Lakehouse Technology as

Future of Data Warehou3|rf‘
90

- $44-

§Z¥?8' %é? Stanford CS245 . ::
20000

s0o0000

se0 @ 09

~ databricks : : : :===

—t
ﬁﬁ

¢
* ¢ 3 ¢ [I 2 I

+ Y 2 T Y Y TR T TR I)

¢
N 2 T T Y T TR

whoami

= Reynold Xin
= 2010 - 2013: PhD in databases @ UC Berkeley
= 2013 - 2016: Spark (query engine) development @ Databricks

. APl revamp, e.q. DataFrames
. Engine rewrites
. Performance efforts, e.g. Sort Benchmark 2014 and current (2016) world record

« 2016 - present: Lakehouse @ Databricks

< databricks

About & databricks

Cloud data platform for analytics,
engineering and data science

BI INTEGRATIONS
o Qlik@) lobker

DATA SCIENCE WORKSPACE

Collaboration across the lifecycle
Access all your data

Runs a fleet of millions of VMs to A
process exabytes of data/day

ENTERPRISE CLOUD SERVICE .
A simple, scalable, and secure managed service IS AZU re

>b000 enterprise customers

RAW DATA LAKE

< databricks

Talk Qutline

= Many problems with data analytics today stem from the complex data
architectures we use

= New “Lakehouse” technologies can remove this complexity by enabling
fast data warehousing, streaming & ML directly on data lake storage

< databricks

The biggest challenges with data today:
data quality and staleness

< databricks

‘\\\‘ Fivetran Data Analyst Survey

Data Analysts:
A Critical, Underutilized Resource

60% reported data quality as top challenge

A Global Survey of Data and Analytics Professionals

86% of analysts had to use stale data, with
41% using data that is >2 months old

90% reqularly had unreliable data sources

‘\\\‘ Fivetran

kaggle Data Scientist Survey

HOW DATA SCIENTISTS SPEND THEIR TIME

S S

75% |

N ———— S S S S R S S S S R R S S R

Analyze and
understand data

o ———,

Build prototypes
to explore
applying ML

Experiment and
iterate to
improve existing
ML models

O e e e

Build and/
51%

orrun a ML
service
operationally

Build and/or run
the data
infrastructure

42%

N - -

om i ——

Do research that
advances the
state of the art
of ML

Other

None of these
activities are
important to my

< databricks role

0% 10% 20% 30% 40% 50% 60% 70% 80%

Getting high-quality, timely data is hard...
but it's partly a problem of our own making!

< databricks

"““‘ ‘f‘\\f I
DOOOOGGS: T " 0000
000000€EC.. 00008
R X X XX X X X X X§
BERE X XN X X X

R X X X

5 e a

t > @
r._ln .
=
C o
O o
+~ (O
= C
S s
I \
D +— £
c @© g
— O >

1980s: Data Warehouses

« ETL data directly from operational
database systems

= Purpose-built for SQL analytics & Bl:
schemas, indexes, caching, etc

= Powerful management features such as
ACID transactions and time travel

< databricks

&

Reports

!
SE8E

Data Warehouses

= =

Operational Data

2010s: New Problems for Data Warehouses

= Could not support rapidly growing "@ "y
unstructured and semi-structured data: T Reports

BI
time series, logs, images, documents, etc

Data Warehouses

= High cost to store large datasets

= No support for data science & ML

= =

Operational Data

< databricks

2010s: Data Lakes

= Low-cost storage to hold all raw data
(e.g. Amazon S3, HDFS)
S12/TB/month for S3 infrequent tier!

= ETL jobs then load specific data into
warehouses, possibly for further ELT

= Directly readable in ML libraries (e.qg.
TensorFlow) due to open file format

< databricks

E-B @&

Bl Reports Real-Time Data Machine
Database Science Learning

0
€10
Data
Preparation

10
0?0 001 0 0 11 00 4
11111111 11u 0 L l'|1
Data Lake
— 3
=])
e

Structured, Semi-Structured & Unstructured Data

Problems with Today's Data Lakes

Cheap to store all the data, but system architecture is much more complex!

Data reliability suffers: @ @ - @ @ @é

= Multiple storage systems with different B Reports Real-Tme Data Machine
Seman“CS, SOI_ dialectsl etC Database = Science Learning

XA
- Extra ETL steps that can go wrong %@6\
Data.
Timeliness suffers: /\M_
- Extra ETL steps before data is available ST s leorTies Siyee a1l
in data warehouses 7 pamlake T |
S @ B o)

@ databricks Structured, Semi-Structured & Unstructured Data

Problems with Today's Data Lakes

Cheap to store all the data, but system architecture is much more complex!

Data reliability suffers:

= Multiple storage systems with different
semantics, SOL dialects, etc

= Extra ETL steps that can go wrong

Timeliness suffers:

= Extra ETL steps before data is available
in data warehouses

< databricks

Summary

At least some of the problems in modern data architectures are due to
unnecessary system complexity

« We wanted low-cost storage for large historical data, but we
designed separate storage systems (data lakes) for that

= Now we need to sync data across systems all the time!

What if we didn't need to have all these different data systems?

< databricks

Lakehouse Technology

New techniques to provide data warehousing features directly on
data lake storage

« Retain existing open file formats (e.g. Apache Parquet, ORC)

= Add management and performance features on top
(transactions, data versioning, indexes, etc)

= Can also help eliminate other data systems, e.g. message queues

Key parts: metadata layers such as Delta Lake (from Databricks)
and Apache Iceberg (from Netflix) + new engine designs

< databricks

| akehouse Vision

> e @ &

Streamlng Data Machine
Analytics Science Learning
A A A A

Single platform for every use case

S S 9 S5 95 95 Management features
/\/o\/',,, (transactions, versioning, etc)

@ @ @ 31] o) Data lake storage for all data

Structured, Semi-Structured & Unstructured Data S—

< databricks

Key Technologies Enabling Lakehouse

1. Storage layer: add transactions, versioning & more

2. New query engine designs: great SOL performance on data lake
storage systems and file formats

3. Optimized access for data science & ML

< databricks

Key Technologies Enabling Lakehouse

(1. Metadata layers for data lakes: add transactions, versioning & more]

2. New query engine designs: great SOL performance on data lake
storage systems and file formats

3. Optimized access for data science & ML

< databricks

Metadata Layers for Data Lakes

= A data lake is normally just a collection of files

= Metadata layers keep track of which files are part of a table to enable
richer management features such as transactions

Clients can then still access the underlying files at high speed

= Implemented in multiple systems:

A ICEBERG{P @ ACID

.
DELTA LAKE ~HIVE

Keep metadata in the object store itself Keep metadata in a database
< databricks

Example: Basic Data Lake

"events’ table Query: delete all events data about customer #17

A

- filel.parquet rewrite - ‘1 filelb.parquet + delete filel.parquet

file2.parquet

. :
filed.parquet rewrite

v

‘1 file3b.parquet + delete file3.parquet

Problem: What if a query reads the table while the delete is running?

Problem: What if the query doing the delete fails partway through?

< databricks

-Xample with ADELTA LAKE

“events’ table Query: delete all events data about customer #17

A
r N

filel.parquet rewrite filelb.parquet Clients now always read a

consistent table version!
file2.parquet

« Ifaclientreadsv2 of log, it sees

rewrite filel, file2, file3 (no delete)

filed. t [: .
ee-pargue filesb.parquet « Ifaclientreadsv3 oflog, it sees
filelb, file2, file3b (all deleted)

_delta_log / vl.parquet
/ v2.parquet atomically add new log file
_delta_log / v3.parquet

N\ J N\ J
Y Y

track which files are part of v3 = filelb, file2, file3b
each version of the table

(e.g. v2 =filel, file2, file3)

< databricks See our VLDB 2020 paper for details

See our VLDB Paper for Details

< databricks

Delta Lake: High-Performance ACID Table Storage over
Cloud Object Stores

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,

Joseph Torres, Herman van Hovell, Adrian lonescu, Alicja tuszczak, Michat Switakowski,
Michat Szafranski, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz', Ali Ghodsi,

Sameer Paranjpye, Pieter Senster, Re

nold Xin, Matei Zaharia’

Databricks, 'CWI, *UC Berkeley, -YStanford University
delta-paper-authors@databricks.com

ABSTRACT

Cloud object stores such as Amazon S3 are some of the largest
and most cost-effective storage systems on the planet, making them
an attractive target to store large data warehouses and data lakes.
Unfortunately, their implementation as key-value stores makes it dif-
ficult to achieve ACID transactions and high performance: metadata
operations such as listing objects are expensive, and consistency
guarantees are limited. In this paper, we present Delta Lake, an open
source ACID table storage layer over cloud object stores initially
developed at Databricks. Delta Lake uses a transaction log that is
compacted into Apache Parquet format to provide ACID properties,
time travel, and significantly faster metadata operations for large
tabular datasets (e.g., the ability to quickly search billions of table
partitions for those relevant to a query). It also leverages this de-
sign to provide high-level features such as automatic data layout
optimization, upserts, caching, and audit logs. Delta Lake tables

The major open source “big data” systems, including Apache Spark,
Hive and Presto [45,52, 42], support reading and writing to cloud
object stores using file formats such as Apache Parquet and ORC [13;
12]. Commercial services including AWS Athena, Google BigQuery
and Redshift Spectrum [1, 29| 39] can also query directly against
these systems and these open file formats.

Unfortunately, although many systems support reading and writ-
ing to cloud object stores, achieving performant and mutable table
storage over these systems is challenging, making it difficult to im-
plement data warehousing capabilities over them. Unlike distributed
filesystems such as HDFS [5], or custom storage engines in a DBMS,
most cloud object stores are merely key-value stores, with no cross-
key consistency guarantees. Their performance characteristics also
differ greatly from distributed filesystems and require special care.

The most common way to store relational datasets in cloud object
stores is using columnar file formats such as Parquet and ORC,

Other Management Features with ADELTA LAKE

= Time travel to an old table version SELECT * FROM my_table
TIMESTAMP AS OF 2020-05-01”

= Zero-copy CLONE by forking the log CREATE TABLE my_table_dev
SHALLOW CLONE my table

- D ES C R | B E H |STO RY 1 MT)E\SCI#IBE HISTORY flightdelays
N i e

[| | N S E RT, U PS E RT’ D E L ET E & M E R G E 6 (2)2;?;2;16 101543 ...@databricks.com MERGE » {"notebookld*:*25"}
5 2019-10- 101543 ...@databricks.com UPDATE » {"notebookld*:*25"}

< databricks

Other Management Features with ADELTA LAKE

= Streaming I/0: treat a table as a

- spark.readStream
stream of changes to remove need .format("delta")
for message buses like Kafka -y .table("events")

= Schema enforcement & evolution

. . CREATE TABLE orders (
= Expectations for data quality product_id INTEGER NOT NULL,

quantity INTEGER CHECK(quantity > 0),

list price DECIMAL CHECK(list price > 9),

discount _price DECIMAL

CHECK(discount _price > © AND
discount price <= list price)
);
< databricks

A\ DELTA LAKE Adoption

« Used by thousands of companies to process exabytes of data/day
= Grew from zero to ~50% of the Databricks workload in 3 years

= Largest deployments: exabyte tables and 1000s of users

< databricks

Available Connectors

= Stitch Qlik@
\ . \
\\\ Fivetian (‘ Informatica amazon >o< snowflake

Ingest Query REDSHIFT anr
from from

@ StreamSets Infoworks / \
r Synapse D g
‘ syncsort %7 Parquet DELTA LAKE J Arabres Amazon Athena
Store
datain
Cloud Storage STORAGE

* amazon
$3 \
()

HIDFS Alibaba Cloud

AAAAAA

/ SpQrK presto .-

Google A Azure

< databricks

Key Technologies Enabling Lakehouse

1. Metadata layers for data lakes: add transactions, versioning & more

2. New query engine designs: great SOL performance on data lake
storage systems and file formats

J

3. Optimized access for data science & ML

< databricks

The Challenge

= Most data warehouses have full control over the data storage system
and query engine, so they design them together

= The key idea in a Lakehouse is to store data in open storage formats
(e.g. Parquet) for direct access from many systems

« How can we get great performance with these standard, open formats?

< databricks

-nabling Lakehouse Performance

Even with a fixed, directly-accessible storage format, four optimizations
can enable great SQL performance:

= Caching hot data, possibly in a different format
= Auxiliary data structures like statistics and indexes

= Data layout optimizations to minimize |/0
= Vectorized execution engines for modern CPUs

New query engines such as Databricks Delta Engine use these ideas

< databricks

Optimization 1: Caching

= Most query workloads have concentrated accesses on “hot” data
Data warehouses use SSD and memory caches to improve performance

= The same techniques work in a Lakehouse if we have a metadata layer
such as Delta Lake to correctly maintain the cache

Caches can even hold data in a faster format (e.g. decompressed)

- Example: SSD cache in Values read per second per core (millions)

Databricks Delta Engine Delta Engine cache
ParquetonSSD [NG
ParquetonS3 N

0 20 40 60 80
< databricks

Optimization 2: Auxiliary Data Structures

= Even if the base data is in Parguet, we can build many other data
structures to speed up queries and maintain them transactionally
Inspired by the literature on databases for “raw” data formats

- Example: min/max statistics on Parquet files for data skipping

filel.parquet ﬁ?c?rmrrr:qzzgég 221%%900 Ouery: SELECT * FROM events .

' ’ WHERE year=2020 AND uid=24000
year: min 2018, max 2020
uid: min 12000, max 14000

year: min 2020, max 2020
uid: min 23000, max 25000

N J
Y

updated transactionally
with Delta table log

file2.parquet

filed.parquet

< databricks

Optimization 2: Auxiliary Data Structures

= Even if the base data is in Parguet, we can build many other data
structures to speed up queries and maintain them transactionally
Inspired by the literature on databases for “raw” data formats

- Example: min/max statistics on Parquet files for data skipping

filel.parquet y(.e;.r: m"]zzm& maxégm Ouery: SELECT * FROM events
uid: min 12000, max 23000 WHERE year=2020 AND uid=24000
year: min 2018, max 2020

file2.parquet uid: min 12000, max 14000 /
file3 N year: min 2020, max 2020)
leo.parque uid: min 23000, max 25000 ¢

N J
Y

updated transactionally
with Delta table log

< databricks

Optimization 2: Auxiliary Data Structures

= Even if the base data is in Parguet, we can build many other data
structures to speed up queries and maintain them transactionally

Inspired by the literature on databases for “raw” data formats

- Example: indexes over Parquet files

filel.parquet -----—--. - Query: SELECT * FROM events

;) WHERE type = “DELETE_ACCOUNT”
file2.parquet -~

. tree
file3.parquet -~ index

< databricks

Optimization 3: Data Layout

= Query execution time primarily depends on amount of data accessed

« Even with a fixed storage format such as Pargquet, we can optimize the
data layout within tables to reduce execution time

- Example: sorting a table for fast access

filel.parquet uid = 0...1000

file2.parquet uid =1001...2000
filed.parquet uid = 2001...3000
file4.parquet uid = 3001...4000

< databricks

Optimization 3: Data Layout

= Query execution time primarily depends on amount of data accessed

Even with a fixed storage format such as Pargquet, we can optimize the
data layout within tables to reduce execution time

Example: Z-ordering for multi-dimensional access

Filter on coll B Filter on col2
99% B Filter on col3 B Filter on col4
S (o]
2 80%
dimension 1, I 47% 449,

[z
Sort by coll Z-Order by coll-4

ed
o
([@»)
N

Data Files Skip

0% 0% 0%

Z uoisuswip
N

< databricks

<
<

Optimization 4: Vectorized Execution

« Modern data warehouses optimize CPU time by using vector (SIMD)
instructions on modern CPUs, e.qg., AVX512

= Many of these optimizations can also be applied over Parquet

= Databricks Delta Engine: ~10x faster TPC-DS Benchmark Time (s
than Java-based engines 40000 35861
30000 25544

20000
10000 2990
0 I

Delta Apache Presto 230

< databricks Engine Spark3.0

Putting These Optimizations Together

= Given that (1) most reads are from a cache, (2) I/0 cost is the key factor
for non-cached data, and (3) CPU time can be optimized via SIMD...

= Lakehouse engines can offer similar performance to DWSs!

TPC-DS 30TB Benchmark Time (s)
40000

50000
20000
10000
0] I
DW2 DW3

DWI1 Delta
< databricks Engine

Key Technologies Enabling Lakehouse

1. Metadata layers for data lakes: add transactions, versioning & more

2. New query engine designs: great SOL performance on data lake
storage systems and file formats

(3. Optimized access for data science & ML

< databricks

ML over a Data Warehouse is Painful

= Unlike SOL workloads, ML workloads need to process large amounts of
data with non-SQL code (e.g. TensorFlow, XGBoost, etc)

= SOL over JDBC/ODBC interface is too slow for this at scale
« Export data to a data lake? — adds a third ETL step and more staleness!

= Maintain production datasets in both DW & lake? — even more complex

< databricks

ML over a Lakehouse

= Direct access to data files without overloading the SQL frontend
(e.g.,just run a GPU cluster to do deep learning on S3 data)

. ML frameworks already support reading Parquet!
= New declarative APIs for ML data prep enable further optimization

< databricks

-xample: Spark's Declarative DataFrame API

Users write DataFrame code in Python, R or Java

users = spark.table(“users”)

buyers = users[users.kind == “buyer”]
train_set = buyers[“start _date”, “zip”, “quantity”]
.fillna(0@)

< databricks

-xample: Spark's Declarative DataFrame API

Users write DataFrame code in Python, R or Java

Lazily evaluated query plan

users = spark.table(“users”) PROJECT(NULL — 0)
buyers = users[users.kind == “buyer”] u PROJECT(starlt_date,zip,...)
train_set = buyers|[“start date”, “zip”, “quantity”]
.fillna(o) SELECT(kinld:”buyer")
users
model.fit(train_set) Q DELTA LAKE

Optimized execution using

< databricks cache, statistics, index, etc

ML over Lakehouse: Management Features

Lakehouse systems' management features also make ML easier!

= Use time travel for data versioning and reproducible experiments
= Use transactions to reliably update tables

= Always access the latest data from streaming |/0

Example: organizations using Delta Lake as an ML “feature store”

< databricks

Summary

Lakehouse systems combine the benefits of data warehouses & lakes

= Management features via metadata

ayers (transactions, CLONE, etc) B> -@15 W@ (%&P
. . Streaming Bl Data Machine
= Performance via new query engines Analytics Science Learning
A A A A

= Direct access via open file formats

= Low cost equal to cloud storage

Result: simplify data architectures to resternitieirnini o
improve both reliability & freshness S 88 B O

Structured, Semi-Structured & Unstructured Data

< databricks

Before and After Lakehouse

Typical Architecture with Many Data Systems Lakehouse Architecture: All Data in Object Store

Py G

Analytics Analytics
ETL Job Message ETL Job ETL Job ETL Job
‘ Queue @ i |

E SR 8 £
T~
5] \ / | Warehouse B| Users \ s / Bl Users
—~ Delta Lake P;ré)jﬂ Delta Lake
Parquet ® Parquet Table 1 Table 2
Table 1 Table 2 @ _—
ETL Job 7 ©
— Data
@ Warehouse
Delta Lake Data
Parquet Data . .
. B | tot ianti
\Cloud Object Store Table3 Scientists _ Cloud Object Store Table3 / Scientists

Fewer copies of the data, fewer ETL

< databricks steps, no divergence & faster results!

L earn More

Download and learn Delta Lake at delta.io A DELTA LAKE

View free content from our conferences at spark-summit.org:

SPARK+AI

DATA+AI

SUMMIT EUROPE

17-19 NOVEMBER | VIRTUAL

FORMERLY KNOWN AS SPARK+Al SUMMIT

SUMMIT 2020

< databricks

https://delta.io/
https://spark-summit.org/

