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Abstract

In this study, we investigate the applica-
tion of deep learning models to the vi-
sual diagnosis of juvenile idiopathic arthri-
tis present in the temporomandibular joint
(TMJ). The primary challenge is the size of
our dataset ( 100 patients). We test two dif-
ferent methodologies, first using each patient
scan as a training example and training end-
to-end diagnoses, and second training models
on single MRI slices within a patient scan as
a technique for boosting the amount of train-
ing data. The outputs of these models are
at the slice level, and so we combine outputs
for all slices of a given patient using a cus-
tom voting scheme. Our results show that
this slice-level methodology is most e↵ective
at predicting the presence of arthritis in the
TMJ, with an AUC score of 1.0 and an F1
score of 0.952 on the validation set.

1. Introduction

Juvenile Idiopathic Arthritis (JIA) is a chronic inflam-
matory disease that a↵ects 1 in 1000 children in the
United Kingdom (Arvidsson et al., 2009). The disease
can manifest in the jaw area - more precisely in the
Temporomandibular Joint (TMJ) and may entail fa-
cial growth disturbances, pain, and/or impaired jaw
function (Larheim et al., 2015). Magnetic Resonance
Imaging (MRI) remains the technique of choice for
radiologists looking to monitor arthritis in the TMJ
(Arvidsson et al., 2010), (Navallas et al., 2017) and
determine whether intervention is necessary. This in-
tervention entails a potentially painful steroid injec-
tion into the TMJ space (Stoustrup P, 2015). The
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problem with using MR imaging for diagnosis is the
large degree of variability amongst radiologists, which
can undermine the objective truth of the disease state
in patients and put some at risk for unnecessary inter-
vention.

There is a need for a more robust method of quantify-
ing arthritis that is not subject to the biases of individ-
ual assessors and leverages the current data available
for these patients. The e↵ect of such a method would
be to introduce consistency into the diagnosis of TMJ
arthritis and to reduce the number of false positives
that may lead to unnecessary, invasive, and painful
treatments. Paediatric Rheumatologists at The Bris-
tol Royal Hospital entered a collaboration with Stan-
ford University via the project class CS 341 to develop
such a quantification method. The goal of this project
is to investigate the application of deep neural network
models to a dataset of MRI scans of both healthy pa-
tients and those a✏icted with JIA, with the goal of
determining the e↵ectiveness of these models for con-
sistent diagnosis of TMJ arthritis.

In this study, we report results for two separate ap-
proaches to the problem of accurate TMJ arthritis di-
agnosis. In the first approach, we implement a model
similar to MRNet (Bien et al., 2018), which treats each
patient scan as a single training example and outputs
a single diagnosis. MRNet was initially developed and
validated on a dataset containing 1,370 MRI exams of
the knee, however in this case, our dataset is smaller
by a factor of ten. We are interested in seeing how
such an architecture extends to datasets of this size.
In the second approach, we propose a novel method
best suited for a severely limited amount of data. This
method involves treating every individual slice in each
MRI scan as a single training example, which expands
our training set significantly. For each slice, we gen-
erate two outputs: the first relates to the diagnostic
relevance of the slice - many slices do not contain the
joint of interest - and the second relates to the actual
diagnosis. We explore di↵erent voting schemes to com-
bine model outputs for individual slices into a single
diagnosis.
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(a) Sagittal orientation (b) Coronal orientation (c) Axial Orientation

Figure 1. Magnetic Resonance Imaging of the head of a patient with the 3 di↵erent orientations.

2. Related Work

In recent years, deep learning has increasingly become
a powerful method for modeling the complex relation-
ships between medical images and their interpreta-
tions. Recent advancements in deep learning and large
datasets have enabled algorithms to outperform med-
ical professionals in a wide variety of medical imag-
ing and diagnostics tasks, including diabetic retinopa-
thy detection (Gulshan et al., 2016), skin cancer clas-
sification (Esteva et al., 2017), arrhythmia detection
(Rajpurkar et al., 2017a), hemorrhage identification
(Grewal et al., 2017) as well as pneumonia (Rajpurkar
et al., 2017b). While not capable of medical auton-
omy, these models are proving to be useful diagnostic
decision support tools in a variety of medical contexts
(Sayres, 2018).

Magnetic resonance imaging (MRI) is a common
method for diagnosing various types of pathologies.
Automated diagnosis from MRI scans has received
growing attention across the medical industry, with
applications ranging from knee tear assessment to
schizophrenia (Zeng et al., 2018). Islam et al. (2017)
studied the performance of various convolutional ar-
chitectures on Alzheimer’s disease diagnosis using the
publicly available Open Access Series of Imaging Stud-
ies dataset (Demner-Fushman et al., 2015). More re-
cently, (Bien et al., 2018) developed an automated
machine-learning model for detecting knee abnormal-
ities and measured the clinical utility of providing
model predictions to clinical experts during interpreta-
tion. In this study, the deep learning system is lever-
aged to decrease diagnostic error and variability, as
well as improve e�ciency of specific diagnoses (ante-
rior cruciate ligament [ACL] tears and meniscal tears)
on knee MRI exams.

3. Dataset

3.1. Overview

For this project, we start with a dataset of MRI scans
for 151 patients. Of these patients, 53 do not have JIA,
whereas 98 present with JIA symptoms in the Tem-
poromandibular Joint (53N,98Y). Each patient has be-
tween 3 and 16 scans, each of which is comprised of a
series of slices through the head region with the same
spatial orientation and MRI protocol. There are 131
unique protocols contained in the dataset, and many
of these map to familiar MRI protocols such as T1, T1
fs Gd, and T2 fs. There are three unique spatial ori-
entations, as seen in Figure 1: sagittal (side to side),
axial (top to bottom), and coronal (front to back).
This dataset was provided by collaborators at the Bris-
tol Royal Hospital. Ground-truth labels show the ex-
istence of arthritis and the degree of severity (mild,
moderate, severe) for each side of the jaw. These la-
bels were determined empirically after further clinical
investigation. Most patients possess scans from multi-
ple dates, as MRI is used to monitor the e↵ectiveness
of treatment and the state of disease progression.

3.2. Filtering

For this analysis, we use scans taken on the earli-
est date for each patient. This way, we ensure that
no intervention has yet been administered to the pa-
tient. We also select only scans in the axial orienta-
tion. Taken along the vertical axis of each patient,
these scans contain slices which include both left and
right TMJ regions simultaneously. With help from
collaborators in Bristol, we identify 37 MRI protocols
that all map to the standardized protocol T1 fs Gd.
This protocol, which relates to a T1 MRI scan taken
after the patient is administered with a contrast agent
(Gadolinium), has been shown to be most diagnosti-
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Figure 2. Examples from the data preprocessing pipeline. A Images vary in shape, enlargement, and intensity, and so
they are centered using the skull as a reference, cropped to a square shape, and normalized via histogram normalization.
B,C Intensity histograms before and after normalization. Six representative densities are displayed from varying average
pixel ranges. Before normalization (B), these bimodal densities are not aligned, and after normalization (C), they have
been brought into similar ranges.

cally relevant in the detection of TMJ arthritis (Kel-
lenberger et al., 2018). Ultimately, these filtering deci-
sions, along with further filtering to remove low quality
scans with movement artifacts, reduce our dataset to
114 patients (38N/76Y). Each patient has between 1
and 3 scans, and each scan is comprised of between 9
and 144 slices (µ = 28.2,� = 28.7), which leads to a
final dataset of 4, 222 slices.

3.3. Preprocessing

When comparing MRI images across di↵erent patients,
we found that the shape of the image, the location of
the patient’s head, and the degree of enlargement of
the head can vary significantly. One of the additional
challenges with MR images is that the actual inten-
sity scales do not have a fixed meaning and can vary
between scans. To mitigate these issues of data het-
erogeneity, proper data preprocessing is critical. All
images are centered using the boundaries of the skull
as reference points (detected via intensity threshold-
ing) and re-sized to a consistent size of 256x256 pixels
(Figure 2). To normalize image intensity, we use a
biologically relevant normalization approach that in-
volves adjusting the intensity histograms of each image
to match the percentiles of a training subset (Nyu &
Udupa, 1999). After this normalization technique, all
image intensities are scaled and shifted to match the
average mean and standard deviation of the training
images (µ = 45.6,� = 62.8).

At train time, images fed through the data loader are
rotated and shifted randomly, and flipped horizontally
with 50% probability. Images are also scaled between

0.7 and 1.3 of the original size. The output of this
procedure is a 224 ⇥ 224-pixel image, which is then
fed as input to the models.

3.4. Training, validation, test

The patients and their corresponding images are split
into training, validation and test cohorts with the ra-
tio 80:10:10. Cohorts are split such that the scans
and slices related to a single patient are not found in
more than one cohort. We use stratified random sam-
pling to ensure that at least 4 positive patient labels
of each arthritis severity (mild, moderate, and severe)
are present in the validation and test cohorts. The
patient counts for these splits can be seen in Table 1
below.

Cohort Normal Abnormal
Train 30 59 (7mild, 39mod, 10sev, 11n)
Val 4 8 (4 mild, 4 mod, 4 sev)
Test 4 9 (4 mild, 4 mod, 4 sev)

Table 1. Train/val/test cohort splits with patient counts.
Note that counts of mild, moderate, and severe labels refer
to patients with positive indications of these labels in at
least one side of the head.

4. Models

The two model architectures and their corresponding
approaches are laid out in Figure 3. In the first ap-
proach, each scan is used as a single training sample.
The s individual slices within each scan are fed through
a feature extractor resembling the early convolutional
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layers of AlexNet (Krizhevsky et al., 2012). The out-
put of this feature extractor is a set of numerical fea-
tures with dimensions s⇥ 256⇥ 7⇥ 7. Each slice then
undergoes global average pooling, which results in a
dimensionality of s⇥ 256. All s vectors are then max
pooled and fed through a fully connected layer with a
final sigmoid activation to obtain a binary diagnosis.

The second approach is a novel approach that we pro-
pose as an alternative to scan-level diagnoses. This
approach is best suited for prediction and diagnosis
tasks in which there are very few scans available to
train on. The primary assumption that underlies this
approach is that individual slices may contain enough
information for reasonably accurate diagnoses. If each
slice is then used as a training example, the amount
of training data is increased significantly, boosting the
robustness and generalizability of the model. This re-
quires us to accomplish two di↵erent binary tasks. In
the first task, each image is labeled as diagnostically
relevant (containing the joint of interest) or irrelevant
(containing some other region of the head). The sec-
ond task is the diagnostic task, in which relevant im-
ages are determined to be normal or abnormal in na-
ture.

Figure 3. Two di↵erent methodologies for generating diag-
noses. A, left MRNet reads all scan images through a
convolutional feature extractor before combining the re-
sultant activations and passing them through a fully con-
nected layer. B, right Our approach treats each slice as
an individual training example. One model seeks to find
slices of diagnostic relevance, and the second model seeks
to output slice-level diagnoses.

We also attempt to combine the two models in the sec-
ond approach into a single multitask model. The input
to this model is a single slice, and the output is a soft-
max probability across three di↵erent classes: No jaw,
normal jaw, and abnormal jaw. The ’No jaw’ label

is attributed to diagnostically irrelevant images. This
multitask approach allows one model to learn a shared
set of weights that accomplish both tasks, which in-
creases regularization and boosts generalizability. It
also allows diagnostically irrelevant images to be fed
as training data for both tasks, whereas for the split
model approach, this data is not available to the diag-
nostic model.

5. Objective and metrics

For this paper, we investigate the detection of TMJ
arthritis as a binary classification problem, in which
the features of interest are the pixels of a relevant MRI
image, denoted X. Most of our models predict a di-
agnosis in the form of a binary label ŷ 2 {0, 1}. In
two of our models, ŷ indicates the probability of the
presence of the disease, and for our stage I. model in
the 2-stage approach, ŷ indicates the probability that
a scan is diagnostically relevant. For this problem, we
use the binary cross entropy loss function to optimize
our model:

L(X, y) = �y log p(ŷ = 1|X)� (1� y) log p(ŷ = 0|X)

Where y is the true label for each image, determined
empirically through clinical assessment. We also ex-
plore the possibility of combining two di↵erent binary
tasks that operate on the same dataset into a single
model. In order to train this model, we reformulate
the problem as one of multi-class classification by cre-
ating a three-label scheme: ”no jaw,” ”normal jaw,”
and ”abnormal jaw”. This will require us to use the
categorical cross entropy loss function:

L(X, y) = �
4X

c=1

yc logP (ŷ = c|X)

Where yc is a one-hot vector with a 1 only at the lo-
cation of the ground-truth class and P (ŷ = c|X) is
computed using a softmax transformation of the final
activation layer of the model.

Along with accuracy, we will also be tracking F1-score
as a key metric of performance for this task. The F-
score is a metric that incorporates both precision and
recall and can be tuned using the parameter �:

F� = (1 + �2) · precision · recall
(�2 · precision) + recall
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Task Architecture Val Acc Val F1 Val AUC

Patient Diagnosis MRNet 0.813 0.870 0.836
Patient Diagnosis MRNet 0.875 0.917 0.791

I. Slice Relevancy ResNet18 0.876 0.797 0.954
I. Slice Relevancy ResNet34 0.894 0.794 0.931
II. Slice Diagnosis ResNet34 0.797 0.876 0.806
II. Slice Diagnosis ResNet34 0.872 0.925 0.754
Patient Diagnosis (I & II) Max Vote 0.813 0.880 0.836

Multitask Slice PNASNet-5-Large 0.84 0.745 0.797
Patient Diagnosis Multitask Max Vote .938 0.952 1.0

Table 2. Performances across all models and voting schemes.

6. Results

All of the best results of all our models can be seen in
Table 2.

6.1. MRNet

For MRNet, we combine the AlexNet feature vectors
for all slices within a single patient scan using vector-
level average pooling followed by a global max pool.
This combined feature vector is sent through a single
fully connected layer, and the output is a single num-
ber that is then fed through a sigmoid activation to
obtain a binary prediction of disease/no disease. For
our feature extractor, we pretrain the convolutional
layers of AlexNet on ImageNet (Deng et al., 2009), a
repository of millions of images, however we continue
to finetune these layers throughout the training pro-
cess on our smaller dataset.

Figure 4. A visual depiction of the general voting scheme.
A in step 1, single slices are selected based on diagnostic
relevancy from stage I. B in step two, the diagnosis votes
from stage II are combined by taking the highest probabil-
ity across all outputs.

6.2. SliceNet

For slice-level tasks, we train three di↵erent models.
The first model, referred to as the stage I model, which
is responsible for flagging diagnostically relevant slices
(slices that actually depict the jaw and not other re-
gions of the head). The second model is referred to as
the stage II model, and this is a model trained to out-
put an accurate diagnosis at the slice-level. The third
and final model is a combination of both of the previ-
ous models. This model learns a multitask approach,
in which the output is the probability that each slice is
either ’no jaw,’ ’normal jaw,’ or ’abnormal jaw’. This
output is computed by performing a softmax over the
three possible classes.

We found that the task of selecting diagnostically rele-
vant images was easier to learn than that of diagnosis,
and we consistently achieved higher validation metrics
for this task. We found that the multitask model per-
formed worse than the other two models, likely because
the combined labels make the task more di�cult. We
experimented with a variety of deep convolutional neu-
ral network model architectures, including ResNet18,
ResNet 34 (He et al., 2015) and PNASNet-5-Large (Liu
et al., 2017).

6.3. Voting Scheme

Our primary method for generating patient diagnoses
with the slice-level models is to combine their indi-
vidual outputs across all patient slices according to
some voting scheme. The method we implement is a
selection by diagnostic relevancy followed by a combi-
nation of diagnosis probabilities. We choose a proba-
bility threshold past which we assume an image is di-
agnostically relevant. The voting scheme we devise for
all diagnostically relevant images is to take the max-
imum of all softmaxed probabilities. An example of
this maximum voting scheme can be seen in Figure
4.
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Figure 5. Performances from slice-level model voting for both the 2-stage approach and using the multitask model. The
performances are reversed because the selection threshold is used as a minimum threshold in the 2-stage approach and
a maximum threshold for the multitask model. The conclusive fraction refers to the fraction of patients for which a
conclusive diagnosis can be made. It is impossible to make a diagnosis if no scans are selected in step 1.

We carry out this patient-level voting using both our
two-stage slice-level models and our multitask slice-
level model. We tune the selection threshold in order
to feed di↵erent numbers of images to the second step
for diagnosis and see how our performances are af-
fected. The performance of these models can be seen
in Figure 5. For these tasks, the selection threshold
is used in opposite ways: For the two-stage approach,
the output of the stage I model is the probability that
the slice is diagnostically relevant, and so we only use
slices with a relevance probability above the selection
threshold. For the multitask model, one possible class
is ’No jaw,’ and the higher this probability, the less
likely the image is diagnostically relevant. Therefore,
we only use images with a ’No jaw’ probability below
the selection threshold.

Test metrics have not yet been calculated for these
tasks, since model tuning is not finished. We suspect
that the slice-level models will ultimately prove more
generalizable to the test set than the scan-level MRNet
since the expansion of all scans into a multitude of
slices forces our models to identify disease signals with
much fewer bits of information. Combining these votes
using a voting scheme also provides an opportunity for
an ensemble-like output for each patient that should
be more robust to patient variation.

7. Conclusion

In this project, we set out to investigate the use of
neural network models for the visual diagnosis of ju-

venile idiopathic arthritis in the temporomandibular
joint. We chose to use MRI scans of an axial ori-
entation taken with the T1 fs Gd protocol. Due to
the small number of patients, we were interested to
see whether the leading neural network architecture
for MRI-based diagnosis would generalize well. We
also devised a new method that involves using each
individual MRI slice within a scan as a training ex-
ample. We then combined the slice-level votes for a
single patient scan to obtain a final diagnosis. If ef-
fective, this method would prove useful in providing
robust decision support tools for medical imaging sce-
narios in which the datasets are relatively small (rare
diseases, limited data access, etc).

Our preliminary results are promising. MRNet per-
formed at the scan level achieves a maximum F1 score
of 0.917 and a maximum AUC score of 0.836, but not
simultaneously. Our 2-stage model approach (stage
I selects diagnostically relevant slices, stage II makes
slice-level diagnoses) shows that when votes are com-
bined, we achieve an equivalent AUC score on the val-
idation set to MRNet, the state of the art scan-level
model. In addition, when slice-level votes from the
multitask model are combined, we outperform all pre-
vious approaches with an AUC score of 1.0 and a val-
idation F1 score of 0.952.

8. Future Work

There is a large amount of work left to be done to
explore this diagnostic application. Investigating loss
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functions that better reflect the metrics of interest for
this task (Eban et al., 2017) would be interesting, since
false positives and false negatives can mean di↵erent
things in a medical context. We also need to perform
further tuning of voting schemes and their correspond-
ing parameters to identify the best methods for com-
bining slice-level votes. Our ground truth dataset also
includes more complex disease labels, such as degree
of severity of arthritis (mild, moderate, severe) and
labels specific to the left and right sides of the head.

In the future, it would be valuable to incorporate MRI
scans of multiple orientations and protocols. We use
scans of the axial orientation for this study, however
doctors frequently use scans of the sagittal orientation
for best results. This orientation, which depicts a side-
ways view of the head, would contain much more of the
TMJ region in a single slice, and so our slice-level mod-
els may perform better. Other MRI protocols such as
T2 fs have also proven useful for detecting arthritis in
the TMJ.

Finally, we would love to continue working with doc-
tors at the Bristol Royal Hospital to develop more ro-
bust evidence of the e�cacy of these sorts of neural
network models as diagnostic support systems. In or-
der to quantify the clinical e↵ect of these systems, an
in-depth analysis is required in which the accuracy of
clinical diagnosis by expert radiologists is measured
with and without the aid of model outputs.
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