
Monads
CS242

Lecture 9

Alex Aiken CS 242 Lecture 9

Pairs and Currying

• Pairs
• Constructor: (e,e’) or <e,e’>
• Destructors: p.l, p.r or p.1, p.2 or fst p, snd p
• Type: A * B

• Consider a function f of type A * B → C
• From f we can construct a function of type A → B → C
• λa.λb.f (a,b)
• Called currying the function

Alex Aiken CS 242 Lecture 9

Review: Structural Operational Semantics

Alex Aiken CS 242 Lecture 9

[Var]
E d x → E(x)

[App]

E d e1 → < λx.e0, E’ >

E d e2 → v

E’[x: v] d e0 → v’

E d e1 e2 → v’

[Abs]
E d λx.e → < λx.e, E >

E d i → i
[Int]

Note: E[x: v] is the same environment as E, x:v. E
is extended (or updated if x is already present) at
point x to return v.

Review: State

Evaluation rules have the form

E, S d e → v, S’

Expressions evaluate to a value and update the state.

Alex Aiken CS 242 Lecture 9

Review: Evaluation Rules with State

Alex Aiken CS 242 Lecture 9

[Var]
E, S d x → E(x), S

[App]

E, S0 d e1 → <λx.e0, E’ >, S1

E, S1 d e2 → v, S2

E’[x: v], S2 d e0 → v’,S3

E, S0 d e1 e2 → v’, S3

[Abs]
E, S d λx.e → < λx.e, E >, S

E, S d i → i, S
[Int]

E, S d new → l, S[l = 0]

[New]l ∉ 𝑑𝑜𝑚(S)

Another Feature: Exceptions

Evaluation rules have one of two forms

E d e → v evaluation produces a normal value
E d e → Exc(v) evaluation produces an exception

In the second case further evaluation must be strict in the exception:
Once produced the exception propagates through all other
computation until caught or it is the result of the computation.

Alex Aiken CS 242 Lecture 9

Evaluation Rules with Exceptions

Alex Aiken CS 242 Lecture 9

[Var]
E d x → E(x)

[App]

E d e1 → <λx.e0, E’ >

E d e2 → v

E’[x: v] d e0 → v’

E d e1 e2 → v’

[Abs]
E d λx.e → < λx.e, E >

E d i → i
[Int]

E d e1 → Exc(v)

E d e1 e2 → Exc(v)

E d e1 e2 → Exc(v)

E d e1 → <λx.e0, E’ >

E d e2 → Exc(v)
[AppE2]

[AppE1]

[Raise]
E d raise e → Exc(v)

E d e → v

Beyond Pure Lambda Calculus

• What do lambda calculus+state and lambda calculus+exceptions have in
common?

• Several things
• They are both lambda calculus + “side information”
• The side information is threaded through the computation in a specific order
• There are new primitives for manipulating the side information
• If the extra primitives are not used, the behavior is pure lambda calculus

• This is how programming languages are often described
• A core functional part (lambda calculus)
• Plus additional features that go beyond pure functions

Alex Aiken CS 242 Lecture 9

But Why Not Pure Lambda Calculus?

• For the example with state, why not make the state an explicit argument to functions?
• A function a → b that works on state type s could have a type a * s → b * s

• But this signature exposes the state
• The programmer must explicitly manage it

• An alternative (curried) signature: a → (s → b * s)
• s → b * s is a state transformer

• Factor out M b = s → b * s as an abstract data type

Alex Aiken CS 242 Lecture 9

Language Features

• There are many non-functional language features that have similar
properties:

• Continuations
• (Certain styles of) concurrency
• Nondeterminism
• Random numbers
• ...

Alex Aiken CS 242 Lecture 9

Monads

• We can abstract the common part of these language features
• Sequencing to thread the extra information through the computation

• Enables programming these features in pure lambda calculus
• In a concise and consistent way

• More general than the state transformer abstraction
• Monads are an abstraction for defining such abstractions

Alex Aiken CS 242 Lecture 9

Types

• A monad M a is an abstract type
• The implementation of M is hidden

• The ``normal’’ functional type is a
• The type of the normal value of the computation

• The extra or side information is hidden in the abstraction M

Alex Aiken CS 242 Lecture 9

Operations

return: a → M a
A function for creating an element of a monad.

bind: M a → (a → M b) → M b
Sequencing: Take an element of a monad, unwrap the value inside, and
apply a function returning an element of the monad with a value of
possibly different type.

Bind is usually written v >>= f, for monad value v and function f.

Alex Aiken CS 242 Lecture 9

Discussion

• One take: Not much here!
• Pretty basic

• A second take: Just the right abstraction, and simple!
• It turns out that return/bind are enough to implement many language

features within the lambda calculus

• Keep in mind that return and bind are different for each monad
• We have to find appropriate definitions

Alex Aiken CS 242 Lecture 9

Partial Functions

• Start with a very simple monad

• An option type Maybe(a) is either a value of type a or nothing

• Useful for expressing the result of partial functions w/o exceptions

• Examples
• head: List(a) -> Maybe(a) returns nothing if the list is empty
• div: int -> int -> Maybe(int) returns nothing if the divisor is zero

Alex Aiken CS 242 Lecture 9

Partial Functions

Maybe a =
 Just a
 | Nothing

Example use to compose partial functions f and g:
λx.let y = f x in
 case y of
 Nothing: Nothing
 Just v: g(v)

Alex Aiken CS 242 Lecture 9

Recall

Just = λa.λj.λn.j a

Nothing = λj.λn.n

Equivalent to y g Nothing

Partial Functions with Monads

Maybe a =
 Just a
 | Nothing

-- monad M = Maybe
return = Just
v >>= f = case v of
 Nothing -> Nothing
 Just x -> f x

Alex Aiken CS 242 Lecture 9

Composing Partial Functions

Consider the composition of two partial functions f and g:
 λx. x >>= f >>= g

The Maybe monad handles the Nothing case transparently
• The case analysis is hidden inside of >>=
• Automatically short-circuits the computation if f returns Nothing

Alex Aiken CS 242 Lecture 9

Example

head x = case x of
 Nil: Nothing
 Cons(a,as) : Just(a)

-- take the head of the first list of a list of lists
λl. return l >>= head >>= head

Alex Aiken CS 242 Lecture 9

The State Monad

return: a → M a
return = λv.λs.(v,s) -- note M a = s → a * s where s is the state type

>>= : M a → (a → M b) → M b
p >>= f = λs. let (v,s’) = p s in f v s’

Alex Aiken CS 242 Lecture 9

Example Use

-- increment a global counter each time function foo is called
-- the state is a single integer
foo = λx. return 42 >>= λv. inc >>= λz.return v
bar = reset >>= foo >>= foo

-- inc and reset are new operations that manipulate the state
inc = λi.(i+1, i+1)
reset = λi.(0,0)

Alex Aiken CS 242 Lecture 9

Nicer Syntax ...

-- increment a global counter each time function foo is called
-- the state is just a single integer
// interpret assignment := as bind, taking a value of type M a
// unwrapping the value of type a
foo x = do {
 v := return 42
 z := inc
 return v }

Alex Aiken CS 242 Lecture 9

First Principles ...

• We want a stateful function of type a → b
• Which is a pure function of type a → s → (b,s) if we make the state explicit

• The second piece s → (b,s) is a state transformer

• How do we compose a state transformer s → (a,s) and a stateful
function a → s → (b,s)?
• This is exactly what bind does.

Alex Aiken CS 242 Lecture 9

Discussion

• Return & bind do just a few things:

• The e in return e is a pure computation
• Doesn’t know about the state, can be written normally

• Bind handles the “plumbing” of the monad
• Hides the manipulation of the state except through state primitives
• And correctly sequences it through the computation

Alex Aiken CS 242 Lecture 9

Exceptions
Exceptional e a =
 Success a
 | Exception e

-- monad M = Exceptional e
return: a → M a
return = Success

>>=: M a → (a → M b) → M b
v >>= f = case v of
 Exception l -> Exception l
 Success r -> f r

throw = Exception

catch e h = case e of
 Exception l -> h l
 Success r -> Success r

Alex Aiken CS 242 Lecture 9

Using Exceptions

Consider composition of two functions f and g that can raise exceptions:
 λx. return x >>= f >>= g

Easy to add a handler for f:
λx. (catch (return x >>= f) h) >>= g

Or for both f and g:
λx. catch (return x >>= f >>= g) h

The threading of the exceptions is tedious without bind

Alex Aiken CS 242 Lecture 9

The Continuation Monad

Cont r a = (a → r) → r -- r is the result type of the computation
 -- a → r is the type of the continuation

A continuation monad M = Cont r
return: a → M a
return = λa.λk. k a

>>=: M a → (a → M b) → M b
c >>= f = λk. c (λa. f a k)

return 6 >>= λi. return (7 * i)

Alex Aiken CS 242 Lecture 9

The Continuation Monad

• Allows building continuations by extending existing continuations
• Continuations are composed in pieces

• Note there is no automatic translation
• This is not a CPS transformation!

• The programmer must build up the desired continuations by hand

Alex Aiken CS 242 Lecture 9

Discussion

• Monads are an abstraction for programming language features

• And it’s just programming!
• No need for a compiler
• Can add or remove features as desired

• Examples of good uses:
• A small part of the program needs state

• Use the State monad just in that portion
• Part of the program needs State and Exceptions

• Again, just use these monads in the parts where they are needed

Alex Aiken CS 242 Lecture 9

Comments

• Two features are important to making monads work

• Higher-order functions
• Bind is a higher order function
• Many of the monads wrap higher order functions (continuations)

• Type checking
• The type checker will complain if monads are used incorrectly
• Necessary for most programmers to avoid getting tangled up

Alex Aiken CS 242 Lecture 9

Upsides

• Since it is ``just programming’’, users can write their own monads
• And they do
• Many programming patterns are usefully abstracted as monads

• Monads are ubiquitous in Haskell
• Where they were pioneered

• And have appeared in many other settings
• Again, easy to adopt new ways of structuring software
• Even in languages without monads built-in

Alex Aiken CS 242 Lecture 9

Downsides

• Monads are not a panacea
• “It’s just programming”

• There are three main limitations
• Multiple monads don’t always compose well

• State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
• Monads don’t commute

• To use monads, your program must be structured using return/bind
• Contagious: Whole program tends to end up being written monadically
• Major hit when converting non-monadic code to monadic code

• Performance is not what it could be if the features were built in
• No free lunch – there is a reason compilers are large and complicated

• And the programs end up looking like C++!

Alex Aiken CS 242 Lecture 9

A New View of Languages

• Monads were first used in language semantics
• An idea borrowed from category theory in mathematics
• Instead of messy environments with state, exceptions, continuations, use monads to structure the

execution rules

• We now view languages as a pure core with monadic extensions

• Most languages have the monads built in
• State, Exceptions, Concurrency, ...
• Better performance, debugging support, and error messages

• But now we realize many of these features can be implemented within a language with
higher-order features
• Bridges (one of) the divides between functional and Turing languages

Alex Aiken CS 242 Lecture 9

