Combinators |

CS242

Lecture 3

Review

* Function application written as space/juxtaposition

fx

* Programs as trees /\

SKI Calculus

| X 2 X ldentity function
Kxy—> X Constant functions

Sxyz—=>(xz)(yz) Generalized function application

Alex Aiken CS 242 Lecture 3

Writing Combinators: A Systematic Approach

* Finding a combinator that implements a given function is not trivial

* Some have nice intuitive definitions (e.g., Booleans)
e Others are completely non-obvious (e.g., swap)

* There is a systematic way to write combinators
 Start with a function equation using variables that specifies what we want
SWap Xy =y X
* An abstraction algorithm A(...) maps the right-hand side to a combinator

* The key is to eliminate the variables by replacing them with uses of the
combinators S, K, and |

Writing Combinators: A Systematic Approach

e Consider a function equation of one variable: f x = E
* The equation can use combinators and variables
* |f we apply function f to argument x, the result is E

 We want a combinator A(E,x) that implements f
e Therefore A(E,x) x =E
* And A(E,x) doesn’t use x
* We say we abstract E with respect to x

 A(x,x) =1
* A(E,x) =KE if xdoes notappearinE
« A(E1E2,x) =S A(EL,x) A(E2,X)

* Note A(...) is not a combinator
* jtis a (recursively defined) mapping from expressions with variables to combinators

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...
* A(x,x) = |

e Consider the equation f x = x
e Requires A(x,x) x = x
* And A(x,x) does not use x

* What combinator satisfies these two conditions? |!

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...
 A(E,x) =KE

* Consider the equation f x =E
* Where E does not use x
e Again requires A(E,x) x =E
* And A(E,x) does not use x

* Note that K E does not use x
e Calculate: KEx—> E

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...

 A(E1 E2,x) =S A(E1,x) A(E2,x)

* Consider the equation f x = (E1 E2) x
 Requires A(E1 E2,x) x=E1E2
 And A(E1 E2,x) does not use x

* Notice that S A(E1,x) A(E2,x) does not use x

 Calculate:
S A(E1,x) A(E2,x) x = (A(E1,x) x) (A(E2,x) x) = E1 (A(E2,x) x) > E1 E2

Alex Aiken CS 242 Lecture 2

From The Ground Up!

* 14 combinator definitions # abstraction operators
c1=5 (5 (KK) (5 (K'S) (S (KK) D)) (K (S (S (K'S) (S (K K) 1)) (KI))

€2=S((c1S(c1K(c1S(S(clcal)(K))))) (K(c1Kl))

pairs
. first =K
¢ InCIUd|ng second =SK
. pair=c2 (clcl(clc2(cl(c21)I))!I
e Abstraction helpers # natural numbers
0=SK
* Control structures succ =5 (S (K S)K)
. one =succO
* PalrS add =c2 (c1 cl (c2 I succ)) I;
mul=c2 (clc2(c2(clcll)(claddl)))O;
’ Natu ral num bers # factorial and auxiliary functions
° AddItIOn m =S (c1 mul (c2 | first)) (c2 | second);
i2 = cl succ (c2 | second)
* Multiplication fac’ =S (c1 pair m) i2

fac = (c2 (c2 | fac’) (pair one one)) first

Alex Aiken CS 242 Lecture 2

Reduction Order & Confluence

Consider ...

SIIx—=>(Ix)(Ix)=>x(Ix) > xx

QAN A=A

I X | X \
Choice here! l
X
Alex Aiken CS242 Lecture 3

| X

Order of Evaluation

* In a large expression, many rewrite rules may apply

* Which one should we choose?

Order of Evaluation

* A process for choosing where to apply the rules is a reduction
strateqgy
* Each rule application is one reduction

* Most languages have a fixed reduction/evaluation order

* So people forget that there might be more than one choice
* But concurrent/parallel languages do provide multiple choices

Order of Evaluation

What is a good reduction strategy?

A Standard Choice

* Normal order

* Traverse the leftmost spine of the expression tree from the root to the leaf
combinator

* If a rewrite rule applies, apply it, and repeat
* Otherwise halt

Example

SKxy > (Ky)(xy) >y

"%&"y
K x vy y X Yy

Alex Aiken CS 242 Lecture 3

Example

SSxy—>(Sy)(xy)

No rule applies because S
doesn’t have enough
arguments, so we stop
here.

Alex Aiken CS 242 Lecture 3

Example

SS(Kx)y—=>(Sy) (Kxy)

‘ In normal order, we don’t
/ rewrite here!

Why? In general, rewriting
anywhere other than
S Yy Y Y along the left spine may
do unnecessary work or
K K X

X even fail to terminate.
Alex Aiken CS 242 Lecture 3

And Another Example

Doing any reductions other than normal order may waste
computation or loop forever (if we never rewrite the top-level
function application).

=

Alex Aiken CS 242 Lecture 3

Summary: Normal Order

* |If any reduction order terminates, normal order will terminate

* Also called lazy evaluation
* Only evaluate what is absolutely necessary to get an answer (if one exists)
* In practice call-by-value is more popular
* But more on that in a later lecture ...

* One of the arguments for using combinator languages is parallelism
e Doing more than one reduction at a time
* So not normal order ...
* Could anything, besides non-termination, go wrong?

Confluence

* Could different choices of evaluation order change the (terminating)
result of the program?

* The answer is no!

* A set of rewrite rules is confluent if for any expression E,, if E, > E,
and £, > E,, then there exists F; such that £, > F;and £, > E5

Alex Aiken CS 242 Lecture 3

Confluence

* In general, proving confluence of a rewrite rule set can be very
difficult

* We will look at one proof technique that turns out to be useful in
many situations

Proving Confluence

Definition:

If forall A, A—> B& A — Cimplies there exists a D such that B - D and
C — D, then - has the one step diamond property.

Thm: If - has the one step diamond property, then — is confluent.

Proof: Assume A > X & A =>"Y. The proof is by induction on the
length of the derivations.

Alex Aiken CS 242 Lecture 3

Diagram

Confluence of SKi

* So to show that SKI is confluent, it suffices to show it has the one step
diamond property

* Note: The one step diamond property is sufficient, but not necessary,
to prove confluence. But it is a very common proof method for
showing the confluence of rewrite systems.

Confluence of SKI: Case | x

Case Kxy

(1 of 2)

Case Kxy

(2 of 2)

X

CaseSxvyz (1of3)
e
/SN SN
y d

CaseSxyz

(2 of 3)

CaseSxyz

(3 of 3)

A New Relation

— doesn’t have the one step diamond property!
* Because S copies its third argument

But all is not lost!

* If we can find another rewrite relation that is equivalent to - and has the one step diamond
property, then that will show that — is confluent

Define X >> Y if

e X =Y via arewrite at the root node
e X=AB,Y=A"B andA>>A"and B >> B’

Easy to see that A >>"Biff A >"B

Thm: >> has the one step diamond property.

Alex Aiken CS 242 Lecture 3

First, What Does >> Do?

* Allows multiple rewrites as long as they are in independent subtrees

/<<\ S22 2WaN
Y el
S X X Z'y Z
/<< C = /<<\ ZI
y — yl

What Does >> Not Do?

* Multiple rewrites must be in independent subtrees

AL <

’

S X X Z; yl Z)

Alex Aiken CS 242 Lecture 3

Case | x

Case K x vy (Boring Case)

Case K x v (Interesting Case)

Case S x vy z (Interesting Case Only ...)

Discussion

* Combinator calculus has the advantage of having no variables
 Compositional!

* All computations are local rewrite rules
 Compute by pattern matching on the shape and contents of a tree
* All operations are local and there are few cases
* No need to worry about variables, scope, renaming ...

* Many proofs of properties are easier in combinator systems
* E.g., confluence

Discussion
* Combinator calculus has the disadvantage of having no variables

e Consider the S combinator again: Sxyz—> (xz)(yz)

* Note how z is 'passed” to both x and y before the final application

* |n a combinator calculus, this is the only way to pass information

* In a language with variables, we would simply stash z in a variable and use it in x and
y as needed

* In a combinator-based language, z must be explicitly passed down to all parts of the
subtree that need it

Discussion

* Thus, what can be done in one step with a variable requires many
steps (in general) in a pure combinator system

* Why does this matter?

e SKI calculus is not a direct match to the way we build machines
* Our machines have memory locations and can store things in them
* Languages with variables take advantage of this fact

Discussion

* Another advantage of combinators is working at the function level
* Avoid reasoning about individual data accesses

* A natural fit for parallel and distributed bulk operations on data
* Map a function over all elements of a dataset

Reduce a dataset to a single value using an associative operator

Transpose a matrix

Convolve an image

* Note that in parallel/distributed operations, variables can be a problem ...

Summing Up: SKI and Beyond

History

 SKI calculus was developed by Schoenfinkel in the 1920’s
* One of Hilbert’s students

* Rediscovered by Haskell Curry in the 1930’s

* The properties of SKI were known before any computers were built ...

Alex Aiken CS 242 Lecture 3

History

First combinator-based programming language was APL
* Designed by Ken Iverson in the 1960’s

Designed for expressing pipelines of operations on bulk data
* Array programming
* Basic data type is the multidimensional array

Trivia: Special APL keyboards accommodated the many 1 character combinators
* APL programs tend to be extremely concise

Highly influential .
e On functional programming (several languages) { (+7Lw) 75-'"(1)}

* And array programming (Matlab, R, NumPy)

Alex Aiken CS 242 Lecture 3

Summary

* Combinator calculi are among the simplest formal computation systems

 Also important in practice for array/collection programming
 Where thinking in terms of bulk operations with built-in iteration is useful

* Not used as a model for sequential computation
* Where we often want to take advantage of temporary storage/variables

* Combinators are also important in program transformations
* Much easier to design combinator-based transformation systems

* Some compilers (Haskell’s GHC) even translate into an intermediate combinator-
based form for some optimizations

Next Time

* Another primitive calculus

* The lambda calculus
* The basis of functional programming languages
* And much of modern type systems

	Slide 1: Combinators II
	Slide 2: Review
	Slide 3: SKI Calculus
	Slide 4: Writing Combinators: A Systematic Approach
	Slide 5: Writing Combinators: A Systematic Approach
	Slide 6: Working Through Each Case …
	Slide 7: Working Through Each Case …
	Slide 8: Working Through Each Case …
	Slide 9: From The Ground Up!
	Slide 10: Reduction Order & Confluence
	Slide 11: Consider …
	Slide 12: Order of Evaluation
	Slide 13: Order of Evaluation
	Slide 14: Order of Evaluation
	Slide 15: A Standard Choice
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: And Another Example
	Slide 20: Summary: Normal Order
	Slide 21: Confluence
	Slide 22: Confluence
	Slide 23: Proving Confluence
	Slide 24: Diagram
	Slide 25: Confluence of SKI
	Slide 26: Confluence of SKI: Case I x
	Slide 27: Case K x y (1 of 2)
	Slide 28: Case K x y (2 of 2)
	Slide 29: Case S x y z (1 of 3)
	Slide 30: Case S x y z (2 of 3)
	Slide 31: Case S x y z (3 of 3)
	Slide 32: A New Relation
	Slide 33: First, What Does >> Do?
	Slide 34: What Does >> Not Do?
	Slide 35: Case I x
	Slide 36: Case K x y (Boring Case)
	Slide 37: Case K x y (Interesting Case)
	Slide 38: Case S x y z (Interesting Case Only …)
	Slide 39: Discussion
	Slide 40: Discussion
	Slide 41: Discussion
	Slide 42: Discussion
	Slide 43: Summing Up: SKI and Beyond
	Slide 44: History
	Slide 45: History
	Slide 46: Summary
	Slide 47: Next Time

