Query Execution 2 and
Query Optimization

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Query Execution Overview

Query representation
(e.g. SQL)

Loglcal query plan
(e.qg. relational algebra)

uoneziwndo Aisnp

Physmal plan
(code/operators to run)

{ i
I i

Execution Methods: Once We
Have a Plan, How to Run it?

Several options that trade between
complexity, performance and startup time

Method 1: Interpretation

interface Operator { interface Expression {
Tuple next(); Value compute(Tuple in);

} }

Running Our Query with
Interpretation

ops = Project(
expr = Times(Attr(“quantity”), Attr(“price”)),
parent = Select(
expr = Equals(Attr(“productId”), Literal(75)),
parent = TableScan(“orders”)

)

)
recursively calls Operator.next()

while(true) { — -
Tuple t = ops.next(): and Expression.compute()

if (t !'= null) {
out.write(t);

} else {
break;

}
}

CS 245

Method 2: Vectorization

Interpreting query plans one record at a time
IS simple, but it’s too slow

» Lots of virtual function calls and branches for
each record (recall Jeff Dean’s numbers)

Keep recursive interpretation, but make
Operators and Expressions run on batches

Implementing Vectorization

class TupleBatch { class ValueBatch {
// Efficient storage, e.g. // Efficient storage
// schema + column arrays }
}
interface Expression {
interface Operator { ValueBatch compute(
TupleBatch next(); TupleBatch in);

} }

Typical Implementation

Values stored in columnar arrays (e.g. int[])
with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update
both values and null fields without branching

Pros & Cons of Vectorization

+ Faster than record-at-a-time if the query
processes many records

+ Relatively simple to implement
— Lots of nulls in batches if query is selective

— Data travels between CPU & cache a lot

CS 245

Method 3: Compilation

Turn the query into executable code

Compilation Example

1—Iquanity*price (Oproductld=75 (orders))

. generated class with the right

class MyQuery { / field types for orders table
void run() {

Iterator<OrdersTuple> in = openTable(“orders”);
for(OrdersTuple t: in) {
if (t.productld == 75) {
out.write(Tuple(t.quantity * t.price));

} Can also theoretically generate

vectorized code

Pros & Cons of Compilation

+ Potential to get fastest possible execution
+ Leverage existing work in compilers

— Complex to implement
— Compilation takes time

— Generated code may not match hand-written

CS 245 12

What’s Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL):
mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL):
vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization
(the records are vectors!), some compilation

Query Optimization

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

What Can We Optimize?

Operator graph: what operators do we run,
and in what order?

Operator implementation: for operators with
several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections,

Typical Challenge

There is an exponentially large set of
possible query plans

Result: we’ll need techniques to prune the
search space and complexity involved

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

What is a Rule?

Procedure to replace part of the query plan
based on a pattern seen in the plan

Example: When | see for an
expression expr, replace this with

Implementing Rules

Each rule is typically a function that walks
through query plan to search for its pattern

void replaceOrTrue(Plan plan) { Or
for (node in plan.nodes) {
if (node instanceof Or) { r/////\\\\x
if (node.right == Literal(true
pian.replgce(node, Liteﬁal(tzaeg); expr TRUE
break;
}
// Similar code if node.left == Literal(true)
}
}

}

Implementing Rules

Rules are often grouped into phases

» E.g. simplify Boolean expressions, pushdown
selects, choose join algorithms, etc

Each phase runs rules till they no longer apply

plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);

}
if (plan was not changed by any rule) break;

}

Result

Simple rules can work together to optimize
complex query plans (if designed well):

SELECT * FROM users WHERE
(age>=16 && loc==CA) || (age>=16 && loc==NY) || age>=18

I

(age>=16) && (loc==CA || loc==NY) || age>=18

(age>=16 && || age>=18

Example Extensible Optimizer

For Thursday, you’ll read about Spark SQL’s
Catalyst optimizer

» Written in Scala using its pattern matching
features to simplify writing rules

» >500 contributors worldwide, >1000 types of
expressions, and hundreds of rules

We’ll modify Spark SQL in assignment 2

O Search or jump to... Pull requests Issues Marketplace Explore

& apache / spark ®Watch ~ 2.1k Unstar 28.7k %9 Fork 23.3k

<> Code 11 Pull requests 232 (») Actions [71] Projects () Security |~ Insights

¥ master ~ spark / sql / catalyst / src / main / scala / org / apache / spark / sql / catalyst / optimizer / Optimizer.scala Go to file

@ yaooginn [SPARK-34083][SQL] Using TPCDS original definitions for char/varchar ... - Latest commit 5718d64 7 days ago @ History
A 113 contributors @ ,. ‘; & f‘l - O a % & f@ Q +69

1908 lines (1735 sloc) 80.4 KB Raw Blame 0J 2/

Licensed to the Apache Software Foundation (ASF) under one or more >
contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
package org.apache.spark.sql.catalyst.optimizer
import scala.collection.mutable
import org.apache.spark.sql.AnalysisException

import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.catalog.{InMemoryCatalog, SessionCatalog}

CS 245 25

63 /*x

64 *x Defines the default rule batches in the Optimizer.
65 *

66 * Implementations of this class should override this method, and [[nonExcludableRules]] if
67 * necessary, instead of [[batches]]. The rule batches that eventually run in the Optimizer,
68 % i.e., returned by [[batches]], will be (defaultBatches - (excludedRules - nonExcludableRules)).
69 *x/

70 def defaultBatches: Seq[Batch] = {

71 val operatorOptimizationRuleSet =

72 Seq(

73 // Operator push down

74 PushProjectionThroughUnion,

75 ReorderJoin,

76 EliminateOuterJoin,

77 PushDownPredicates,

78 PushDownLeftSemiAntiJoin,

79 PushLeftSemiLeftAntiThroughJoin,

80 LimitPushDown,

81 ColumnPruning,

82 // Operator combine

83 CollapseRepartition,

84 CollapseProject,

85 OptimizeWindowFunctions,

86 CollapseWindow,

87 CombineFilters,

88 EliminatelLimits,

89 CombineUnions,

90 // Constant folding and strength reduction
91 OptimizeRepartition,

92 TransposeWindow,

93 NullPropagation,

94 ConstantPropagation,

95 FoldablePropagation,

96 Optimizeln,

97 ConstantFolding,

98 EliminateAggregateFilter,

99 ReorderAssociativeOperator,
100 LikeSimplification,
101 BooleanSimplification,
102 SimplifyConditionals,
103 PushFoldableIntoBranches,
104 RemoveDispensableExpressions,
105 SimplifyBinaryComparison,
106 ReplaceNullWithFalseInPredicate,
107 SimplifyConditionalsInPredicate,
108 PruneFilters,

109 SimplifyCasts,

Common Rule-Based
Optimizations

Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string
expressions, etc

» Many redundancies because queries are
optimized for readability or produced by code

Simplifying relational operator graphs
» Select, project, join, etc

N These relational optimizations have the most impact

Common Rule-Based
Optimizations

Selecting access paths and operator _ Also very
implementations in simple cases high impact

» Index column predicate = use index
» Small table = use hash join against it

» Aggregation on field with few values = use
In-memory hash table

Rules also often used to do type checking
and analysis (easy to write recursively)

Common Relational Rules

Push selects as far down the plan as possible

Recall:

0,(R > S) =0,(R) < S if p only references R

04(R > S) = R <1 04(S) if g only references S
Oprg(R > S) = 0,(R) P 0,(S) ifponR,gonS

|dea: reduce # of records early to minimize work

In later ops; enable index access paths

Common Relational Rules

Push projects as far down as possible
Recall:
[1(0,(R)) = 1 (0,(11,,(R)) z = the fields in p

HXUy(R > S) = quy (I, (R)) < (HyUZ (S))

x =fieldsinR,y=in S, z = in both

ldea: don’t process fields you’ll just throw away

Project Rules Can Backfire!
Example: Rhasfields A, B, C, D, E

p: A=3 A B="cat”
X: {E}

IL(o,(R)) vs 1l (o,(ILsg5[R))

What if R has Indexes?

A=3\ /Bz cat

N/

Intersect buckets to get
pointers to matching tuples

In this case, should do o,(R) first!

Bottom Line

Many valid transformations will not always
Improve performance

Need more info to make good decisions

» Data statistics: properties about our input or
iIntermediate data to be used in planning

» Cost models: how much time will an operator
take given certain input data statistics?

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

What Are Data Statistics?

Information about the tuples in a relation that
can be used to estimate size & cost

» Example: # of tuples, average size of tuples,
distinct values for each attribute, % of null
values for each attribute

Typically maintained by the storage engine
as tuples are added & removed in a relation
» File formats like Parquet can also have them

Some Statistics We’ll Use

For a relation R,
T(R) = # of tuples in R
S(R) = average size of R’s tuples in bytes
B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R

Example

R:

A B|C|D
cat| 1 |10| a
cat| 1 |[20| b
dog 1 |30| a
dog 1 |40| c
pbat| 1 (50| d

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

Example

R: |A|B|C|D A: 20 byte string
cat 11191a | B: 4 pyte integer
cat| 1 20| b
dog 1 30| a C: 8 byte date
dog 140/ ¢ | D: 5 pyte string
bat| 1 |50| d
T(R) =5 S(R) = 37

Challenge: Intermediate Tables

Keeping stats for tables on disk is easy, but
what about intermediate tables that appear
during a query plan?

Examples:

R . We already have T(R), S(R), V(R, a), etc,
Gp() but how to get these for tuples that pass p?

R p>q § — How many and what types of tuple pass
the join condition?

Shouldwedo (Rt S)<xtiTorRxt (S<xi T)or (R T) x1 S?

Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats

2) Low cost

3) Consistent estimates (e.g. different plans
for a subtree give same estimated stats)

Can’t always get all this!

Size Estimates for W = R, xR,

Size Estimates for W = R, xR,

S(W) = S(R,) + S(Ry)

T(W) = T(R,) x T(Ry)

Size Estimate for W = g,__(R)

Size Estimate for W = g,__(R)

_ . Not true if some variable-length fields
SW) = S(R) are correlated with value of A

T(W) =

CS 245 44

Example

R |A|B|C|D

cat| 1 (10| a

cati 1 (20| b

dog 1 |30| a

dog 1 (40| c

bat| 1 |50 | d
W=0,_,R TW)

< <

AN N N N

<

Example

R A|lB|C|D
cat| 1 |10 a
cat| 1 [20| b
dog 1 |30 a
dog 1 40| ¢
pbat| 1 |50 d
W =0, R TW)

CS 245

<

R,A)
3,B)
R,C)
R,D)=4

<

3
:
5

<

AN AN SN AN

what is probability this
tuple will be in answer?

46

Example

1
<o OANn
0C OC OC OC
> > .
Al ©| Q| ©| O| T
O O O OO
C12345
M~~~ | +—
+— | = | O O +
©
< 3/ 88838
oC

vaI(R)

Oz

W

Assumption:

Values in select expression Z=val are
uniformly distributed over all V(R, Z) values

Alternate Assumption:

Values in select expression Z=val are

uniformly distributed over a domain with
DOM(R, Z) values

Example

R |A|B|C|D

cat| 1 (10| a

cati 1 (20| b

dog 1 |30| a

dog 1 (40| c

bat| 1 |50 | d
W=0,_,R TW)

Alternate assumption

V(

< <

(
(
(

<

R,A)=3,
R,B)=1,

DOM(
DOM

(
DOM(
DOM(

R,A)="
R,B)="
R,C)="
R,D)="

o o © O

Example

R A|lB|C|D
cat| 1 |10 a
cat| 1 [20| b
dog 1 |30 a
dog 1 40| ¢
pbat| 1 |50 d
W =0, R TW)

Alternate assumption

V(R,A)=3,
(R,B)=1,
(R,C)=5,
(R,D)=4,

< <

<

DOM(
DOM

(
DOM(
DOM(

what is probability this

tuple will be in answer?

R,A)="
R,B)="
R,C)="
R,D)="

o o o O

Example

Alternate assumption

R AlBlc|D| V(QR,A=3, DOM(
catf 1 /10| a | V(R,B)=1, DOM(
;’at 1 gg b | V(R,C)=5, DOM(
0g a
God 1140 ¢ V(R,D)=4, DOM(
pat| 1 |50 d
T(R
W=0, 0@ TW)= =t

R,A)="
R,B)="
R,C)="

R,D)="

o o © O

Selection Cardinality

SC(R, A) = average # records that satisfy
equality condition on R.A

SC(R,A) = <
T(R)
_ DOM(R,A)

What About W = o, /,.(R)?

T(W) = ?

What About W = g, . ..(R)?

T(W) = ?
Solution 1: T(W) = T(R) / 2

What About W =o, . ,,[(R)?
T(W) = ?
Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3

Solution 3: Estimate Fraction of
Values in Range

Example: R Z
Min=1 V(R,2)=10
I W =0, 15(R)
Max=20

f=20-15+1= 6 (fraction of range)
20-1+1 20

T(W) = f x T(R)

Solution 3: Estimate Fraction of
Values in Range

Equivalently, if we know values in column:

f = fraction of distinct values > val

What About More Complex
Expressions?

E.g. estimate selectivity for

SELECT * FROM R
WHERE user defined func(a) > 10

I postgres / postgres @Watch~ 267 4 Star 2547 YFork 820

<> Code 'l Pull requests 0 Il Projects 0 “~ Pulse ili Graphs
Tree: 4cbe3abb31 v postgres / src / backend / optimizer / path / clausesel.c Find file Copy path
ﬂ bmomijian pgindent run for 9.4 0a78320 on May 6, 2014

5 contributors == a ..

785 lines (733 sloc) 21.6 KB Raw Blame History [. [

else if (is_funcclause(clause))

{
/*
* This is not an operator, so we guess at the selectivity. THIS IS A
* HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE
* SELECTIVITIES THEMSELVES. -- JMH 7/9/92
*/
sl = (Selectivity) ©.3333333;
}

CS 245 60

Size Estimate for W = R, I R,

Let X = attributes of R,

Y = attributes of R,

Case1: XNnY = 0:

Same as Ry x R,

Casez:W=R1[><]R2,XﬂY=A

R, | A| B|C R, A D

Casez:W=R1[><]R2,XﬂY=A

R, | A| B|C R, A D

Assumption (“containment of value sets”):

V(R{, A) <V(R,, A) = Every AvalueinR;isin R,
V(R,, A) <V(R{, A) = Every Avaluein R, isin R;

Computing T(W) when
V(R‘I! A) < V(R25 A)

R, | A |B |C R, | A| D

-—_—

Take A\ .
1 tuple < B Match

1 tuple matches with T(R,) tuples...
V(R;, A)
so T(W) = T(R4) x T(R,)
V(R;, A)

VR, A) < V(R,, A) = TW) = TR,) x T(R,)

V(RQ’ A)

V(R,, A) < V(R{, A) = TW) = TR,) x T(R,)

V(R,, A)

In General for W = R, I R,

TW) = TRy x T(R,)
max(V(Ry, A), V(R,, A)

Where A Is the common attribute set

Case 2 with Alternate Assumption
Values uniformly distributed over domain

R, A| B | C R, LA| D
- B

This tuple matches T(R,) / DOM(R,, A), so

T(W) = T(R1) T(Rz) = T(R1) T(RZ)
DOMR,, A) DOM(R;, A)
™~ —

Assume these are the same

Tuple Size after Join

In all cases:

S(W) = S(Ry) + S(Ry) — S(A)
™.
size of attribute A

Using Similar Ideas, Can
Estimate Sizes of:

[Tp g(R)

Op=axB=b(R)
R <1 S with common attributes A, B, C

Set union, intersection, difference, ...

For Complex Expressions, Need
Intermediate T, S, V Results

E.g. W= 0,_,(Ry) ™M R,

\)
Y

Treat as relation U

TU) =TR)/VR, A SU)=SR,)

Also need V(U, *) !l

To Estimate V

E.g., U= 0p,(R))
Say R, has attributes A, B, C, D

Example

R

A/ B C|D
cat| 1 |10 /10
cat| 1 |20 20
dog 1 |30(10
dog 1 40|30
pbat| 1 |50|10

Example

R1 A/ B C|D

cat| 1 |10 /10

cat| 1 |20 20

dog 1 |30(10

dog 1 40|30

pbat| 1 |50|10
VU,A)=1 VU, B) =1

VU, C) = T(R1)

\ 7 VR1A

V(U, D) = somewhere in between...

Possible Guess in U = 0,__(R)

V(U, A) = V(R, A) / 2
V(U, B) = V(R, B)

For Joins: U = R,(A,B) > R,(A,C)

We'll use the following estimates:
V(U, A) = min(V(R4, A), V(R,, A))
V(U, B) = V(R,, B)

V(U, C) = V(R,, C)

Called “preservation of value sets”

Example:

Z = R,(A,B) <1 R,(B,C) i<l R,4(C,D)

Ri | T(Ry)=1000 V(R{,A)=50 V(R;,B)=100

R, | T(R,)=2000 V(R,,B)=200 V(R,,C)=300

Rs T(R3) = 3000 V(R;,C)=90 V(R;,D)=500

Partial Result: U = R, < R,

T(U) = 1000x2000 V(U,A) = 50
200 V(U,B) = 100
V(U,C) = 300

End Result: Z=U X< R;

T(Z) = 1000x2000x3000 V(Z,A) = 50
200x300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500

Another Statistic: Histograms

number of tuples

in R with A value
15 In a given range
12

10 GA>a(R) —

10 20 30 40

Requires some care to set bucket boundaries

CS 245 79

Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection

