Types

CS242 Lecture 5

Type Systems

- There is a split in the world of programming between
 - Typed languages
 - Untyped languages
- Leave the religious debate aside for now ...
 - We will come back to why there is a debate at all
- Today the focus is on the basics of typed languages

What is a Type?

• Consensus

• A set of values

• Examples

- Int is the set of all integers
- Float is the set of all floats
- Bool is the set {true, false}

More Examples

- List(Int) is the set of all lists of integers
 - List is a type constructor
 - A function from types to types
- Foo, in Java, is the set of all objects of class Foo
- Int \rightarrow Int is the set of functions mapping an integer to an integer
 - E.g., increment, decrement, and many others

What is a Type?

- Consensus
 - A set of values
- In typed languages
 - Every concrete value is an element of some type or types
 - Every legal program has a type
- Type systems have a well-developed notation
 - Useful for more than just type systems ...

Rules of Inference

• Inference rules have the form

If Hypothesis is true, then Conclusion is true

- Type checking computes via reasoning If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- Start with a simplified system and gradually add features
- Building blocks
 - Symbol ∧ is "and"
 - Symbol \Rightarrow is "if-then"
 - x:T is "x has type T"

From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

 $(e_1 \text{ has type Int} \land e_2 \text{ has type Int}) \implies e_1 + e_2 \text{ has type Int}$

 $(e_1: Int \land e_2: Int) \implies e_1 + e_2: Int$

From English to an Inference Rule (3)

The statement

(e₁: Int \land e₂: Int) \Rightarrow e₁ + e₂: Int

is a special case of

 $\mathsf{Hypothesis}_1 \land \ldots \land \mathsf{Hypothesis}_n \Rightarrow \mathsf{Conclusion}$

This is an inference rule.

Notation for Inference Rules

• By tradition inference rules are written

⊢Hypothesis₁ . . . ⊢ Hypothesis_n

⊢ Conclusion

• Type rules have hypotheses and conclusions

⊢ e : T

• ⊢ means "it is provable that . . ."

Two Rules

Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions
- Note that
 - Hypotheses prove facts about subexpressions
 - Conclusions prove facts about the entire expression

Example: 1 + 2

1 is an integer	2 is an integer
⊢ 1: Int	⊢ 2: Int

⊢ 1 + 2: Int

A Problem

• What is the type of a variable reference?

x is a variable [Var] ⊢ x: ?

• The rule does not carry enough information to give x a type.

A Solution

- Put more information in the rules!
- An *environment* gives types for free variables
 - An environment is a function from variables to types
 - Recall that a variable is free in an expression if it is not defined within the expression

Type Environments

Let A be a function from Variables to Types

The sentence $A \vdash e : T$ is read:

Under the assumption that variables have the types given by A, it is provable that the expression e has the type T

Modified Rules

The type environment is added to all rules:

New Rules

And we can write new rules:

$$\frac{A(x) = T}{A \vdash x: T}$$
 [Var]

Summary

Simply Typed Lambda Calculus

A Language of Typed Functions

Untyped lambda calculus:

 $e \rightarrow x ~|~ \lambda x.e ~|~ e ~e$

Simply typed lambda calculus:

 $e \rightarrow x \mid \lambda x: t.e \mid e e \mid i$ $t \rightarrow \alpha \mid t \rightarrow t \mid int$

Type Rules

Examples		
	x: α, y:β ⊢ x : α x: α ⊢ λy:β. x : β → α	
$x: \alpha \vdash x: \alpha$		
$\vdash \lambda x : \alpha . x : \alpha \rightarrow \alpha$	$\vdash \lambda x: \alpha. \lambda y: \beta. \ x: \alpha \rightarrow \beta \rightarrow \alpha$	
	x: α, y:β ⊢ x : α	
$z: \alpha \to \beta \to \alpha \vdash z: \alpha \to \beta \to \alpha$	$x: \alpha \vdash \lambda y: \beta. x: \beta \rightarrow \alpha$	
$\vdash \lambda z: \alpha \rightarrow \beta \rightarrow \alpha . z: (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow (\alpha \rightarrow \beta \rightarrow \alpha)$	$\vdash \lambda x: \alpha. \ \lambda y: \beta. \ x: \alpha \rightarrow \beta \rightarrow \alpha$	

 $\vdash (\lambda z: \alpha \rightarrow \beta \rightarrow \alpha . z) (\lambda x: \alpha . \lambda y: \beta. x: \alpha \rightarrow \beta \rightarrow \alpha): \alpha \rightarrow \beta \rightarrow \alpha$

Examples

	x:? ⊢ x: ?	x:? ⊢ x: ?
?	x:? ⊢ x x:	:?
		v · 2

 $x:? \vdash 1: int \quad x:? \vdash x: ?$

 $\vdash \lambda x$:?. 1 x : ?

 $\vdash \lambda x:?. x x: ?$

Discussion

These examples illustrate two common issues with type systems:

- Code duplication may be required to type programs
 - Each version of the identity used at a different type requires a separate function definition
 - Historical example: Pascal
- The programmer may be required to write in lots of types
 - At least variable declarations are required for type checking

Type Inference

Idea

- Instead of the programmer writing in the types, have an algorithm infer the needed types automatically.
- Obviously results in less typing and less cluttered code
- Less obviously, makes it easier to reuse code
- Type inference is becoming more common

Type Rules

A, x: $t \vdash x: t$

Discussion

- Introduce fresh type variables for the types of lambda-bound variables and the results of function applications
 - A type variable stands for some definite, but unknown type
- At function applications, an equation captures what must be true of the types for the program to type check
 - The expression in function position must have a function type
 - The function domain and the function argument must have the same type
- Two steps to constructing a valid typing (or showing none exists)
 - Solve the equations
 - Substitute the solution back into the type derivation to obtain a valid proof

Solving the Constraints

Apply the following rewrite rules until no new constraints can be added

S, $t = \alpha$ => S, $t = \alpha$, $\alpha = t$ [Symmetry] S, $\alpha = t_1$, $\alpha = t_2$ => S, $\alpha = t_1$, $\alpha = t_2$, $t_1 = t_2$ [Transitivity] S, $t_1 \rightarrow t_2 = t_3 \rightarrow t_4$ => S, $t_1 \rightarrow t_2 = t_3 \rightarrow t_4$, $t_1 = t_3$, $t_2 = t_4$ [Structure]

Solutions

When no new constraints can be added, the constraints are *saturated*

The idea behind saturation is that *all* equalities implied by the original constraints are present in the saturated constraints

• Provided we have enough constraint resolution rules

If all implications of the constraints are explicit, then it is easy to check whether the constraints have any solutions or not

Solutions (Cont.)

- Consider the equation $x \rightarrow y = int$
- This equation has no solutions
 - Function types are sets of functions. int is the set of integers.
- So if this equation appears in the saturated constraints, the program is ill-typed

A Second Case

- What about the equation $x = int \rightarrow x$?
- Such an equation has only infinite solutions
 - $x = int \rightarrow int \rightarrow int \rightarrow int \rightarrow ...$
- Infinite solutions do make sense! But most typed languages disallow them.
 - In particular, if an equation with infinite solutions is present in the saturated constraints, the program is ill-typed in the simply-typed lambda calculus

Infinite Solutions

- In this setting, infinite solutions occur when x = A \rightarrow B is an equation and x occurs in A or B
- Previous example: $x = int \rightarrow x$
- Also: $x = x \rightarrow int$
- But also
 - $x = int \rightarrow y$
 - $y = int \rightarrow x$
- To see this, back substitute the equation for y into the equation for x:
 - $x = int \rightarrow int \rightarrow x$

The Bottom Line

- Once we have saturated the constraints we must check
 - That no equation $x \rightarrow y = int$ is present
 - That the equations do not have infinite solutions
 - Otherwise the program is ill-typed
- If the program is well-typed, then we want to compute the types to substitute into the typing proof
- We can accomplish both goals with the *canonicalization* algorithm

Canonicalization

Given a saturated set of equations S and a type t, the canonicalization algorithm C(S,t) produces a canonical type for t that does not depend on S

C(S, int) = int C(S, t \rightarrow t') = C(S,t) \rightarrow C(S,t') C(S, α) = C(S, t) if α = t \in S and t is not a type variable C(S, α) = C(S, β) if α = $\beta \in$ S and $\alpha < \beta$ C(S, α) = α otherwise

Note: Choose an arbitrary, but fixed, order for the variables.

A Problem

```
Consider S = { x = int \rightarrow x }
```

```
C(S, x) =

C(S, int \rightarrow x) =

C(S, int) \rightarrow C(S,x) =

int \rightarrow C(S,x)
```

So C goes into an infinite loop ...

But this is exactly the situation we want to detect: There are infinite solutions exactly when C is called recursively on a type it is already canonicalizing!

Canonicalization Revised

Given a saturated set of equations S and a type t, the canonicalization algorithm C(O,S,t) produces a canonical type for t that does not depend on S

```
C(X, S, int) = int

C(X, S, t \rightarrow t') = C(X \cup {t \rightarrow t'}, S, t) \rightarrow C(X \cup {t \rightarrow t'}, S, t') if t \rightarrow t' \notin X

C(X, S, \alpha) = C(X \cup {\alpha}, S, t) if \alpha = t \in S, t is not a type variable, \alpha \notin X

C(X, S, \alpha) = C(X \cup {\alpha}, S, \beta) if \alpha = \beta \in S, \alpha < \beta, \alpha \notin X

C(X, S, \alpha) = \alpha otherwise
```

Putting It All Together

- Given a set of saturated constraints S
- For each equation $A = B \in S$, check
 - $A' = C(\bigcirc, S, A)$ is defined
 - $B' = C(\bigcirc, S, B)$ is defined
 - The equation A' = B' is not between a function type and int
- If these checks succeed for every equation in S, then the program is well-typed

Example Type Derivation

$z: \alpha \rightarrow$	$\beta \rightarrow$	$\alpha \vdash z$:	$\alpha \rightarrow$	$\beta \rightarrow \beta$	α
-------------------------	---------------------	---------------------	----------------------	---------------------------	---

 $\vdash \lambda z: \alpha \rightarrow \beta \rightarrow \alpha . z: (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow (\alpha \rightarrow \beta \rightarrow \alpha)$

 $x: \alpha \vdash \lambda y: \beta. \ x: \beta \rightarrow \alpha$ $\vdash \lambda x: \alpha. \ \lambda y: \beta. \ x: \alpha \rightarrow \beta \rightarrow \alpha$

x: α , y: $\beta \vdash$ x : α

 $\vdash (\lambda z: \alpha \rightarrow \beta \rightarrow \alpha . z) (\lambda x: \alpha . \lambda y: \beta. x: \alpha \rightarrow \beta \rightarrow \alpha): \alpha \rightarrow \beta \rightarrow \alpha$

Example: Constraint Generation

	x: α_x , y: $\alpha_y \vdash x : \alpha_x$		
$z: \alpha_z \vdash z: \alpha_z$	$x: \alpha_{x} \vdash \lambda y: \alpha_{y}. \ x: \alpha_{y} \rightarrow \alpha_{x}$		
$\vdash \lambda z: \alpha_z. z: \alpha_z \rightarrow \alpha_z$	$\vdash \lambda x: \alpha_x. \ \lambda y: \alpha_y. \ x: \alpha_x \rightarrow \alpha_y \rightarrow \alpha_x$		
$\alpha_{z} \rightarrow \alpha_{z} = (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow \beta$			

 \vdash (λz: α_z. z) (λx: α_x. λy: α_y. x : α_x) : β

Constraint Solving

 $\alpha_{z} \rightarrow \alpha_{z} = (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow \beta$ $\alpha_{z} = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\alpha_{z} = \beta$ $\beta = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\beta = \alpha_{z}$

Canonicalizing

 $\alpha_{z} \rightarrow \alpha_{z} = (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow \beta$ $\alpha_{z} = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\alpha_{z} = \beta$ $\beta = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\beta = \alpha_{z}$

Canonicalization succeeds on these equations.

Example

C(\`Q,S, β) =

 $C({\beta}, S, \alpha_x \rightarrow \alpha_y \rightarrow \alpha_x) =$

$$\begin{array}{l} \dots = \\ C(\{\beta, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{x}) \rightarrow \\ C(\{\beta, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}, \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{y}) \rightarrow \\ C(\{\beta, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}, \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{x}) = \end{array}$$

 $\alpha_x \rightarrow \alpha_y \rightarrow \alpha_x$

Canonicalizing, Cont.

 $\alpha_{z} \rightarrow \alpha_{z} = (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow \beta$ $\alpha_{z} = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\alpha_{z} = \beta$ $\beta = \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$ $\beta = \alpha_{z}$

Canonicalization succeeds on these equations.

 $C(\{\alpha_{z}\}, S, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) =$... = $C(\{\alpha_{z}, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{x}) \rightarrow$ $C(\{\alpha_{z}, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}, \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{y}) \rightarrow$ $C(\{\alpha_{z}, \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}, \alpha_{y} \rightarrow \alpha_{x}\}, S, \alpha_{y}) =$

 $\alpha_x \rightarrow \alpha_y \rightarrow \alpha_x$

Alex Aiken CS 242 Lecture 5

Another example

 $C(\bigotimes, S, \alpha_7) =$

Recall: Constraint Generation

 $\vdash \lambda z: \alpha_z. z:$

	$x: \alpha_x, y: \alpha_y \vdash x: \alpha_x$
$z: \alpha_z \vdash z: \alpha_z$	$x: \alpha_{x} \vdash \lambda y: \alpha_{y}. \ x: \alpha_{y} \rightarrow \alpha_{x}$
$\lambda z: \alpha_z. \ z: \alpha_z \to \alpha_z$	$\vdash \lambda x: \alpha_x. \ \lambda y: \alpha_y. \ x: \alpha_x \rightarrow \alpha_y \rightarrow \alpha_x$
$\alpha_{z} \rightarrow \alpha_{z} = (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow \beta$	
⊢ (λz: α_z . z) (λx: α_x . λy: α_y . x : α_x) : β	

Costructing The Type Derivation

Shorthand: $[t] = C(\circlearrowright, S, t)$

x: [α_x], y: [α_y] \vdash x [α_x]

 $z: [\alpha_z] \vdash z: [\alpha_z]$

 $\vdash \lambda z: [\alpha_z] . z : [\alpha_z] \rightarrow [\alpha_z]$

 $x: [\alpha_x] \vdash \lambda y: [\alpha_y]. \ x: [\alpha_y] \rightarrow [\alpha_x]$

 $\vdash \lambda x : [\alpha_x] . \ \lambda y : [\alpha_y] . \ x : [\alpha_x] \rightarrow [\alpha_y] \rightarrow [\alpha_x]$

 \vdash (λz: [α_z]. z) (λx: [α_x]. λy: [α_y]. x : [α_x]) : [β]

Apply canonicalization to every type in the proof to obtain the full type derivation. (Using the saturated constraints S from this program.)

The Result

$$z: \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x} \vdash z: \alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}$$
$$(\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x})$$
$$(\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x})$$
$$(\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x})$$
$$(\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x}) \rightarrow (\alpha_{x} \rightarrow \alpha_{y} \rightarrow \alpha_{x})$$

 $\vdash (\lambda z: \alpha_x \rightarrow \alpha_y \rightarrow \alpha_x. z) (\lambda x: \alpha_x. \lambda y: \alpha_y. x: \alpha_x) : \alpha_x \rightarrow \alpha_y \rightarrow \alpha_x$

Next Time ...

• More on types!