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Abstract

CQL, a Continuous Query Language, is supported by the STREAM prototype Data Stream
Management System at Stanford. CQL is an expressive SQL-based declarative language for
registering continuous queries against streams and updatable relations. We begin by presenting
an abstract semantics that relies only on “black box” mappings among streams and relations.
From these mappings we define a precise and general interpretation for continuous queries.
CQL is an instantiation of our abstract semantics using SQL to map from relations to relations,
window specifications derived from SQL-99 to map from streams to relations, and three new
operators to map from relations to streams. Most of the CQL language is operational in the
STREAM system. We present the structure of CQL’s query execution plans as well as details
of the most important components: operators, inter-operator queues, synopses, and sharing of
components among multiple operators and queries. Examples throughout the paper are drawn
from the Linear Road benchmark recently proposed for Data Stream Management Systems. We
also curate a public repository of data stream applications that includes a wide variety of queries
expressed in CQL.

1 Introduction

There has been a considerable surge of research in many aspects of processing continuous queries
over unbounded data streams [Geh03, GO03]. Many papers include example continuous queries
expressed in some declarative language, e.g., [ABBT02, CDTW00, CF02, DGGR02, HFAE03,
MSHRO02]. However, these queries tend to be simple and primarily for illustration—a precise
language semantics, particularly for more complex queries, often is left unclear. Furthermore, very
little has been published to date covering execution details of general-purpose continuous queries.
In this paper we present the CQL language and execution engine for general-purpose continuous
queries over streams and updatable relations. CQL (for Continuous Query Language) is an in-
stantiation of a precise abstract continuous semantics also presented in this paper, and CQL is
implemented in the STREAM prototype Data Stream Management System (DSMS) at Stanford
[STR].

It may appear initially that defining a continuous query language over (relational) streams is not
difficult: Take a relational query language, replace references to relations with references to streams,
register the query with the stream processor, and wait for answers to arrive. For simple monotonic
queries over complete stream histories indeed this approach is nearly sufficient. However, as queries
get more complex—when we add aggregation, subqueries, windowing constructs, relations mixed
with streams, etc.—the situation becomes much murkier. Consider the following simple query:
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Select P.price
From Items [Rows 5] as I, PriceTable as P
Where I.itemID = P.itemID

Items is a stream of purchased items, PriceTable is a table (relation) containing the price of items,
and [Rows 5] specifies a 5-element sliding window. Even this simple query has no single obvious
interpretation that we know of. For example, is the result of the query a stream or a relation?
What happens to the query result when the price of a recently-purchased item—i.e., an item still
within the 5-element window—changes?

In this paper, we initially define a precise abstract semantics for continuous queries. Our abstract
semantics is based on two data types—streams and relations—and three classes of operators over
these types: operators that produce a relation from a stream (stream-to-relation), operators that
produce a relation from other relations (relation-to-relation), and operators that produce a stream
from a relation (stream-to-relation). The three classes of operators are “black box” components of
our abstract semantics: our semantics does not depend on the exact operators in these classes, but
only on the generic properties of all operators in these classes.

CQL instantiates the black boxes in our abstract semantics: It uses SQL to express its relation-
to-relation operators, a window specification language derived from SQL-99 to express its stream-
to-relation operators, and a set of three operators for its relation-to-stream operators. Most of CQL
is fully operational in our prototype DSMS [STR]|. CQL has been used to specify the Linear Road
benchmark proposed for data stream systems [TCAO03], and to specify a variety of other stream
applications in a public repository we are curating [SQR].

In defining our abstract semantics and concrete language we had certain goals in mind:

1. We wanted to exploit well-understood relational semantics (and by extension relational rewrites
and execution strategies) to the extent possible.

2. We wanted queries performing simple tasks to be easy and compact to write. Conversely, we
wanted simple-appearing queries to do what one expects.

We believe these goals have been achieved to a large extent.

The STREAM query processing engine is based on physical query plans generated from CQL
textual queries. Often query plan merging occurs, so a single query plan may compute multiple
continuous queries. In this paper we focus on the structure and details of the execution plans
themselves, not on how plans are selected or how they migrate and adapt over time (which are the
subjects of forthcoming papers).

In developing the structure of our query execution plans we had certain goals in mind:

3. We wanted plans built from modular and pluggable components based on generic interfaces,
especially for operators and synopsis structures.

4. We wanted an execution model that efficiently captures the combination of streams and
relations that forms the basis of our language.

5. We wanted an architecture permitting easy experimentation with different strategies for op-
erator scheduling, overflowing state to disk, sharing state and computation among multiple
continuous queries, and other crucial issues affecting performance.

Here too we believe these goals have been achieved to a large extent. To summarize the contributions
of this paper:



e We formalize streams and updatable relations (Section 4), and define an abstract semantics for
continuous queries based on three black-box classes of operators: stream-to-relation, relation-
to-relation, and relation-to-stream (Section 5).

e We define our concrete language, CQL, which instantiates the black boxes in the abstract
semantics as discussed earlier (Section 6). We define syntactic shortcuts and defaults in CQL
for convenient and intuitive query formulation, and we point out a few equivalences in the
language (Section 9).

e We illustrate the expressive power of CQL using a hypothetical road traffic management
application proposed as a benchmark for data stream systems [TCAO03] (Sections 3 and 7).
We also compare the expressiveness of CQL against related query languages (Section 10).

e We describe the query execution plans and strategies used in the STREAM system for CQL
queries. We focus specifically on operators, inter-operator queues, synopses, and sharing of
components among multiple operators and queries (Section 11).

2 Related Work

A preliminary description of our abstract semantics and the CQL language appeared as an invited
paper in [ABWO03]. That paper did not include query transformations, the Linear Road benchmark,
or any of the material on query execution included in this paper.

A comprehensive description of work related to data streams and continuous queries is given
in [BBD102]. Here we focus on work related to languages and semantics for continuous queries.

Continuous queries have been used either explicitly or implicitly for quite some time. Materi-
alized views [GM95] are a form of continuous query, since a view is continuously updated to reflect
changes to its base relations. Reference [JMS95] extends materialized views to include chronicles,
which essentially are continuous data streams. Operators are defined over chronicles and relations
to produce other chronicles, and also to transform chronicles to materialized views. The operators
are constrained to ensure that the resulting materialized views can be maintained incrementally
without referencing entire chronicle histories.

Continuous  queries  were  introduced  explicitly = for  the  first time  in
Tapestry [TGNO92] with a SQL-based language called T'QL. (A similar language is considered
in [Bar99].) Conceptually, a TQL query is executed once every time instant as a one-time SQL
query over the snapshot of the database at that instant, and the results of all the one-time queries
are merged using set union. Several systems use continuous queries for information dissemination,
e.g., [CDTWO00, LPT99, NACPO1]. The semantics of continuous queries in these systems is also
based on periodic execution of one-time queries as in Tapestry. In Section 10, we show how Tapestry
queries and materialized views over relations and chronicles can be expressed in CQL.

The abstract semantics and concrete language proposed in this paper are more general than
any of the languages above, incorporating window specifications, constructs for freely mixing and
mapping streams and relations, and the full power of any relational query language. Recent work
in the TelegraphCQ system [CCT03b] proposes a declarative language for continuous queries with
a particular focus on expressive windowing constructs. The TelegraphC(@Q language is discussed
again briefly in Section 10.6. The ATLaS [WZL02] SQL extension provides language constructs for
expressing incremental computation of aggregates over windows on streams, but in the context of
simple SPJ queries. GSQL [CJSS03] is a SQL-like language developed for Gigascope, a DSMS for
network monitoring applications. GSQL is compared against CQL in Section 10.
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Figure 1: The Linear Road highway system

Several systems support procedural continuous queries, as opposed to the declarative approach
in this paper. The event-condition-action rules of active database systems, closely related to SQL
triggers, fall into this category [PD99]. The Aurora system [CC102] is based on users directly
creating a network of stream operators. A large number of operator types are available, from simple
stream filters to complex windowing and aggregation operators. The Tribeca stream-processing
system for network traffic analysis [Sul96] supports windows, a set of operators adapted from
relational algebra, and a simple language for composing query plans from them. Tribeca does not
support joins across streams. Both Aurora and Tribeca are compared against CQL in more detail
in Section 10.

Since stream tuples have timestamps and therefore ordering, our semantics and query language
are related to temporal [OS95] and sequence [SLR95] query languages. In most respects the temporal
or ordering constructs in those languages subsume the corresponding features in ours, making our
language less expressive but easier to implement efficiently. Also note that the semantics of temporal
and sequence languages is for one-time, not continuous, queries.

3 Introduction to Running Example

We introduce a running example based on a hypothetical road traffic management application
introduced in the Linear Road benchmark for data stream management systems [TCA03]. We use
a simplified version of the Linear Road application to illustrate various aspects of our language,
semantics, and execution plans; full details can be found in the original specification [TCA03].

The Linear Road application uses variable tolling—adaptive, real-time computation of vehicle
tolls based on traffic conditions—to regulate vehicular traffic on a system of highways. To enable
variable tolling each vehicle is equipped with a sensor that continuously relays its position and
speed to a central server. The server aggregates the information received from all vehicles on the
highway system, computes tolls in real-time, and transmits tolls back to vehicles using the sensor
network.

Figure 1 shows the Linear Road highway system. There are L highways numbered 0, ..., L —1.
Each highway is 100 miles long and runs east-west. Traffic flows in both directions on a highway.
In each direction, a highway is divided into 100 1-mile segments and has exit and entrance ramps
at the segment boundaries. When a vehicle is on a highway, its current speed (miles per hour)
and position is reported to the central server every 30 seconds. A position is specified using three



attributes: the highway number (0,...,L — 1), the direction (east or west), and the position on
the highway specified by number of feet from the left (west) end of the highway. (In the complete
Linear Road application [TCAO03] each highway has 6 lanes—3 in each direction—but we abstract
away that detail in our examples.)

Vehicles pay a toll whenever they drive in a congested segment, while no toll is charged for
uncongested segments. A segment is congested if the average speed of all vehicles in the segment
over the last 5 minutes is less than 40 miles per hour (MPH). The toll for a congested segment is
given by the formula basetoll x (numuvehicles — 150)2, where basetoll is a prespecified constant and
numuehicles is the number of vehicles currently in the segment. Note that the toll for a congested
segment changes whenever vehicles enter or leave the segment. When the server detects that a
vehicle has entered a congested segment, the server outputs the current toll for the segment which
is conveyed back to the vehicle.

In stream terminology, the simplified Linear Road application in this paper has:

e A single input stream—the stream of positions and speeds of vehicles
e A single continuous query computing the tolls

e A single output toll stream

As the paper progresses we will illustrate how we model, express, and execute this application using
our language, semantics, and query execution strategies.

4 Streams and Relations

In this section we define a formal model of streams and updatable relations. As in the standard
relational model, each stream and relation has a fixed schema consisting of a set of named attributes.
For stream element arrivals and relation updates we assume a discrete, ordered time domain 7.
A time instant (or simply instant) is any value from 7. For concreteness, we represent 7 as
the nonnegative integers {0, 1,...}; in particular note that 0 stands for the earliest time instant.
Time domain 7 models an application’s notion of time, not particularly system or wall-clock time.
Thus, although 7 may often be of type Datetime, our semantics only requires any discrete, ordered
domain. (A thorough discussion of time issues in Data Stream Management Systems appears
in [SWO03].)

Definition 4.1 (Stream) A stream S is a (possibly infinite) bag (multiset) of elements (s, T),
where s is a tuple belonging to the schema of S and 7 € 7 is the timestamp of the element. a

Note that the timestamp is not part of the schema of a stream, and there could be zero, one, or
multiple elements with the same timestamp in a stream. We only require that there be a finite
(but unbounded) number of elements with a given timestamp.

There are two classes of streams: base streams, which are the source data streams that arrive at
the DSMS, and derived streams, which are intermediate streams produced by operators in a query.
We use the term tuple of a stream to denote the data (non-timestamp) portion of a stream element.

Example 4.1 In the Linear Road application there is just one base stream containing vehicle
speed-position measurements, with schema:

PosSpeedStr(vehicleld,speed,xPos,dir,hwy)



Attribute vehicleId identifies the vehicle, speed denotes the speed in MPH, hwy denotes the
highway number, dir denotes the direction (east or west), and xPos denotes the position of the
vehicle within the highway in feet, as described in Section 3. The time domain is of type Datetime,
and for this application the timestamp of a stream element denotes the physical time when the
position and speed measurements were taken. O

Definition 4.2 (Relation) A relation R is a mapping from 7 to a finite but unbounded bag of
tuples belonging to the schema of R. O

A relation R defines an unordered bag of tuples at any time instant 7 € 7, denoted R(7). Note
the difference between this definition for relation and the standard one: in the standard relational
model a relation is simply a set (or bag) of tuples, with no notion of time as far as the semantics
of relational query languages are concerned.

We use the term instantaneous relation to denote a relation in the traditional bag-of-tuples
sense, and relation to denote a time-varying bag of tuples as in Definition 4.2. Thus, if R denotes
a relation, R(7) denotes an instantaneous relation. Often when there is no ambiguity we omit the
term instantaneous when referring to an instantaneous relation (e.g., “at time 7 relation R contains
the bag of tuples ...”). We use the term base relation for input relations and derived relation for
relations produced by query operators.

Example 4.2 The Linear Road application contains no base relations, but several derived relations
are useful in toll computation. For example, the toll for a congested segment depends on the current
number of vehicles in the segment, which can be represented in a derived relation:

SegVolRel(segNo,dir,hwy,numVehicles)

Attribute hwy denotes the highway number, dir denotes the direction, segNo identifies the seg-
ment within the highway, and numVehicles is the number of vehicles in the segment. At time 7,
SegVolRel(T) contains the number of vehicles in each highway segment as of time 7. (Actually
because vehicles only report positions every 30 seconds, some vehicles counted for a segment may
have already left that segment, but we have no way of knowing.) Section 7 shows how derived
relation SegVolRel is specified over base stream SpeedPosStr, and how SegVolRel is used in the
main toll-computing continuous query. O

As this example suggests, the concept of a relation is useful even in applications whose inputs
and outputs are all streams. It seems more natural to model “the current number of vehicles
in a segment” as a time-varying relation, rather than as a stream of the latest values. From an
expressiveness point of view, it is not necessary to have both streams and relations: we could
have picked just one of streams and relations and designed our language around it without loss of
expressiveness; this issue is discussed further in Section 10.6. In our implementation we encode
both streams and relations uniformly as “plus-minus streams,” as discussed in Section 11.

5 Abstract Semantics

This section presents our abstract semantics for continuous queries. As review from Section 1, our
semantics is based on three classes of operators over streams and relations:

e stream-to-relation operators that produce a relation from a stream

e relation-to-relation operators that produce a relation from one or more other relations
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Figure 2: Operator classes and mappings used in abstract semantics

e relation-to-stream operators that produce a stream from a relation

Recall that by “relation” we are referring to our formal notion of a time-varying (updatable)
relation, as defined in Section 4.

Stream-to-stream operators are absent—they have to be composed from operators of the three
classes above. As we will discuss in detail in Section 6, the rationale for this decision is based
primarily on our goal #1 from Section 1: exploiting well-understood relational semantics (and by
extension relational rewrites and execution strategies) to the extent possible.

First some terminology: S up to 7 denotes the bag of elements in stream S with timestamps
<7, ie, {{s,7) € S:7 <71} S at 7 denotes the bag of elements of S with timestamp 7,
i.e., {(s,7') € S: 7' = 7}. Similarly, R up to 7 denotes the collection of instantaneous relations
R(0),...,R(7), and R at 7 denotes the instantaneous relation R(7).

1. A stream-to-relation operator takes a stream S as input and produces a relation R as output
with the same schema as S. At any instant 7, R(7) should be computable from S up to 7.

2. A relation-to-relation operator takes one or more relations R1,..., R, as input and produces
a relation R as output. At any instant 7, R(7) should be computable from R1(7),..., Ry (7).

3. A relation-to-stream operator takes a relation R as input and produces a stream S as output
with the same schema as R. At any instant 7, S at 7 should be computable from R up to 7.

Now we define our abstract semantics.

Definition 5.1 (Continuous Semantics) Consider a query @ that is any type-consistent com-
position of operators from the above three classes. Suppose the set of all inputs to the innermost
(leaf) operators of @ are streams Si,...,S, (n > 0) and relations Ry,..., R, (m > 0). We define
the result of continuous query @) at a time 7, which denotes the result of ) once all inputs up to 7
are “available” (a notion discussed below). There are two cases:

e Case 1: The outermost (topmost) operator in @ is relation-to-stream, producing a stream S
(say). The result of @ at time 7 is S up to 7, produced by recursively applying the operators
comprising @ to streams Si,...,S5, up to 7 and relations Ry, ..., Ry, up to 7.

e Case 2: The outermost (topmost) operator in @ is stream-to-relation or relation-to-relation,
producing a relation R (say). The result of @ at time 7 is R(7), produced by recursively
applying the operators comprising @) to streams Si,...,S, up to 7 and relations Ry, ..., Ry,
up to 7.



Based on this definition, informally we can think of continuous queries operationally as follows.
Let time “advance” within domain 7, further discussed below. First consider a query producing
a stream. At time 7 € 7, all inputs up to 7 are processed and the continuous query emits any
new stream result elements with timestamp 7. Because of our assumptions on operators, no new
stream elements with timestamp < 7 can be produced from inputs with timestamp > 7. A query
producing a relation is similar: At time 7, all inputs up to 7 are processed and the continuous
query updates the output relation to state R(7).

Now let us understand what it means for time to advance within domain 7. The relationship
between application time, wall-clock time, and system time is a complex issue discussed in depth
in a separate paper [SWO03]. However, for precise query semantics we need make no additional
assumptions beyond those already made in this paper. Time “advances” to 7 from 7 — 1 when all
inputs up to 7 — 1 have been processed. It appears we are tacitly assuming that streams arrive
in timestamp order, relations are updated in timestamp order, and there is no timestamp “skew”
across streams or relations. In practice, to implement our semantics correctly, systems cope with out
of order and skewed inputs. This issue is revisited in Section 8 and thoroughly covered by [SWO03].

As an example, in the Linear Road application the sequence of operators producing derived
relation SegVolRel conceptually produces, at every time instant 7, the instantaneous relation
SegVolRel(T) containing the current number of vehicles in each segment. In a DSMS implementing
our semantics, SegVolRel(7) cannot be produced until it is known that all elements on input stream
SegVolRel (segNo,dir,hwy,numVehicles) with timestamp < 7 have been received. Furthermore,
once they have, there may be additional lag before the relation is actually updated due to query
processing time. Our semantics does not dictate “liveness” of continuous query output—that issue
is relegated to latency management in the query processor [BBDMO03, CC*03a].

6 Continuous Query Language

This section presents our concrete language, CQL, which is defined by instantiating the operators of
our abstract semantics. We also specify a few syntactic shortcuts and defaults to simplify expression
of some common operations.

Broadly, our approach to designing operators in CQL is as follows: Support a large class of
relation-to-relation operators, which perform the bulk of data manipulation in a typical CQL query,
along with a small set of stream-to-relation and relation-to-stream operators that convert streams
to relations and back. The primary advantage of this approach is the ability to reuse the formal
foundations and huge body of implementation techniques for relation-to-relation languages such as
relational algebra and SQL, instead of starting from scratch with a heavily stream-based language.
Furthermore, as we will see, queries in CQL are quite natural to express.

Technically, we cannot directly import existing conventional relation-to-relation operators into
our concrete language, since they operate on instantaneous relations while we operate on time-
varying relations, but the mapping is obvious: Let O, denote a traditional relational operator
or query over instantaneous input relations Rjp,...,R,. The corresponding relation-to-relation
operator O, in CQL produces the time-varying relation R such that at each time 7, R(7) =
Or(R1(7), ..., Rp(7)).

An apparent drawback of our approach is that even a simple filter on a stream requires three
operators: one to turn the stream into a relation, one to perform a relational filter, and one to turn
the relation back into a stream. However, CQL’s defaults and syntactic shortcuts make filters and
other simple queries easy to express (Section 6.4).

Next in Sections 6.1-6.3 we cover the three classes of operators in CQL.



6.1 Stream-to-Relation Operators

Currently all stream-to-relation operators in CQL are based on the concept of a sliding window
over a stream: a window that at any point of time contains a historical snapshot of a finite portion
of the stream. We have three classes of sliding window operators in CQL: time-based, tuple-based,
and partitioned, defined below. Syntactically, the sliding window operators are specified using a
window specification language derived from SQL-99. Other types of sliding windows such as fized
windows [Sul96], tumbling windows [CCT02], value-based windows [SLR95], or any other windowing
construct can be incorporated into CQL easily—mnew syntax must be added, but the semantics of
incorporating a new window type relies solely on the semantics of the window operator itself, thanks
to the development of our abstract semantics.

6.1.1 Time-based sliding windows

A time-based sliding window on a stream S takes a time-interval T as a parameter and is specified
by following the reference to S with [Range T].! We do not specify a syntax or restrictions for
time-interval T" at this point, but we assume it specifies a computable period of application time.
Intuitively, a time-based window defines its output relation over time by sliding an interval of size
T time units capturing the latest portion of an ordered stream. More formally, the output relation
R of “S [Range T]” is defined as:

R(t)={s| (s,7y e S AN (7' <7) A (7' > max{r —T,0})}

Two important special cases are T'= 0 and T' = co. When T = 0, R(7) consists of tuples obtained
from elements of .S with timestamp 7. In CQL we introduce the syntax “S [Now]” for this special
case. When T' = oo, R(7) consists of tuples obtained from all elements of S up to 7 and uses the
SQL-99 syntax “S [Range Unbounded].” We use the terms Now window and Unbounded window
to refer to these two special windows.

Example 6.1 “PosSpeedStr [Range 30 Seconds]” denotes a time-based sliding window of 30
seconds over input stream PosSpeedStr. At any time instant, the output relation of the sliding
window contains the bag of position-speed measurements from the previous 30 seconds. Simi-
larly, at any instant “PosSpeedStr [Now]” contains the (possibly empty) bag of position-speed
measurements from that instant, and “PosSpeedStr [Range Unbounded]” contains the bag of all
position-speed measurements so far. O

6.1.2 Tuple-based windows

A tuple-based sliding window on a stream S takes a positive integer N as a parameter and is
specified by following the reference to S in the query with [Rows N]. Intuitively, a tuple-based
window defines its output relation over time by sliding a window of the last N tuples of an ordered
stream. More formally, for the output relation R of “S [Rows N],” R(7) consists of the N tuples
of S with the largest timestamps < 7 (or all tuples if the length of S up to 7 is < N). Suppose
we specify a sliding window of N tuples and at some point there are several tuples with the Nth
most recent timestamp (while for clarity let us assume the other N — 1 more recent timestamps
are unique). Then we must “break the tie” in some fashion to generate exactly N tuples in the
window. We assume such ties are broken arbitrarily. Thus, tuple-based sliding windows may be

'In all three of our window types we dropped the keyword Preceding appearing in the SQL-99 syntax and in our
earlier specification [MW'03]—we only have “preceding” windows for now so the keyword is superfluous.



nondeterministic—and therefore may not be appropriate—when timestamps are not unique. The
special case of N = oo is specified by [Rows Unbounded], and is equivalent to [Range Unbounded].

Example 6.2 A tuple-based sliding window does not make much sense over stream PosSpeedStr
(except the case of N = 00) since stream element timestamps are not unique. For example, at
any instant sliding window PosSpeedStr [Rows 1] denotes the “latest” position-speed measure-
ment, which is ambiguous whenever multiple measurements carry the same timestamp—a common
occurrence in the Linear Road application. O

6.1.3 Partitioned Windows

A partitioned sliding window on a stream S takes a positive integer N and a subset {A1,..., Ax}
of S’s attributes as parameters. It is specified by following the reference to S in the query with
[Partition By Aj,...,A; Rows N]. Intuitively, this window logically partitions S into different
substreams based on equality of attributes Aj,..., A (similar to SQL Group By), computes a
tuple-based sliding window of size N independently on each substream, then takes the union of
these windows to produce the output relation. More formally, a tuple s with values aq,...,ag
for attributes Aj,..., Ag occurs in output instantaneous relation R(7) iff there exists an element
(s,7") € S, 7 < 7 such that 7/ is among the N largest timestamps of elements whose tuples have
values aq,...,ar for attributes Ay, ..., Ax. Note that analogous time-based partitioned windows
would provide no additional expressiveness over nonpartitioned time-based windows.

Example 6.3 The partitioned window “PosSpeedStr [Partition By vehicleId Rows 1]” par-
titions stream PosSpeedStr into substreams based on vehicleId and picks the latest element in
each substream. (Note that there is no ambiguity in picking the latest element in each substream,
since position-speed reports for a particular vehicle are made only once in 30 seconds and the gran-
ularity of Datetime is one second.) At any time instant, the relation defined by the window contains
the latest speed-position measurement for each vehicle that has ever transmitted a measurement.
O

6.2 Relation-to-Relation Operators

The relation-to-relation operators in CQL are derived from traditional relational queries expressed
in SQL, with the straightforward semantic mapping to time-varying relations specified at the be-
ginning of this section. Anywhere a traditional relation is referenced in a SQL query, a (base or
derived) relation can be referenced in CQL.

Example 6.4 Consider the following CQL query for the Linear Road application:

Select Distinct vehicleld
From PosSpeedStr [Range 30 Seconds]

This query is composed from a stream-to-relation sliding window operator, followed by a relation-
to-relation operator that performs projection and duplicate-elimination. The output relation of this
query contains, at any time instant, the set of “active vehicles”—those vehicles having transmitted
a position-speed measurement within the last 30 seconds. O

10



6.3 Relation-to-Stream Operators

CQL has three relation-to-stream operators: Istream, Dstream, and Rstream. In the following
formal definitions, operators U, x, and — are assumed to be the bag versions.

1. Istream (for “insert stream”) applied to relation R contains a stream element (s, 7) whenever
tuple s is in R(7) — R(7 — 1). Assuming R(—1) = ¢ for notational simplicity, we have:

Istream(R) = U ((R(t) = R(t —1)) x{7})

7>0

2. Analogously, Dstream (for “delete stream”) applied to relation R contains a stream element
(s,7) whenever tuple s is in R(7 — 1) — R(7). Formally:

Dstream(R) = U ((R(r—1) = R(7)) x {71})

>0

3. Rstream (for “relation stream”) applied to relation R contains a stream element (s, 7) when-
ever tuple s is in R at time 7. Formally:

Rstream(R) = U (R(1) x {7})

>0

A careful reader may observe that Istream and Dstream are expressible using Rstream along with
time-based sliding windows and some relational operators. However, we retain all three operators
in CQL in keeping with goal #2 from Section 1: easy queries should be easy to write.

Example 6.5 Consider the following CQL query for stream filtering;:

Select Istream(*)
From PosSpeedStr [Range Unbounded]
Where speed > 65

(Note the syntax of the relation-to-stream operator in the Select clause.) This query is composed
from three operators: an Unbounded window producing a relation that at time 7 contains all
speed-position measurements up to 7, a relational filter operator that restricts the relation to those
measurements with speed greater than 65 MPH, and an Istream operator that streams new values
in the (filtered) relation as the result of the query. The effect is a simple filter over PosSpeedStr
that outputs all input elements with speed greater than 65 MPH. The same filter query can be
written using the Rstream operator and a Now window:

Select Rstream(*)
From PosSpeedStr [Now]
Where speed > 65

As we will see shortly, our defaults also permit this query to be written in its most intuitive form:
Select * From PosSpeedStr Where speed > 65

O

The Istream operator is used most commonly with Unbounded windows to express filter condi-

tions as shown above, or to stream the results of sliding-window join queries. The Rstream operator

is used most commonly with Now windows to express filter conditions as shown above, or to stream

the results of joins between streams and relations, as we will see in Query 6 of Section 7. The

Dstream operator is used less frequently than Istream or Rstream; see [SQR] for examples of its
use.
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6.4 Syntactic Shortcuts and Defaults

In keeping with goal #2 in Section 1, we permit some syntactic “shortcuts” in CQL that result in
the application of certain defaults. Of course there may be cases where the default behavior is not
what the author intended, so we assume that when queries are registered the system informs the
author of the defaults applied and offers the opportunity to edit the expanded query. There are
two classes of shortcuts: omitting window specifications and omitting relation-to-stream operators.

Default Windows

When a stream is referenced in a CQL query where a relation is expected (most commonly in
the From clause), an Unbounded window is applied to the stream by default. While the default
Unbounded window usually produces appropriate behavior, there are cases where a Now window is
more appropriate, e.g., when a stream is joined with a relation; see Query 6 in Section 7.

Default Relation-to-Stream Operators

There are two cases in which it seems natural for authors to omit an intended Istream operator
from a CQL query:

1. On the outermost query, even when streamed results rather than stored results are desired [MW03].

2. On an inner subquery, even though a window is specified on the subquery result.

For the first case we add an Istream operator by default whenever the query produces a relation
that is monotonic. A relation R is monotonic iff R(71) C R(72) whenever 71 < 7o. A conservative
monotonicity test can be performed statically. For example, a base relation is monotonic if it is
known to be append-only, “S [Range Unbounded]” is monotonic for any stream S, and the join of
two monotonic relations also is monotonic. If the result of a CQL query is a monotonic relation then
it makes intuitive sense to convert the relation into a stream using Istream. If it is not monotonic,
the author might intend Istream, Dstream, or Rstream, so we do not add a relation-to-stream
operator by default.

For the second case we add an Istream operator by default whenever the subquery is monotonic.
If it is not, then the intended meaning of a window specification on the subquery result is somewhat
ambiguous, so a semantic (type) error is generated, and the author must add an explicit relation-
to-stream operator.

Example 6.6 Now we see why the filter query of Example 6.5 can written in its most intuitive
form:

Select * From PosSpeedStr Where speed > 65

Since PosSpeedStr is referenced without a window specification, an Unbounded window is applied
by default. Further, since the output relation of the window and filter operators is monotonic, we
add a default Istream operator to the result. O

7 Linear Road in CQL

Recall that the Linear Road application has one base input stream, PosSpeedStr, containing speed-
position measurements of vehicles using the highway system. For illustration in this paper, our only
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Figure 3: Derived relations and streams for Linear Road queries

goal is to compute the output toll stream TollStr(vehicleId,toll). Recall that a vehicle with
vehicleld v entering a congested segment at time 7 should result in a TollStr output element
((v,1),7) where 1 denotes the toll for the congested segment at time 7.

We incorporate two assumptions suggested in the original Linear Road specification [TCA03]
for computing tolls:

1. A vehicle is considered to have entered a segment when the first speed-position measurement
for the vehicle is transmitted from that segment. The vehicle is considered to remain in the
segment until it exits the system (see Assumption 2 next) or enters another segment (i.e., a
speed-position measurement is transmitted from a different segment).

2. A vehicle is considered to have exited the system when no speed-position measurement for
that vehicle is transmitted for 30 seconds.

These assumptions are necessary given that each vehicle transmits its speed-position measurement
only once each 30 seconds.

Since the continuous query producing TollStr is fairly complex, we express it using several
named derived relations and streams. Figure 3 shows the derived relations and streams that
we use, and their interdependencies. For example, TollStr is produced from derived stream
VehicleSegEntryStr and derived relations CongestedSegRel and SegVolRel. Our one base input
stream PosSpeedStr naturally appears as the source. We present specifications for the derived
streams and relations in topological order according to Figure 3. For each derived stream and
relation, we first describe its meaning, followed by the CQL (sub)query that produces it.

Query 1 SegSpeedStr(vehicleld,speed,segNo,dir,hwy): Thisstream is obtained from PosSpeedStr
by replacing the xPos attribute of each element with the corresponding segment number. Since
segments are exactly 1 mile long, the segment number is computed by (integer-)dividing xPos by

1760, the number of feet in a mile.

Select vehicleId, speed, xPos/1760 as segNo, dir, hwy
From PosSpeedStr

Note the use of a default Unbounded window and a default Istream operator in this query. O

Query 2 ActiveVehicleSegRel(vehicleld,segNo,dir,hwy): At any instant 7, this relation
contains the current segments of “active” vehicles, i.e., vehicles currently using the highway system.
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Select Distinct L.vehicleld, L.segNo, L.dir, L.hwy
From SegSpeedStr [Range 30 Seconds] as A,

SegSpeedStr [Partition by vehicleld Rows 1] as L
Where A.vehicleld = L.vehicleld

Informally, the query uses a time-based window to identify currently active vehicles (based on
Assumption 2 above) and a partitioned window to identify the latest segments of these vehicles. O

Query 3 VehicleSegEntryStr(vehicleld,segNo,dir,hwy): A vehicle v entering a segment
(s,d,h) (recall that a segment is specified using three attributes: the highway number h, direction
within the highway d, and the segment number s within the highway) at time 7 produces an element
((v,s,d,h), ) on this stream.

Select Istream(*) From ActiveVehicleSegRel

VehicleSegEntryStr is produced by applying the Istream operator to
ActiveVehicleSegRel. A vehicle v entering a segment (s,d,h) at time 7 causes a new tuple to
appear in ActiveVehicleSegRel at 7, which causes the Istream operator to produce an element
((v,s,d,h),7) in VehicleSegEntryStr. O

Query 4 CongestedSegRel (segNo,dir,hwy): At any instant 7, this relation contains the current
set of congested segments. Recall from Section 3 that a segment is considered congested if the
average speed of vehicles in the segment in the previous 5 minutes is less than 40 MPH.

Select segNo, dir, hwy

From SegSpeedStr [Range 5 Minutes]
Group By segNo, dir, hwy

Having Avg(speed) < 40

a

Query 5 SegVolRel(segNo,dir,hwy,numVehicles): This relation was introduced in Exam-
ple 4.2. At any instant 7, this relation contains the current count of vehicles in each segment.

Select segNo, dir, hwy, count(vehicleId) as numVehicles
From ActiveVehicleSegRel
Group By segNo, dir, hwy

Query 6 TollStr(vehicleId,toll): This the final output toll stream.

Select Rstream(E.vehicleld,
basetoll * (V.numVehicles - 150)
* (V.numVehicles - 150) as toll)

From VehicleSegEntryStr [Now] as E,

CongestedSegRel as C, SegVolRel as V
Where E.segNo = C.segNo and C.segNo = V.segNo and

E.dir = C.dir and C.dir = V.dir and

E.hwy = C.hwy and C.hwy = V.hwy
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At any instant 7, the Now window on VehicleSegEntryStr identifies the set of vehicles that have
entered new segments at 7. This set of vehicles is joined with CongestedSegRel and SegVolRel to
determine which vehicles have entered congested segments, and to compute tolls for such vehicles.
Recall from Section 3 that the toll for a congested segment is given by the formula basetoll x
(numuehicles — 150)2, where basetoll is a prespecified constant and numuvehicles is the number of
vehicles currently in the segment.

This query provides an example where the default Unbounded window would not yield the
intended behavior if a window specification were omitted. In general, if a stream is joined with a
relation in order to add attributes to and/or filter the stream, then a Now window on the stream
coupled with an Rstream operator usually provides the desired behavior. O

Recall that the Linear Road specification in this paper is a simplified version of the origi-
nal [TCA03]. A CQL specification of the complete Linear Road benchmark as well as a number of
other stream applications, such as network monitoring and online auctions [TTPMO02], is available
at [SQR].

8 Time Management

Recall from Sections 4 and 5 that our abstract semantics assumes a discrete, ordered time domain
T. Specifically, our continuous semantics is based on time logically advancing within domain 7.
Conceptually, at time 7 € 7 all inputs up to 7 are processed and the output corresponding to 7
(stream elements with timestamp 7 or instantaneous relation at 7) is produced. In this section we
briefly discuss how a DSMS might implement this semantics under realistic conditions. The topic
is covered in much more depth in [SWO03].

For exposition in the remainder of this section let us assume that relations are updated via
timestamped relational update requests that arrive on a stream. Thus, without loss of generality
we can focus on streams only. For a DSMS to produce output corresponding to a time 7 € 7, it
must have processed all input stream elements at least through 7. In other words, it must know at
some “real” (wall-clock) time ¢ that no new input stream elements with timestamp < 7 will arrive
after t. Making this determination is straightforward when all of the input streams are “alive”
and their elements arrive in timestamp order. However, in many stream applications (including
the Linear Road) input streams may be generated by remote sources, the network conveying the
stream elements to the DSMS may not guarantee in-order transmission, particularly across sources,
and streams may pause and restart.

In the STREAM prototype our approach is to assume an additional “meta-input” to the system
called heartbeats. A heartbeat consists simply of a timestamp 7 € 7, and has the semantics that
after arrival of the heartbeat the system will receive no future stream elements with timestamp
< 7. There are various ways by which heartbeats may be generated. Here are three examples:

1. In the easiest and a fairly common case, timestamps are assigned using the DSMS clock when
stream tuples arrive at the system. Therefore stream elements are ordered, and the clock
itself provides the heartbeats.

2. The source of an input stream might generate source heartbeats, which indicate that no
future elements in that stream will have timestamp less than or equal to that specified by the
heartbeat. If all the sources of input streams generate source heartbeats, an application-level
or query-level heartbeat can be generated by taking the minimum of all the source heartbeats.
Note that this approach is feasible only if the heartbeats and the stream elements within a
single input stream reach the DSMS in timestamp order.
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3. Properties of stream sources and the system or networking environment may be used to
generate heartbeats. For example, if we know that all sources of input streams use a global
clock for timestamping and there is an upper bound D in delay of stream elements reaching
the DSMS, at every global time ¢ we can generate a heartbeat with timestamp ¢t — D.

More details about our approach to time management and heartbeat generation can be found

in [SWO03].

9 Equivalences in CQL

In this section we briefly consider syntactic equivalences in the CQL language. As in any declarative
language, equivalences can enable important query-rewrite optimizations, however the optimization
process itself is not a central topic of this paper.

All equivalences that hold in SQL with standard relational semantics carry over to the relational
portion of CQL, including join reordering, predicate pushdown, subquery flattening, etc. Further-
more, since any CQL query or subquery producing a relation can be thought of as a materialized
view that is updated over time, all equivalences from materialized view maintenance [GM95] can
be applied to CQL. For example, a materialized view joining two relations generally is maintained
incrementally rather than by recomputation, and the same approach can be used to join two rela-
tions (or windowed streams) in CQL. In fact, this equivalence is incorporated into our binary-join
physical query plan operator (Section 11).

Here we consider two equivalences based on streams: window reduction and filter-window com-
mutativity. The identification of other useful stream-based syntactic equivalences is a topic of future
work.

9.1 Window Reduction

The following equivalence can be used to rewrite any CQL query or subquery with an Unbounded
window and an Istream operator into an equivalent (sub)query with a Now window and an Rstream
operator. Here, L is any select-list, S is any stream (including a subquery producing a stream),
and C' is any condition.

Select Istream(L) From S [Range Unbounded] Where C

Select Rstream(L) From S [Now] Where C

Furthermore, if stream S has a key (no duplicates), then we need not replace the Istream operator
with Rstream, although once a Now window is applied there is little difference in efficiency between
Istream and Rstream.?

Transforming Unbounded to Now obviously suggests a much more efficient implementation—
logically, Unbounded windows require buffering the entire history of a stream, while Now windows
allow a stream tuple to be discarded as soon as it is processed. In separate work we have developed
techniques for transforming Unbounded windows into [Rows N] windows, but those transformations
rely on many-one joins and constraints over the streams [BSW02].

We may find other cases or more general criteria whereby Unbounded windows can be replaced
by Now windows; a detailed exploration is left as future work.

2More generally, Istream and Rstream are equivalent over any relation R for which R(r)NR(t—1) =0 for all T.
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9.2 Filter-Window Commutativity

Another equivalence that can be useful for query-rewrite optimization is the commutativity of
selection conditions and time-based windows. Here, L is any select-list, S is any stream (including
a subquery producing a stream), C' is any condition, and 7" is any time interval.

(Select L From S Where C) [Range T]

Select L From S [Range T] Where C

If the system uses a query evaluation strategy based on materializing the windows specified in
a query, then filtering before applying the window instead of after is preferable since it reduces
steady-state memory overhead [MW™'03]. Note that the converse transformation might also be
applied: We might prefer to move the filtering condition out of the window in order to allow the
window to be shared by multiple queries with different selection conditions [MW T03]. Finally note
that filters and tuple-based windows generally do not commute.

10 Comparison with Other Languages

Now that we have presented our language we can provide a more detailed comparison against
some of the related languages for continuous queries over streams and relations that were discussed
briefly in Section 2. Specifically, we show that basic CQL (without user-defined functions, aggre-
gates, or window operators) is strictly more expressive than Tapestry [TGNO92], Tribeca [Sul96],
GSQL [CJSS03], and materialized views over relations with or without chronicles [JMS95]. We
also discuss Aurora [CC102], although it is difficult to compare CQL against Aurora because of
Aurora’s graphical, procedural nature.

At the end of this section we discuss our choice to define a language based on both relations
and streams, instead of taking a stream-only approach. Included is a discussion of the stream-only
query language of TelegraphCQ [CCT03b].

10.1 Views and Chronicles

Any conventional materialized view defined using a SQL query @) can be expressed in CQL using
the same query @ with CQL semantics.

The Chronicle Data Model (CDM) [JMS95] defines chronicles, relations, and persistent views,
which are equivalent to streams, base relations, and derived relations in our terminology. For
consistency we use our terminology instead of theirs. CDM supports two classes of operators based
on relational algebra, both of which can be expressed in CQL. The first class takes streams and
(optionally) base relations as input and and produces streams as output. Each operator in this class
can be expressed equivalently in CQL by applying a Now window on the input streams, translating
the relational algebra operator to SQL, and applying an Rstream operator to produce a streamed
result. For example, join query S g, a=s,. 5 S2 in CDM is equivalent to the CQL query:

Select Rstream(*) From S1 [Now], S2 [Now]
Where S1.A = S2.B

The second class of operators takes a stream as input and produces a derived relation as output.
These operators can be expressed in CQL by applying an Unbounded window on the input stream
and translating the relational algebra operator to SQL.
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The operators in CDM are strictly less expressive than CQL. CDM does not support sliding
windows over streams, although it has implicit Now and Unbounded windows as described above.
Furthermore, CDM distinguishes between base relations, which can be joined with streams, and
derived relations (persistent views), which cannot. These restrictions ensure that derived relations
in CDM can be maintained incrementally in time logarithmic in the size of the derived relation.
CQL queries, on the other hand, could require unbounded time and memory, as we have shown
in [ABBT02] and addressed in [MW03].

10.2 Tapestry

Tapestry queries [TGNO92| are expressed using SQL syntax. At time 7, the result of a Tapestry
query () contains the set of tuples logically obtained by executing () as a relational SQL query at
every instant 7/ < 7 and taking the set-union of the results. This semantics for ) is equivalent to
the CQL query:

Select Istream(Distinct *)
From (Istream(Q)) [Range Unbounded]

Tapestry does not support sliding windows over streams or any relation-to-stream operators.

10.3 Tribeca

Tribeca is based on a set of stream-to-stream operators and we have shown that all of the Tribeca
operators specified in [Sul96] can be expressed in CQL; details are omitted. Two of the more
interesting operators are demux (demultiplex) and mux (multiplex). In a Tribeca query the demux
operator is used to split a single stream into an arbitrary number of substreams, the substreams
are processed separately using other (stream-to-stream) operators, then the resulting substreams
are merged into a single result stream using the mux operator. This type of query is expressed in
CQL using a combination of partitioned window and Group By.

Like chronicles and Tapestry, Tribeca is strictly less expressive than CQL. Tribeca queries take
a single stream as input and produce a single stream as output, with no notion of relation. CQL
queries can have multiple input streams and can freely mix streams and relations.

10.4 Gigascope

GSQL is a SQL-like query language developed for Gigascope, a DSMS designed specifically for
network monitoring applications [CJSS03]. GSQL is a stream-only language, but relations can be
created and manipulated using user-defined functions. Over streams GSQL’s primary operators
are selection, join, aggregation, and merge. Constraints on join and aggregation ensure that they
are nonblocking: a join operator must contain a predicate involving an “ordered” attribute from
each of the joining streams, and an aggregation operator must have at least one grouping attribute
that is ordered. (Ordered attributes are generalizations of CQL timestamps.)

The four primary operations in GSQL can be expressed in CQL: Selection is straightforward.
The GSQL Merge operator can be expressed using Union in CQL. The GSQL join operator trans-
lates to a sliding-window join with an Istream operator in CQL. Finally, although it is nontrivial
to express GSQL aggregation in CQL (requiring grouping and aggregation, projection, and join),
it always is expressible; details are omitted.
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10.5 Aurora

Aurora queries are built from a set of eleven operator types [CCT02]. Operators are composed by
users into a global query execution plan via a “boxes-and-arrows” graphical interface. It is some-
what difficult to compare the procedural query interface of Aurora against a declarative language
like CQL, but we can draw some distinctions.

The aggregation operators of Aurora (Tumble, Slide, and XSection) are each defined from three
user-defined functions, yielding nearly unlimited expressive power. The aggregation operators also
have optional parameters set by the user. For example, these parameters can direct the operator
to take certain action if no stream elements have arrived for T wall-clock seconds, making the
semantics dependent on stream arrival and processing rates.

All operators in Aurora are stream-to-stream, and Aurora does not explicitly support relations.
In order to express CQL queries involving derived relations and relation-to-relation operators,
Aurora procedurally manipulates state corresponding to a derived relation.

10.6 Stream-Only Query Language

Our abstract semantics and therefore CQL distinguish two fundamental data types, relations and
streams. At the end of this section we outline several motivations for choosing our dual approach
over a purely stream-based approach. Nevertheless, it is worth noting that we can always derive a
stream-only language L from our language L (either CQL or another instantiation of our abstract
semantics) as follows.

1. Corresponding to each n-ary relation-to-relation operator O in L, there is an n-ary stream-
to-stream operator Og in Ls. The semantics of O4(Si, ...,S,) when expressed in L is
Rstream(O(S; [Nowl,...,S, [Now])).

2. Corresponding to each stream-to-relation operator W in L, there is a unary stream-to-stream
operator Wy in L. The semantics of S[IW| when expressed in L is Rstream(S[W]).

3. There are no operators in Lg corresponding to relation-to-stream operators of L.

L and Lg have essentially the same expressive power. Clearly any query in L¢ can be rewritten in
L. Given a query Q) in L, we obtain a query )5 in Ls by performing the following three steps. First,
transform @) to an equivalent query @’ that has Rstream as its only relation-to-stream operator
(this step is always possible as indicated in Section 6.3). Second, replace every input relation R; in
Q' with Rstream(R;). Finally, replace every relation-to-relation and stream-to-relation operator in
Q with its L, equivalent according to the definitions above. As it turns out, the language L, derived
from CQL is quite similar to the stream-to-stream approach being taken in TelegraphCQ [CCT03b].

We chose our dual approach over the stream-only approach for at least three reasons:

1. Reiterating goal #1 from Section 1, we wanted to exploit the wide body of understanding
and work on the existing relational model to the extent possible.

2. Our experience with a large number of queries [SQR] suggests that the dual approach re-
sults in more intuitive queries than the stream-only approach. As illustrated in our Linear
Road examples (Section 7), even applications with purely stream-based input and output
specifications may include fundamentally relational components.

3. Having both relations and streams cleanly generalizes materialized views, as discussed in
detail in Section 10.1.
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Note that the Chronicle Data Model [JMS95] discussed in Section 10.1 also takes an approach
similar to ours—it supports both chronicles (closely related to streams) and materialized views
(relations).

11 CQL Implementation in STREAM

In this section we describe the query plans and execution strategies we use in our implementation
of CQL as the declarative query language in the STREAM prototype Data Stream Management
System [ABB103]. Section 11.1 describes the physical representation of streams and relations within
query plans, Section 11.2 describes query plan structure, Section 11.5 enumerates the operators used
in query plans, and Section 11.6 briefly discusses query optimization and plan generation. (Details
of query plan generation and our adaptive approach to query optimization are topics of forthcoming
papers.) Finally, Section 11.7 presents STREAM’s graphical user interface for viewing, monitoring,
and altering query plans.

11.1 Internal Representation of Streams and Relations

Recall the formal definitions of streams and relations from Section 4. A stream is a bag of tuple-
timestamp pairs, which can be represented as a sequence of timestamped tuple “insertions.” A
relation, which is a time-varying bag of tuples, can also be represented as a sequence of timestamped
tuples, except now we have both insertion tuples and deletion tuples to capture the changing state
of the relation.

STREAM exploits this similarity between streams and relations and uses a common physical
representation for both of them: sequences of tagged tuples. The tuple part contains a value for
each attribute in the schema of the stream or relation; the tag contains a timestamp and indicates
whether the tuple is an insertion or a deletion. The tagged-tuple sequences are append-only and are
always in nondecreasing order by timestamp. (Base streams and relation updates that arrive out
of timestamp order can be converted into sorted sequences as described in Section 8, and operators
always emit sorted sequences.)

11.2 STREAM Query Plans

When a continuous query specified in CQL is registered with the STREAM system it is compiled
into a query plan. The query plan is merged with existing query plans whenever possible, in order
to share computation and state. Plan generation itself is not a focus of this paper, although we
discuss it again briefly in Section 11.6. Each query plan runs continuously and is composed of three
different types of components: operators, queues, and synopses.

11.2.1 Operators

Each query plan operator reads from one or more input queues, processes the input based on
its semantics, and writes its output to an output queue. Section 11.5 describes the current set
of operators supported in STREAM, also enumerated in Table 1. Since queues (described next)
encode both streams and relations, query plan operators can implement all three operator types in
our abstract semantics and CQL: stream-to-relation, relation-to-relation, and relation-to-stream.
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11.2.2 Queues

A queue connects its input operator O; to its output operator Op. At any time a queue contains a
(possibly empty) sequence representing a portion of a stream or relation in our physical representa-
tion as described in Section 11.1. The contents that pass through the queue over time correspond
to the stream or relation produced by O;. The queue buffers the insertions and deletions in the
output of O until they are processed by Op.

11.2.3 Synopses

Synopses store the intermediate state needed by continuous query plans. In our query plans a
synopsis is always “owned” by a single operator O, and the state the synopsis contains is that
needed for future evaluation of O. For example, to perform a windowed join of two streams, the
join operator must have access to all tuples in the current window on each input stream. Thus,
a join operator maintains one synopsis (e.g., a hash table) for each of the joined inputs. On the
other hand, operators such as selection and duplicate-preserving union do not require a synopsis
since they do not require saved state.

The most common use of a synopsis in our system is to materialize the current state of a
relation, such as the contents of a sliding window, or of a relation derived by a subquery. Synopses
also may be used to store a summary of the tuples in a stream or a relation for approximate query
answering. Example synopsis types for this purpose are reservoir samples [Vit85] over streams, and
Bloom filters [Blo70].

11.2.4 Memory Management

Currently queues and synopses are stored entirely in memory, although we are in the process of
implementing the capability for them to spill to disk. A common pool of memory is allocated to
queues and synopses on demand at the page granularity. To minimize copying and proliferation of
tuples, all tuple data is stored in synopses and is not replicated. Queues contain references to tuple
data within synopses, along with tags containing a timestamp and an insertion/deletion indicator.
In addition, some synopses are simply “stubs” that point to data in other synopses, as discussed
in Section 11.4.

11.3 Example Query Plans

Figure 4 illustrates a merged STREAM query plan for two continuous queries, ()1 and ()2, over
input streams S; and S3. Query @) is a windowed-aggregate query: it maintains the maximum
value of S7.A for each distinct value of S1.B over a 50,000-tuple sliding window on stream S;. In

CQL:

Q1: Select B, max(A)
From S1 [Rows 50,000]
Group By B

Query @2 streams the result of a sliding-window join over streams S; and S3. The window on S
is a tuple-based window containing the last 40,000 tuples, while the window on S5 is a 10-minutes
time-based window. In CQL:

Q2: Select Istream(*)
From S1 [Rows 40,000], S2 [Range 600 Seconds]
Where S1.A = S2.A
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Figure 4: STREAM continuous query plan for two queries

The plan contains five operators, seq-windowg;, seq-windowgo, aggregate, binary-join, and
i-stream, seven synopses Syni—Syn;, and eight queues gi—qs. Operators seq-windowg; and
seq-windowge are stream-to-relation, aggregate and binary-join are relation-to-relation, and
i-streanm is relation-to-stream. We explain in some detail how each of the five operators behave.

e Operator seq-windowg; is a sliding-window operator that reads input stream Sp’s tuples from
input queue ¢1,> updates the sliding-window synopsis Syni, and outputs the insertions and
deletions to this window (which is a relation) on both queues g3 and g4. Syn; always contains
the 50,000 most recent tuples in stream S; that seq-windowg; has processed, which is the
larger of the two windows applied to S.

e Sliding-window operator seq-windowgo processes input stream Ss’s tuples from queue g¢s.
seq-windowgo maintains synopsis Syng, which contains all tuples from S; whose timestamps
are within the last 600 seconds. seq-windowge outputs insertions and deletions to this win-
dow (which is a relation) on queue gs. Specifically, for an Sy tuple s with timestamp 7,
seq-windowge will produce an insertion of s into this window with timestamp 7, and a dele-
tion of s from this window with timestamp 7 + 600 seconds. Recall from Section 11.1 that
all insertions and deletions are emitted by the operator in nondecreasing timestamp order.

e Operator aggregate maintains the maximum value of S7.A4 for each distinct value of S;.B
in its input relation, which is the 50,000-tuple sliding window on stream S;. The aggregate
values change based on insertions and deletions to the window, which recall are provided by
operator seq-windowg; on queue q3. Operator aggregate maintains the current aggregation
result in synopsis Syng, and it outputs insertions and deletions to this result on queue gg.
Because max is not incrementally maintainable—when the current maximum S;.A4 for an S1.B

3In reality, a special operator stream-shepherd handles incoming streams, placing the elements onto corresponding
stream input queues; see Section 11.5.4.
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value leaves the window we may need to inspect the entire window to find the new maximum—
operator aggregate maintains a second synopsis Syng with sufficient information to maintain
the maximums. It turns out that Syng is simply a time-shifted version of Syni: Syns contains
the same 50,000 tuple window except it is “behind” by the tuples in g3. Instead of duplicating
information, the plan shares tuple data between Syn; and Syns, as indicated by the dotted
arrow between them in Figure 4.

e Operator binary-join joins two input relations, which are sliding windows on streams S
and Sy. binary-join computes the join incrementally using the insertions and deletions to
these windows provided on queues ¢4 and g5 respectively. binary-join processes tuples in
nondecreasing timestamp order across both of its inputs. That is, each time it is ready to
process an input tuple, it selects the tuple from queue g4 or g5 with the lowest timestamp.
Logically, binary-join maintains a synopsis for each input: Syngy and Syns for ¢4 and gs.
An insertion (deletion) on g4 is joined with Syns to compute the corresponding insertions
(deletions) to the join result which are output on queue q7; similarly for ¢s. These joins
can be nested-loop or index joins depending whether we choose to build indexes on the join
attributes in Syng4 and Syns. Logically Syns contains the 40,000 most recent tuples in stream
S1 that binary-join has processed. In our implementation, actual tuple data is shared rather
than duplicated between synopses Syngs and Syn; as indicated by the dotted arrow between
them in Figure 4. Similarly, the plan shares tuple data between Syns and Syns. Furthermore,
the subplan rooted at seq-windowg; is shared by aggregate and binary-join, thus sharing
the window computation on S; between queries Q1 and Q2. Our query plans always perform
window sharing on a stream, with a single physically-stored synopsis automatically containing
all stream elements needed by any window on that stream; see Section 11.5.1.

e Operator i-stream converts the relation produced by the join into a stream of relation
insertions using the semantics of the Istream operator from Section 6.3. Since i-stream
receives the insertions and deletions to the join result in queue g7, it might appear that
i-stream can simply pass along all insertions and drop all deletions. However, if a tuple
happens to be both inserted and deleted from the join result with the same timestamp, then
for correct semantics i-stream must detect this case and not pass along the insertion. (This
case can occur, for example, when the window on S slides and the tuple values that enter
and leave the window happen to be identical.) To handle this case correctly, i-stream buffers
input insertions for a timestamp 7 in synopsis S7 until it knows that it will see no further
tuples with that timestamp (recall Section 8).

It is important for timestamps on the tuples output by a query operator to properly reflect
our semantics as specified earlier in this paper. In most operators, one or more output tuples
are produced as the result of an input tuple being consumed, and it turns out our semantics is
maintained correctly by copying the input tuple’s timestamp to the output tuple. For example,
when an input tuple with timestamp 7 causes a tuple-based window to slide, both the insert and
the delete generated by the slide are timestamped 7. When join results are produced from a new
input tuple with timestamp 7, the new join results have timestamp 7, which always is the later of
the timestamps on the two joining tuples since we process join inputs in nondecreasing timestamp
order across inputs. Aggregation is similar: a new input tuple with timestamp 7 produces one or
more insertions and deletions to the aggregate result also timestamped 7. Time-based windows are
trickier, as illustrated above. For a time-based window of size T', a stream tuple s with timestamp
T generates an inserted tuple with timestamp 7 and generates a deleted tuple with timestamp
7+ T + 1, where the timestamp arithmetic, and particularly the meaning of “+1” depends on the
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time domain to which the timestamps belong. Recall from Section 4 that our semantics assumes
a discrete and ordered time domain, so here “+1” denotes an increment in this domain, e.g., one
second in the Datetime domain.

The execution of query plans is controlled by a global scheduler, which currently runs in the same
thread as all of the query operators in the system. Each time the scheduler is invoked, it selects an
operator to execute and calls a specific procedure defined for that operator, passing as a parameter
the maximum number of input tuples that the operator should process before returning control to
the scheduler. We currently use a simple round-robin scheduler, but we intend to incorporate a
more appropriate scheduling algorithm based on recent research [BBDMO03].

11.4 A Note on Synopses

From the example STREAM query plan of Figure 4 we see that our query plans tend to be over-
loaded with synopses. For example, the plan for the windowed-join query ()2 in Figure 4 uses five
synopses—one each for the two seq-window operators, two for the binary-join operator, and one
for the i-stream operator. Our technique of generating numerous synopses made it much easier
to implement a plan generation algorithm that works for arbitrary CQL queries. We could add
a post-processing step that traverses query plans and physically merges some synopses. However,
our approach so far has been to leave all the synopses in place, but make many of them logical
“stubs” that primarily point into other synopses. For example, the plan for query ()2 in Figure 4
materializes only three synopses instead of five since the two synopses of the binary-join operator
are shared with the synopses of the corresponding seq-window operators. Synopses Syng and Syns
in Figure 4 are stubs pointing to synopses Syn; and Syng respectively.

11.5 STREAM Query Operators

In this section we specify all of the query operators currently implemented in the STREAM pro-
totype and used in query plans. Every operator is either a CQL operator or a system operator.
Further, every CQL operator has one of the three types from our abstract semantics: stream-to-
relation, relation-to-relation, or relation-to-stream. All five operators discussed in the previous
section were CQL operators. System operators isolate the CQL operators from lower-level issues
such as asynchronous and out-of-order arrival of streams, load shedding [BDM04, TCZ103], and
external stream data formats. The operators are listed in Table 1.

11.5.1 Stream-to-Relation Operators

The sliding-window operator seq-window is the only stream-to-relation operator implemented in
STREAM. It supports the tuple-based, time-based, and partitioned window specifications intro-
duced in Section 6.1. As illustrated in Figure 4, STREAM instantiates one sliding-window operator,
denoted seq-windowg, for each stream S that has at least one continuous query specifying a win-
dow over S. Operator seq-windowg has one input queue providing the tuples in .S in nondecreasing
timestamp order. For each sliding window on S used in a query plan, seq-windowg maintains an
output queue containing the insertions and deletions to that window. By using a single window op-
erator per stream S, the system is able to share the computation and memory required for window
maintenance across all queries referencing S.
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Name | Operator Type Description ‘

stream-to-relation | Implements time-based, tuple-based,

seq-window

and partitioned windows

select

relation-to-relation

Filters tuples based on predicate(s)

project

relation-to-relation

Duplicate-preserving projection

binary-join

relation-to-relation

Joins two input relations

mjoin relation-to-relation | Multiway join from [VNBO03]
union relation-to-relation | Bag union

except relation-to-relation | Bag difference

intersect relation-to-relation | Bag intersection

antisemijoin relation-to-relation | Antisemijoin of two input relations
aggregate relation-to-relation | Performs grouping and aggregation

duplicate-eliminate

relation-to-relation

Performs duplicate elimination

i-stream relation-to-stream | Implements Istream semantics
d-stream relation-to-stream | Implements Dstream semantics
r-stream relation-to-stream | Implements Rstream semantics

Handles input streams arriving
over the network

Samples specified fraction of tuples
Adapter for merging a stream-
producing view into a plan

stream-shepherd system operator

stream-sample system operator

stream-glue system operator

Adapter for merging a relation-
producing view into a plan

rel-glue system operator

shared-rel-op system operator Materializes a relation for sharing

output system operator | Sends results to remote clients

Table 1: Operators in STREAM query plans

11.5.2 Relation-to-Relation Operators

By definition, a relation-to-relation operator takes one or more relations as input and produces a
relation as output. In the STREAM query processor, relations are encoded as sequences of insertions
and deletions that move along queues in query plans. Each relation-to-relation operator processes
insertions and deletions in timestamp order from one or more input queues, computes its output
incrementally, and writes the output insertions and deletions to an output queue in timestamp
order. As listed in Table 1, STREAM supports relation-to-relation operators corresponding to all
standard relational operators. Notice that STREAM supports two join operators: binary-join,
a binary join operator as illustrated in Figure 4, and mjoin, the multiway join operator proposed
in [VNBO03]. Consequently, a multiway join can be processed in two ways—using mjoin which
does not materialize intermediate results [VNBO03], or using a tree of binary joins. Deciding which
strategy to use is a query optimization issue not covered in this paper.
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11.5.3 Relation-to-Stream Operators

STREAM supports three relation-to-stream operators—i-stream, d-stream, and r-stream—
corresponding to the Istream, Dstream, and Rstream operators defined in Section 6.3. Each
operator processes insertions and deletions in timestamp order from its single input queue, and
writes the output stream insertions to an output queue in timestamp order. Let us consider
i-stream. As mentioned in Section 11.3, although it might appear that i-stream can simply pass
along all insertions and ignore all deletions, if a tuple happens to be both inserted and deleted with
the same timestamp then for correct semantics i-stream must detect this case and not pass along
the insertion. To handle this case correctly, the i-stream operator must buffer input insertions for
a timestamp 7 in a synopsis until it knows that it will see no further tuples with that timestamp
(recall Section 8).

Operator d-streamn is exactly symmetric to i-stream. Operator r-stream maintains the entire
current state of its input relation in a synopsis and outputs all of the tuples as insertions at each
time step. While this may appear expensive, recall from Section 6.3 that the Rstream operator
is used most commonly with Now windows, so the “current state of the relation” is generally very
small.

11.5.4 System Operators

The primary purpose of the system operators in STREAM is to isolate the CQL operators from
dealing with various lower-level issues. For completeness and for understanding the STREAM
query plans in Section 11.7, we briefly discuss some of these operators. The stream-shepherd
operator for a stream S serves as the source of S to all query plans accessing S: primarily it
receives tuples arriving asynchronously over the network, transforms them to STREAM’s internal
representation, and writes them to the appropriate input queues. In the future, this operator also
will be responsible for buffering input tuples for proper ordering, generating heartbeats when source
applications don’t provide them [SWO03], and performing load shedding under overload [BDMO04].

The stream-sample operator currently is used only for system-managed load shedding [BDMO04],
although we also intend to implement a sample clause in our query language [BBDT02]. stream-sample
drops a specified fraction of stream tuples from its input queue based on a uniform random sam-
ple (“coin toss”). Other implemented system operators serve as materialization points for rela-
tions (shared-rel-op), enable plans for views to be merged into new query plans (rel-glue and
stream-glue), and send query results to remote clients (output).

11.6 Query Optimization

Most of the CQL language is operational in the STREAM system, but our query plan generator is
still fairly naive, using hard-coded heuristics to generate query plans. The most commonly applied
heuristics are:

1. Push selections below joins.

2. Maintain and use indexes for synopses on binary-join, mjoin, and
aggregate operators.

3. Share synopses within query plans whenever possible.

We are actively moving toward one-time and dynamic cost-based optimization of CQL queries.
Since CQL uses SQL as its relational query language, we can leverage many of the one-time opti-
mization techniques used in traditional relational systems. In addition, we are exploring adaptive
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query optimization techniques that are coarser-grained than FEddies (as used in the Telegraph project
[CCT03b]). Our approach relies on two interacting components: a monitor that captures properties
of streams and system behavior, and an optimizer that can reconfigure query plans and resource
allocation as properties change over time.

11.7 Example STREAM Plans

Lastly, we present two snapshots of query plans taken from STREAM’s graphical query plan vi-
sualizer. Through the visualization interface users can inspect the plan generated for a continuous
query as soon as the query is registered, can monitor plan behavior during execution, and can
even alter plan structure and attributes of plans such as memory allocation, for the purpose of
experimentation.

Figure 5 shows the query plan for the following simple illustrative CQL query over streams S1
and S2:

Select S2.name, max(S1.num)

From S1 [Rows 50,000], S2 [Rows 50,000]
Where Sl.name <= ’i’ and S1.num = S2.num
Group By S2.name

This query is a windowed two-way join with a filter predicate on S1, followed by an aggregation. The
system operators used in the query plan in Figure 5 are stream-shepherd operators for streams S1
and 52 and an output operator to send the query result continuously to the client that submitted
the query. The CQL operators are seq-window for S1 and 52, select, binary-join, aggregate,
and (duplicate-preserving) project. Notice that synopses are shared between the window operators
and the join, and the selection has been pushed below the join. The selection cannot be pushed
below the window operator since in general tuple-based windows and selection do not commute.
The binary-join operator materializes its output relation in a synopsis that is shared with the
aggregate operator, similar to our example in Section 11.3.

Figure 6 shows the complete query plan for the TollStr Linear Road query from Section 7,
which incorporates plans for all subqueries that were used to write this query in CQL. We do not
expect readers to examine every detail of this complex query plan.
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An output operator sends query results
to a client process over the network

queue
Queues are used 1o pass tuples between
H operators.

project
ﬂ. Duplicate- preserving projection.

synopsis
A synopsis stores run-time state
h required by some operator in a query ...

aggregate
u Operator for grouping and aggregation.

binary-join
An operator which performs a join of two
input relations.

select
Outputs a subset of its input tuples
€F based on a filter predicate.

seq-window
A window operator implements one or more
- tuple, time, or partitioned windows. You ...

stream-shepherd
The Stream Shepherd operator for a
’ stream 5 is the central clearing house ..

stream- queue
A queue that is used Lo receive a raw
E, stream arriving over the network. Tuples ...

Figure 5: Plan for aggregate query over join
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select” from Tolsts
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Cegen

output
A output operator sends query results
to a client process over the network

fqueue
Queunes are used to pass tuples between
Dperators,

|

b

stream- shepherd

' The Stream Shepherd operator for a

stream 5 is the central clearing house ...

stream- queue
A gueue that is used to receive a raw
stream arriving over the network. Tuples ..

stream- glue
L Operator that sits on top of a COLVIEW
that is a derived stream. This operator ...

i-stream
} Implements ISTREAM semantics. Sends
insertions while dropping deletions.
project
ﬂ. Duplicate- preserving projection.
synopsis

h A synopsis stores run-time state
required by some eperator in a query ...

r-stream
Implements RSTREAM semantics. Sends a
snapshot of its relation at every time ...

binary-join
An operator which performs a join of two
input relations.

seq-window
- A window operator implements one or more
tuple, time, or partitioned windows. You ...

shared-rel-op
This operator materializes a relation
whose insertions and deletions arrive in ...

o

rel-glue
t Operator that sits on top of a COLVIEW
that is a derived relation. This ..

duplicate-eliminate
i Duplicate elimination operator,

seleat

a Outputs a subset of its input tuples
based on a filter predicate.

o aggregate

Operator for grouping and aggregation.

Figure 6: Plan for TollStr query
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