
Combinators II

CS242

Lecture 3

Alex Aiken CS 242 Lecture 3

Review

• Function application written as space/juxtaposition

f x

• Programs as trees

Alex Aiken CS 242 Lecture 3

xf

SKI Calculus

I x → x

K x y → x

S x y z → (x z) (y z)

Identity function

Constant functions

Generalized function application

Alex Aiken CS 242 Lecture 3

Writing Combinators: A Systematic Approach

• Finding a combinator that implements a given function is not trivial
• Some have nice intuitive definitions (e.g., Booleans)

• Others are completely non-obvious (e.g., swap)

• There is a systematic way to write combinators
• Start with a function equation using variables that specifies what we want

swap x y = y x

• An abstraction algorithm A(…) maps the right-hand side to a combinator

• The key is to eliminate the variables by replacing them with uses of the
combinators S, K, and I

Alex Aiken CS 242 Lecture 2

Writing Combinators: A Systematic Approach

• Consider a function equation of one variable: f x = E
• The equation can use combinators and variables
• If we apply function f to argument x, the result is E

• We want a combinator A(E,x) that implements f
• Therefore A(E,x) x = E
• And A(E,x) doesn’t use x
• We say we abstract E with respect to x

• A(x,x) = I

• A(E,x) = K E if x does not appear in E

• A(E1 E2,x) = S A(E1,x) A(E2,x)

• Note A(…) is not a combinator
• it is a (recursively defined) mapping from expressions with variables to combinators

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(x,x) = I

• Consider the equation f x = x
• Requires A(x,x) x = x

• And A(x,x) does not use x

• What combinator satisfies these two conditions? I!

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E,x) = K E

• Consider the equation f x = E
• Where E does not use x

• Again requires A(E,x) x = E

• And A(E,x) does not use x

• Note that K E does not use x

• Calculate: K E x → E

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E1 E2,x) = S A(E1,x) A(E2,x)

• Consider the equation f x = (E1 E2) x
• Requires A(E1 E2,x) x = E1 E2

• And A(E1 E2,x) does not use x

• Notice that S A(E1,x) A(E2,x) does not use x

• Calculate:
S A(E1,x) A(E2,x) x → (A(E1,x) x) (A(E2,x) x) → E1 (A(E2,x) x) → E1 E2

Alex Aiken CS 242 Lecture 2

From The Ground Up!

• 14 combinator definitions

• Including
• Abstraction helpers

• Control structures

• Pairs

• Natural numbers

• Addition

• Multiplication

Alex Aiken CS 242 Lecture 2

abstraction operators
c1 = S (S (K K) (S (K S) (S (K K) I))) (K (S (S (K S) (S (K K) I)) (K I)))
c2 = S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I)))))) (K (c1 K I))
pairs
first = K
second = S K
pair = c2 (c1 c1 (c1 c2 (c1 (c2 I) I))) I
natural numbers
0 = S K
succ = S (S (K S) K)
one = succ 0
add = c2 (c1 c1 (c2 I succ)) I;
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0;
factorial and auxiliary functions
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)
fac’ = S (c1 pair m) i2
fac = (c2 (c2 I fac’) (pair one one)) first

Reduction Order & Confluence

Alex Aiken CS 242 Lecture 3

Consider …

S I I x →(I x) (I x) → x (I x) → x x

Alex Aiken CS 242 Lecture 3

S I I x

I x I x
xx

x

I x

Choice here!

I x

x

Order of Evaluation

• In a large expression, many rewrite rules may apply

• Which one should we choose?

Alex Aiken CS 242 Lecture 3

Order of Evaluation

• A process for choosing where to apply the rules is a reduction
strategy
• Each rule application is one reduction

• Most languages have a fixed reduction/evaluation order
• So people forget that there might be more than one choice

• But concurrent/parallel languages do provide multiple choices

Alex Aiken CS 242 Lecture 3

Order of Evaluation

 What is a good reduction strategy?

Alex Aiken CS 242 Lecture 3

A Standard Choice

• Normal order
• Traverse the leftmost spine of the expression tree from the root to the leaf

combinator

• If a rewrite rule applies, apply it, and repeat

• Otherwise halt

Alex Aiken CS 242 Lecture 3

Example

S K x y → (K y) (x y) → y

Alex Aiken CS 242 Lecture 3

S K x y K y x y

y

Example

S S x y → (S y) (x y)

Alex Aiken CS 242 Lecture 3

S S x y S y x y

No rule applies because S
doesn’t have enough
arguments, so we stop
here.

Example

S S (K x) y → (S y) (K x y)

Alex Aiken CS 242 Lecture 3

S S y S y y

xK xK

In normal order, we don’t
rewrite here!

Why? In general, rewriting
anywhere other than
along the left spine may
do unnecessary work or
even fail to terminate.

And Another Example

Alex Aiken CS 242 Lecture 3

S I I S I I

IK

I

Doing any reductions other than normal order may waste
computation or loop forever (if we never rewrite the top-level
function application).

Summary: Normal Order

• If any reduction order terminates, normal order will terminate

• Also called lazy evaluation
• Only evaluate what is absolutely necessary to get an answer (if one exists)
• In practice call-by-value is more popular
• But more on that in a later lecture …

• One of the arguments for using combinator languages is parallelism
• Doing more than one reduction at a time
• So not normal order …
• Could anything, besides non-termination, go wrong?

Alex Aiken CS 242 Lecture 3

Confluence

• Could different choices of evaluation order change the (terminating)
result of the program?

• The answer is no!

• A set of rewrite rules is confluent if for any expression E0, if E0 →* E1

and E0 →* E2, then there exists E3 such that E1 →* E3 and E2 →* E3.

Alex Aiken CS 242 Lecture 3

Confluence

• In general, proving confluence of a rewrite rule set can be very
difficult

• We will look at one proof technique that turns out to be useful in
many situations

Alex Aiken CS 242 Lecture 3

Proving Confluence

Definition:

If for all A, A → B & A → C implies there exists a D such that B → D and
C → D, then → has the one step diamond property.

Thm: If → has the one step diamond property, then → is confluent.

Proof: Assume A →* X & A →* Y. The proof is by induction on the
length of the derivations.

Alex Aiken CS 242 Lecture 3

Diagram

Alex Aiken CS 242 Lecture 3

A

B
C

Confluence of SKI

• So to show that SKI is confluent, it suffices to show it has the one step
diamond property

• Note: The one step diamond property is sufficient, but not necessary,
to prove confluence. But it is a very common proof method for
showing the confluence of rewrite systems.

Alex Aiken CS 242 Lecture 3

Confluence of SKI: Case I x

Alex Aiken CS 242 Lecture 3

I x

I x’
x

x’

Case K x y (1 of 2)

Alex Aiken CS 242 Lecture 3

K x

x

x’

y

K x’

y

Case K x y (2 of 2)

Alex Aiken CS 242 Lecture 3

K x

x

y

K x

y’

Case S x y z (1 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y

z

x y zz

x’ y zz

Case S x y z (2 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x
y’

z

x y zz

x y’ zz

Case S x y z (3 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x
y

z’

x y zz

x y z’z’

?

A New Relation

• → doesn’t have the one step diamond property!
• Because S copies its third argument

• But all is not lost!
• If we can find another rewrite relation that is equivalent to → and has the one step diamond

property, then that will show that → is confluent

• Define X >> Y if
• X → Y via a rewrite at the root node
• X = A B, Y = A’ B’ and A >> A’ and B >> B’

• Easy to see that A >>* B iff A →* B

• Thm: >> has the one step diamond property.

Alex Aiken CS 242 Lecture 3

First, What Does >> Do?

• Allows multiple rewrites as long as they are in independent subtrees

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y’

z’

x y zz

>>

>>

S x
y

z

What Does >> Not Do?

• Multiple rewrites must be in independent subtrees

Alex Aiken CS 242 Lecture 3

S x
y

z

x’ y’ z’z’

>>

Case I x

Alex Aiken CS 242 Lecture 3

I x

I x’
x

x’

>>

>>>>

>>

Case K x y (Boring Case)

Alex Aiken CS 242 Lecture 3

K x

y

K x’

y

>>

>> >>

>>

K x

y’

K x’

y’

Case K x y (Interesting Case)

Alex Aiken CS 242 Lecture 3

K x

x

x’

y

K x’

y’

>>

>> >>

>>

Case S x y z (Interesting Case Only …)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y’

z’

x y zz

x’ y’ z’z’

>>

>>

>>

>>

Discussion

• Combinator calculus has the advantage of having no variables
• Compositional!

• All computations are local rewrite rules
• Compute by pattern matching on the shape and contents of a tree
• All operations are local and there are few cases
• No need to worry about variables, scope, renaming ...

• Many proofs of properties are easier in combinator systems
• E.g., confluence

Alex Aiken CS 242 Lecture 3

Discussion

• Combinator calculus has the disadvantage of having no variables

• Consider the S combinator again: S x y z → (x z) (y z)

• Note how z is ``passed’’ to both x and y before the final application

• In a combinator calculus, this is the only way to pass information
• In a language with variables, we would simply stash z in a variable and use it in x and

y as needed
• In a combinator-based language, z must be explicitly passed down to all parts of the

subtree that need it

Alex Aiken CS 242 Lecture 3

Discussion

• Thus, what can be done in one step with a variable requires many
steps (in general) in a pure combinator system

• Why does this matter?
• SKI calculus is not a direct match to the way we build machines

• Our machines have memory locations and can store things in them

• Languages with variables take advantage of this fact

Alex Aiken CS 242 Lecture 3

Discussion

• Another advantage of combinators is working at the function level
• Avoid reasoning about individual data accesses

• A natural fit for parallel and distributed bulk operations on data
• Map a function over all elements of a dataset

• Reduce a dataset to a single value using an associative operator

• Transpose a matrix

• Convolve an image

• ...

• Note that in parallel/distributed operations, variables can be a problem ...

Alex Aiken CS 242 Lecture 3

Summing Up: SKI and Beyond

Alex Aiken CS 242 Lecture 3

History

• SKI calculus was developed by Schoenfinkel in the 1920’s
• One of Hilbert’s students

• Rediscovered by Haskell Curry in the 1930’s

• The properties of SKI were known before any computers were built ...

Alex Aiken CS 242 Lecture 3

History

• First combinator-based programming language was APL
• Designed by Ken Iverson in the 1960’s

• Designed for expressing pipelines of operations on bulk data
• Array programming
• Basic data type is the multidimensional array

• Trivia: Special APL keyboards accommodated the many 1 character combinators
• APL programs tend to be extremely concise

• Highly influential
• On functional programming (several languages)
• And array programming (Matlab, R, NumPy)

Alex Aiken CS 242 Lecture 3

Summary

• Combinator calculi are among the simplest formal computation systems

• Also important in practice for array/collection programming
• Where thinking in terms of bulk operations with built-in iteration is useful

• Not used as a model for sequential computation
• Where we often want to take advantage of temporary storage/variables

• Combinators are also important in program transformations
• Much easier to design combinator-based transformation systems
• Some compilers (Haskell’s GHC) even translate into an intermediate combinator-

based form for some optimizations

Alex Aiken CS 242 Lecture 3

Next Time

• Another primitive calculus

• The lambda calculus
• The basis of functional programming languages

• And much of modern type systems

Alex Aiken CS 242 Lecture 3

	Slide 1: Combinators II
	Slide 2: Review
	Slide 3: SKI Calculus
	Slide 4: Writing Combinators: A Systematic Approach
	Slide 5: Writing Combinators: A Systematic Approach
	Slide 6: Working Through Each Case …
	Slide 7: Working Through Each Case …
	Slide 8: Working Through Each Case …
	Slide 9: From The Ground Up!
	Slide 10: Reduction Order & Confluence
	Slide 11: Consider …
	Slide 12: Order of Evaluation
	Slide 13: Order of Evaluation
	Slide 14: Order of Evaluation
	Slide 15: A Standard Choice
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: And Another Example
	Slide 20: Summary: Normal Order
	Slide 21: Confluence
	Slide 22: Confluence
	Slide 23: Proving Confluence
	Slide 24: Diagram
	Slide 25: Confluence of SKI
	Slide 26: Confluence of SKI: Case I x
	Slide 27: Case K x y (1 of 2)
	Slide 28: Case K x y (2 of 2)
	Slide 29: Case S x y z (1 of 3)
	Slide 30: Case S x y z (2 of 3)
	Slide 31: Case S x y z (3 of 3)
	Slide 32: A New Relation
	Slide 33: First, What Does >> Do?
	Slide 34: What Does >> Not Do?
	Slide 35: Case I x
	Slide 36: Case K x y (Boring Case)
	Slide 37: Case K x y (Interesting Case)
	Slide 38: Case S x y z (Interesting Case Only …)
	Slide 39: Discussion
	Slide 40: Discussion
	Slide 41: Discussion
	Slide 42: Discussion
	Slide 43: Summing Up: SKI and Beyond
	Slide 44: History
	Slide 45: History
	Slide 46: Summary
	Slide 47: Next Time

