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Pairs and Currying

• Pairs
• Constructor: (e,e’) or <e,e’>
• Destructors: p.l, p.r or p.1, p.2 or fst p, snd p
• Type: A * B

• Consider a function f of type A * B → C
• From f we can construct a function of type A → B → C
• λa.λb.f (a,b)
• Called currying the function
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Review: Structural Operational Semantics
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[Var]
E d x → E(x)

[App]

E d e1 → <  λx.e0, E’ > 

E d e2 → v

E’[x: v] d e0 → v’

E d e1 e2 → v’

[Abs]
E d λx.e  →  < λx.e, E > 

E d i → i 
[Int]

Note: E[x: v] is the same environment as E, x:v.  E 
is extended (or updated if x is already present) at 
point x to return v.



Review: State

Evaluation rules have the form

E, S d e → v, S’

Expressions evaluate to a value and update the state.
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Review: Evaluation Rules with State
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[Var]
E, S d x → E(x), S

[App]

E, S0 d e1 → <λx.e0, E’ >, S1 

E, S1 d e2 → v, S2

E’[x: v], S2 d e0 → v’,S3

E, S0 d e1 e2 → v’, S3

[Abs]
E, S d λx.e  →  < λx.e, E >, S 

E, S d i → i, S 
[Int]

E, S d new → l, S[l = 0] 

[New]l ∉ 𝑑𝑜𝑚(S)



Another Feature: Exceptions

Evaluation rules have one of two forms

E d e → v                   evaluation produces a normal value
E d e → Exc(v)           evaluation produces an exception

In the second case further evaluation must be strict in the exception: 
Once produced the exception propagates through all other 
computation until caught or it is the result of the computation.
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Evaluation Rules with Exceptions
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[Var]
E d x → E(x)

[App]

E d e1 → <λx.e0, E’ > 

E d e2 → v

E’[x: v] d e0 → v’

E d e1 e2 → v’

[Abs]
E d λx.e  →  < λx.e, E > 

E d i → i 
[Int]

E d e1 → Exc(v)  

E d e1 e2 → Exc(v)

E d e1 e2 → Exc(v)

E d e1 → <λx.e0, E’ > 

E d e2 → Exc(v)
[AppE2]

[AppE1]

[Raise]
E d  raise e  →  Exc(v)

E d e → v  



Beyond Pure Lambda Calculus

• What do lambda calculus+state and lambda calculus+exceptions have in 
common?

• Several things
• They are both lambda calculus  + “side information”
• The side information is threaded through the computation in a specific order
• There are new primitives for manipulating the side information
• If the extra primitives are not used, the behavior is pure lambda calculus

• This is how programming languages are often described
• A core functional part (lambda calculus)
• Plus additional features that go beyond pure functions
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But Why Not Pure Lambda Calculus?

• For the example with state, why not make the state an explicit argument to functions?
• A function a → b that works on state type s could have a type a * s → b * s

• But this signature exposes the state
• The programmer must explicitly manage it

• An alternative (curried) signature:    a → (s → b * s)
• s → b * s is a state transformer

• Factor out M b = s → b * s as an abstract data type
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Language Features

• There are many non-functional language features that have similar 
properties:

• Continuations
• (Certain styles of) concurrency
• Nondeterminism
• Random numbers
• ...
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Monads

• We can abstract the common part of these language features
• Sequencing to thread the extra information through the computation

• Enables programming these features in pure lambda calculus
• In a concise and consistent way

• More general than the state transformer abstraction
• Monads are an abstraction for defining such abstractions
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Types

• A monad M a is an abstract type
• The implementation of M is hidden

• The ``normal’’ functional type is a
• The type of the normal value of the computation

• The extra or side information is hidden in the abstraction M
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Operations

return:   a → M a 
A function for creating an element of a monad.

bind:  M a → (a → M b) → M b
Sequencing: Take an element of a monad, unwrap the value inside, and 
apply a function returning an element of the monad with a value of 
possibly different type.

Bind is usually written v >>= f,  for monad value v and function f.
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Discussion

• One take: Not much here!
• Pretty basic

• A second take: Just the right abstraction, and simple!
• It turns out that return/bind are enough to implement many language 

features within the lambda calculus

• Keep in mind that return and bind are different for each monad
• We have to find appropriate definitions
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Partial Functions

• Start with a very simple monad

• An option type Maybe(a) is either a value of type a or nothing

• Useful for expressing the result of partial functions w/o exceptions

• Examples
• head: List(a) -> Maybe(a)  returns nothing if the list is empty
• div: int -> int -> Maybe(int)  returns nothing if the divisor is zero
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Partial Functions 

Maybe a =
         Just a 
      | Nothing

Example use to compose partial functions f and g:
λx.let y = f x in
       case y of 
              Nothing: Nothing
              Just v: g(v)
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Recall

Just = λa.λj.λn.j a

Nothing = λj.λn.n

Equivalent to   y g Nothing



Partial Functions with Monads 

Maybe a =
         Just a 
      | Nothing

-- monad M = Maybe
return = Just 
v >>= f  =  case v of
                        Nothing -> Nothing
                        Just x -> f x 
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Composing Partial Functions

Consider the composition of two partial functions f and g:
 λx. x >>= f >>= g

The Maybe monad handles the Nothing case transparently
• The case analysis is hidden inside of >>=
• Automatically short-circuits the computation if f returns Nothing
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Example

head x =  case x of
                   Nil: Nothing
                   Cons(a,as) : Just(a)

-- take the head of the first list of a list of lists
λl. return l >>= head >>= head
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The State Monad 

return:   a → M a 
return = λv.λs.(v,s)       -- note M a = s → a * s  where s is the state type

>>= :  M a → (a → M b) → M b
p >>= f  =   λs. let (v,s’) = p s in f v s’
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Example Use

-- increment a global counter each time function foo is called
-- the state is a single integer
foo = λx. return 42 >>= λv. inc >>= λz.return v
bar = reset >>= foo >>= foo

-- inc and reset are new operations that manipulate the state
inc = λi.(i+1, i+1)
reset = λi.(0,0)
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Nicer Syntax ...

-- increment a global counter each time function foo is called
-- the state is just a single integer
// interpret assignment := as bind, taking a value of type M a
// unwrapping the value of type a
foo x = do {
               v := return 42
               z := inc
               return v }
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First Principles ...

• We want a stateful function of type a → b
• Which is a pure function of type a → s → (b,s) if we make the state explicit

• The second piece s → (b,s) is a state transformer

• How do we compose a state transformer s → (a,s) and a stateful 
function a → s → (b,s)?
• This is exactly what bind does.
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Discussion

• Return & bind do just a few things:

• The e in return e is a pure computation
• Doesn’t know about the state, can be written normally

• Bind handles the “plumbing” of the monad
• Hides the manipulation of the state except through state primitives
• And correctly sequences it through the computation
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Exceptions
Exceptional e a =
 Success a
       |    Exception e

-- monad M = Exceptional e
return:   a → M a 
return =   Success

>>=: M a → (a → M b) → M b
v >>= f = case v of
          Exception l -> Exception l
          Success  r   -> f r 

throw = Exception

catch e h = case e of
                         Exception l -> h l
                         Success r    -> Success r
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Using Exceptions

Consider composition of two functions f and g that can raise exceptions:
 λx. return x >>= f >>= g

Easy to add a handler for f:
λx. (catch (return x >>= f) h) >>= g

Or for both f and g:
λx. catch (return x >>= f >>= g) h

The threading of the exceptions is tedious without bind

Alex Aiken      CS 242     Lecture 9



The Continuation Monad

Cont r a  = (a → r) → r     -- r is the result type of the computation
   -- a → r is the type of the continuation

A continuation monad M =  Cont r
return:   a → M a 
return = λa.λk. k a

>>=: M a → (a → M b) → M b
c >>= f  =  λk. c (λa. f a k)

return 6 >>= λi. return (7 * i)

Alex Aiken      CS 242     Lecture 9



The Continuation Monad

• Allows building continuations by extending existing continuations
• Continuations are composed in pieces

• Note there is no automatic translation 
• This is not a CPS transformation!

• The programmer must build up the desired continuations by hand
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Discussion

• Monads are an abstraction for programming language features

• And it’s just programming!
• No need for a compiler
• Can add or remove features as desired

• Examples of good uses:
• A small part of the program needs state

• Use the State monad just in that portion
• Part of the program needs State and Exceptions

• Again, just use these monads in the parts where they are needed
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Comments

• Two features are important to making monads work

• Higher-order functions 
• Bind is a higher order function
• Many of the monads wrap higher order functions (continuations)

• Type checking
• The type checker will complain if monads are used incorrectly
• Necessary for most programmers to avoid getting tangled up
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Upsides

• Since it is ``just programming’’, users can write their own monads
• And they do
• Many programming patterns are usefully abstracted as monads

• Monads are ubiquitous in Haskell
• Where they were pioneered

• And have appeared in many other settings
• Again, easy to adopt new ways of structuring software
• Even in languages without monads built-in
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Downsides

• Monads are not a panacea
• “It’s just programming”

• There are three main limitations
• Multiple monads don’t always compose well

• State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
• Monads don’t commute

• To use monads, your program must be structured using return/bind
• Contagious: Whole program tends to end up being written monadically
• Major hit when converting non-monadic code to monadic code

• Performance is not what it could be if the features were built in
• No free lunch – there is a reason compilers are large and complicated

• And the programs end up looking like C++!
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A New View of Languages

• Monads were first used in language semantics
• An idea borrowed from category theory in mathematics
• Instead of messy environments with state, exceptions, continuations, use monads to structure the 

execution rules

• We now view languages as a pure core with monadic  extensions

• Most languages have the monads built in
• State, Exceptions, Concurrency, ...
• Better performance, debugging support, and error messages

• But now we realize many of these features can be implemented within a language with 
higher-order features
• Bridges (one of) the divides between functional and Turing languages
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