Routing Protocols and the IP Layer

CS244A Review Session 2/01/08
Ben Nham

Derived from slides by:
Paul Tarjan
Martin Casado
Ari Greenberg

Functions of a router

* Forwarding

— Determine the correct egress port for an incoming
packet based on a forwarding table

* Routing

— Choosing the best path to take from source to
destination

— Routing algorithms build up forwarding tables in
each router

— Two main algorithms: Bellman-Ford and Dijkstra’s
Algorithm

Bellman Ford Equation

Let G = (V, E) and Cost(e) = cost of edge e
Suppose we want to find the lowest cost path to
vertex t from all other vertices in V

Let Shortest-Path(i, u) be the shortest path from u

to t using at most j edges. Then:

min { ShortestPath(i —1,u)

ShortestPath(i,u) = v € V | Cost(u,v) + ShortestPath(i — 1,v)

If there are no negative edge costs, then any
shortest path has at most [V/-1 edges. Therefore,
algorithm terminates after [V/-1 iterations.

Bellman Ford Algorithm

function BellmanFord(list vertices, list edges, vertex dest)
// Step 1l: Initialize shortest paths of w/ at most @ edges
for each vertex v in vertices:

v.next := null
if v is dest: v.distance := ©
else: v.distance := infinity

// Step 2: Calculate shortest paths with at most i edges from
// shortest paths with at most i-1 edges
for i from 1 to size(vertices) - 1:
for each edge (u,v) in edges:
if u.distance > Cost(u,v) + v.distance:
u.distance = Cost(u,v) + v.distance
u.next = v

An Example

Example

3EER

Solution

Bellman-Ford and Distance Vector

We’ve just run a centralized version of Bellman-Ford

Can be distributed as well, as described in lecture
and text

In distributed version:

— Maintain a distance vector that maintains cost to all other
nodes

— Maintain cost to each directly attached neighbor

— If we get a new distance vector or cost to a neighbor, re-
calculate distance vector, and broadcast new distance
vector to neighbors if it has changed

For any given router, who does it have to talk to?
What does runtime depend on?

Problems with Distance Vector
A e B S C

* Increase in link cost is propagated slowly

* Can “count to infinity”
— What happens if we delete (B, C)?
— B now tries to get to C through A, and increase its cost to C

— A will see that B’s cost of getting to C increased, and will
increase its cost

— Shortest path to C from B and A will keep increasing to infinity
* Partial solutions

— Set infinity

— Split horizon

— Split horizon with poison reverse

Dijkstra’s Algorithm

* Given a graph G and a starting vertex s, find
shortest path from s to any other vertex in G

* Use greedy algorithm:

— Maintain a set S of nodes for which we know the
shortest path

— On each iteration, grow S by one vertex, choosing
shortest path through S to any other node notin S

— If the cost from S to any other node has
decreased, update it

Dijkstra’s Algorithm

function Dijkstra(G, w, s)

Q = new Q // Initialize a priority queue Q
for each vertex v in V[G] // Add every vertex to Q with inf. cost
d[v] := infinity
previous[v] := undefined
Insert(Q, v, d[v])
d[s] := © // Distance from s to s
ChangeKey(Q, s, d[s]) // Change value of s in priority queue
S := empty set // Set of all visited vertices

while Q is not an empty set

// Remove min vertex from priority queue, mark as visited
u := ExtractMin(Q)

S := S union {u}

// Relax (u,v) for each edge
for each edge (u,v) outgoing from u
if d[u] + w(u,v) < d[v]
d[v] := d[u] + w(u,vV)
previous[v] := u
ChangeKey(Q, v, d[v])

Example

e

Explored Set S Unexplored SetQ=V-S
A(O, -) B(0+2, A), C(==, -), D(0+9, A), E(°, -), F(e°, -)

Solution

Explored Set S

A(O, -)

A(O, -), B(2,A)

A(O, -), B(2, A), C(3, B)

A(O, -), B(2, A), C(3, B), F(4, B)

A(O, -), B(2, A), C(3, B), F(4, B),

E(5, B)

A(O, -), B(2, A), C(3, B), F(4, B),

E(5, B), D(6, B)

e

Unexplored SetQ=V-S

B(0+2, A), C(o=, -), D(0+9, A), E(o°, -), F(o°, -)
C(2+1, B), D(9, A), E(2+3, B), F(e~, -)

D(9, A), E(5, B), F(3+1, B)

D(9, A), E(5, B)

D(5+1, B)

Link-State (Using Dijkstra’s)

e Algorithm must know the cost of every link in
the network

— Each node broadcasts LS packets to all other
nodes

— Contains source node id, costs to all neighbor
nodes, TTL, sequence #

— If a link cost changes, must rebroadcast

e Calculation for entire network is done locally

Comparison between LS and DV

* Messages

— In link state: Each node broadcasts a link state advertisement to
the whole network

— In distance vector: Each node shares a distance vector (distance
to every node in network) to its neighbor

* How long does it take to converge?

— O((|E[+]|V]) log |V]) =O(|E]| log |V]|) for Dijkstra’s

— O(|E| |V]) for centralized Bellman-Ford; for distributed, can vary
* Robustness

— An incorrect distance vector can propagate through the whole
network

