Main points

- Congestion is inevitable
- Congestion happens at different scales - from two individual packets colliding to too many users
- TCP Senders can detect congestion and reduce their sending rate by reducing the window size
- TCP modifies the rate according to “Additive Increase, Multiplicative Decrease (AIMD)”.
- To probe and find the initial rate, TCP uses a restart mechanism called “slow start”.
- Routers slow down TCP senders by buffering packets and thus increasing delay
Congestion

Diagram showing network traffic and congestion points.

Time Scales of Congestion

- Too many users using a link during a peak hour
- TCP flows filling up all available bandwidth
- Two packets colliding at a router
Dealing with Congestion
Example: two flows arriving at a router

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop one of the flows</td>
<td></td>
</tr>
<tr>
<td>Buffer one flow until the other has departed, then send it</td>
<td></td>
</tr>
<tr>
<td>Re-Schedule one of the two flows for a later time</td>
<td></td>
</tr>
<tr>
<td>Ask both flows to reduce their rates</td>
<td></td>
</tr>
</tbody>
</table>

Congestion is unavoidable
Arguably it’s good!

- We use packet switching because it makes efficient use of the links. Therefore, buffers in the routers are frequently occupied.
- If buffers are always empty, delay is low, but our usage of the network is low.
- If buffers are always occupied, delay is high, but we are using the network more efficiently.
- So how much congestion is too much?
Load, delay and power

Typical behavior of queueing systems with random arrivals:

- Burstiness tends to move asymptote to the left.

A simple metric of how well the network is performing:

\[Power = \frac{Load}{Delay} \]

Options for Congestion Control

1. Implemented by host versus network
2. Reservation-based, versus feedback-based
3. Window-based versus rate-based.
TCP Congestion Control

- TCP implements host-based, feedback-based, window-based congestion control.
- TCP sources attempt to determine how much capacity is available.
- TCP sends packets, then reacts to observable events (loss).

TCP Congestion Control

- TCP sources change the sending rate by modifying the window size:
 \[\text{Window} = \min\{\text{Advertized window}, \text{Congestion Window}\} \]
- In other words, send at the rate of the slowest component: network or receiver.
- “cwnd” follows additive increase/multiplicative decrease
 - On receipt of Ack: cwnd += 1
 - On packet loss (timeout): cwnd *= 0.5
Additive Increase

Actually, TCP uses bytes, not segments to count:
When ACK is received:
\[\text{cwnd} + = \text{MSS} \left(\frac{\text{MSS}}{\text{cwnd}} \right) \]

Leads to the TCP “sawtooth”

Could take a long time to get started!
TCP Sending Rate

- What is the sending rate of TCP?
- Acknowledgement for sent packet is received after one RTT
- Amount of data sent until ACK is received is the current window size W
- Therefore sending rate is $R = W/RTT$

- Is the TCP sending rate saw tooth shaped as well?

TCP and buffers

TCSIM: Time evolution of a TCP flow (RTT 142ms, BW 8000kb, buffer 142 pkts of 1000 bytes)

Packet Drops [Pkts/s*10]
Utilization [Pkts/s]
Sending Rate [Pkts/s]
Cong. Window [Pkts*10]
Effective RTT [ms*100]

Buffer Occupancy [Pkts]

Winter 2008 CS244s Handout 7
TCP and Buffers

- For TCP with a single flow over a network link with enough buffers, RTT and W are proportional to each other.
- Therefore the sending rate $R = \frac{W}{RTT}$ is constant (and not a sawtooth).
- But experiments and theory suggest that with many flows:
 \[
 R \propto \frac{1}{RTT \sqrt{p}}
 \]
 Where: p is the drop probability. You’ll see this in a problem set.

- TCP rate can be controlled in two ways:
 1. Buffering packets and increasing the RTT
 2. Dropping packets to decrease TCP’s window size

“Slow Start”

Designed to find the fair-share rate quickly at startup or if a connection has been halted (e.g. window dropped to zero, or window full, but ACK is lost).

How it works: increase cwnd by 1 for each ACK received.

```
           1
           D
           2
           A
           D
           4
           D
           D
           Dest
           A
           8
           A
```
Slow Start

Why is it called slow-start? Because TCP originally had no congestion control mechanism. The source would just start by sending a whole window's worth of data.

Congestion control in the Internet

- Maximum window sizes of most TCP implementations by default are very small
 - Windows XP: 12 packets
 - Linux/Mac: 40 packets
- Often the buffer of a link is larger than the maximum window size of TCP
 - A typical DSL line has 200 packets worth of buffer
 - For a TCP session, the maximum number of packets outstanding is 40
 - The buffer can never fill up
 - The router will never drop a packet