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Reprise: Program Verification

• Proving properties of programs

• But not just that programs are well-typed
• Much deeper, almost arbitrary properties
• And often verifying full functional correctness

• Components
• A specification: What property the program is supposed to have
• A proof: Written mostly manually
• A proof assistant: Supports defining the concepts, managing the proof, checking the 

proof, some automation of easy parts of the proof

• Proof assistants are based on type theory
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Today

• An overview of Agda

• One of many systems that implement dependent type theory
• And provide a basis for developing mechanically checked proofs

• Agda is fairly close to Haskell
• In syntax and semantics
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Data

data Bool : Set where

 false : Bool

 true : Bool

not : Bool -> Bool

not true = false

not false = true

“Set” is the equivalent of “Type” 
in Lecture 14

“Data” declares algebraic data 
types

Not is defined using multiple 
clauses with a pattern describing 
which argument(s) match each 
clause
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White Space in Agda

• Agda allows most special characters to appear in identifiers (names)
• And to start identifiers

• Examples of valid names:
• fish+chips

• +10

• i:Int

• Thus whitespace is important in Agda
• i:Int is very different from i : Int
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Data (Cont.)

data Nat : Set where

 zero : Nat

 succ : Nat -> Nat

plus : Nat -> Nat -> Nat

plus zero m = m

plus (succ n) m = succ (plus n m)

• The definition of plus also uses 
pattern matching

• Plus is defined with multiple 
clauses, each clause handles a 
certain pattern on the lhs

• The first clause handles the case 
where the first argument is zero
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Data (Cont.)

data Nat : Set where

 zero : Nat

 succ : Nat -> Nat

plus : Nat -> Nat -> Nat

plus zero m = m

plus (succ n) m = succ (plus n m)

• The definition of plus uses 
pattern matching

• Plus is defined with multiple 
clauses, each clause handles a 
certain pattern on the lhs

• The second clause handles when 
the first argument has the form 
(succ n) and binds the variable n

Alex Aiken      CS 242     Lecture 15



Pattern Matching

• In general a function can be 
defined by cases:

f pattern1 = rhs1

f pattern2 = rhs2

…

• There can be any number of 
clauses

• Patterns can be nested
• succ(succ(x))

• cons(x,cons(y,z))

• Variable names in patterns are
• Bound to matching subterms

• In scope on the rhs of the clause
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Pattern Matching in Agda

• In general a function can be 
defined by cases:

f pattern1 = rhs1

f pattern2 = rhs2

…

• Patterns must be exhaustive
• Every possible case must be covered

• Patterns must be disjoint
• The patterns in different clauses 

cannot overlap in what they can 
match

• Other languages allow overlapping 
patterns in different clauses, requires 
specifying which pattern will take 
priority if more than one matches
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Infix Operators

_+_ : Nat -> Nat -> Nat

zero + m = m

succ n + m = succ (n + m)

data List (A : Set) : Set where

 [] : List A

 _::_ : A -> List A -> List A

zlist = zero :: []

• An infix operator op is declared 
using the name _op_

• An “_” indicates where the 
argument will go

• More general than infix!  If-then-
else can be define as an operator

if_then_else_
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Polymorphic Functions

identity : (A : Set) -> A -> A

identity A x = x

zero’ : Nat

zero’ = identity Nat zero

• Polymorphic functions are 
examples of dependent types
• The function takes a Set argument 

and the rest of the function signature 
depends on the value of that 
argument

• Values of Set are ordinary types

• Note that identity is first applied to 
Nat to produce an identity function 
of type Nat -> Nat
• Instantiation of the polymorphic type 

is explicit
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Implicit Arguments

id : {A : Set} -> A -> A
id x = x

zero'' : Nat
zero'' = id zero

• Types wrapped in “{…}” are implicit 
arguments

• The user is asserting that the type 
checker should be able to infer the 
type with no argument being 
actually supplied
• From the types of subsequent 

arguments

• In this version, instantiation of the 
polymorphic type is implicit
• There is no type argument passed to 

id
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Records

record Position : Set  where

   field

      xc : Nat

      yc : Nat

pos : Position

pos = record { xc = zero; yc = succ(zero) }

myxc : Position -> Nat

myxc p = Position.xc p

myyc : Position -> Nat

myyc p = Position.yc p

• Records are like records in functional programming 
languages or structs in C

• A collection of named, typed fields

• There is a selector (destructor) for each field
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Polymorphic Records

record Position2 (A : Set) (B : Set) : Set  
where

   field

      xc : A

      yc : B

pos2 : Position2 Nat Nat

pos2 = record { xc = zero; yc = succ(zero) }

• Record constructors can take 
arguments

• This example is a record type 
polymorphic in the types of each 
of its two fields
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Next Steps

• So far we’ve looked at Agda mostly as a mostly standard functional 
language

• Next we give a non-trivial example using dependent types
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Representing True and False

data False : Set where

record True : Set where

A data type with no constructors 
has no elements – there are no 
values of type False

A record with no fields has exactly 
one value, the empty record, 
which we use for True
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Using True and False

trivial : True

trivial = _

isTrue : Bool -> Set

isTrue true = True

isTrue false = False

• Trivial is equal to the single value 
in True 
• Which Agda type inference can 

automatically deduce for the 
wildcard

• isTrue maps the elements of 
Bool to the corresponding type
• Even though False has no 

elements, it is still a type
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Less Than

_<_ : Nat -> Nat -> Bool

_ < zero = false

zero < succ n = true

succ m < succ n = m < n

• Note the use of a wildcard 
pattern in the first clause
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Length of a List

length : {A : Set} -> List A -> Nat

length [] = zero

length (x :: xs) = succ (length xs)

• Note the use of an implicit type 
parameter in the type of length
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A Digression: Holes

• What if we didn’t know how to write length?

• We could have Agda’s type checker help us by using a hole

length l = ?
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A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

Lookup takes a list xs and a natural number n and returns the nth 
element of xs.

This lookup function is safe – it only type checks if the list has at least n 
elements.
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A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

The third argument is a proof object: 

• it is True only if the length of xs is less than n.  

• If the third argument is equal to False, type checking fails 
• since False has no elements, the argument could never be supplied
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A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

The first clause uses the absurd pattern () 

• Lookup on the empty list for any n has no proof object

• This case can never happen!

• Note that there is no right-hand side

Alex Aiken      CS 242     Lecture 15



A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

Notice the proof object in the recursive call (last clause) is p

• We would expect a different proof object here, one for n and xs instead of 
(succ n) and (x :: xs)

• But Agda type checking is smart enough to discover that p implies that n < 
length xs
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A Useful Datatype

data Eq {A : Set} (x : A) : A -> Set where

    refl : Eq x x

• An example of an indexed type
• Eq x returns a function from A to a type in Set
• A different type for every element of A
• We say that the type is indexed by A

• For each x, there is a type Eq x x
• i.e., Eq x x is a different type for each distinct x
• Captures that a value is reflexively equal only to itself
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A Proof: Congruence of Function Application

cong : {A : Set} {B : Set} {m : A} {n : A} (f : A -> B) -> Eq m n -> Eq (f m) (f n)

cong f refl = refl

• “If m = n, then f m = f n”

• Refl is a constructor of no arguments

• Pattern matching gives the first occurrence of refl type Eq m n

• Type inference deduces the second occurrence of refl must have type Eq 
(f m) (f n), which is valid because if m and n are the same term, then f m 
and f n are also the same term
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Other Features: Where

sum : List Nat -> Nat

sum xs = helper xs zero

  where

    helper : List Nat -> Nat -> Nat

    helper [] acc = acc

    helper (x :: xs) acc = helper xs (acc + x)

• Just as in normal 
programming, local 
definitions help to organize 
the structure of the code 
and use local names that 
are not visible outside of 
the scope
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Other Features: Let

trip : Nat -> Nat

trip n =

  let double = n + n

      triple = n + double

  in triple

• A more common way (in 
functional languages) to organize 
code and manage names
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Other Features: Lambda

addZero : Nat -> Nat

addZero n = (λ x → x + zero) n

• While we have not mentioned it 
to this point, Agda supports 
unicode, so this is actual Agda 
code.
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Summary

• Dependent type theory includes functional programming
• But it has a lot more!

• Very expressive types with non-trivial computational content allow us 
to state complex propositions as types
• And the programs of that type are then the proofs
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