Diagnosing TMJ Arthritis

Team:

Kaylie Zhu, Symbolic Systems Huaiyang Zhong, MS&E Nicolas Bievre, Stats Eric Loreaux, BioE

Mentors: Prof Anand Rajaraman Prof Jeffrey Ullman

CS 341 - Final Presentation

06/05/19

Problem Description

Context

- Juvenile idiopathic arthritis is a chronic inflammatory disease that affects children
- It can present in the the jaw/temporomandibular joint (TMJ) painful & disfiguring
- Early detection via MRI and subsequent rapid treatment is critical
- **Problem:**
 - Large degree of variability in diagnosis amongst radiologists.
 - Very limited dataset (123 patients)

Project statement

- **Goal**: Accurately diagnose TMJ arthritis from MRI scans using neural networks
- **Data**: MRI scans of patients from the Bristol Hospital UK

Data Processing

¹Nyu, Laszlo G. and Udupa, Jayaram K. On standardizing the MR image intensity scale. Magnetic Resonance in Medicine, 42:1072–1081, 1999.

Experimental Methodology - Series-Level Approach

Series-Level Approach

- All slices are stacked into one series and treated as a single training example
- Train the model to generate a single diagnosis

Pro: Fully end-to-end **Con**: Requires a large number of patients

Example: MRNet² (2018)

- Combine AlexNet activations across all MRI slices (Global MaxPool)
- Single fully connected layer
- Trained on ~1000 patients

²Bien N, Rajpurkar P, Ball RL et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med2018;15(11):e1002699.

Results - Series-Level Approach

Quantitative Results

Model: AlexNet	Accuracy		F1		AUC	
	Train	Val	Train	Val	Train	Val
w/o Normalization	0.72	0.875	0.75	0.91	0.81	0.83
w/ Normalization	0.83	0.87	0.84	0.91	0.85	0.85

Qualitative Results

Saliency map Patient with an abnormal left, normal right

Experimental Methodology - Slice-Level Approach

MRI Slice-Level Approach

- Treat each MRI slice as a single training example
- Train the models to generate slice-level votes
- Use a custom voting scheme to generate diagnosis

Pro: Requires fewer patients to train

Many more disease applications

Con: Cannot train end-to-end

Our implementation

- Train first network to detect diagnostic relevance of each slice
- Train second network to make slice-level diagnosis
- Try combining models for multi-task approach

Results - Slice-Level Approach

			Accuracy		F1		AUC	
Stage	Model	Criteria	Train	Val	Train	Val	Train	Val
l r	ResNet18	Best F1	0.855	0.898	0.689	0.816	0.917	.952
	nesiver 10	Best AUC	0.855	0.898	0.689	0.816	0.917	.952
ResNet3	ResNet34	Best F1	0.660	0.872	0.765	0.923	0.702	0.746
		Best AUC	0.735	0.805	0.805	0.874	0.786	0.748

MRI Slice-Level Results - Multitask

Goal: Combine both tasks into a single model

Quantitative Results

	Accuracy		F1		
Model	Train	Val	Train	Val	
Resnet18	.82	.77	.73	.70	
Resnet34	.83	.75	.74	.70	
Resnet50	.87	.79	.76	.72	
Densenet121	.93	.83	.78	.74	
PNASNet-5-Larg e	.91	.84	.79	.745	

Voting Scheme

How to combine slice-level model outputs into a diagnosis?

Step 1: Select slices by diagnostic relevance using a selection threshold on Stage I output

Step 2: Combine Stage II outputs for selected slices using voting scheme to diagnose

Multitask model w/ global max voting scheme

Potential voting schemes:

- Global max
- Weight predictions by relevance

Future Works

- Continue tuning the models
 - Directly tune F1/AUC via alternative loss functions³
 - Tune voting schemes and parameters
- Introduce more complex disease labels
 - Left/Right specific
 - Mild/moderate/severe
- Incorporate other MRI imaging orientations and modalities
 - Coronal/Sagittal orientations
 - T1/T2/T1 fs/T2 fs modalities
- Incorporate expert radiologists into analysis
 - Quantify current expert biases
 - Assess differential performance using model as decision support

Thank you