
Types
CS242

Lecture 5

Alex Aiken CS 242 Lecture 5

Alex Aiken CS 242 Lecture 5

Type Systems

• There is a split in the world of programming between
• Typed languages
• Untyped languages

• Leave the religious debate aside for now ...
• We will come back to why there is a debate at all

• Today the focus is on the basics of typed languages

Alex Aiken CS 242 Lecture 5

What is a Type?

• Consensus
• A set of values

• Examples
• Int is the set of all integers
• Float is the set of all floats
• Bool is the set {true, false}

Alex Aiken CS 242 Lecture 5

More Examples

• List(Int) is the set of all lists of integers
• List is a type constructor
• A function from types to types

• Foo, in Java, is the set of all objects of class Foo

• Int d Int is the set of functions mapping an integer to an integer
• E.g., increment, decrement, and many others

Alex Aiken CS 242 Lecture 5

What is a Type?

• Consensus
• A set of values

• In typed languages
• Every concrete value is an element of some type or types
• Every legal program has a type

• Type systems have a well-developed notation
• Useful for more than just type systems ...

Alex Aiken CS 242 Lecture 5

Rules of Inference

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a certain type

• Rules of inference are a compact notation for “If-Then” statements

Alex Aiken CS 242 Lecture 5

From English to an Inference Rule

• Start with a simplified system and gradually add features

• Building blocks
• Symbol Ù is “and”
• Symbol Þ is “if-then”
• x:T is “x has type T”

Alex Aiken CS 242 Lecture 5

From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int, then e1 + e2 has type Int

(e1 has type Int Ù e2 has type Int) Þ e1 + e2 has type Int

(e1: Int Ù e2: Int) Þ e1 + e2: Int

Alex Aiken CS 242 Lecture 5

From English to an Inference Rule (3)

The statement
(e1: Int Ù e2: Int) Þ e1 + e2: Int

is a special case of
Hypothesis1 Ù . . . Ù Hypothesisn Þ Conclusion

This is an inference rule.

Alex Aiken CS 242 Lecture 5

Notation for Inference Rules

• By tradition inference rules are written
dHypothesis1 . . . d Hypothesisn

d Conclusion
• Type rules have hypotheses and conclusions

d e : T
• d means “it is provable that . . .”

Alex Aiken CS 242 Lecture 5

Two Rules

[Int]

[Add]

i is an integer

d i : Int

d e1 : Int

d e2 : Int

d e1 + e2 : Int

Alex Aiken CS 242 Lecture 5

Two Rules (Cont.)

• These rules give templates describing how to type integers and +
expressions

• By filling in the templates, we can produce complete typings for
expressions

• Note that
• Hypotheses prove facts about subexpressions
• Conclusions prove facts about the entire expression

Alex Aiken CS 242 Lecture 5

Example: 1 + 2

1 is an integer

d 1: Int

2 is an integer

d 2: Int

d 1 + 2: Int

Alex Aiken CS 242 Lecture 5

A Problem

• What is the type of a variable reference?

• The rule does not carry enough information to give x a type.

[Var]
d x: ?

x is a variable

Alex Aiken CS 242 Lecture 5

A Solution

• Put more information in the rules!

• An environment gives types for free variables
• An environment is a function from variables to types
• Recall that a variable is free in an expression if it is not defined within the

expression

Alex Aiken CS 242 Lecture 5

Type Environments

Let A be a function from Variables to Types

The sentence A d e : T is read:

Under the assumption that variables have the types given by A, it is
provable that the expression e has the type T

Alex Aiken CS 242 Lecture 5

Modified Rules

The type environment is added to all rules:

[Add]

A d e1 : Int

A d e2 : Int

A d e1 + e2 : Int

Alex Aiken CS 242 Lecture 5

New Rules
And we can write new rules:

[Var]
A d x: T

A(x) = T

Alex Aiken CS 242 Lecture 5

Summary
Describe type systems using logics of the form:

A’ d e’ : T’
A’’ d e’’ : T’’

A d e : T

The program (or
program fragment) to
be analyzed.

Assumptions about the
free variables of e.

The type for e.

Type of an expression
is recursively defined
using types of
subexpressions.

Alex Aiken CS 242 Lecture 5

Simply Typed Lambda
Calculus

A Language of Typed Functions

Untyped lambda calculus:

 e → x | λx.e | e e

Simply typed lambda calculus:

 e → x | λx: t.e | e e | i
 t → ⍺ | t → t | int

Alex Aiken CS 242 Lecture 5

Type Rules

Alex Aiken CS 242 Lecture 5

[Var]
A, x: t d x : t

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’

[Abs]
A, x: t d e : t’

A d λx:t.e : t → t’

A d i : int
[Int]

Examples

Alex Aiken CS 242 Lecture 5

x:⍺ d x: ⍺

d λx:⍺. x : ⍺ → ⍺ d λx:⍺. λy:b. x : ⍺ → b → ⍺

x: ⍺ d λy:b. x : b → ⍺

x: ⍺, y:b d x : ⍺

d λx:⍺. λy:b. x : ⍺ → b → ⍺

x: ⍺ d λy:b. x : b → ⍺

x: ⍺, y:b d x : ⍺

z: ⍺ → b → ⍺ d z: ⍺ → b → ⍺

d λz: ⍺ → b → ⍺ . z : (⍺ → b → ⍺) → (⍺ → b → ⍺)

d (λz: ⍺ → b → ⍺ . z) (λx:⍺. λy:b. x : ⍺ → b → ⍺): ⍺ → b → ⍺

Examples

Alex Aiken CS 242 Lecture 5

x:? d x: ?

d λx:?. x x : ?

x:? d x: ?

d λx:?. 1 x : ?

x:? d 1 : int

d (λx:?. x x) (λy:?.y) : ?

d (λx:⍺ → ⍺. x): (⍺ → ⍺) → (⍺ → ⍺)

d λy: ⍺.y: ⍺ → ⍺

d (λx: (⍺ → ⍺). x) (λy: ⍺.y): ⍺ → ⍺

x:? d x x: ?

x:? d x: ?

x:? d x: ?
…

Discussion

These examples illustrate two common issues with type systems:

• Code duplication may be required to type programs
• Each version of the identity used at a different type requires a separate

function definition
• Historical example: Pascal

• The programmer may be required to write in lots of types
• At least variable declarations are required for type checking

Alex Aiken CS 242 Lecture 5

Alex Aiken CS 242 Lecture 5

Type Inference

Idea

• Instead of the programmer writing in the types, have an algorithm
infer the needed types automatically.

• Obviously results in less typing and less cluttered code

• Less obviously, makes it easier to reuse code

• Type inference is becoming more common

Alex Aiken CS 242 Lecture 5

Type Rules

Alex Aiken CS 242 Lecture 5

[Var]
A, x: t d x : t

[App]

t = t’ → b

A d e1 : t

A d e2 : t’

A d e1 e2 : b

[Abs]
A, x: ⍺x d e : t

A d λx: ⍺x.e : ⍺x → t

Discussion

• Introduce fresh type variables for the types of lambda-bound variables and
the results of function applications
• A type variable stands for some definite, but unknown type

• At function applications, an equation captures what must be true of the
types for the program to type check
• The expression in function position must have a function type
• The function domain and the function argument must have the same type

• Two steps to constructing a valid typing (or showing none exists)
• Solve the equations
• Substitute the solution back into the type derivation to obtain a valid proof

Alex Aiken CS 242 Lecture 5

Solving the Constraints

Apply the following rewrite rules until no new constraints can be added

S, t = ⍺ => S, t = ⍺, ⍺ = t [Symmetry]

S, ⍺ = t1, ⍺ = t2 => S, ⍺ = t1, ⍺ = t2, t1 = t2 [Transitivity]

S, t1 → t2 = t3 → t4 => S, t1 → t2 = t3 → t4, t1 = t3, t2 = t4 [Structure]

Alex Aiken CS 242 Lecture 5

Solutions

When no new constraints can be added, the constraints are saturated

The idea behind saturation is that all equalities implied by the original
constraints are present in the saturated constraints

• Provided we have enough constraint resolution rules

If all implications of the constraints are explicit, then it is easy to check
whether the constraints have any solutions or not

Alex Aiken CS 242 Lecture 5

Solutions (Cont.)

• Consider the equation x → y = int

• This equation has no solutions
• Function types are sets of functions. int is the set of integers.

• So if this equation appears in the saturated constraints, the program
is ill-typed

Alex Aiken CS 242 Lecture 5

A Second Case

• What about the equation x = int → x?

• Such an equation has only infinite solutions
• x = int → int → int → int → …

• Infinite solutions do make sense! But most typed languages disallow them.
• In particular, if an equation with infinite solutions is present in the saturated

constraints, the program is ill-typed in the simply-typed lambda calculus

Alex Aiken CS 242 Lecture 5

Infinite Solutions

• In this setting, infinite solutions occur when x = A → B is an equation and x
occurs in A or B

• Previous example: x = int → x
• Also: x = x → int

• But also
• x = int → y
• y = int → x

• To see this, back substitute the equation for y into the equation for x:
• x = int → int → x

Alex Aiken CS 242 Lecture 5

The Bottom Line

• Once we have saturated the constraints we must check
• That no equation x → y = int is present
• That the equations do not have infinite solutions
• Otherwise the program is ill-typed

• If the program is well-typed, then we want to compute the types to
substitute into the typing proof

• We can accomplish both goals with the canonicalization algorithm

Alex Aiken CS 242 Lecture 5

Canonicalization
Given a saturated set of equations S and a type t, the canonicalization algorithm
C(S,t) produces a canonical type for t that does not depend on S

C(S, int) = int
C(S, t → t’) = C(S,t) → C(S,t’)
C(S, ⍺) = C(S, t) if ⍺ = t c S and t is not a type variable
C(S, ⍺) = C(S, b) if ⍺ = b c S and ⍺ < b
C(S, ⍺) = ⍺ otherwise

Note: Choose an arbitrary, but fixed, order for the variables.

Alex Aiken CS 242 Lecture 5

A Problem

Consider S = { x = int → x }

C(S, x) =
C(S, int → x) =
C(S, int) → C(S,x) =
int → C(S,x)

So C goes into an infinite loop …
But this is exactly the situation we want to detect: There are infinite
solutions exactly when C is called recursively on a type it is already
canonicalizing!

Alex Aiken CS 242 Lecture 5

Canonicalization Revised

Given a saturated set of equations S and a type t, the canonicalization
algorithm C(⍉,S,t) produces a canonical type for t that does not depend on S

C(X, S, int) = int
C(X, S, t → t’) = C(X 4 {t → t’}, S, t) → C(X 4 {t → t’}, S, t’) if t → t’ v X
C(X, S, ⍺) = C(X 4 {⍺}, S, t) if ⍺ = t c S, t is not a type variable, ⍺ v X
C(X, S, ⍺) = C(X 4 {⍺}, S, b) if ⍺ = b c S, ⍺ < b, ⍺ v X
C(X, S, ⍺) = ⍺ otherwise

Alex Aiken CS 242 Lecture 5

Putting It All Together

• Given a set of saturated constraints S

• For each equation A = B c S, check
• A’ = C(⍉,S,A) is defined
• B’ = C(⍉,S,B) is defined
• The equation A’ = B’ is not between a function type and int

• If these checks succeed for every equation in S, then the program is
well-typed

Alex Aiken CS 242 Lecture 5

Example Type Derivation

Alex Aiken CS 242 Lecture 5

d λx:⍺. λy:b. x : ⍺ → b → ⍺

x: ⍺ d λy:b. x : b → ⍺

x: ⍺, y:b d x : ⍺

z: ⍺ → b → ⍺ d z: ⍺ → b → ⍺

d λz: ⍺ → b → ⍺ . z : (⍺ → b → ⍺) → (⍺ → b → ⍺)

d (λz: ⍺ → b → ⍺ . z) (λx:⍺. λy:b. x : ⍺ → b → ⍺): ⍺ → b → ⍺

Example: Constraint Generation

Alex Aiken CS 242 Lecture 5

d λx: ⍺x. λy: ⍺y. x : ⍺x → ⍺y → ⍺x

x: ⍺x d λy: ⍺y. x : ⍺y → ⍺x

x: ⍺x, y: ⍺y d x : ⍺x

z: ⍺z d z: ⍺z

d λz: ⍺z. z : ⍺z → ⍺z

d (λz: ⍺z. z) (λx: ⍺x. λy: ⍺y. x : ⍺x) : b

⍺z → ⍺z = (⍺x → ⍺y → ⍺x) → b

Constraint Solving

⍺z → ⍺z = (⍺x → ⍺y → ⍺x) → b

⍺z = ⍺x → ⍺y → ⍺x

⍺z = b

b = ⍺x → ⍺y → ⍺x

b = ⍺z

Alex Aiken CS 242 Lecture 5

Canonicalizing

⍺z → ⍺z = (⍺x → ⍺y → ⍺x) → b

⍺z = ⍺x → ⍺y → ⍺x

⍺z = b

b = ⍺x → ⍺y → ⍺x

b = ⍺z

Canonicalization succeeds on
these equations.

Example
C(⍉,S, b) =

C({b}, S, ⍺x → ⍺y → ⍺x) =

… =
C({b, ⍺x → ⍺y → ⍺x}, S, ⍺x) →
C({b, ⍺x → ⍺y → ⍺x , ⍺y → ⍺x}, S, ⍺y) →
C({b, ⍺x → ⍺y → ⍺x , ⍺y → ⍺x}, S, ⍺x) =

⍺x → ⍺y → ⍺x

Alex Aiken CS 242 Lecture 5

Canonicalizing, Cont.

⍺z → ⍺z = (⍺x → ⍺y → ⍺x) → b

⍺z = ⍺x → ⍺y → ⍺x

⍺z = b

b = ⍺x → ⍺y → ⍺x

b = ⍺z

Canonicalization succeeds on
these equations.

Another example
C(⍉,S, ⍺z) =

C({⍺z}, S, ⍺x → ⍺y → ⍺x) =

… =

C({⍺z, ⍺x → ⍺y → ⍺x}, S, ⍺x) →
C({⍺z, ⍺x → ⍺y → ⍺x , ⍺y → ⍺x}, S, ⍺y) →
C({⍺z, ⍺x → ⍺y → ⍺x , ⍺y → ⍺x}, S, ⍺x) =

⍺x → ⍺y → ⍺x

Alex Aiken CS 242 Lecture 5

Recall: Constraint Generation

Alex Aiken CS 242 Lecture 5

d λx: ⍺x. λy: ⍺y. x : ⍺x → ⍺y → ⍺x

x: ⍺x d λy: ⍺y. x : ⍺y → ⍺x

x: ⍺x, y: ⍺y d x : ⍺x

z: ⍺z d z: ⍺z

d λz: ⍺z. z : ⍺z → ⍺z

d (λz: ⍺z. z) (λx: ⍺x. λy: ⍺y. x : ⍺x) : b

⍺z → ⍺z = (⍺x → ⍺y → ⍺x) → b

Costructing The Type Derivation

Alex Aiken CS 242 Lecture 5

d λx: [⍺x]. λy: [⍺y]. x : [⍺x] → [⍺y] → [⍺x]

x: [⍺x] d λy: [⍺y]. x : [⍺y] → [⍺x]

x: [⍺x], y: [⍺y] d x [⍺x]

z: [⍺z] d z: [⍺z]

d λz: [⍺z] . z : [⍺z]→ [⍺z]

d (λz: [⍺z]. z) (λx: [⍺x]. λy: [⍺y]. x : [⍺x]) : [b]

Shorthand: [t] = C(⍉, S, t)

Apply canonicalization to every type in the proof to obtain the full type derivation.
(Using the saturated constraints S from this program.)

The Result

Alex Aiken CS 242 Lecture 5

d λx: ⍺x. λy: ⍺y. x : ⍺x → ⍺y → ⍺x

x: ⍺x d λy: ⍺y. x : ⍺y → ⍺x

x: ⍺x, y: ⍺y d x : ⍺x
z: ⍺x → ⍺y → ⍺x d z: ⍺x → ⍺y → ⍺x

d λz: ⍺x → ⍺y → ⍺x . z : (⍺x → ⍺y → ⍺x) → (⍺x → ⍺y → ⍺x)

d (λz: ⍺x → ⍺y → ⍺x. z) (λx: ⍺x. λy: ⍺y. x : ⍺x) : ⍺x → ⍺y → ⍺x

Next Time ...

• More on types!

Alex Aiken CS 242 Lecture 5

