
Continuations
CS242

Lecture 8

Alex Aiken CS 242 Lecture 8

Today’s Variant of Lambda Calculus …

 e → x | λx.e | e e | i | e + e

Alex Aiken CS 242 Lecture 8

Start Simple

• How do we evaluate e + e’ ?

• First evaluate e to a value x
• Second evaluate e’ to a value y
• Third compute x + y

• Note that this description fixes an order of evaluation
• Could evaluate e’ and then e instead

Alex Aiken CS 242 Lecture 8

Explicit Order of Evaluation

We can rewrite the expression to make the order of evaluation explicit:

(λx. x + e’) e

Going one step further:

(λx.((λy.x + y) e’)) e

Alex Aiken CS 242 Lecture 8

Explicit Order of Evaluation

We can rewrite e + e’ to make the order of evaluation explicit:
(λx. x + e’) e

Going one step further:
(λx.((λy.x + y) e’)) e

And one more step:
(λx.((λy. (λz.z) (x + y)) e’)) e

Alex Aiken CS 242 Lecture 8

A More Readable Version

Recall
(λx.e) e’ = let x = e’ in e

Then (λx.((λy. (λz.z) (x + y)) e’)) e

Can be rewritten as
 let x = e in
 let y = e’ in
 let z = x + y in
 z

Alex Aiken CS 242 Lecture 8

Comments

let x = e in
 let y = e’ in
 let z = x + y in
 z

Can be read as a sequential program

x = e
y = e’
z = x + y

Alex Aiken CS 242 Lecture 8

Comments

let x = e in
 let y = e’ in
 let z = x + y in
 z

Note:
• The order of evaluation is explicit
• Every intermediate result has a name

Alex Aiken CS 242 Lecture 8

Back to the First Step

Recall the first step of the transformation:

(λx.x + e’) e

Which is equivalent to

let x = e in x + e’

Alex Aiken CS 242 Lecture 8

Continuations

let x = e1 in e2

We can view this as splitting the program into two sequentially ordered
parts:

• The computation of x = e1

• The continuation e2 which represents the computation of the rest of
the program

Alex Aiken CS 242 Lecture 8

What is a Continuation?

Recall let x = e1 in e2 ó (λx.e2) e1

A continuation is a function that takes a value as an argument and
evaluates the “rest of the program”.

Alex Aiken CS 242 Lecture 8

Continuation Passing Style

• Rewrite the program using continuations

• Each continuation
• Performs just one primitive step of the computation
• And then passes the result to another continuation

Alex Aiken CS 242 Lecture 8

Back to the Example

Recall we translated e + e’ to

(λx.((λy. (λz.z) (x + y)) e’)) e

k0 = λw. k1 e
k1 = λx. k2 e’
k2 = λy. k3 (x + y)
k3 = λz.z

Alex Aiken CS 242 Lecture 8

Back to the Example

Recall we translated e + e’ to

(λx.((λy. (λz.z) (x + y)) e’)) e

k0 = λw. k1 e
k1 = λx. k2 e’
k2 = λy. k3 (x + y)
k3 = λz.z

k0: let x = e in
k1: let y = e’ in
k2: let z = x + y in
k3: z

Alex Aiken CS 242 Lecture 8

Continuations

• Continuations are like statement labels in C
• Syntactically, names a point in the program
• Semantically, names the computation that executes by jumping to that point

• By systematically using continuations, we
• Make the order of evaluation explicit
• Give a name to every intermediate value
• Name every step (continuation) of the computation

Alex Aiken CS 242 Lecture 8

Continuation Passing Style Transformation

Define C(e,k) to be the translation of e with continuation k into
continuation passing style

So semantically, C(e,k) = k e

i.e., evaluate e and pass the value to k to run the rest of the program.
But of course we want to convert e into CPS style, too …

Alex Aiken CS 242 Lecture 8

CPS Transformation: Constants and Variables

Easy cases first!

C(i,k) = k i
C(x,k) = k x

For an integer or variable there is no further translation to do, just pass
the value directly to the continuation.

Alex Aiken CS 242 Lecture 8

CPS Transformation: Addition

C(e + e’,k) = C(e, λv.C(e’, λv’.k (v + v’)))

Note: The variables v and v’ must be fresh.

Alex Aiken CS 242 Lecture 8

CPS Transformation: Abstraction

C(λx.e, k) = ?

Here k is the continuation of the function definition.

We also want to translate the body e of the function. What is the
continuation of the function body?

Problem: The function is called at a different time than it is defined, so
the continuation for the body is different from the continuation for the
function itself.

Alex Aiken CS 242 Lecture 8

CPS Transformation: Abstraction

C(λx.e, k) = k (λk’.λx. C(e,k’))

Idea: Simply define the translation of the function to first take a
continuation k’ and then take the function argument.

The continuation when the function is applied is k’, which we use in the
translation of the function body.

Notice how the two continuations k and k’ capture the two relevant points in
a function’s life: When it is defined and when it is applied.

Alex Aiken CS 242 Lecture 8

CPS Transformation: Application

C(e e’,k) = C(e, λf.C(e’, λv.f k v))

The translation is fully determined by two things:

We evaluate e and then e’. Note the structural similarity to addition,
the other construct with two subexpressions.

The expression e evaluates to a CPS-transformed function f, requiring a
continuation k and a value v as arguments.

Alex Aiken CS 242 Lecture 8

Continuation Passing Style Transformation

C(x,k) = k x
C(λx.e, k) = k (λk’.λx. C(e,k’))
C(e e’,k) = C(e, λf.C(e’, λv.f k v))
C(i,k) = k i
C(e + e’,k) = C(e, λv.C(e’, λv’.k (v + v’))

Alex Aiken CS 242 Lecture 8

Reminder

When reading lambda expressions, the scope of an abstraction λx.e
extends as far to the right as possible

• All the way to the end of the expression
• Or until blocked by a right parenthesis

λf.λx.λy. f y x = λf.λx.λy. (f y x)

is very different from

λf.λx.(λy. f y) x

Alex Aiken CS 242 Lecture 8

AnExample

C((λx.x + 1) 2, k0) =

C(λx.x + 1, λf.C(2, λv0.f k0 v0)) =
C(λx.x + 1, λf.((λv0.f k0 v0) 2)) =
(λf.((λv0.f k0 v0) 2)) λk1.λx.C(x + 1,k1) =
(λf.((λv0.f k0 v0) 2)) λk1.λx.C(x, λv1.C(1, λv2. k1 (v1+v2))) =
(λf.((λv0.f k0 v0) 2)) λk1.λx.C(x, λv1.(λv2. k1 (v1+v2)) 1) =
(λf.((λv0.f k0 v0) 2)) λk1.λx.(λv1.(λv2. k1 (v1+v2)) 1) x

Alex Aiken CS 242 Lecture 8

Evaluation

(λf.((λv0.f k0 v0) 2)) λk1.λx.(λv1.(λv2. k1 (v1+v2)) 1) x →
(λv0. (λk1.λx.(λv1.(λv2. k1 (v1+v2)) 1) x) k0 v0) 2 →
(λk1.λx.(λv1.(λv2. k1 (v1+v2)) 1) x) k0 2 →
(λx.(λv1.(λv2. k0 (v1+v2)) 1) x) 2 →
(λv1.(λv2. k0 (v1+v2)) 1) 2
(λv2. k0 (2+v2)) 1
k0 (2+1)
k0 3

Alex Aiken CS 242 Lecture 8

Complete Programs

For a full program P, the initial continuation is the identify function I.

So the CPS transformation of P is

C(P,I)

Alex Aiken CS 242 Lecture 8

Discussion

• The CPS transformation is important in language implementations
• Very convenient to have a program representation where every intermediate

result is named.

• But we can go a step further and make it useful to the programmer
• By making continuations available as program values

Alex Aiken CS 242 Lecture 8

Call/CC

 e → x | λx.e | e e | i | e + e | call/cc λk.e | resume k e

Call/cc calls its function argument with the current continuation.
Resume passes the value of its expression argument to its continuation

argument.

Alex Aiken CS 242 Lecture 8

Call/CC

C(x,k) = k x
C(λx.e, k) = k (λk’.λx. C(e,k’))
C(e e’,k) = C(e, λf.C(e’, λv.f k v))
C(i,k) = k i
C(e + e’,k) = C(e, λv.C(e’, λv’.k (v + v’))
C(call/cc λx.e, k) = (λx.C(e,k)) k
C(resume k e, k’) = C(e,k)

Alex Aiken CS 242 Lecture 8

Example

call/cc λk.1 + (resume k 0)

What is the result of this program?

Alex Aiken CS 242 Lecture 8

Translation and Evaluation

C(call/cc λk.1 + (resume k 0), I) =
(λk.C(1 + (resume k 0), I)) I =
(λk.C(1, λm.C(resume k 0, λn.I (m + n)))) I =
(λk.C(1, λm.C(0,k))) I =
(λk.C(1, λm.k 0)) I =
(λk.(λm.k 0) 1) I →
(λm. I 0) 1 →
I 0 →
0

Alex Aiken CS 242 Lecture 8

A Variation

C(call/cc λk. (resume k 0) + 1, I) =
(λk.C((resume k 0) + 1, I)) I =
(λk.C(resume k 0, λm.C(1, λn.I (m + n)))) I =
(λk.C(0,k)) I =
(λk. k 0) I →
I 0 →
0

Alex Aiken CS 242 Lecture 8

Discussion

This program simulates an “abort” or “exit” statement
• Capture the continuation at the start of the program
• Invoking that continuation at any point will terminate the computation

Alex Aiken CS 242 Lecture 8

Discussion

• In general continuations can be used to resume execution from an
arbitrary point in the program

• Can implement many non-local control operations
• Exceptions
• Backtracking
• Setjmp/longjmp
• Co-routines
• …

Alex Aiken CS 242 Lecture 8

Discussion

• A few languages expose call/cc or something similar
• Scheme, Racket

• But programmers can also code continuation-passing style directly
• Often used as a software architecture device
• E.g., event-driven systems

• Pluses and minuses
• Makes program control into first-class values, which is necessary for programs that

need to programmatically manipulate the flow of control
• Turns programs “inside out”
• Contagious: Affects the structure of the entire program

Alex Aiken CS 242 Lecture 8

