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Review

• Reduction order
• Where should the next reduction be performed?

• Normal order: always choose the leftmost, outermost reduction

• Confluence
• If a computation terminates, the result is always the same regardless of the 

evaluation order used

• Primitive recursion/array programming
• Use whole datatype operations for concise, loop-free programs
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History

• The lambda calculus was one of several computational systems 
defined by mathematicians to probe the foundations of logic
• Others: combinator calculus, Turing machines

• Lambda calculus was introduced by Alonzo Church in the 1930’s
• Originally used to establish the existence of an undecidable problem

Alex Aiken      CS 242     Lecture 4



A Language of Functions

• Like SKI calculus, lambda calculus focuses exclusively on functions

• Unlike SKI, lambda calculus has a notion of variable

e → x  |  λx.e |  e e | (e)

In words, a lambda expression is a 

 variable x,

 an abstraction (a function definition) λx.e, or

 an application (a function call) e1 e2
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Intuition

A function λx.e is a function definition just like

  def f(x) = e

Two differences

  λx.e is an anonymous function – it doesn’t have a name like “f”

  λx.e is a value – it can be a function argument or result
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Association

Rule: The body of a lambda abstraction extends as far right as possible.

  to the end of the expression or an unmatched right paren

λx.x λy.y = λx.(x λy.y)

λx.(λy.λz.y z) x  is different from λx.λy.λz.y z x = λx.λy.λz.(y z x) 

Rule: Application associates to the left

So f x y z = ((f x) y) z
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Computation Rule

(λx.e1) e2  → e1 [x := e2]

In words:  In a function call, the formal parameter x is replaced by the 
actual argument e2 in the body of the function e1.

This is called beta reduction.

Alex Aiken      CS 242     Lecture 4



Examples

• The identity function I: λx.x

• The constant function K: λz.λy.z

(λx.x) (λz.λy.z) → x [x := λz.λy.z] = λz.λy.z

((λz.λy. z) (λx.x)) (λa.λb.a) → (λy. (λx.x)) (λa.λb.a) → λx.x
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Substitution

• Beta-reduction is the workhorse rule in the lambda calculus
• But it relies on substitution

x [x := e]  =  e

y [x := e]  = y 

(e1 e2) [x := e] = (e1 [x := e]) (e2 [x := e])

(λx.e1) [x := e] = λx.e1 

(λy.e1) [x := e] = λy.(e1 [x := e])  if x ≠ y and y does not appear free in e
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Huh?

Why do we need this complicated rule?

(λy.e1) [x := e] = λy.(e1 [x := e])  if x ≠ y and y does not appear free in e

Consider

(λy.x) [ x := y ]

We don’t want the answer to be λy.y!
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Free Variables

The free variables of an expression are the variables not bound in an 
abstraction.

FV(x) = { x }

FV(e1 e2) = FV(e1) ∪ FV(e2) 

FV(λx.e) = FV(e) – { x }

Alex Aiken      CS 242     Lecture 4



Substitution Revisited

x [x := e]  =  e

y [x := e]  = y 

(e1 e2) [x := e] = (e1 [x := e]) (e2 [x := e])

(λx.e1) [x := e] = λx.e1 

(λy.e1) [x := e] = λy.(e1 [x := e])  if x ≠ y and y ∉ FV(e)
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But Substitution Should Always Work ...

• Intuitively, the bound variable name in an abstraction doesn’t matter
• λx.x is as good as λy.y

• We can rename bound variables to avoid name collisions:

(λy.e1) [x := e] = λz.((e1[y := z]) [x := e])  if x ≠ y and z is a fresh name

(fresh means not occurring in e1 or e)
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Revisiting Our Substitution Example ...

(λy.x) [ x := y ]   =

(λz.x) [ x := y ] =

(λz.y)

Alex Aiken      CS 242     Lecture 4



Rules Again

• Renaming of bound variables is called alpha conversion

• Presentations of lambda calculus often include alpha conversion as a 
separate rule

• A third rule, eta-conversion, is also part of the lambda calculus but is 
not needed for computation:

e = λx.e x     x ∉FV(e)
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Summary

Lambda calculus has three rules:

• Beta reduction     (λx.e1) e2  → e1 [x := e2]

• Alpha conversion λx.e = λz.e [ x := z]    where z is fresh

• Eta conversion      λx.e x = e   x ∉FV(e)

Lambda calculus is often presented emphasizing only beta reduction, with 
alpha conversion assumed to be done where needed to avoid capture of free 
variables (“capture-avoiding renaming”).  Eta conversion is used mostly in 
proofs of logical properties, not in direct computation.
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Summary

• Lambda calculus is a language of higher-order functions

• Looks more familiar than SKI
• At least it has variables for function arguments!

• But there is a cost
• Defining how an expression is substituted for a variable is a little tricky

• Need to be careful not to inadvertently cause clashes of different variables 
with the same name

• Requires renaming variables in general
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Example

(λx. x x) (λx. x x) →  x x [x := λx. x x] = (λx. x x) (λx. x x) 

• An example of a non-terminating expression
• Reduces to itself in one step, so can always be reduced
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Recursion

As with SKI, producing true recursion is just slightly more involved:

Y = λf.(λx. f (x x)) (λx. f(x x))

Y g a = (λf.(λx. f (x x)) (λx. f(x x))) g a →

(λx. g (x x)) (λx. g(x x)) a →

g((λx. g(x x)) (λx. g(x x))) a →

g(g((λx. g(x x)) (λx. g(x x)))) a →

...
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Booleans

• As with SKI, represent true (false) by a function that given two arguments 
picks the first (second)

• True = K = λx.λy.x

• False = λx.λy.y

• Example   (λx.λy.y) w z → (λy.y)  z → z 
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Equations and Functions

• We could also start with equations for True and False

             True x y = x

             False x y = y

• Now we need to convert these to lambda terms
• Much like the abstraction algorithm we used for SKI

• But this procedure is easy in lambda calculus:
• Each variable on the left side becomes a lambda abstraction on the right side
• In the same order

• True = λx.λy.x

• False  = λx.λy.y  
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Boolean Operations

• Note that our definitions of True and False are combinators
• They have no free variables

• So we can just reuse the SKI encoding of the Boolean operations

• Let B be a Boolean

• not(B) = B False True

• B1 or B2 = B1 True B2

• B1 and B2 = B1 B2 False
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Pairs

pair x y z = z x y

fst x y = x

snd x y = y

pair = λx.λy.λz. z x y

fst = λx.λy.x

snd = λx.λy.y

pair True False first =

(λx.λy.λz. z x y) (λx.λy.x) (λx.λy.y) (λx.λy.x)

(λy.λz. z (λx.λy.x)  y) (λx.λy.y) (λx.λy.x)

(λz. z (λx.λy.x) (λx.λy.y)) (λx.λy.x)

(λx.λy.x) (λx.λy.x) (λx.λy.y)

(λy.λx.λy.x) (λx.λy.y)

λx.λy.x =

True
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Natural Numbers

• n applies its first argument n times to its second argument

n f x = fn(x)

0 f x = x           so 0 = λf.λx.x

succ n f x = f (n f x)          succ = λn.λf.λx. f (n f x)
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Factorial

one = succ 0
add = λm.λn. m succ n
mul = λm.λn. m (add n) 0

pair = λa.λb.λf. f a b
fst = λx.λy.x 
snd = λx.λy.y

p = λp. pair (mul (p fst) (p snd)) (succ (p snd))
! = λn.(n p (pair one one) fst)
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And The Rest: Some Lambda Calculus Topics

• The lambda calculus is extremely well-studied
• More studied than combinator systems

• We’ll touch on a few highlights:
• Algebraic data types 

• General vs. primitive recursion

• Confluence

• Call-by-name vs. call-by-value

• Implementing lambda calculus using SKI
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Algebraic Data Types

• An algebraic data type is a data type that is a union of multiple cases
• Each case is a function called a constructor with a fixed number of arguments
• Algebraic data types can be recursively defined

• Schematically:

Type T=

         constructor1 Type11 Type12 … Type1n |

         constructor2 Type21 Type22 … Type2m |

 … more constructors …

Comments:

 The type arguments can be Bool, Int, Char, T itself or other ADTs

 The data type is “algebraic” because the constructor simply packages up the arguments

  The constructor functions as a “tag” naming which case of the ADT is being used

 A corresponding deconstructor recovers the constructor arguments for computing on the ADT
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Natural Numbers, Reprise

• The natural numbers are an example of an algebraic data type

Type Nat = succ Nat |

          0 

                    

• Two constructors
• succ of arity 1

• 0 of arity 0 (a constant with no arguments)
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Lists of Natural Numbers

Type List  = nil |

                    cons Nat List

• Two constructors
• nil of arity 0 (a constant with no arguments)

• cons of arity 2

Alex Aiken      CS 242     Lecture 4



Binary Trees of Natural Numbers

Type Tree  = leaf Nat  |

                      branch Tree Tree

• Two constructors
• leaf of arity 1 

• branch of arity 2
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Encoding Algebraic Types in Lambda Calculus

Consider an algebraic data type T with n constructors

Let the ith constructor Ci have k arguments

The constructor and destructor for Ci can be implemented by one term:

  

λa1. λa2. … λak. λf1. λf2. … λfn. fi a1 a2 … ak
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The first k arguments are the 
constructor part: We take k 
arguments to build an element of T. An element of the ith constructor applies the 

ith function to the constructor’s k arguments. 

 Not shown:  Arguments of type T are 
recursively passed the n functions (see 
examples)

The rest is an element of the ADT.  Every element of type T 
takes one function for each constructor of T.  



A Simple Example: Pairs of Natural Numbers

Type Pair = P Nat Nat

Implementation:

λa.λb.λf. f a b

• Two arguments to build an element of constructor P

• Only one constructor, so the destructor only takes one function, 
which it applies to the two arguments
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Natural Numbers, Reprise

Type Nat = succ Nat |

         0

                    

0 =  λf.λx.x

• 0 has no arguments – the “constructor” is a constant value

• Nat has two constructors, so the destructor always takes two 
functions, f for the succ case and x for the 0 case.  Since 0 has no 
arguments we just return x
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Natural Numbers, Reprise

Type Nat = succ Nat |

         0

                    

succ = λn.λf.λx. f (n f x)

• succ has one argument n

• The destructor takes two functions, f for succ and x for 0

•  Since natural numbers are recursively defined (n is of type Nat), we 
apply f to the result of recursively computing n f x
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Lists of Natural Numbers

Type List  = nil  | 

           cons Nat List

 

                    

cons = λh.λt.λx.λf. f h (t x f)

nil = λx.λf.x
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Summing a List of Natural Numbers

# natural numbers

0 = λf.λx.x

succ = λn.λf.λx. f (n f x)

# lists

nil = λx.λf.x

cons = λh.λt.λx.λf. f h (t x f)

1 = succ 0

add = λm.λn. m succ n

sum = λl.l 0 add

test = sum (cons 1 (cons 0 (cons 0 nil)))
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Intuition: How Does Recursion on ADTs Work?
sum = λl.l 0 add

test = sum (cons 1 (cons 0 (cons 0 nil)))

So test = (λl.l 0 add) (cons 1 (cons 0 (cons 0 nil))) 

Intuition: Replace the constructors with corresponding functions and evaluate the result!
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Primitive Recursion

• Primitive recursion is the difference between
• for I = 1 to 10 do …
• while (predicate(x)) do … something that modifies x ….

• In the first case the number of iterations is fixed when the loop starts
• Termination is guaranteed!

• Many data structures lend themselves naturally to primitive recursion
• Do something with every element of an array
• Traverse a list
• Iterate from 1 to n or n to 1
• This pattern is captured in a general way in our definition of algebraic data types

• In general recursion, the decision of whether to loop depends on data computed within the loop
• Sometimes general recursion is necessary – not everything can be written using primitive recursion
• But general recursion is more complex – you need a separate termination argument to understand why your loop will 

eventually stop
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Confluence

• The lambda calculus is confluent
• The Church-Rosser theorem

• If e0 →* e1 and e0 →* e2, then there is an e3 s.t. e1 →* e3 and e2 →* e3

• Where we consider terms equivalent up to alpha conversion

• The proof is similar to the SKI proof
• But not as short …
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Reduction Order

Given a redex (λx.e) e’ should we:

• Evaluate e’ before performing the beta reduction?             call-by-value

• Perform the beta reduction first?    call-by-name

• Normal order (or lazy evaluation, or call-by-name) is the same as in SKI
• Always reduce the leftmost, outermost redex

• In call-by-value (or eager evaluation), we first recursively evaluate the 
argument before reducing the function application 
• The strategy used in C, C++, python, Java – probably every language you have used
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Does The Reduction Order Matter?

• Answer 1: It mostly doesn’t matter, because of confluence

• Answer 2: For efficiency, call-by-value is better
• Evaluate arguments one time

• Answer 3: For termination, call-by-name is better
• Call-by-name is guaranteed to terminate, if termination is possible
• Call-by-value may fail to terminate even if call-by-name terminates
• Does not contradict confluence, which says there is some reduction sequence to 

reach a common term, not that a particular reduction strategy will reach it
• Recall that primitive recursion trivially guarantees termination
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Implementation

• There are many ways to implement lambda calculus
• One method is to translate lambda terms to SKI combinators

• Recall the abstraction algorithm: A(E,x) x = E

• Observe that λx.e = A(E,x)
• And A(E,x) is an SKI expression if e contains no lambda abstractions

• Consider a lambda expression e
• Repeat until there are no lambda abstractions remaining

• Replace an innermost lambda expression λx.e’ in e by A(e’,x)
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Equivalences

• The following are all equivalent in computational power
• SKI calculus

• Lambda calculus

• Turing machines

• Next time we will talk about typed lambda calculus, which is strictly 
less powerful.
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