
CS 245 Midterm Exam
Winter 2020

● Please read all instructions (including these) carefully.

● There are 4 problems, some with multiple parts, for a total of 60 points. You have 80
minutes to work on the exam.

● The exam is open notes. You may use a laptop with all communication facilities (Wi-Fi,

Bluetooth, etc) disabled.

● Please write your answers in the space provided on the exam, and clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Please do not use
any additional scratch paper.

● Solutions will be graded on correctness and clarity. For the long-answer problems, please

show your intermediate work. Each problem has a relatively simple to explain solution,
and we may deduct points if your solution is much more complex than necessary. Partial
solutions will be graded for partial credit.

NAME: __

SUID: ___

In accordance with both the letter and spirit of the Honor Code, I have neither given nor received
assistance on this examination.

SIGNATURE: ___

Grading: P1=20 points, P2=12 points, P3=10 points, P4=18 points, total: 60 points.

1/10

Problem 1: Short Answer Questions (20 points)

1. (2 points)​ Which of the following features of modern relational database systems were
available in System R? ​(Check all that apply.)

□ Cost-based optimization.

□ Transactions.

□ Indexes.

□ Multiple isolation levels.

2. (2 points)​ System R used SQL views for access control (defining what data each user is
allowed to see). Which of the following data access policies ​cannot​ be specified using
view-based access control? ​(Circle your answer.)

(a) User Alex can only query the Orders table.

(b) User Bilal can only query records in the Orders table where the “country” field is USA.

(c) User Chen can only query the database from the office network.

(d) User Dana can only see the sum of Orders placed each day, but not individual orders.

3. (2 points)​ Consider a table People with attributes SALARY and NAME. Given the relational
algebra expression Π​NAME​(σ​SALARY>10,000​(Π​NAME ∪ SALARY​(People)), which of the following are valid
rewrites? ​(Check all that apply.)

□ Π​NAME​(σ​SALARY>10,000​(People))

□ Π​NAME​(σ​SALARY>10,000​(Π​SALARY​(People))

□ σ​SALARY>10,000​(Π​NAME ∪ SALARY​(People)

□ σ​SALARY>10,000​(Π​NAME​(Π​NAME ∪ SALARY​(People))

□ Π​NAME​(σ​SALARY>10,000​(Π​NAME​(Π​SALARY​(People)))

2/10

4. (2 points)​ Suppose that you have access to hard disks that can read or write data at 100 MB/s.
You want to combine several of these disks into a RAID configuration. What are the maximum
read and write throughputs that you can achieve under each of the following configurations?

(a) 2 disks using RAID 0: Read = __​200​___ MB/s, Write = __​200​___ MB/s

(b) 2 disks using RAID 1: Read = __​200​___ MB/s, Write = __​100​___ MB/s

(c) 4 disks using RAID 5: Read = __​400​___ MB/s, Write = __​300​___ MB/s

5. (2 points)​ Modern data management systems typically focus on either transactional or
analytical workloads. Which type of workload is each of the following features ​most likely to
improve performance​ in? ​(Circle one answer for each row.)

(a) Vectorization: TRANSACTIONAL ANALYTICAL

(b) Fine-grained locking: TRANSACTIONAL ANALYTICAL

(c) RLE compression: TRANSACTIONAL ANALYTICAL

(d) Z-ordering: TRANSACTIONAL ANALYTICAL

6. (2 points).​ What is the ​logical​ ​data model​ in PyTorch, and what are two different ​physical
storage formats​ that can be used to store a data item in PyTorch?

Logical: __​Tensors​__

Physical 1: __​Storing a matrix in row-major order​________________________________

Physical 2: __​Storing a matrix in column-major order​_____________________________

Note: other answers were okay too, e.g. sparse vs dense storage, floating-point precision, etc.

7. (2 points).​ Suppose that we want to join a table R with fields a​1​, …, a​n​ against n other tables
S​1​, …, S​n​, where each attribute a​i​ in R matches a key in the corresponding table S​i​. This is called
a “star join”. How many valid ​left-deep join plans​ exist for this query? ​(Circle your answer.)

(a) ϴ(n) (b) ϴ(2​n​) ​(c) ϴ(n!) (d) ϴ(n​n​)

3/10

8. (2 points)​ Spark SQL allows Data Source plugins to perform filters and projections based on
their knowledge of the data format being queried. For each of the storage formats below, specify
whether knowing a query’s filters or projections can reduce the ​number of I/Os​ to answer it.
(Assume each record is smaller than 1 disk block. Check the relevant boxes for each row.)

Data format Filters help Projections help

Row-oriented table with variable-format records

Row-oriented table with fixed-format records

Column-oriented table partitioned by the “date” field ✓ ✓

Column-oriented, unsorted table ✓ ✓

9. (2 points)​ C-store designed many of its compression formats to be byte-aligned: for example,
with null suppression, a 32-bit integer would be stored as 1, 2, 3, 4 or 5 bytes. Why did the
authors choose to make their formats byte-aligned?

Allowing values to be stored in a fractional number of bytes would create more CPU work for
compression and decompression, which the authors said was not worth it.

10. (2 points)​ Consider the extendible hash table below, with space for 2 keys per bucket and a
hash function that returns 3 bits per key. Each cell shows the hash values of keys that are in it.
Draw how the table will look after we insert keys with hashes 011 and 111, in that order.

4/10

Problem 2: Storage Hardware (12 points)
a) (2 points)​ You have 10,000,000 rows of data in a row store on a hard drive. Each row fits

exactly in one disk block, and the blocks for the table are sequential. The hard drive has a
10ms seek latency to start a read operation, and after it starts, it can read 200,000 blocks
per second. How much time will you spend doing I/O to read the entire table?

Since the data is contiguous, you seek once, then read all of it.
10ms + 10,000,000 blocks / (200,000 blocks/second) = 0.01 + 50

 50.01 seconds

b) (2 points)​ You now add a B+ tree index on column 0. Column 0 has unique values. Each
node in the B+ tree fits in exactly one block, but the blocks of the tree are not contiguous.
The tree has 3 layers, and no nodes are cached in memory. Suppose that you now want to
read rows for a random set of values of column 0 using this tree. Assume the column 0
values are random, so they each require another traversal of the B+ tree. How long will
you spend doing I/O to retrieve R rows from the table using the index, as a function of R?

For each record you need, you must read 3 blocks in the index, and one in the data table.
All the blocks are scattered, so it is 4 total seeks. You read 4R total blocks, and each
requires one seek plus transfer time.

4R (0.01 + 1/200,000)

0.04002R seconds

c) (2 points) ​You can perform this query by either scanning over all the rows directly,
checking the value of column 0 in each, or by traversing the B+ tree to find the relevant
rows. For what range of selectivities is it faster to use the index (I/O time only)?

We compare the runtimes to get the breakeven point.
0.04002R < 50.01
R < 0.0125%

 It is fastest to use the index if the selectivity is ​LESS​ / GREATER (circle one) than

 0.0125%

5/10

d) (2 points) ​Now you replace your hard drive with an NVMe SSD that takes 0.02ms to
begin a read operation, and can read 4,000,000 blocks per second once it begins reading.
How long will you spend doing I/O for a direct table scan?

Same calculations as for a hard drive. 1 seek plus transfer time.
0.00002 seconds + (10,000,000 blocks)/(4,000,000 blocks/second)

 2.50002 seconds

e) (2 points) ​How long will you spend doing I/O to retrieve R rows from the table
predicated on column 0, as a function of R? Make all the same assumptions as in b).

For each record you need, you must read 3 blocks in the index, and one in the data table.
All the blocks are scattered, so it is 4 total seeks. You read 4R total blocks, and each
requires one seek plus transfer time.

4R (0.00002 + 1/ 4,000,000)

0.000081 * R seconds

f) (2 points) ​For what range of selectivities is it fastest to use the index on the NVMe SSD?

We compare the runtimes to get the breakeven point.
0.000081R < 2.50002
R < 0.3%

 It is fastest to use the index if the selectivity is ​LESS​ / GREATER (circle one) than

 about 0.3%

6/10

Problem 3: Database System Architectures (10 points)

In this question, we compare the performance of different DBMS architectures. Suppose we have
a table of people, their birthdays, and their states of residence. Rows might look like this:

Person Birthday (yyyy-mm-dd) State

Shivaram 1955-02-13 NC

Emma 2005-08-30 CA

We want to make two queries on this table:
1. SELECT * FROM table WHERE 1993-01-01 ≤ Birthday AND Birthday ≤ 1993-12-31
2. SELECT Person FROM table WHERE State=CA

Assume the table can be laid out in two different formats:
● A row store indexed by B+ trees on the Birthday and State columns.
● A column store with bitmap indexes like in the C-store paper on the Birthday and State

columns: For each unique value in the indexed column, we store a bit vector of the same
length as the column with a 1 in all rows containing that value and a 0 in all other rows.

Assume there are ​N​ people with ​M​ unique birthdays who all live in the fifty states.

a) (2 points) ​Assume we execute Query 1 on the row store by finding the list of matching
tuples using the B+ tree index and then reading them from the table. What is the time
complexity of this query plan? ​Briefly explain your answer.

(a) ϴ(N) (b) ϴ(N log M) ​ ​ ​(c) ϴ(N + log M) ​ (d) ϴ(M + log N)

b) (2 points) ​Assume we execute Query 1 on the column store by OR-ing the bitmap
indexes for each date in the range together and retrieving the marked tuples from the
table. What is the time complexity of this query plan, assuming at least one person in the
table was born on every day in 1993? ​Briefly explain your answer.

(a) ϴ(N) (b) ϴ(N log M) (c) ϴ(N + log N) (d) ϴ(M + log N)

7/10

c) (3 points)​ Assume that N=1,000,000, M=30,000, and the data and indexes are stored on
hard disks. If the distribution of birthdays is uniform over the past eighty years, which
storage layout is likely to perform best ​in practice​ on Query 1? ​Please explain your
reasoning and any assumptions you make.

The row store with B+ trees because the lists of tuples associated with consecutive keys
are stored consecutively in the tree, minimizing the number of disk loads/memory
accesses made. By contrast, with a column store, determining which tuples to return
would require reading hundreds of bitmaps or doing a full column scan. Moreover,
because we return entire rows, retrieving tuples from individual columns is not efficient.

d) (3 points)​ Assume that N=1,000,000 and the data is stored on hard disks but the indexes

are stored in memory. If 300,000 of the people live in California, which storage layout is
likely to perform best ​in practice​ on Query 2? ​Please explain your reasoning and any
assumptions you make.

The column store would perform the fastest because the database can scan the Person
column quickly, using the bitmap index to know which entries to return. Scanning the
row store would require loading full rows, which is inefficient.

8/10

Problem 4: Cost-Based Optimization (18 points)

In this problem, we will do cost-based analysis and optimize query execution.

a) (4 points)​ Consider query σ​A​<​15 AND C​≥​10​(X ⨝ Y) on relations X(A, B) and Y(B, C).
(Recall that the notation X(A, B) means that relation X has attributes A and B.)​ We
present collected statistics about our relations below, where T(R) is the number of tuples
in a relation and DOM(R, A) is the domain of values of attribute A in a relation (Note:
data values are ​uniformly and independently distributed​ in all columns):

T(X) = 3000 T(Y) = 2000
DOM(X, A) = 30 (integers from 0 inclusive to 30 exclusive)
DOM(X, B) = 20 (integers from 0 inclusive to 20 exclusive)
DOM(Y, B) = 10 (integers from 5 inclusive to 15 exclusive)
DOM(Y, C) = 20 (integers from 0 inclusive to 20 exclusive)

Firstly, ignore the selection operator in the query, and estimate the following statistics:

T(X ⨝ Y) = _​300,000​__

DOM(X ⨝ Y, A) = __​30​___ (integers from __​0​_ inclusive to _​30​_ exclusive)
DOM(X ⨝ Y, B) = __​10​___ (integers from __​5​_ inclusive to _​15​_ exclusive)
DOM(X ⨝ Y, C) = __​20​___ (integers from __​0​_ inclusive to _​20​_ exclusive)

b) (8 points)​ Now consider the complete query, σ​A​<​15 AND C​≥​10​(X ⨝ Y). The first
optimization we can make to this query is to push down selections, obtaining an
expression of the form R​1​ ⨝ R​2​. What are the expressions R​1​ and R​2 ​we get after pushing
down selections?

R​1 ​= ____​σ​A​<​15​(X)​______ R​2 ​= _____​σ​C≥10​(Y)​_______

Next, compute the following statistics estimates:

T(R​1​) = __​1500​__ T(R​2​) = ​ ​__​1000​__ T(R​1​ ⨝ R​2​) = _​75,000​____

DOM(R​1​ ⨝ R​2​, A) = __​15​___ (integers from _​0​__ inclusive to _​15​_ exclusive)
DOM(R​1​ ⨝ R​2​, B) = __​10​___ (integers from _​5​__ inclusive to _​15​_ exclusive)
DOM(R​1​ ⨝ R​2​, C) = __​10​___ (integers from _​10​_ inclusive to _​20​_ exclusive)

9/10

c) (6 points).​ Following part b), we then estimate the I/O cost of executing the plan R​1​ ⨝ R​2​.
Suppose the sizes of R​1​ and R​2​ are ​150​ and ​100​ blocks, respectively. For the questions
below, ​ignore the I/O for writing the final join result back to disk.​ If a table needs to
be sorted during a join, we use the 2-pass merge sort discussed in the lecture and write
sorted table back to disk that takes a total of 4·b of I/Os for a table containing b blocks.
Please compute the number of I/Os (blocks read and written) needed to join the two
tables with each of the strategies below ​(make sure to explain your work)​:

Nested loop join:​ Every time you read one block of R​1 ​into memory, build an in-memory
hash table for the tuples in that block, and loop through R​2 ​to find tuples with the same B
column.

B(R1) + B(R1)*B(R2)
150 I/Os to read R1
100 I/Os of R2 for each block of R1
150 + 150 * 100 = 15,150

 Total I/Os: ___​15,150​___

Merge join:​ The two input tables must be sorted by the join attribute to produce an
output table that also goes to disk and then execute the merge sort. Assume R​1 ​is sorted
on A, while R​2 ​is sorted on B.

4B(R1) + B(R1) + B(R2)
4 * 150 to sort
150 + 100 to merge
4 * 150 + 150 + 100 = 850

 Total I/Os: ____​850​____

Hash join: ​Suppose there are 21 buffers in memory. Each buffer can hold one block of
data. To do hash join, each relation is first hashed to 20 buckets and written back to disk.
Then for each pair of buckets, the smaller one is loaded into memory and joined with
each tuple in the larger one. (You may assume the smaller bucket can fit in memory.)

3(B(R1) + B(R2))
B(R1) + B(R2) blocks to read into memory and hash into buckets
B(R1) + B(R2) blocks to write all buckets back
Read in each pair of buckets and join: B(R1) + B(R2)
3 * (150 + 100) = 750

 Total I/Os: ____​750​_____

10/10

