) → x x

Alex Aiken CS 242 Lecture 2

S I I x

I x I x
xx

x

I x

And Another Example
S I I x →(I x) (I x) → x (I x) → x x

So ...

(S I I) (S I I) → (I (S I I)) (I (S I I)) →(S I I) (I (S I I)) → (S I I) (S I I)

Alex Aiken CS 242 Lecture 2

S I I S I I

I

S I I

I

S I I S I I S I I

What a Strange Language!

• A language of functions
• Functions are all there is to work with

• Minimalist
• Typical of languages designed for study
• Clears away the complexity of ``real’’ languages
• Allows for very direct illustration of key ideas

Alex Aiken CS 242 Lecture 2

Programming

• Recursion

• Conditionals

• Data structures

Alex Aiken CS 242 Lecture 2

General Recursion

• (S I I) (S I I) is a non-terminating expression
• Can always be rewritten, since it rewrites to itself
• A form of looping

• Recursive function calls are just a little more involved
x = S (K f) (S I I)

So S I I x →* x x = S (K f) (S I I) x → ((K f) x) ((S I I) x) →* f (x x) →* f (f (x x))

• We will focus on a different form of looping later in the lecture

Alex Aiken CS 242 Lecture 2

Conditionals

• To have branching behavior, we need Booleans.

• We use an encoding.
• We choose combinators to represent true, false
• And combinators not, or, and that have the correct behavior on those values

• An abstract data type
• Except there is no type system to enforce the abstractions

Alex Aiken CS 242 Lecture 2

Booleans

• Represent true by a function that picks the first of two arguments
• Represent false by a function that picks the second of two arguments

• True T x y → x
• False F x y → y

• T = K
• F = S K

Alex Aiken CS 242 Lecture 2

Boolean Operations

• Let B be a Boolean (T or F)

• not B = B F T

Alex Aiken CS 242 Lecture 2

Boolean Operations

• Let B be a Boolean (T or F)

• B1 or B2 = B1 T B2

Alex Aiken CS 242 Lecture 2

Boolean Operations

• Let B be a Boolean (T or F)

• B1 and B2 = B1 B2 F = B1 B2 (S K)

Alex Aiken CS 242 Lecture 2

Example

(not F) and T = (F F T) T F

Alex Aiken CS 242 Lecture 2

If-Then-Else

• Let B be a Boolean

• If B then X else Y = B X Y

Alex Aiken CS 242 Lecture 2

Writing Combinators

• Let’s say we want a combinator

swap x y = y x

• How do we write swap using S, K, and I?

swap = S (K (S I)) (S (K K) I)

Alex Aiken CS 242 Lecture 2

Writing Combinators: A Systematic Approach

• Finding a combinator that implements a given function is not trivial
• Some have nice intuitive definitions (e.g., Booleans)
• Others are completely non-obvious (e.g., swap)

• There is a systematic way to write combinators
• Start with a function equation using variables that specifies what we want

swap x y = y x
• An abstraction algorithm A(…) maps the right-hand side to a combinator
• The key is to eliminate the variables by replacing them with uses of the

combinators S, K, and I

Alex Aiken CS 242 Lecture 2

Writing Combinators: A Systematic Approach

• Consider a function equation of one variable: f x = E
• If we apply function f to argument x, the result is E

• We want a combinator A(E,x) that implements f
• Therefore A(E,x) x = E
• And A(E,x) doesn’t use x
• We say we abstract E with respect to x

• A(x,x) = I
• A(E,x) = K E if x does not appear in E
• A(E1 E2,x) = S A(E1,x) A(E2,x)

• Note A(…) is not a combinator
• it is a (recursively defined) mapping from expressions with variables to combinators

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(x,x) = I

• Consider the equation f x = x

• Requires A(x,x) x = x
• And A(x,x) does not use x

• What combinator satisfies these two conditions? I!

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E,x) = K E

• Consider the equation f x = E
• Where E does not use x
• Again requires A(E,x) x = E
• And A(E,x) does not use x

• Note that K E does not use x
• Calculate: K E x → E

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E1 E2,x) = S A(E1,x) A(E2,x)
• Consider the equation f x = (E1 E2) x

• Requires A(E1 E2,x) x = E1 E2
• And A(E1 E2,x) does not use x

• Notice that S A(E1,x) A(E2,x) does not use x
• Calculate:

S A(E1,x) A(E2,x) x → (A(E1,x) x) (A(E2,x) x) → E1 (A(E2,x) x) → E1 E2

Alex Aiken CS 242 Lecture 2

Back To Swap
• Recall swap x y = y x

• Arguments are abstracted starting with the last argument and progressing to the first argument
• Because (swap x) y = y x
• First abstract y in the definition of swap x, then abstract x from the definition of swap
• We drop the red color for A, just remember it is not a combinator but mapping that produces a combinator from an expression with variables!

• First eliminate y in y x:
swap x = A(y x, y) = S A(y,y) A(x,y) = S I A(x,y) = S I (K x)

• Now eliminate x from the result of the previous step:
swap =
A(S I (K x), x) =
S A(S I, x) A(K x, x) =
S (K (S I)) A(K x, x) =
S (K (S I)) (S A(K,x) A(x,x)) =
S (K (S I)) (S (K K) A(x,x)) =
S (K (S I)) (S (K K) I)

Alex Aiken CS 242 Lecture 2

Discussion

• Abstraction is a very simple, systematic algorithm

• But tedious
• The resulting expressions can be huge and hard to read
• Especially if the combinator takes multiple arguments

Alex Aiken CS 242 Lecture 2

Improvements

• We can introduce helper combinators to reduce the size of abstracted expressions

• In S x y z, often z is only used in one of x or y
• We can avoid copying z and just pass it to the one combinator that uses it

• Define
• c1 x y z = x (y z) – a version of S where the first argument is constant (doesn’t use z)
• c2 x y z = (x z) y – a version of S where the second argument is constant (doesn’t use z)

• Add new cases for to the abstraction algorithm for applications that use c1 or c2 if possible
 A(E1 E2,x) = c1 E1 A(E2,x) if x does not appear in E1
 A(E1 E2,x) = c2 A(E1,x) E2 if x does not appear in E2
 A(E1 E2,x) = S A(E1,x) A(E2,x) otherwise

Alex Aiken CS 242 Lecture 2

Back To Swap, Again …

• Recall swap x y = y x

• First eliminate y in y x:
A(y x, y) = c2 A(y,y) x = c2 I x

• Now eliminate x from the result of the previous step:
A(c2 I x, x) =
A((c2 I) x, x) =
c1 (c2 I) A(x, x) =
c1 (c2 I) I

Alex Aiken CS 242 Lecture 2

Defining c1
• c1 x y z = x (y z)

• Shortcut
• Observe that c1 x y = S (K x) y
• Then c1 x = S (K x)
• Then c1 = A(S (K x), x) = S (K S) (S (K K) I)
• Note S (K K) I = K
• So c1 = S (K S) K

• Running the abstraction algorithm directly gives
• c1 x y z = x (y z)
• c1 x y = S (K x) (S (K y) I)
• c1 x = S (K (S (K x))) (S (S (K S) (S (K K) I)) (K I))
• c1 = S (S (K K) (S (K S) (S (K K) I))) (K (S (S (K S) (S (K K) I)) (K I)))

• The abstraction algorithm is not guaranteed to produce the smallest combinator!
• But it is guaranteed to give one that is correct

Alex Aiken CS 242 Lecture 2

Defining c2

• c2 x y z = (x z) y

• A((x z) y, z) = S (c1 x I) (K y)
• A(S (c1 x I) (K y), y) = S (K (S (c1 x I))) (c1 K I)
• A(S (K (S (c1 x I))) (c1 K I), x) =
 S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I)))))) (K (c1 K I))

Alex Aiken CS 242 Lecture 2

Another Abstract Type: Pairs

Pairing must satisfy
 pair x y first = x
 pair x y second = y
Choose
 first = T
 second = F
Then
 pair x y z = z x y
 pair x y = c2 (c2 I x) y
 pair x = c1 (c2 (c2 I x)) I
 pair = c2 (c1 c1 (c1 c2 (c1 (c2 I) I))) I

Alex Aiken CS 242 Lecture 2

A Brief Interlude

• SKI is an example of a language with higher-order functions
• Functions can take functions as arguments and return functions as results

• Examples
• swap x
• and B
• pair (and B)
• S

• Many languages are first order
• Functions can only work on data types that are not themselves functions

Alex Aiken CS 242 Lecture 2

Natural Numbers

n applies its first argument n times to its second argument

n f x = fn(x)

0 f x = x so 0 = S K
succ n f x = f (n f x) succ = S (S (K S) K)

succ n f x → S (S (K S) K) n f x → (S (K S) K f) (n f) x → ((K S) f) (K f) (n f) x →
S (K f) (n f) x → ((K f) x) ((n f) x) → f ((n f) x) = f (n f x)

Alex Aiken CS 242 Lecture 2

Some Useful Functions

one = succ 0
add x y = x succ y
mul x y = x (add y) 0

Abstracting add and mul:
add = c2 (c1 c1 (c2 I succ)) I
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0

Alex Aiken CS 242 Lecture 2

Examples

Shorthand: Write i for succi(0)

10 (+ 2) 0 → 20
2 (* 2) 1 → 4

Notice how iteration/looping is built-in to the definition of the type.

An example of primitive recursion: The number of times we iterate is
fixed by the element of the type itself.

Alex Aiken CS 242 Lecture 2

Factorial
Standard recursive implementation.
fac n = fac’ 1 1 n
fac’ a i n = if i > n then a else fac’ (a*i) i+1 n

Replace arguments a and i by a pair:

fac n = fac’ (pair 1 1) n
fac’ p n = if p.2 > n then p.1 else fac’ (pair (p.2 * p.1) (p.2 + 1)) n

Now define functions:
m p = * (p second) (p first) = mul (p second) (p first)

i2 p = + 1 (p second) = succ (p second)

Abstract the functions into combinators:
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)

Using the combinators:

fac n = fac’ (pair 1 1) n
fac’ p n = if p.2 > n then p.1 else fac’ (pair (m p) (i2 p)) n

Now use the recursion built into the natural numbers:
fac n = (n fac’ (pair one one)) first

fac’ p = pair (m p) (i2 p)

Abstracting into combinators:
fac = c2 (c2 (c2 I fac’) (pair one one)) first
fac’ = S (c1 pair m) i2

Alex Aiken CS 242 Lecture 2

From The Ground Up!

• 14 combinator definitions

• Including
• Abstraction helpers
• Control structures
• Pairs
• Natural numbers
• Addition
• Multiplication

Alex Aiken CS 242 Lecture 2

abstraction operators
c1 = S (S (K K) (S (K S) (S (K K) I))) (K (S (S (K S) (S (K K) I)) (K I)))
c2 = S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I)))))) (K (c1 K I))
pairs
first = K
second = S K
pair = c2 (c1 c1 (c1 c2 (c1 (c2 I) I))) I
natural numbers
0 = S K
succ = S (S (K S) K)
one = succ 0
add = c2 (c1 c1 (c2 I succ)) I;
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0;
factorial and auxiliary functions
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)
fac’ = S (c1 pair m) i2
fac = c2 (c2 (c2 I fac’) (pair one one)) first

Next Time …

• Confluence: A non-trivial property of the SKI calculus

• A brief survey of combinator languages

Alex Aiken CS 242 Lecture 2

