
Routing Protocols and the IP Layer

CS244A Review Session 2/01/08
Ben Nham

Derived from slides by:
Paul Tarjan

Martin Casado
Ari Greenberg

Functions of a router

• Forwarding
– Determine the correct egress port for an incoming

packet based on a forwarding table

• Routing
– Choosing the best path to take from source to

destination

– Routing algorithms build up forwarding tables in
each router

– Two main algorithms: Bellman-Ford and Dijkstra’s
Algorithm

Bellman Ford Equation

• Let G = (V, E) and Cost(e) = cost of edge e

• Suppose we want to find the lowest cost path to
vertex t from all other vertices in V

• Let Shortest-Path(i, u) be the shortest path from u
to t using at most i edges. Then:

• If there are no negative edge costs, then any
shortest path has at most |V|-1 edges. Therefore,
algorithm terminates after |V|-1 iterations.

Bellman Ford Algorithm

function BellmanFord(list vertices, list edges, vertex dest)
// Step 1: Initialize shortest paths of w/ at most 0 edges
for each vertex v in vertices:
v.next := null
if v is dest: v.distance := 0
else: v.distance := infinity

// Step 2: Calculate shortest paths with at most i edges from
// shortest paths with at most i-1 edges
for i from 1 to size(vertices) - 1:
for each edge (u,v) in edges:
if u.distance > Cost(u,v) + v.distance:
u.distance = Cost(u,v) + v.distance
u.next = v

An Example

A B

D E

C

F

2 1

1 2

9
13

Example
A B

D E

C

F

2 1

1 2

9 15

A 0, -

B ∞, -

C ∞, -

D ∞, -

E ∞, -

F ∞, -

A B

D E

C

F

2 1

1 2

1

A 0, - 0, - 0, - 0, - 0, - 0, -

B ∞, - 2, A 2, A 2, A 2, A 2, A

C ∞, - ∞, - 3, B 3, B 3, B 3, B

D ∞, - 9, A 9, A 8, E 8, E 7, E

E ∞, - ∞, - 7, B 7, B 6, F 6, F

F ∞, - ∞, - ∞, - 4, C 4, C 4, C

Solution

Bellman-Ford and Distance Vector

• We’ve just run a centralized version of Bellman-Ford
• Can be distributed as well, as described in lecture

and text
• In distributed version:

– Maintain a distance vector that maintains cost to all other
nodes

– Maintain cost to each directly attached neighbor
– If we get a new distance vector or cost to a neighbor, re-

calculate distance vector, and broadcast new distance
vector to neighbors if it has changed

• For any given router, who does it have to talk to?
• What does runtime depend on?

Problems with Distance Vector

• Increase in link cost is propagated slowly
• Can “count to infinity”

– What happens if we delete (B, C)?
– B now tries to get to C through A, and increase its cost to C
– A will see that B’s cost of getting to C increased, and will

increase its cost
– Shortest path to C from B and A will keep increasing to infinity

• Partial solutions
– Set infinity
– Split horizon
– Split horizon with poison reverse

A B C
2 1

Dijkstra’s Algorithm

• Given a graph G and a starting vertex s, find
shortest path from s to any other vertex in G

• Use greedy algorithm:

– Maintain a set S of nodes for which we know the
shortest path

– On each iteration, grow S by one vertex, choosing
shortest path through S to any other node not in S

– If the cost from S to any other node has
decreased, update it

Dijkstra’s Algorithm

function Dijkstra(G, w, s)
Q = new Q // Initialize a priority queue Q
for each vertex v in V[G] // Add every vertex to Q with inf. cost

d[v] := infinity
previous[v] := undefined
Insert(Q, v, d[v])

d[s] := 0 // Distance from s to s
ChangeKey(Q, s, d[s]) // Change value of s in priority queue
S := empty set // Set of all visited vertices

while Q is not an empty set
// Remove min vertex from priority queue, mark as visited
u := ExtractMin(Q)
S := S union {u}

// Relax (u,v) for each edge
for each edge (u,v) outgoing from u

if d[u] + w(u,v) < d[v]
d[v] := d[u] + w(u,v)
previous[v] := u
ChangeKey(Q, v, d[v])

Example

Explored Set S Unexplored Set Q = V - S

A(0, -) B(0+2, A), C(∞, -), D(0+9, A), E(∞, -), F(∞, -)

A B

D E

C

F

2 1

1 2

9 13

Solution

Explored Set S Unexplored Set Q = V - S

A(0, -) B(0+2, A), C(∞, -), D(0+9, A), E(∞, -), F(∞, -)

A(0, -), B(2,A) C(2+1, B), D(9, A), E(2+3, B), F(∞, -)

A(0, -), B(2, A), C(3, B) D(9, A), E(5, B), F(3+1, B)

A(0, -), B(2, A), C(3, B), F(4, B) D(9, A), E(5, B)

A(0, -), B(2, A), C(3, B), F(4, B),
E(5, B)

D(5+1, B)

A(0, -), B(2, A), C(3, B), F(4, B),
E(5, B), D(6, B)

A B

D E

C

F

2 1

1 2

9 13

Link-State (Using Dijkstra’s)

• Algorithm must know the cost of every link in
the network

– Each node broadcasts LS packets to all other
nodes

– Contains source node id, costs to all neighbor
nodes, TTL, sequence #

– If a link cost changes, must rebroadcast

• Calculation for entire network is done locally

Comparison between LS and DV

• Messages

– In link state: Each node broadcasts a link state advertisement to
the whole network

– In distance vector: Each node shares a distance vector (distance
to every node in network) to its neighbor

• How long does it take to converge?

– O((|E|+|V|) log |V|) = O(|E| log |V|) for Dijkstra’s

– O(|E||V|) for centralized Bellman-Ford; for distributed, can vary

• Robustness

– An incorrect distance vector can propagate through the whole
network

