
Clean-Up and Wrap-Up
CS242

Lecture 18

Alex Aiken      CS 242     Lecture 18



The Final

• Final exam is 8:30-11:30 next Wednesday (Dec. 11)
• In B1, Gates

• Open note, and electronic devices are OK
• But no internet or computation, only use to read your notes

Alex Aiken      CS 242     Lecture 18



The Untyped and Simply Typed Lambda Calculi

Untyped lambda calculus:

 e → x  |  λx.e |  e e

Simply typed lambda calculus:

 e → x  |  λx: t.e |  e e | i
 t  → ⍺ | t → t | int

Alex Aiken      CS 242     Lecture 18



Extension 1: Algebraic Data Types

General form

DataType A(var1,…,varn):
     …
     Constructori: t1 → … → tk → A (var1,…,varn)
     …

Each constructor defines a pure lambda term.

Alex Aiken      CS 242     Lecture 18



Example: Lists

Consider the list data type:

List(A):
 nil: List(A)
 cons: A -> List(A) -> List(A)

nil:  λn.λc.n
cons: λh.λt.λn.λc.c h (t n c)

Alex Aiken      CS 242     Lecture 18



Other Examples

• Non-negative integers
• Pairs
• Booleans
• Binary trees

• In general, any tree-shaped data structure

Alex Aiken      CS 242     Lecture 18



Extension 2: Constants

• We can extend the lambda calculus with additional functions and constants

• Example
• Add all integers …, -1, 0, 1, …
• And addition.  +: int → int → int

• Other typical built-ins:
• Floating point numbers
• Booleans
• Characters
• Strings
• Arrays

Alex Aiken      CS 242     Lecture 18



Control Constructs: If and Recursion

We can also extend the calculus with control constructs

if: Bool → t → t → t

Usage: if e1 e2 e3

Question: Why would if-then-else need to be built in rather than 
defined within the lambda calculus?

Alex Aiken      CS 242     Lecture 18



Typing Checking for If

Alex Aiken      CS 242     Lecture 18

[If]

A d if e1 e2 e3 : t

A d e1 : Bool

A d e2 : t

A d e3 : t



Typing Inference for If

Alex Aiken      CS 242     Lecture 18

[If]

A d if e1 e2 e3 : t1

A d e1 : Bool

A d e2 : t1

A d e3 : t2

t1 = t2



Recursion

Recall
    let x = e1 in e2 is equivalent to           (λx.e2) e1 

Extend to recursive definitions
    letrec f = λx.e1 in e2 is equivalent to          (λf.e2) (Y λf.λx.e1)
 recall (lecture 4) that Y = λf.(λx. f (x x)) (λx. f(x x))
 

Alex Aiken      CS 242     Lecture 18



Typing Checking for Recursive Definitions

Alex Aiken      CS 242     Lecture 18

[Letrec]
A d letrec f = λx.e1 in e2 : t

A, f: t1 → t2 d λx.e1 : t1 → t2

 A, f: t1 → t2 d e2 : t



Typing Inference for Recursive Definitions

Alex Aiken      CS 242     Lecture 18

[Letrec]
A d letrec f = λx.e1 in e2 : t

A, f: ⍺ → b d λx.e1 : t1 → t2

A, f: ⍺ → b d e2 : t

⍺ = t1        b = t2

Note:  This inference rule is more restrictive than necessary 
– the full rule introduces polymorphic (universally 
quantified) types ala non-recursive let.



A Question

Why would recursion need to be built in rather than written within the 
language using the Y combinator?

Alex Aiken      CS 242     Lecture 18



Extension 3: Polymorphic Types

e → x  |  λx.e |  e e | let f = λx.e in e | i

 t  → ⍺ | t → t | int  
 o → "⍺.o | t

Alex Aiken      CS 242     Lecture 18



Subtyping: A Subtle Topic

Alex Aiken      CS 242     Lecture 18

[If]

A d if e1 e2 e3 : t1

A d e1 : Bool

A d e2 : t1

A d e3 : t2

t1 = t2
[If]

A d if e1 e2 e3 : t

A d e1 : Bool

A d e2 : t1

A d e3 : t2

t1 < t      t2 < t



Java’s Type Rule for ? (Approximately …)

Alex Aiken      CS 242     Lecture 18

[If]

A d e1 ? e2 : e3 : t3

A d e1 : Bool

A d e2 : t1

A d e3 : t2

t3  = lub(t1 , t2)

lub = least upper bound

lub(t1 , t2) is the smallest type 
that is a supertype of both t1  
and t2



What Else Didn’t We Talk About?

• Traditional overloading

• Having multiple functions of different types with the same name

+: int → int → int
+: float → float → float
+: string → string → string

Overloading rules in languages with subtyping are complicated.

Alex Aiken      CS 242     Lecture 18



Functional Languages

• Lambda calculus + primitive functions + algebraic data types

• These features are the core of all functional languages
• Lisp, Scheme, Racket

• Plus polymorphic types for typed functional languages
• ML, OCaml, Haskell

Alex Aiken      CS 242     Lecture 18



Monads

• Plumbs generalized “state” through a computation
• Makes implicit arguments (like global variables and state) explicit
• Does the sequencing through higher-order functions

• Many language features can be expressed as monads
• State
• Continuations
• Exceptions
• (Some kinds of) threads

• All except pure functional languages have some built-in monads
• Typically state and exceptions, continuations and threads are less common
• Haskell exposes monads to the programmer – define your own language features!

Alex Aiken      CS 242     Lecture 18



Objects

• Objects are something different
• Typed object-oriented languages are not easily translated into typed 

functional languages

• Unrestricted method override is difficult to deal with in typed systems

• Solutions
• Restrict method override: Java, C++ limit it to inheritance between classes
• Use core functional language + records to get most of OO: OCaml, Haskell
• Go to an untyped language: Python, Javascript
• Use traits, mixins: Rust, Scala

Alex Aiken      CS 242     Lecture 18



Big Picture

• All mainstream languages have converged on supporting
• Objects
• First-class functions
• Means typed languages must deal with parametric polymorphism and 

subtyping in some way

• The details vary
• Because the theory suggests there is no one best design

•  But why did this happen?

Alex Aiken      CS 242     Lecture 18



Object Oriented vs Functional Languages

• Functional language example:

f cons(a,b) = a
f nil = nil

Adding a new function is a local change.
Adding a new kind of data, such as a new constructor to a data type, 
requires updating every function that uses that type.

Alex Aiken      CS 242     Lecture 18



Object Oriented vs Functional Languages

• Object-oriented language example:

Class List of
    method cons(x,y) …
    method nil …
end
Adding a new kind of data type is a local change.
Adding a new function (method) may require updating many classes 
with a definition of that method (modulo inheritance).

Alex Aiken      CS 242     Lecture 18



Adding Objects to Functional Languages

• Type classes are Haskell’s way of providing object-like features
• But really much closer to Java’s interfaces than objects

• Examples

(==) :: Eq a => a -> a -> bool
Any type a that supports equality should be part of the Eq class

(<) :: Ord a => a -> a -> bool
Any type a that supports ordering should be part of the Ord class

Alex Aiken      CS 242     Lecture 18



Type Classes

(<) :: Ord a => a -> a -> bool

Idea:  Code that requires certain functionality can require a value of the 
appropriate type class, without saying how it is implemented.

Example: A generic sorting function can take a comparison function < in 
the Ord type class as an argument.

Alex Aiken      CS 242     Lecture 18



Adding Functions to OO Languages

• C++ has had lambdas since C++14
• Involves explicitly naming captured variables
• And whether they are captured by value or reference

• Java has had lambdas since Java 8

• And both have polymorphic types
• C++ has templates
• Java has generics

Alex Aiken      CS 242     Lecture 18



Bottom Line

• There is no single best way to combine functional and object-oriented 
features.

• Emphasizing some features requires restricting other features.

Alex Aiken      CS 242     Lecture 18



Approaches to Proving Properties of Programs

Alex Aiken      CS 242     Lecture 18

Automatic, 
Low complexity

Manual, 
Undecidable

Simply Typed 
Lambda Calculus

Dependent TypesStatic Analysis

Automatic, 
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable

CS242 CS143, CS243 CS242



Inductive (Loop) Invariants

while (B) 
 {

  …  code …

}

Alex Aiken      CS 242     Lecture 18

Pre
I

Post

Pre → I

I ⋀	 B
{ code }
I

I ⋀¬B → Post 



A Loop Invariant Example

int A[10];
i = 1
// i = 1
while i < 11 {
       //  ∀1	≤ j < i.  A[j] = 0
       A[i] = 0;
       i += 1
}
//  ∀1 ≤	j ≤	10.  A[j] = 0

Three conditions:

i = 1 →  ∀1	≤ j < i.  A[j] = 0

∀1 ≤	 j < i.  A[j] = 0 
{ A[i] = 0; i = i + 1}
∀1 ≤	j	< i.  A[j] = 0

((∀1 ≤	j	< i.  A[j] = 0) ∧	 i ≥ 11) → 
  ∀1 ≤	j	≤	10.  A[j] = 0

Alex Aiken      CS 242     Lecture 18



Types As Propositions

Alex Aiken      CS 242     Lecture 18

[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

From a proof of t → t’ 
and and a proof of t, we 
can prove t’. 

If assuming t we can 
prove t’, then we can 
prove t → t’. 

Here we regard the types as propositions:  If we can prove certain propositions 
are true, then we can prove that other propositions are true.



Approaches to Proving Properties of Programs

Alex Aiken      CS 242     Lecture 18

Automatic, 
Low complexity

Manual, 
Undecidable

Simply Typed 
Lambda Calculus

Dependent TypesStatic Analysis

Automatic, 
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable

Every optimizing 
compiler

Gradual Types

Emerging from 
the lab …Every typed 

language

Still figuring this 
part out …



Other topics …

• Concurrency and parallelism

• Very different from sequential languages
• Not well-modeled by lambda calculus, object calculus  etc.
• Requires entirely different approaches that makes concurrency primitive

• Will be an increasingly important aspect of programming languages
• And unfortunately something we did not have time to get into in this course!

Alex Aiken      CS 242     Lecture 18



The End … and Thanks!

Alex Aiken      CS 242     Lecture 18


