
Gradual Types
CS242

Lecture 16

Alex Aiken CS 242 Lecture 16

Alex Aiken CS 242 Lecture 16

Flashback …

• There is a split in the world of programming between
• Statically typed languages
• Dynamically typed languages

• Leave the religious debate aside for now ...
• We’ll come back to why there is a debate at all

Statically vs. Dynamically Typed Languages

• Lecture outline

• Brief review of static typing
• and its tradeoffs

• Dynamic typing
• and its tradeoffs

• Gradual typing in MyPy
• an example of the kind of compromise that is gaining popularity

Alex Aiken CS 242 Lecture 16

Today’s Lambda Calculus Variation ...

e → x | λx:t.e | e e | i | e + e

Alex Aiken CS 242 Lecture 16

Static Type Rules

Alex Aiken CS 242 Lecture 16

[Var]
A, x: t d x : t

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’

[Abs]
A, x: t d e : t’

A d λx:t.e : t → t’

A d i : Int
[Int]

A d e1 : Int

A d e2 : Int

A d e1 + e2 : Int
[Add]

Benefits of Static Typing

• Find type errors when the program is written
• Well, actually when the type checker runs

• Makes guarantees for all possible executions
• For all time, no matter the input

• Faster execution
• No need to do any runtime type checking
• The types have already been checked ...

Alex Aiken CS 242 Lecture 16

Dynamic Typing

• Instead of checking types at compile time, types are checked when
the program executes

• Sound: Type errors during execution will be detected

• Not the same as untyped languages!

Alex Aiken CS 242 Lecture 16

How Does Dynamic Typing Work?

• In the implementation, every value has a “tag” indicating its type

• In our simple language, we need two tags: int and fun

• Note that the fun tag says only “this is a function”
• No information about the domain and range types

• When an operation requires a certain type, we check the tag
• And remove it to get the untagged value

Alex Aiken CS 242 Lecture 16

Dynamically Typed Lambda Calculus

The language we write programs in is the same (w/o types):
e → x | λx.e | e e | i | e + e

We complete programs to make the dynamic checks explicit
• !t e mark e with the type tag t
• ?t e check if e has the type tag t (and remove the tag)

e → x | λx.e | e e | i | e + e | !t e | ?t e
t → int | fun

Alex Aiken CS 242 Lecture 16

Dynamic Typing Program Translation Rules

Alex Aiken CS 242 Lecture 16

[Var]
x ↪ x

[App]
e1 e2 ↪ (?fun e1’) e2’

[Abs]
e ↪ e’

λx.e ↪ !fun λx.e’

i ↪ !int i
[Int]

e1 ↪ e1’

e2 ↪	e2’

e1 + e2 ↪!int ((?int e1’) + (?int e2’))
[Add]

e1 ↪ e1’

e2 ↪	e2’

Example

(λx.x + 1) 2 ↪ ?fun (!fun (λx. int! (int? x + int? (int! 1))) int! 2

Fully parenthesized:
(λx.x + 1) 2 ↪ (?fun (!fun (λx. int! ((int? x) + (int? (int! 1)))))) (int! 2)

Alex Aiken CS 242 Lecture 16

Rules for Execution

Alex Aiken CS 242 Lecture 16

[Unbox-Int]

[Unbox-Fun]

E d e → i

E d !int e → !int i

[Box-Int]

E d λx.e → λx.e

E d !fun λx.e → !fun λx.e
[Box-Fun]

E d e → ?fun (!fun λx.e’)

E d e → λx.e’

E d e → ?int (!int i)

E d e → i

Example

(λx.x + 1) 2 ↪ (?fun (!fun (λx. !int (?int x + ?int (!int 1)))) (!int 2)

→ (λx. !int (?int x + ?int (!int 1))) (!int 2)
→ !int (?int (!int 2) + ?int (!int 1)))
→ !int (2 + ?int (!int 1))
→ !int (2 + 1)
→ !int 3

Alex Aiken CS 242 Lecture 16

Benefits of Dynamic Typing

• Guarantees that a specific program execution is type correct

• Easy to put together arbitrary pieces of code
• No type checker nagging you!

• Lower barrier to entry for programmers
• Don’t need to understand the (often complicated) type system
• Only need to debug real errors, not obscure type checking error messages

Alex Aiken CS 242 Lecture 16

Static vs. Dynamic Typing

Safety
 Proving type safety of all executions vs. one execution

Productivity
 Can’t write some programs vs. can write all programs
 Much to learn vs. little to learn

Performance
 Faster code vs. Slower code
 Slow compiles vs. No compiles

Alex Aiken CS 242 Lecture 16

Observations

• The benefits of static typing grow with
• The size of the program
• The number of programmers involved
• The size of the user community of the program

• Because
• It is easier to reason by hand about a small program than a big one
• Inconsistencies are inevitable when multiple people work on a project
• Users don’t want to deal with developers’ bugs

Alex Aiken CS 242 Lecture 16

Prediction

• So we expect big, performance-oriented programs to be written in
statically typed languages
• Operating systems, compilers, databases, web servers, numerical libraries, ...

• Where programs are small, performance is not important, or we need
to compose programs in ways that static type systems cannot handle,
we expect to see more use of dynamically typed languages
• Scripts, client-side web programming

Alex Aiken CS 242 Lecture 16

Reality

Alex Aiken CS 242 Lecture 16

What Happened?

• A few things ...

• Small programs grew into big programs

• Network effect
• Easier to write all the code for a system in fewer languages

• Training effect
• Much easier to hire python programmers than C++ programmers

Alex Aiken CS 242 Lecture 16

Reality

Alex Aiken CS 242 Lecture 16

The Grass is Greener ...

• Large systems written in dynamically typed languages inevitably
• Suffer from poor performance
• And runtime type errors

• And, just as inevitably, there are efforts to convert the code base
• Find a way to add type information

• Python annotations
• Build tools to try to do best effort type inference and optimize code

• Facebook’s PHP -> C++ compiler

Alex Aiken CS 242 Lecture 16

Gradual Types

• There have been many efforts to integrate static type features into
dynamically typed languages
• Not much interest in the other direction

• Gradual types is one approach

Alex Aiken CS 242 Lecture 16

The Dream

• We want a seamless transition from untyped to fully typed code

• A program with no types behaves as a dynamically typed program

• A program with all types filled in is statically typed

• And anything in between ...

Alex Aiken CS 242 Lecture 16

MyPy

• A gradual type system for Python
• Referred to as “an optional type system”

``Migrate existing code to static typing, a function at a time. You can
freely mix static and dynamic typing within a program …’’

Alex Aiken CS 242 Lecture 16

Features

• Type declarations
• Type inference
• The Any type
• Class types
• Subtyping
• Covariance, Invariance, Contravariance

Alex Aiken CS 242 Lecture 16

Type Declarations

age: int = 1
tolerance: float = 0.3
x: list[int] = [1,2,3]
s: set[int] = {4,5}
d: dict[str,float] = {“Amazon River”: 3977.0}

Type for variables can be explicitly declared
• And will be checked by MyPy

Alex Aiken CS 242 Lecture 16

Type Inference

def nums_below(numbers: Iterable[float], limit: float) -> list[float]:
 output = []
 for num in numbers:
 if num < limit:
 output.append(num)
 return output

Alex Aiken CS 242 Lecture 16

Type Any

n = 1 # n inferred to have type Int
n = ‘x’ # type error!

a: Any = 1
a = ‘x’ # no type error
n = a # no type error
n = n + 1 # runtime type error

Alex Aiken CS 242 Lecture 16

Type Any, Cont.

• In type checking, Any matches any other type

• Another view: Any type error involving Any is suppressed

• Using values with dynamic type Any is the way to mix statically typed
and dynamically typed code

Alex Aiken CS 242 Lecture 16

Classes

Class Point:
 def __init__(self,x,y):
 self.x = x
 self.y = y

 def move(self,newx,newy):
 self.x = newx
 self.y = newy

 def getx(self):
 return self.x
 def gety(self):
 return self.y

Alex Aiken CS 242 Lecture 16

Inheritance

class ColorPoint(Point):
 def set_color(newc):
 self.color = newc

Alex Aiken CS 242 Lecture 16

Nominal Subtyping

• ColorPoint is a subtype of Point
• Because ColorPoint explicitly inherits from Point
• This is nominal subtyping
• By far the most common form of subtyping in practice

• We write ColorPoint [Point
• Anywhere a Point is expected, a ColorPoint can also be used

Alex Aiken CS 242 Lecture 16

Structural Subtyping

• Python also supports structural subtyping
• Also called “duck typing”

• We consider X [Y because X implements the methods of Y
• No explicit declaration that X inherits Y is needed, the compatibility is

determined automatically

• Example: If a class defines a method __iter__ with suitable
arguments, MyPy understands it is of type Iterable[T]

Alex Aiken CS 242 Lecture 16

Subtyping

• Recall that a type is a set of values
• If A [B, that means A is a subset of B

• Once it is determined that A [B, the use of subtyping is the same
• Whether it is nominal or structural

• Subtyping has some interesting properties in static typing …

Alex Aiken CS 242 Lecture 16

Example

def reset_point(p: Point):
 p.move(0,0)

c: ColorPoint = ColorPoint()
reset_point(c)

Alex Aiken CS 242 Lecture 16

The Type Object

• Object is the root of the class hierarchy
• C [Object for any class C

• Note that Object is not the same as Any!
• Object is itself a class
• Any is a static type for any dynamically typed value

Alex Aiken CS 242 Lecture 16

Covariant Typing

• Recall: Type constructors are functions that take types as arguments and
return types as results

• A type constructor C[A] is covariant if X [Y implies C[X] [C[Y]

• Example: Union[X ,X] [Union[X,Y]

p: Union[Point,Int]
p = Point()
p = 1

Alex Aiken CS 242 Lecture 16

Is List Covariant?

def addone(l: List[Point]) -> None:
 l.append(Point())

cp: List[ColorPoint] : []
addone(cp) # note ColorPoint <= Point
cp[0].set_color(“blue”) # the Point has no set_color method!

Alex Aiken CS 242 Lecture 16

What Went Wrong?

def addone(l: List[Point]) -> None:
 l.append(Point())

cp: List[ColorPoint] : []
addone(cp) # note ColorPoint [Point
cp[0].set_color(“blue”) # the Point has no set_color method!

Alex Aiken CS 242 Lecture 16

These two names are aliases of the
same list in memory. But they have
different types!

Aliasing + Mutability + Covariance = Unsound!

Alex Aiken CS 242 Lecture 16

List

List[Point] List[ColorPoint]

If List is a mutable container, we can add an object of the supertype through one
pointer, and call a method of the subtype on the other pointer.

Aliasing + Mutability + Covariance = Unsound!

Alex Aiken CS 242 Lecture 16

List

List[Point] List[ColorPoint]

Another explanation: Aliasing is a symmetric property, either pointer can be used to
read/write the list. But subtyping is asymmetric. No matter which direction the
subtyping goes, it will be unsound.

Invariant Typing

Subtyping cannot be used with mutable containers: They must use
invariant typing.

def addone(l: List[Point]) -> None:
 l.append(Point())

cp: List[ColorPoint] : []
addone(cp) # type error List[Point] != List[ColorPoint]
cp[0].set_color(“blue”) # the Point has no set_color method!

Alex Aiken CS 242 Lecture 16

Contravariance

• Function types are contravariant in the domain, covariant in the
range

• Example: Point → Int [ColorPoint → Int
• If we expect a function that takes ColorPoint objects as arguments, it is OK to

use a function that takes a larger class of arguments such as Point
• The Point function will just access a subset of the methods of ColorPoint

• In general A → B [C → D if C [A and B [D

Alex Aiken CS 242 Lecture 16

Function Subtyping: An Illustration

Consider a universe U with just two values.

Alex Aiken CS 242 Lecture 16

Function Subtyping: An Illustration

There are four possible functions of type U -> U

Alex Aiken CS 242 Lecture 16

Function Subtyping : An Illustration

Now consider a type G = { }. Clearly G <= U = { , }.

Alex Aiken CS 242 Lecture 16

Function Subtyping : An Illustration
Compare G -> G (green outline) with G -> U (red outline).
G -> G <= G -> U, illustrating function subtyping is covariant in the range

Alex Aiken CS 242 Lecture 16

Function Subtyping: An Illustration
Compare G -> G (green outline) with U -> G (red outline).
U -> G <= G -> G, illustrating function subtyping is contravariant in the domain

Alex Aiken CS 242 Lecture 16

Example

def convertToInt(c: ColorPoint, f: Callable[[ColorPoint],Int]) -> Int:
 return f(c)

def getX(p: Point) -> Int:
 return p.x

convertToInt(ColorPoint(),getx)

Alex Aiken CS 242 Lecture 16

Variance

• Most subtyping is covariant

• For mutable container types invariant typing is necessary for
soundness
• Because using subtyping will always be unsound for a pair of aliases of

different types for some combination of writes through one and reads
through the other

• Function subtyping is naturally contravariant in the domain

Alex Aiken CS 242 Lecture 16

Summary

• Gradual typing allows dynamically typed and statically typed code to
be mixed
• In particular, allows the gradual addition of static types to otherwise

dynamically typed code

• MyPy is the most popular gradual type system in use today
• Includes subtyping to handle Python’s class system
• Includes generic type constructors to handle container types such as lists

Alex Aiken CS 242 Lecture 16

