Monads

CS242

Lecture 9

Pairs and Currying

- Pairs
 - Constructor: (e,e') or <e,e'>
 - Destructors: p.l, p.r or p.1, p.2 or fst p, snd p
 - Type: A * B
- Consider a function f of type A * $B \rightarrow C$
 - From f we can construct a function of type $A \rightarrow B \rightarrow C$
 - λa.λb.f (a,b)
 - Called *currying* the function

Review: Structural Operational Semantics

Review: State

Evaluation rules have the form

 $\mathsf{E},\mathsf{S}\vdash\mathsf{e}\rightarrow\mathsf{v},\mathsf{S}'$

Expressions evaluate to a value and update the state.

Review: Evaluation Rules with State

	[Var]	[Abs]
$E,S\vdashx\toE(x),S$		E, S $\vdash \lambda x.e \rightarrow < \lambda x.e, E >, S$
E, S ⊢ i → i, S	[Int]	E, $S_0 \vdash e_1 \rightarrow <\lambda x. e_0$, E' >, S_1
		$E, S_1 \vdash e_2 v, S_2$
l∉ dom(S)	[New] , S[l = 0]	$E'[x: v], S_2 \vdash e_0 \rightarrow v', S_3$
E, S ⊢ new \rightarrow I, S[I = 0]		$E, S_0 \vdash e_1 e_2 \rightarrow v', S_3$

Another Feature: Exceptions

Evaluation rules have one of two forms

 $E \vdash e \rightarrow v$ evaluation produces a normal value $E \vdash e \rightarrow Exc(v)$ evaluation produces an exception

In the second case further evaluation must be *strict* in the exception: Once produced the exception propagates through all other computation until caught or it is the result of the computation.

Evaluation Rule	s with Exc	eptions E⊢e₁→Exc(v)	
$E \vdash x \rightarrow E(x)$	[Var]	$E \vdash e_1 e_2 \rightarrow Exc(v)$	— [AppE1
	[Int]	$E \vdash e_1 \rightarrow <\lambda x.e_0, E' >$	
$E \vdash i \rightarrow i$	luci	$E \vdash e_2 \rightarrow Exc(v)$	
	[Abs]	$E \vdash e_1 e_2 \rightarrow Exc(v)$	- [ΑρρεΖ]
$E \vdash \lambda x.e \rightarrow < \lambda x.e, E >$		$E \vdash e_1 \rightarrow <\lambda x.e_0, E' >$	
$E \vdash e \rightarrow v$		$E \vdash e_2 \rightarrow v$	
$F \vdash raise e \rightarrow Fxc(y)$	[Raise]	$E'[x: v] \vdash e_0 \rightarrow v'$	[App]
	Alex Aiken CS 242 L	ecture 9 $E \vdash e_1 e_2 \rightarrow v'$	

Beyond Pure Lambda Calculus

- What do lambda calculus+state and lambda calculus+exceptions have in common?
- Several things
 - They are both lambda calculus + "side information"
 - The side information is threaded through the computation in a specific order
 - There are new primitives for manipulating the side information
 - If the extra primitives are not used, the behavior is pure lambda calculus
- This is how programming languages are often described
 - A core functional part (lambda calculus)
 - Plus additional features that go beyond pure functions

But Why Not Pure Lambda Calculus?

- For the example with state, why not make the state an explicit argument to functions?
 - A function $a \rightarrow b$ that works on state type s could have a type $a * s \rightarrow b * s$
- But this signature exposes the state
 - The programmer must explicitly manage it
- An alternative (curried) signature: $a \rightarrow (s \rightarrow b * s)$
 - $s \rightarrow b * s$ is a state transformer
- Factor out M b = $s \rightarrow b * s$ as an abstract data type

Language Features

- There are many non-functional language features that have similar properties:
- Continuations
- (Certain styles of) concurrency
- Nondeterminism
- Random numbers
- ...

Monads

- We can abstract the common part of these language features
 - Sequencing to thread the extra information through the computation
- Enables *programming* these features in pure lambda calculus
 - In a concise and consistent way
- More general than the state transformer abstraction
 - Monads are an abstraction for defining such abstractions

Types

- A monad M a is an abstract type
 - The implementation of M is hidden
- The ``normal'' functional type is a
 - The type of the normal value of the computation
- \bullet The extra or side information is hidden in the abstraction ${\sf M}$

Operations

return: $a \rightarrow M a$

A function for creating an element of a monad.

bind: M a \rightarrow (a \rightarrow M b) \rightarrow M b

Sequencing: Take an element of a monad, unwrap the value inside, and apply a function returning an element of the monad with a value of possibly different type.

Bind is usually written v >>= f, for monad value v and function f.

Discussion

- One take: Not much here!
 - Pretty basic
- A second take: Just the right abstraction, and simple!
 - It turns out that return/bind are enough to implement many language features within the lambda calculus
- Keep in mind that return and bind are different for each monad
 - We have to find appropriate definitions

Partial Functions

- Start with a very simple monad
- An option type Maybe(a) is either a value of type a or nothing
- Useful for expressing the result of partial functions w/o exceptions
- Examples
 - head: List(a) -> Maybe(a) returns nothing if the list is empty
 - div: int -> int -> Maybe(int) returns nothing if the divisor is zero

Partial F	unctions
-----------	----------

Maybe a =	Becall
Just a	
Nothing	Just = Aa.Aj.An.j a
	Nothing = λj.λn.n

Example use to compose partial functions f and g:	
$\lambda x.let y = f x in$	
case y of	
Nothing: Nothing	Equiv
Just v: g(v)	

Equivalent to y g Nothing

Partial Functions with Monads

Maybe a = Just a | Nothing

-- monad M = Maybe return = Just v >>= f = case v of Nothing -> Nothing Just x -> f x

Composing Partial Functions

Consider the composition of two partial functions f and g: $\lambda x. x >>= f >>= g$

The Maybe monad handles the Nothing case transparently

- The case analysis is hidden inside of >>=
- Automatically short-circuits the computation if f returns Nothing

Example

head x = case x of Nil: Nothing Cons(a,as) : Just(a)

-- take the head of the first list of a list of lists λI . return I >>= head >>= head

The State Monad

return: $a \rightarrow M a$ return = $\lambda v.\lambda s.(v,s)$ -- note M $a = s \rightarrow a * s$ where s is the state type

>>= : M a \rightarrow (a \rightarrow M b) \rightarrow M b p >>= f = λ s. let (v,s') = p s in f v s'

Example Use

-- increment a global counter each time function foo is called

- -- the state is a single integer
- foo = λx . return 42 >>= λv . inc >>= λz .return v
- bar = reset >>= foo >>= foo

-- inc and reset are new operations that manipulate the state inc = $\lambda i.(i+1, i+1)$ reset = $\lambda i.(0,0)$

Nicer Syntax ...

```
-- increment a global counter each time function foo is called
-- the state is just a single integer
// interpret assignment := as bind, taking a value of type M a
// unwrapping the value of type a
foo x = do {
        v := return 42
        z := inc
        return v }
```

First Principles ...

- We want a stateful function of type $a \rightarrow b$
 - Which is a pure function of type $a \rightarrow s \rightarrow (b,s)$ if we make the state explicit
- The second piece $s \rightarrow (b,s)$ is a state transformer
- How do we compose a state transformer s → (a,s) and a stateful function a → s → (b,s)?
 - This is exactly what bind does.

Discussion

- Return & bind do just a few things:
- The e in return e is a pure computation
 - Doesn't know about the state, can be written normally
- Bind handles the "plumbing" of the monad
 - Hides the manipulation of the state except through state primitives
 - And correctly sequences it through the computation

Exceptions

Exceptional e a = Success a Exception e -- monad M = Exceptional e

return: $a \rightarrow M a$ return = Success

>>=: M a \rightarrow (a \rightarrow M b) \rightarrow M b v >>= f = case v of Exception I -> Exception I Success r -> fr throw = Exception

catch e h = case e of Exception I -> h I Success r -> Success r

Using Exceptions

Consider composition of two functions f and g that can raise exceptions: $\lambda x. return x >>= f >>= g$

Easy to add a handler for f: $\lambda x.$ (catch (return x >>= f) h) >>= g

Or for both f and g: $\lambda x.$ catch (return x >>= f >>= g) h

The threading of the exceptions is tedious without bind

The Continuation Monad

Cont r a = $(a \rightarrow r) \rightarrow r$ -- r is the result type of the computation -- a \rightarrow r is the type of the continuation

A continuation monad M = Cont r return: $a \rightarrow M a$ return = $\lambda a. \lambda k. k a$

>>=: M a \rightarrow (a \rightarrow M b) \rightarrow M b c >>= f = $\lambda k. c (\lambda a. f a k)$

return 6 >>= λ i. return (7 * i)

The Continuation Monad

- Allows building continuations by extending existing continuations
 - Continuations are composed in pieces
- Note there is no automatic translation
 - This is not a CPS transformation!
- The programmer must build up the desired continuations by hand

Discussion

- Monads are an abstraction for programming language features
- And it's just programming!
 - No need for a compiler
 - Can add or remove features as desired
- Examples of good uses:
 - A small part of the program needs state
 - Use the State monad just in that portion
 - Part of the program needs State and Exceptions
 - Again, just use these monads in the parts where they are needed

Comments

- Two features are important to making monads work
- Higher-order functions
 - Bind is a higher order function
 - Many of the monads wrap higher order functions (continuations)
- Type checking
 - The type checker will complain if monads are used incorrectly
 - Necessary for most programmers to avoid getting tangled up

Upsides

- Since it is ``just programming", users can write their own monads
 - And they do
 - Many programming patterns are usefully abstracted as monads
- Monads are ubiquitous in Haskell
 - Where they were pioneered
- And have appeared in many other settings
 - Again, easy to adopt new ways of structuring software
 - Even in languages without monads built-in

Downsides

- Monads are not a panacea
 - "It's just programming"
- There are three main limitations
 - Multiple monads don't always compose well
 - State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
 - Monads don't commute
 - To use monads, your program must be structured using return/bind
 - Contagious: Whole program tends to end up being written monadically
 - Major hit when converting non-monadic code to monadic code
 - Performance is not what it could be if the features were built in
 - No free lunch there is a reason compilers are large and complicated
- And the programs end up looking like C++!

A New View of Languages

- Monads were first used in language semantics
 - An idea borrowed from category theory in mathematics
 - Instead of messy environments with state, exceptions, continuations, use monads to structure the execution rules
- We now view languages as a pure core with monadic extensions
- Most languages have the monads built in
 - State, Exceptions, Concurrency, ...
 - Better performance, debugging support, and error messages
- But now we realize many of these features can be implemented within a language with higher-order features
 - Bridges (one of) the divides between functional and Turing languages