Agda

CS242
Lecture 15

Reprise: Program Verification

* Proving properties of programs

e But not just that programs are well-typed
* Much deeper, almost arbitrary properties
* And often verifying full functional correctness

* Components
* A specification: What property the program is supposed to have
e A proof: Written mostly manually

* A proof assistant: Supports defining the concepts, managing the proof, checking the
proof, some automation of easy parts of the proof

* Proof assistants are based on type theory

Today

* An overview of Agda

* One of many systems that implement dependent type theory
* And provide a basis for developing mechanically checked proofs

* Agda is fairly close to Haskell
* In syntax and semantics

Data

data Bool : Set where
false : Bool
true : Bool

not : Bool -> Bool
not true = false
not false = true

“Set” is the equivalent of “Type”
in Lecture 14

“Data” declares algebraic data
types

Not is defined using multiple
clauses with a pattern describing
which argument(s) match each
clause

White Space in Agda

» Agda allows most special characters to appear in identifiers (names)
* And to start identifiers

* Examples of valid names:
e fish+chips
e +10
* i:Int

* Thus whitespace is important in Agda
* i:Int is very different from i : Int

Data (Cont.)

data Nat : Set where * The definition of plus also uses

zero - Nat pattern matching

succ : Nat -> Nat
* Plus is defined with multiple
clauses, each clause handles a
plus : Nat -> Nat -> Nat certain pattern on the lhs

plus zerom=m

plus (succ n) m = succ (plusnm) . Tha first clause handles the case

where the first argument is zero

Data (Cont.)

data Nat : Set where * The definition of plus uses
zero - Nat pattern matching

succ : Nat -> Nat
* Plus is defined with multiple

clauses, each clause handles a
plus : Nat -> Nat -> Nat certain pattern on the |hs

plus zerom =m

plus (succn) m=succ (plusn m) « The second clause handles when

the first argument has the form
(succ n) and binds the variable n

Pattern Matching

* In general a function can be * There can be any number of
defined by cases: clauses

e Patterns can be nested
f patternl = rhsl * succ(succ(x))

® cons\x,cons\y,z
f pattern2 =rhs2 . (l _))
* Variable names in patterns are

* Bound to matching subterms
* In scope on the rhs of the clause

Alex Aiken CS 242 Lecture 15

Pattern Matching in Agda

* |n general a function can be e Patterns must be exhaustive
defined by cases: * Every possible case must be covered
f patterni = rhs1 e Patterns must be disjoint

* The patterns in different clauses
cannot overlap in what they can
match

f pattern2 =rhs2

* Other languages allow overlapping
patterns in different clauses, requires
specifying which pattern will take
priority if more than one matches

Infix Operators

_+ :Nat->Nat->Nat
zero+m=m

succ n+ m =succ (n + m)

data List (A : Set) : Set where
[]: List A
i A->List A->List A

zlist = zero :: []

* An infix operator op is declared
using the name op

* An “ " indicates where the
argument will go

* More general than infix! If-then-
else can be define as an operator

if then_else

Polymorphic Functions

identity : (A : Set) ->A->A e Polymorphic functions are
identity A X = X examples of dependent types

* The function takes a Set argument
and the rest of the function signature

, . depends on the value of that
zero' . Nat argument
zero’ = identity Nat zero * Values of Set are ordinary types

* Note that identity is first applied to
Nat to produce an identity function
of type Nat -> Nat

* Instantiation of the polymorphic type
is explicit

Implicit Arguments

id: {A:Set}->A->A
id X =X

zero'' : Nat
zero'' =id zero

* Types wrapped in “{...}” are implicit
arguments

* The user is asserting that the type
checker should be able to infer the
type with no argument being
actually supplied

* From the types of subsequent
arguments

* In this version, instantiation of the
polymorphic type is implicit
. _Tdhere is no type argument passed to
I

Records

record Position : Set where * Records are like records in functional programming
field languages or structs in C
xc : Nat
yc : Nat

* A collection of named, typed fields

pos : Position

_ _ _ * There is a selector (destructor) for each field
pos = record { xc = zero; yc = succ(zero) }

myxc : Position -> Nat
myxc p = Position.xc p

myyc : Position -> Nat
myyc p = Position.yc p

Polymorphic Records

record Position2 (A : Set) (B : Set) : Set e Record constructors can take
where arguments
field

A i '
XC * This example is a record type

yc:B polymorphic in the types of each
of its two fields

pos2 : Position2 Nat Nat

pos2 = record { xc = zero; yc = succ(zero) }

Next Steps

* So far we've looked at Agda mostly as a mostly standard functional
language

* Next we give a non-trivial example using dependent types

Representing True and False

data False : Set where

record True : Set where

A data type with no constructors
has no elements — there are no
values of type False

A record with no fields has exactly
one value, the empty record,
which we use for True

Using True and False

trivial : True * Trivial is equal to the single value
trivial = _ In True
 Which Agda type inference can

automatically deduce for the
isTrue : Bool -> Set wildcard

IsTrue true = True .
* isTrue maps the elements of

Bool to the corresponding type

* Even though False has no
elements, it is still a type

isTrue false = False

Less Than

<_:Nat-> Nat -> Bool * Note the use of a wildcard
pattern in the first clause

_ < zero = false
Zero < succ n =true

succm<succn=m<n

Length of a List

length : {A : Set} -> List A -> Nat * Note the use of an implicit type
parameter in the type of length

length [] = zero
length (x :: xs) = succ (length xs)

A Digression: Holes

 What if we didn’t know how to write length?
* We could have Agda’s type checker help us by using a hole

length | =7

A Safe List Lookup Function

ookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A
ookup [] n ()
ookup (X :: xs) zero p = X

ookup (x :: xs) (succ n) p = lookup xs n p

Lookup takes a list xs and a natural number n and returns the nth
element of xs.

This lookup function is safe — it only type checks if the list has at least n
elements.

A Safe List Lookup Function

ookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A
ookup [] n ()

ookup (x :: xs) zero p = x

ookup (x :: xs) (succ n) p =lookup xs np

The third argument is a proof object:
* itis True only if the length of xs is less than n.

* If the third argument is equal to False, type checking fails
* since False has no elements, the argument could never be supplied

A Safe List Lookup Function

ookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A
ookup [] n ()

ookup (x :: xs) zero p = x

ookup (x :: xs) (succ n) p =lookup xs np

The first clause uses the absurd pattern ()

* Lookup on the empty list for any n has no proof object
* This case can never happen!

* Note that there is no right-hand side

A Safe List Lookup Function

ookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A
ookup [] n ()

ookup (X :: xs) zero p = x

ookup (x :: xs) (succ n) p = lookup xs n p

Notice the proof object in the recursive call (last clause) is p

* We would expect a different proof object here, one for n and xs instead of
(succ n) and (x :: xs)

e But Agda type checking is smart enough to discover that p implies that n <
length xs

A Useful Datatype

data Eq {A : Set} (x : A) : A ->Set where
refl : Eq x x

* An example of an indexed type
* Eq x returns a function from A to a type in Set
* A different type for every element of A
* We say that the type is indexed by A

* For each x, there is a type Eq x x
* i.e., Eq x x is a different type for each distinct x
e Captures that a value is reflexively equal only to itself

A Proof: Congruence of Function Application

cong: {A:Set}{B:Set}{m:A}{n:A}(f: A->B)->Egmn->Eq (f m) (f n)
cong f refl = refl

e “Ifm=n,thenfm=fn”
* Refl is a constructor of no arguments
e Pattern matching gives the first occurrence of refl type Eg m n

* Type inference deduces the second occurrence of refl must have type Eqg
(f m) (f n), which is valid because if m and n are the same term, then f m
and f n are also the same term

Other Features: Where

sum : List Nat -> Nat e Just as in normal
programming, local

sum xs = helper xs zero ol d! _
definitions help to organize

where the structure of the code

nelper : List Nat -> Nat -> Nat and use local names that

helper [] acc = acc are not visible outside of
the scope

nelper (x :: xs) acc = helper xs (acc + x)

Other Features:

trip : Nat -> Nat
tripn =
let double =n+n
triple = n + double
in triple

Let

* A more common way (in
functional languages) to organize
code and manage names

Other Features: Lambda

addZero : Nat -> Nat * While we have not mentioned it
to this point, Agda supports
unicode, so this is actual Agda
code.

addZeron=(Ax - x+ zero) n

Summary

* Dependent type theory includes functional programming
e But it has a lot more!

* Very expressive types with non-trivial computational content allow us
to state complex propositions as types

* And the programs of that type are then the proofs

	Slide 1: Agda
	Slide 2: Reprise: Program Verification
	Slide 3: Today
	Slide 4: Data
	Slide 5: White Space in Agda
	Slide 6: Data (Cont.)
	Slide 7: Data (Cont.)
	Slide 8: Pattern Matching
	Slide 9: Pattern Matching in Agda
	Slide 10: Infix Operators
	Slide 11: Polymorphic Functions
	Slide 12: Implicit Arguments
	Slide 13: Records
	Slide 14: Polymorphic Records
	Slide 15: Next Steps
	Slide 16: Representing True and False
	Slide 17: Using True and False
	Slide 18: Less Than
	Slide 19: Length of a List
	Slide 20: A Digression: Holes
	Slide 21: A Safe List Lookup Function
	Slide 22: A Safe List Lookup Function
	Slide 23: A Safe List Lookup Function
	Slide 24: A Safe List Lookup Function
	Slide 25: A Useful Datatype
	Slide 26: A Proof: Congruence of Function Application
	Slide 27: Other Features: Where
	Slide 28: Other Features: Let
	Slide 29: Other Features: Lambda
	Slide 30: Summary

