Routing Protocols and the IP Layer

CS244A Review Session 2/01/08
Ben Nham

Derived from slides by:
Paul Tarjan
Martin Casado
Ari Greenberg

Functions of a router

- Forwarding
- Determine the correct egress port for an incoming packet based on a forwarding table
- Routing
- Choosing the best path to take from source to destination
- Routing algorithms build up forwarding tables in each router
- Two main algorithms: Bellman-Ford and Dijkstra's Algorithm

Bellman Ford Equation

- Let $G=(V, E)$ and $\operatorname{Cost}(e)=$ cost of edge e
- Suppose we want to find the lowest cost path to vertex t from all other vertices in V
- Let Shortest-Path(i, u) be the shortest path from u to t using at most i edges. Then: $\operatorname{ShortestPath}(i, u)={ }_{v \in V}^{\min }\left\{\begin{array}{c}\operatorname{ShortestPath}(i-1, u) \\ \operatorname{Cost}(u, v)+\operatorname{ShortestPath}(i-1, v)\end{array}\right.$
- If there are no negative edge costs, then any shortest path has at most |V|-1 edges. Therefore, algorithm terminates after / V/-1 iterations.

Bellman Ford Algorithm

function BellmanFord(list vertices, list edges, vertex dest)
// Step 1: Initialize shortest paths of $w /$ at most 0 edges for each vertex v in vertices:
v.next := null
if v is dest: v.distance := 0
else: v.distance := infinity
// Step 2: Calculate shortest paths with at most i edges from
// shortest paths with at most i-1 edges
for i from 1 to size(vertices) - 1:
for each edge (u,v) in edges:
if u.distance > Cost(u,v) + v.distance:
u.distance $=$ Cost(u,v) + v.distance
u.next = v

An Example

Example

A	0,	-					
B	$\infty,-$						
C	$\infty,-$						
D	$\infty,-$						
E	$\infty,-$						
F	$\infty,-$						

Solution

A	0 ,	-					0,		0 ,		0, -		
B	∞,	-	2,	A	2,		2,	A	2,				2, A
C	∞,	-	∞,	-		B		B	3,				3, B
D	∞,	-	9,	A		A	8,	E	8,	E			7, E
E	∞,	-	∞,	-	7,		7,	B	6,	F			6, F
F	∞,	-	∞,	-	∞,	-	4,	C	4,	C			4, C

Bellman-Ford and Distance Vector

- We've just run a centralized version of Bellman-Ford
- Can be distributed as well, as described in lecture and text
- In distributed version:
- Maintain a distance vector that maintains cost to all other nodes
- Maintain cost to each directly attached neighbor
- If we get a new distance vector or cost to a neighbor, recalculate distance vector, and broadcast new distance vector to neighbors if it has changed
- For any given router, who does it have to talk to?
- What does runtime depend on?

Problems with Distance Vector

- Increase in link cost is propagated slowly
- Can "count to infinity"
- What happens if we delete (B, C)?
- B now tries to get to C through A, and increase its cost to C
- A will see that B's cost of getting to C increased, and will increase its cost
- Shortest path to C from B and A will keep increasing to infinity
- Partial solutions
- Set infinity
- Split horizon
- Split horizon with poison reverse

Dijkstra's Algorithm

- Given a graph G and a starting vertex s, find shortest path from s to any other vertex in G
- Use greedy algorithm:
- Maintain a set S of nodes for which we know the shortest path
- On each iteration, grow S by one vertex, choosing shortest path through S to any other node not in S
- If the cost from S to any other node has decreased, update it

Dijkstra's Algorithm

```
function Dijkstra(G, w, s)
```

```
    Q = new Q
```

 Q = new Q
 for each vertex v in V[G]
 for each vertex v in V[G]
 d[v] := infinity
 d[v] := infinity
 previous[v] := undefined
 previous[v] := undefined
 Insert(Q, v, d[v])
 Insert(Q, v, d[v])
 d[s] := 0 // Distance from s to s
 d[s] := 0 // Distance from s to s
 ChangeKey(Q, s, d[s])
 ChangeKey(Q, s, d[s])
 S := empty set
 S := empty set
 // Initialize a priority queue Q
 // Initialize a priority queue Q
 // Add every vertex to Q with inf. cost
// Add every vertex to Q with inf. cost
// Change value of s in priority queue
// Change value of s in priority queue
// Set of all visited vertices
// Set of all visited vertices
while Q is not an empty set
// Remove min vertex from priority queue, mark as visited
u := ExtractMin(Q)
S := S union {u}
// Relax (u,v) for each edge
for each edge (u,v) outgoing from u
if d[u] + w(u,v) < d[v]
d[v] := d[u] + w(u,v)
previous[v] := u
ChangeKey(Q, v, d[v])

```

\section*{Example}

\begin{tabular}{|l|l|}
\hline Explored Set S & Unexplored Set \(\mathbf{Q}=\mathbf{V}-\mathbf{S}\) \\
\hline\(A(0,-)\) & \(\mathbf{B}(\mathbf{0}+\mathbf{2}, \mathbf{A}), C(\infty,-), D(0+9, A), E(\infty,-), F(\infty,-)\) \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Solution}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline Explored Set S & Unexplored Set \(\mathbf{Q}=\mathrm{V}-\mathrm{S}\) \\
\hline A(0, -) & \(\mathbf{B}(\mathbf{0}+\mathbf{2}, \mathrm{A}), \mathrm{C}(\infty,-), \mathrm{D}(0+9, A), E(\infty,-), F(\infty,-)\) \\
\hline \(\mathrm{A}(0,-), \mathrm{B}(2, \mathrm{~A})\) & C( \(2+1, B), D(9, A), E(2+3, B), F(\infty,-)\) \\
\hline \(A(0,-), B(2, A), C(3, B)\) & \(\mathrm{D}(9, A), E(5, B), F(3+1, B)\) \\
\hline \(A(0,-), B(2, A), C(3, B), F(4, B)\) & D(9, A), E(5, B) \\
\hline \[
\begin{aligned}
& A(0,-), B(2, A), C(3, B), F(4, B), \\
& E(5, B)
\end{aligned}
\] & D(5+1, B) \\
\hline \[
\begin{aligned}
& A(0,-), B(2, A), C(3, B), F(4, B), \\
& E(5, B), D(6, B)
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Link-State (Using Dijkstra’s)}
- Algorithm must know the cost of every link in the network
- Each node broadcasts LS packets to all other nodes
- Contains source node id, costs to all neighbor nodes, TTL, sequence \#
- If a link cost changes, must rebroadcast
- Calculation for entire network is done locally

\section*{Comparison between LS and DV}
- Messages
- In link state: Each node broadcasts a link state advertisement to the whole network
- In distance vector: Each node shares a distance vector (distance to every node in network) to its neighbor
- How long does it take to converge?
\(-\mathrm{O}((|\mathrm{E}|+|\mathrm{V}|) \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)\) for Dijkstra's
- O(|E||V|) for centralized Bellman-Ford; for distributed, can vary
- Robustness
- An incorrect distance vector can propagate through the whole network```

