
Agda
CS242

Lecture 15

Alex Aiken CS 242 Lecture 15

Reprise: Program Verification

• Proving properties of programs

• But not just that programs are well-typed
• Much deeper, almost arbitrary properties
• And often verifying full functional correctness

• Components
• A specification: What property the program is supposed to have
• A proof: Written mostly manually
• A proof assistant: Supports defining the concepts, managing the proof, checking the

proof, some automation of easy parts of the proof

• Proof assistants are based on type theory

Alex Aiken CS 242 Lecture 15

Today

• An overview of Agda

• One of many systems that implement dependent type theory
• And provide a basis for developing mechanically checked proofs

• Agda is fairly close to Haskell
• In syntax and semantics

Alex Aiken CS 242 Lecture 15

Data

data Bool : Set where

 false : Bool

 true : Bool

not : Bool -> Bool

not true = false

not false = true

“Set” is the equivalent of “Type”
in Lecture 14

“Data” declares algebraic data
types

Not is defined using multiple
clauses with a pattern describing
which argument(s) match each
clause

Alex Aiken CS 242 Lecture 15

White Space in Agda

• Agda allows most special characters to appear in identifiers (names)
• And to start identifiers

• Examples of valid names:
• fish+chips

• +10

• i:Int

• Thus whitespace is important in Agda
• i:Int is very different from i : Int

Alex Aiken CS 242 Lecture 15

Data (Cont.)

data Nat : Set where

 zero : Nat

 succ : Nat -> Nat

plus : Nat -> Nat -> Nat

plus zero m = m

plus (succ n) m = succ (plus n m)

• The definition of plus also uses
pattern matching

• Plus is defined with multiple
clauses, each clause handles a
certain pattern on the lhs

• The first clause handles the case
where the first argument is zero

Alex Aiken CS 242 Lecture 15

Data (Cont.)

data Nat : Set where

 zero : Nat

 succ : Nat -> Nat

plus : Nat -> Nat -> Nat

plus zero m = m

plus (succ n) m = succ (plus n m)

• The definition of plus uses
pattern matching

• Plus is defined with multiple
clauses, each clause handles a
certain pattern on the lhs

• The second clause handles when
the first argument has the form
(succ n) and binds the variable n

Alex Aiken CS 242 Lecture 15

Pattern Matching

• In general a function can be
defined by cases:

f pattern1 = rhs1

f pattern2 = rhs2

…

• There can be any number of
clauses

• Patterns can be nested
• succ(succ(x))

• cons(x,cons(y,z))

• Variable names in patterns are
• Bound to matching subterms

• In scope on the rhs of the clause

Alex Aiken CS 242 Lecture 15

Pattern Matching in Agda

• In general a function can be
defined by cases:

f pattern1 = rhs1

f pattern2 = rhs2

…

• Patterns must be exhaustive
• Every possible case must be covered

• Patterns must be disjoint
• The patterns in different clauses

cannot overlap in what they can
match

• Other languages allow overlapping
patterns in different clauses, requires
specifying which pattern will take
priority if more than one matches

Alex Aiken CS 242 Lecture 15

Infix Operators

+ : Nat -> Nat -> Nat

zero + m = m

succ n + m = succ (n + m)

data List (A : Set) : Set where

 [] : List A

 :: : A -> List A -> List A

zlist = zero :: []

• An infix operator op is declared
using the name _op_

• An “_” indicates where the
argument will go

• More general than infix! If-then-
else can be define as an operator

if_then_else_

Alex Aiken CS 242 Lecture 15

Polymorphic Functions

identity : (A : Set) -> A -> A

identity A x = x

zero’ : Nat

zero’ = identity Nat zero

• Polymorphic functions are
examples of dependent types
• The function takes a Set argument

and the rest of the function signature
depends on the value of that
argument

• Values of Set are ordinary types

• Note that identity is first applied to
Nat to produce an identity function
of type Nat -> Nat
• Instantiation of the polymorphic type

is explicit

Alex Aiken CS 242 Lecture 15

Implicit Arguments

id : {A : Set} -> A -> A
id x = x

zero'' : Nat
zero'' = id zero

• Types wrapped in “{…}” are implicit
arguments

• The user is asserting that the type
checker should be able to infer the
type with no argument being
actually supplied
• From the types of subsequent

arguments

• In this version, instantiation of the
polymorphic type is implicit
• There is no type argument passed to

id

Alex Aiken CS 242 Lecture 15

Records

record Position : Set where

 field

 xc : Nat

 yc : Nat

pos : Position

pos = record { xc = zero; yc = succ(zero) }

myxc : Position -> Nat

myxc p = Position.xc p

myyc : Position -> Nat

myyc p = Position.yc p

• Records are like records in functional programming
languages or structs in C

• A collection of named, typed fields

• There is a selector (destructor) for each field

Alex Aiken CS 242 Lecture 15

Polymorphic Records

record Position2 (A : Set) (B : Set) : Set
where

 field

 xc : A

 yc : B

pos2 : Position2 Nat Nat

pos2 = record { xc = zero; yc = succ(zero) }

• Record constructors can take
arguments

• This example is a record type
polymorphic in the types of each
of its two fields

Alex Aiken CS 242 Lecture 15

Next Steps

• So far we’ve looked at Agda mostly as a mostly standard functional
language

• Next we give a non-trivial example using dependent types

Alex Aiken CS 242 Lecture 15

Representing True and False

data False : Set where

record True : Set where

A data type with no constructors
has no elements – there are no
values of type False

A record with no fields has exactly
one value, the empty record,
which we use for True

Alex Aiken CS 242 Lecture 15

Using True and False

trivial : True

trivial = _

isTrue : Bool -> Set

isTrue true = True

isTrue false = False

• Trivial is equal to the single value
in True
• Which Agda type inference can

automatically deduce for the
wildcard

• isTrue maps the elements of
Bool to the corresponding type
• Even though False has no

elements, it is still a type

Alex Aiken CS 242 Lecture 15

Less Than

< : Nat -> Nat -> Bool

_ < zero = false

zero < succ n = true

succ m < succ n = m < n

• Note the use of a wildcard
pattern in the first clause

Alex Aiken CS 242 Lecture 15

Length of a List

length : {A : Set} -> List A -> Nat

length [] = zero

length (x :: xs) = succ (length xs)

• Note the use of an implicit type
parameter in the type of length

Alex Aiken CS 242 Lecture 15

A Digression: Holes

• What if we didn’t know how to write length?

• We could have Agda’s type checker help us by using a hole

length l = ?

Alex Aiken CS 242 Lecture 15

A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

Lookup takes a list xs and a natural number n and returns the nth
element of xs.

This lookup function is safe – it only type checks if the list has at least n
elements.

Alex Aiken CS 242 Lecture 15

A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

The third argument is a proof object:

• it is True only if the length of xs is less than n.

• If the third argument is equal to False, type checking fails
• since False has no elements, the argument could never be supplied

Alex Aiken CS 242 Lecture 15

A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

The first clause uses the absurd pattern ()

• Lookup on the empty list for any n has no proof object

• This case can never happen!

• Note that there is no right-hand side

Alex Aiken CS 242 Lecture 15

A Safe List Lookup Function

lookup : {A : Set}(xs : List A)(n : Nat) -> isTrue (n < length xs) -> A

lookup [] n ()

lookup (x :: xs) zero p = x

lookup (x :: xs) (succ n) p = lookup xs n p

Notice the proof object in the recursive call (last clause) is p

• We would expect a different proof object here, one for n and xs instead of
(succ n) and (x :: xs)

• But Agda type checking is smart enough to discover that p implies that n <
length xs

Alex Aiken CS 242 Lecture 15

A Useful Datatype

data Eq {A : Set} (x : A) : A -> Set where

 refl : Eq x x

• An example of an indexed type
• Eq x returns a function from A to a type in Set
• A different type for every element of A
• We say that the type is indexed by A

• For each x, there is a type Eq x x
• i.e., Eq x x is a different type for each distinct x
• Captures that a value is reflexively equal only to itself

Alex Aiken CS 242 Lecture 15

A Proof: Congruence of Function Application

cong : {A : Set} {B : Set} {m : A} {n : A} (f : A -> B) -> Eq m n -> Eq (f m) (f n)

cong f refl = refl

• “If m = n, then f m = f n”

• Refl is a constructor of no arguments

• Pattern matching gives the first occurrence of refl type Eq m n

• Type inference deduces the second occurrence of refl must have type Eq
(f m) (f n), which is valid because if m and n are the same term, then f m
and f n are also the same term

Alex Aiken CS 242 Lecture 15

Other Features: Where

sum : List Nat -> Nat

sum xs = helper xs zero

 where

 helper : List Nat -> Nat -> Nat

 helper [] acc = acc

 helper (x :: xs) acc = helper xs (acc + x)

• Just as in normal
programming, local
definitions help to organize
the structure of the code
and use local names that
are not visible outside of
the scope

Alex Aiken CS 242 Lecture 15

Other Features: Let

trip : Nat -> Nat

trip n =

 let double = n + n

 triple = n + double

 in triple

• A more common way (in
functional languages) to organize
code and manage names

Alex Aiken CS 242 Lecture 15

Other Features: Lambda

addZero : Nat -> Nat

addZero n = (λ x → x + zero) n

• While we have not mentioned it
to this point, Agda supports
unicode, so this is actual Agda
code.

Alex Aiken CS 242 Lecture 15

Summary

• Dependent type theory includes functional programming
• But it has a lot more!

• Very expressive types with non-trivial computational content allow us
to state complex propositions as types
• And the programs of that type are then the proofs

Alex Aiken CS 242 Lecture 15

	Slide 1: Agda
	Slide 2: Reprise: Program Verification
	Slide 3: Today
	Slide 4: Data
	Slide 5: White Space in Agda
	Slide 6: Data (Cont.)
	Slide 7: Data (Cont.)
	Slide 8: Pattern Matching
	Slide 9: Pattern Matching in Agda
	Slide 10: Infix Operators
	Slide 11: Polymorphic Functions
	Slide 12: Implicit Arguments
	Slide 13: Records
	Slide 14: Polymorphic Records
	Slide 15: Next Steps
	Slide 16: Representing True and False
	Slide 17: Using True and False
	Slide 18: Less Than
	Slide 19: Length of a List
	Slide 20: A Digression: Holes
	Slide 21: A Safe List Lookup Function
	Slide 22: A Safe List Lookup Function
	Slide 23: A Safe List Lookup Function
	Slide 24: A Safe List Lookup Function
	Slide 25: A Useful Datatype
	Slide 26: A Proof: Congruence of Function Application
	Slide 27: Other Features: Where
	Slide 28: Other Features: Let
	Slide 29: Other Features: Lambda
	Slide 30: Summary

