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Abstract

In this paper, we study the evolution of structure of the in-

ternet. Rather than looking at a single snapshot of the web,

which most of previous studies in the field have focused on,

we look at the change in the structure across 12 years of

data. We select a small subset of the data for an initial ex-

ploration. We develop a pipeline to extract the links from

raw archive files and hash them to unique links. The links

are then ingested to create webgraphs and perform analy-

ses. The networks obtained are composed of few hundred

millions of nodes and billions of edges, comparable to net-

works of many of the earlier work done in field. We note

similarities between our observations and what has been

reported by other authors, as well as a great discrepancy

in component sizes, notably the biggest strongly connected

component. We develop a few hypotheses to explain the is-

sue, and perform an experiment to confirm that crawling

process could be a cause to the problem. Lastly, we con-

struct domain graphs from our links and study the changes

in popular domains across the years.

1. Introduction
If one were to discuss the most influential network struc-

tures in the 21st century, many would pick the World Wide
Web (WWW). Since its introduction in the 90s, WWW has
connected people and information around the world. In its
early days the structure of this intricate, rapidly changing
network was only imagined, many claiming that it lacked
structure whatsoever. After iconic study by Broder et al [5]
in 1999 which claimed the network to be of ‘bow-tie’ struc-
ture, numerous studies on the network structure followed
for next two decades. While there have been much work
done on analyzing snapshots of web graphs, not enough
work has focused on temporal changes in the network, pos-
sibly due to several reasons. First, there aren’t many consis-
tent crawl datasets across a long period of time that are pub-
licly available and can be utilized by researchers to study
the evolution of the web. Hence, they are forced to focus

on rather limited temporal subset. Secondly, even equipped
with such dataset, the size of the data is often on the num-
bers of terabytes of data per year, posing a computational
challenge. Thirdly, changes in network structures are diffi-
cult to quantify and explain. A variety of different metrics
need to be utilized, and it is unclear if they, once combined,
can tell a coherent story regarding the changes in the web.

In this work, we look at evolution of the web from year
2003 to 2014. We utilize crawled web archives for each
year, whose size ranges from 1.7 TB to 7.4 TB. Instead of
parsing all data, here we focus on a smaller subset of data
- notably the years 2003, 2004, 2007 and 2010. We extract
link structures, filter valid links, and construct web graphs in
yearly snapshots. We provide some general statistics about
webgraph of each year, pointing out similarities as well as
differences between our data and results reported by previ-
ous works in the field. Notably, we observe a huge discrep-
ancy in the structure of web graph when we perform breadth
first search to verify the bow-tie structure of the web. We at-
tribute this to be due to crawling process and link extraction,
and carry out an experiment to confirm that crawling pro-
cess can indeed have a huge impact on our result. We then
construct domain-level networks, and observe how popular
domains have changed over the years.

2. Related Work
The structure of the web has been studied several times

in past two decades. Broder et al. [5] investigated an Al-
taVista crawl of 200 million pages and 1.5 billion links and
claimed that the web graph is of a bow-tie structure, com-
posed of several well-defined components. These include:
CORE, a strongly connected component; IN component, a
set of nodes that can reach CORE but not be reached from
it; OUT component, a set of nodes that can be reached by
CORE but cannot reach CORE themselves; disconnected
component (Tendrils, DISC, and Tube) which have no con-
nection with CORE. They showed that each component is of
roughly similar size, and claimed that two separate crawls
revealed equivalent insight. Lastly, they observed that de-
gree distributions seemed to follow power laws, all of which
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Table 1: Data processing pipeline

Stage Raw Data Extract Links Filter / Hash Links Create Webgraph Analyses
Platform DFS AUT, PySpark PySpark WebGraph (Java)

Result Format WARC Parquet TSV .offset, .graph Statistics
Result Size - 2003 1.7 TB 28 GB 47 GB 5.3 GB Varied
Result Size - 2004 2.2 TB 21 GB 37 GB 4.4 GB Varied
Result Size - 2007 3.0 TB 44 GB 71 GB 9.5 GB Varied
Result Size - 2010 5.4 TB 86 GB 111 GB 14 GB Varied

Table 2: Size of web archives in terabytes for each year

Year Size Year Size
2003 1.7 2009 5.3
2004 2.2 2010 5.4
2005 6.1 2011 4.6
2006 6.6 2012 7.4
2007 3.0 2013 5.9
2008 5.0 2014 4.1

Total 57 TB

have been accepted more or less by the academic commu-
nity.

However, Serrano et al [12] later pointed out that a lot of
statistics often used to describe a network, such as degree
distribution, rather depend heavily on the crawl methods
and may not be a good representative sample of the whole
web. Indeed, some described the web graph as a daisy[7],
while others described it as a teapot [13]. In a more recent
study of the web, Meusel et al [10] showed such dependence
of the findings on crawl process, pointing out that propor-
tion of the four components were vastly different from what
was proposed by Broder et al. Furthermore they observed
that the degree distributions are not power laws, and newly
provided distance-based feature measurements of the web.

Several works have also been done on studying the
changes in structure of networks, such as development of
email-based social networks [8, 9] or Internet routing net-
work [6]. Many different measurements and correspond-
ing algorithms were proposed to characterize changes in
topology of networks, including time-varying communities
[1], using units of different motifs to describe temporal net-
works [11], or frequency-based pattern characterization of
evolution [3]. To our knowledge, no work has been per-
formed studying temporal structure changes of the internet.

3. Dataset
The dataset that we use is crawled web archive data in

WARC (Web Archive) format. The format stores a lot of in-

formation regarding the crawl such as payload content and
control information that even with compression the file size
is massive. The amount of data per year can be found in
Table 2. One can quickly note that the amount of data is not
consistent across the years. This is due to changes in crawl-
ing depth and duration and hence we cannot make estima-
tions regarding growth or diminishing in size of the whole
web graph. That is, we cannot make any statements about
the whole graph unless we actually know how much of the
whole webgraph we have crawled. Yet, it is possible to dis-
cuss changes in average statistics such as average in-degree
or out-degree, or make statements about well-defined do-
mains that are shared across the years. For example, it might
be possible to state that within domain X the number of
nodes in a strongly connect components have increased and
that its diameter have decreased.

3.1. Data Processing Pipeline
While the raw data is massive in its size, the main piece

of information we are interested in is the edges between
webpages. Hence, once link extraction is completed, the
size of the file we have to handle for our study is far reduced
and much more manageable.

Refer to Table 1 for a summary of the processing pipeline
and corresponding data sizes. We use open source Archives

Unleashed Toolkit (AUT) 1, which provides a simple inter-
face built around Apache Spark to analyze archives, to parse
and extract link data from raw WARC files. Once the links
are extracted, we use PySpark to filter to valid, unique links
(e.g. disregarding links that start with ‘mailto:’), and use
xxHash algorithm 2 to hash the nodes to 64 bit numbers. We
then use WebGraph package [4] to create webgraphs and
perform analyses. While the package was developed more
than a decade ago, it still is the most extensive framework to
study web graphs with various functionalities and compres-
sion techniques that cannot be found with other available
tools. Note that after this step, our data has been reduced by
almost 4 orders of magnitude, making it much more man-
ageable. The biggest compression mainly comes from two

1https://archivesunleashed.org/aut/
2https://github.com/Cyan4973/xxHash
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steps: the first is link extraction, where we discard all un-
necessary information of web pages. Note, that as we filter
and hash links, we actually get a file greater in size as we
output an uncompressed naive TSV file. Another major re-
duction in size arises from switch to WebGraph framework,
which utilizes compression algorithms to provide compact
representation.

The whole pipeline, as of the moment, is quite costly.
The first link extraction step takes between a few days to
a week depending on source size, the hashing step about
a day. Once deduplicated links are extracted, webgraph
generation and statistics computation can be carried out in
hours or in some cases, minutes. Due to this costly extrac-
tion process, we initially only look at 4 years of data as
noted in Table 1. We believe it to be beneficial to look at a
sample of data before trying to make adjustments and opti-
mizations for processing pipeline.

3.2. Framework
As mentioned, we utilize various packages in our

pipeline for extraction and analysis, including AUT, PyS-

park, JAVA, and WebGraph. We performed our experiments
using a cluster provided by InfoLab of Stanford University,
which consists of Intel(R) Xeon(R) CPU E7- 4870 server
with 80 CPUs.

4. Results
4.1. Degree Distribution

It has been observed in the literature that the in-degree
and out-degree distribution of web graph networks tend to
follow so called ‘power-law’ [2]. That is, probability P (k)
that a vertex interacts with k other nodes (or in other words,
the probability of having k in or out degree) decays as power
law, as P (k) ⇠ k�� . However, it was noted in [10] that
this is rather a naive observation from a log-log plot, and
that in fact many other graphs can portray linear tendency
in log-log plot. Hence, we just make two observations here,
and make no further statements about the model behind it,
though further analysis could try to fit different functions.
First, there is resemblance of linear tendency of degree dis-
tribution in a log-log plot. The shape of the distribution re-
sembles that of other studies, notably the triangularly linear
shape of indegree distribution and slightly concave form of
outdegree distribution. Secondly, overall shape of the dis-
tribution is rather consistent across the years, though there
is slight difference in outdegree distribution. We see higher
proportion of nodes with medium sized outdegree (around
102) and lower proportion of nodes with low outdegree (less
than 101). We suspect this might mean the network has be-
come more connected across the years. Indeed, that is what
we observe in average degree, which we discuss in the next
section.

Figure 1: In-degree and Out-degree distribution of three
years. Note that they are both log-log plots, where x-axis
is the size of in/out degree, and y-axis is the proportion of
the whole network.

4.2. Summary of Statistics

Summary of statistics of 4 years of data can be observed
in Table 3. Along with our collected data, we include
data from [5, 7, 10]. Note that some numbers are not re-
ported, such as proportion of dangling nodes, and hence we
leave them as blank.Some other numbers were indirectly
reported, such as stating that weakly connected component
was greater than 90% of whole graph by [7], or with differ-
ent precisions. We can make several observations regarding
our data and compare it with previous results.

The size of the graphs are comparable to some of the ear-
lier studies done on networks. We see that number of nodes
range from 300 million to 500 million, and the number of
directed arcs between 1.5 billion and 3.3 billion. This is
comparable to 200 million and 360 million nodes, respec-
tively, and 1.5 billion edges in [5] and [7]. This number,
however, is much smaller than 3.563 billion nodes and 129
billion edges used in [10]. It is possible that the bigger
graphs in our dataset have more than a billlion nodes, but
we suspect it unlikely that any single year we have will have
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Table 3: Summary of statistics of our results and three previous papers. All numbers are in millions except for average
degree, and the number in parentheses are portion of all nodes, in percentage.

2003 2004 2007 2010 Broder00 Donato05 Meusel14
# Nodes 376 305 491 677 203 185 3,563
# Arcs 2,071 1,602 3,274 5,198 1,466 1,500 128,736
Avg degree 5.50 5.25 6.67 7.68 7.5 - 36.8
Max SCC 9.2 (2.4) 8.5 (2.8) 17.2 (3.5) 22.0 (3.3) 56.4 (27.7) 44.7 (32.9) 1,827.5 (51.3)
Max WCC 357.5 (94.9) 291.1 (95.4) 478.3 (97.4) 661.7 (97.8) 186 (91.6) 166.5 (90+) 3,349.2 (94)
IN 47.5 (12.6) 37.8 (12.4) 48.5 (9.9) 47.5 (7.0) 43.3 (21.3) 14.4 (10.6) 1,138.9 (32.0)
OUT 81.6 (21.6) 69.2 (22.7) 175.3 (35.7) 295.5 (43.7) 43.2 (21.2) 53.3 (39.3) 215.4 (6.1)
Dangling 249.1 (66.1) 202.6 (66.4 ) 366.1 (74.6) 557.0 (82.3) - - -

Figure 2: Toy crawling process with seed node A. Alpha-
bets are node ids and number in parentheses are BFS depth.
Dotted line indicates components (nodes and edges) that ex-
ist but never explored by our crawler, while regular lines are
components that were explored by our crawler.

as big of a graph as in [10].
The average degree of directed graph is between 5.2 and

7.7 and increases across the years. This is aligned with 7.5
as reported by [5], but much smaller than 36.8 observed by
[10]. Again, it will be interesting to see how the measure-
ments in networks from later years change, but we suspect
this difference to be partly due to link construction which
we discuss in the next section.

4.3. Components of Webgraph
As noted in Section 2, [5] devised an experiment to an-

alyze the structure of a web graph, which has since been
repeated many times across the years. After identifying
the biggest strongly connected component (SCC), one can
perform a breadth first search (BFS) from nodes within
them. By subtracting size of SCC from number of reachable
nodes, we have an estimate of the OUT component. We can
perform a BFS on a reversed graph in a similar manner, and
get estimate of the IN component. We perform the exper-
iments on webgraph we constructed, the result of which is
in Table 3.

First observation, which is somewhat concerning, is how
disjoint the graph seems. The biggest strongly connected
component only takes up about 2.3 to 3.5 % of all nodes,

which is far smaller than numbers reported by other papers,
which range from 25% to 50%. On the other hand, the size
of weakly connected component takes up around 95% of
the whole graph, which aligns with numbers reported from
previous works. We also observer a very large number of
dangling nodes, with 65 to 82% of all nodes being terminal
nodes. Unfortunately, we could not find comparable statis-
tics in previous works.

In terms of other components of the graph, we already
see vastly different tendencies between previous works. [5]
claimed that all components were of similar size, [7] said IN
component was smaller than SCC and OUT, while [10] said
the biggest SCC took up half of the graph IN component
about 30%, and OUT component to be only around 6%.
In comparison, we see that our OUT component to be much
larger than IN component, the proportion changing from 1:2
to 1:6 across the years. So where could these differences
arise from? We believe there are two possible explanations.

The first explanation is the crawling process. It has been
noted in [10] that the webgraph structure greatly depends on
the crawling process. While we do not know of the crawl-
ing process that was used to generate our data, we could
hypothesize the following. Just as any other crawler, we
can assume that ours were kicked off from various seeds in
a BFS manner. Now, assume that BFS is set to terminate
after 10 steps. Then there are webpages that are visited in
the 10th level. If we extract the links from these webpages,
we have links to other websites which, if we do not already
have them in our visited pages, we never visit in that BFS
run. In such case, all nodes that would have been visited in
11th level end up being dangling pages. For a simple exam-
ple, refer to Figure 2, and assume we perform BFS of 1 step
from node A. Then we would visit B, C, D, and our current
link construction scheme would include links to E and F as
well, even though we never visit those nodes. Moreover, E
and F will be falsely identified as dangling nodes. Hence,
This might explain our great number of danging nodes, as
well as our small proportion of greatest SCC. We test this
hypothesis in Section 4.4.
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Table 4: Changes in extraction due to filtering process

Original Nodes A, B, C, D, E, F

Links AB, AC, AD, BD, BE, DF

Filtered Nodes A, B, C, D
Links AB, AC, AD, BD

Table 5: Statistics of year 2003 before and after filtering out
the destination pages. All number in million except for av-
erage degree and BFS. Number in parentheses is proportion
of all nodes in percentage.

2003 2003 (filtered)
# Nodes 376 99
# Arcs 2,071 997
Avg degree 5.50 10.02
Max SCC 9.2 (2.43) 9.2 (9.24)
Max WCC 357.5 (94.86) 96 (96.13)
IN 47.5 (12.61) 47.5 (47.76)
OUT 81.6 (21.64) 4.97 (5.00)
Dangling 249.1 (66.09) 8.9 (8.98)
BFS depth 756 ⇠ 775 763 ⇠ 772
BFS depth (reversed) 130 ⇠ 139 130 ⇠ 141

Table 6: Statistics of created domain graph

2003 2004 2007 2010
# Nodes 7.69 M 7.24 M 12.16 M 9.25 M
# Arcs 41.62 M 34.77 M 34.54 M 25.33 M
Avg degree 5.41 4.79 2.80 2.74

Max SCC 72.59 K
(0.94)

49.78 K
(0.69)

40.21 K
(0.33)

22.78 K
(0.25)

Max WCC 7.68 M
(99.99)

7.24 M
(99.99)

12.16
(99.99)

9.24
(99.99)

BFS depth 7 5 ⇠ 6 5 ⇠ 6 5 ⇠ 6
BFS depth
(reversed) 8 6 ⇠ 8 6 ⇠ 7 6 ⇠ 7

The second possibility is the link construction step.
While [5, 7] do not explicitly mention the link construction
process, [10] explains that they constructed links by using
both a and link HTML elements, as well as redirects con-
tained in HTTP header. In comparison, the extraction pack-
age we use, AUT, extracts only the a elements. Hence, our
process theoretically covers fewer links per page. This ex-
plains the great average degree in [10], and can help explain
the large portion of biggest SCC.

4.4. Filtering Destinations
To test the hypothesis that the peculiar structure of our

webgraph might be due to crawling process, we carry out

the following experiment. From the archive file of 2003, we
extract all the urls of pages we have visited and downloaded.
Then from the links we have from previous extraction pro-
cess, we only filter the links whose destination pages are
in visited URLs. This is effectively reducing our crawling
level by 1, and would reduce large number of edges. How-
ever, in this way, we can ensure that we only look at links
between pages that we have visited. The difference in our
link extraction, using our example from Figure 2 again, is
demonstrated in Table 4.

The statistics for graph constructed after filtering step
can be found in Table 5. There are many easily noticeable
differences. First, the number of nodes were reduced to al-
most quarter of its original size, and number of links were
halved. Average degree has doubled, and we see that the
proportion of max SCC size is now of around 9%, which
is still smaller than what was reported in other works, but
is more reasonable. Note, the size of max SCC does not
change, which is reasonable; as all edges in SCC, by defi-
nition, have both source and destination nodes explored by
our crawler, they should not be removed. We see that it
was mostly the falsely danging nodes that were vastly re-
duced, as number of dangling nodes decreased by 240 mil-
lion. Such change also greatly reduced the size of OUT
component. The IN component did not change in size, and
hence we now see a disproportionately big IN component.
If we were to have deeper levels of BFS, or extract more
links from links HTML elements and redirection, it is pos-
sible that we have more nodes in IN component become part
of the SCC.

4.5. Domain Graph

Next, we construct a new graph by extracting the links
from domain level. For each site-level link, we extract the
domain, and group them by links between domains. Note
that here, we do not weigh the domain link by number of
links between websites of each domain. Then we construct
a webgraph using these domain links. The result is summa-
rized in Table 6.

We observe, as expected, that the size of the graph has
greatly reduced in size, by almost 2 orders of magnitude.
The number of nodes are now in orders of millions, and the
number of arcs in order of tens of millions. The average
degree actually decrease over the years, even though we
saw it increase in page-level graphs. We see the strongly
connected component to be even smaller proportion of all
nodes, while weakly connected component basically takes
up the whole graph. It is also worth noting that the depth of
BFS is between 6 and 8, much smaller compared to that of
page level graphs.

We can also look at the most popular source and des-
tination domains by grouping our links by their domains.
The source domains with most out-links across years is
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Table 7: Top 10 source domains across years

2003 2004 2007 2010
1 da.ru tripod.lycos.com tripod.lycos.com tripod.lycos.com
2 directory.google.com webbound.com ljudmila.org gy.com
3 anywho.com cyber.law.harvard.edu google.com mybloglog.com
4 dominion-web.com anywho.com paginegialle.it directory.google.com
5 tollfree.att.net tollfree.att.net choicehotels.com google.com
6 att.net salon.com gy.com at-la.com
7 suchmaschine.com att.net directory.google.com mister-wong.de
8 dmoz.org directory.google.com educationplanet.com hotsheet.com
9 newhoo.com gy.com hotsheet.com rhymeswithright.mu.nu
10 asia.dir.yahoo.com excite.co.uk stumbleupon.com choicehotels.com

Table 8: Top 10 destination domains across years

2003 2004 2007 2010
1 adobe.com adobe.com adobe.com facebook.com
2 microsoft.com microsoft.com microsoft.com youtube.com
3 geocities.com geocities.com google.com twitter.com
4 amazon.com amazon.com geocities.com adobe.com
5 members.aol.com google.com amazon.com google.com
6 google.com members.aol.com en.wikipedia.org en.wikipedia.org
7 yahoo.com yahoo.com apple.com microsoft.com
8 cnn.com cnn.com nytimes.com amazon.com
9 apple.com nytimes.com cnn.com nytimes.com
10 nytimes.com apple.com members.aol.com maps.google.com

listed in Table 7, and similar information regarding desti-
nation domains is listed in Table 8. We observe that many
of top source domains are web hosting websites, such as
tripod.lycos.com, gy.com, or da.ru. As it is ad-
ditional cost to purchase a custom domain, it is understand-
able that many websites would be under the tripod do-
main. We also observe portal and directory websites with
many links to other businesses, including directory.
google.com, paginegialle.it, choicehotels.
com, and hotsheet.com. There are also some potential
spam/hacker websites, such as ljudmila.org.

When we look at domains with most in-links in Table
8, we can spot many familiar names and make various ob-
servations. First, we see a curiously large number of links
to Adobe. After looking at the links themselves, we ob-
serve that they are related to Acrobat Reader or Flash, both
very widely used products of Adobe and very often embed-
ded in websites. Similar observation can be made about
Microsoft, though no specific product seems to be in play.
We also see decline of Yahoo over the years. For example
geocities.com, which was a popular web hosting ser-
vice offered by Yahoo, was discontinued in 2009; hence,
we see it being in top 10 list until 2007 but disappear in
2010. Of course, we observe rise of great social media and

user content websites in 2010, such as facebook.com,
youtube.com, and twitter.com/ It is also worth not-
ing that there are consistently many links to news websites,
such as nytimes.com or cnn.com.

5. Conclusion

In this work, we looked at 4 years of data from a dataset
of 12 years of crawled web archives. We have developed a
pipeline that utilizes multiple frameworks to extract links,
hash and deduplicate them, generate webgraphs, and per-
form analyses. We obtained networks of few hundred mil-
lion nodes and billions of edges, and perform experiments
as carried out in other works in the field. We noted big dis-
crepancies in the structure of the web and proposed a few
hypotheses to explain them. We carried out an experiment
and confirmed that one of them contributes to the differ-
ences. We created domain graphs and observed how popu-
lar domains have changed across the years.

There are obviously many future work that can be done.
One would be looking into bridging the gap between our re-
sults and other reported results. A possible first step would
be changing our extraction procedure to extract redirections
and link HTML components as links. Another interesting
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question would be that of optimizing the pipeline to speed
up the processing. We could work on rewriting the ex-
traction code, which has been the biggest throttle in our
pipeline, to maximize parallelism. We could also look at
how tasks are carried out in Spark, and optimize the calls
and parameters. Then we can utilize our whole dataset and
actually start looking at the overall trend across 12 years of
data.
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