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Abstract

Modern machine learning algorithms are generally de-
ployed on high performance GPUs, and require significant
power and memory resources. However, such resources are
not always available, especially when one wants to deploy
such models on the ”edge.” In this project, we work with
Jasper Ridge Biological Preserve in Stanford, CA, and de-
velop an image classification system that can be deployed
on the 18 camera traps they have setup around the preserve
to detect wildlife. We experiment with and deploy various
image classification models on a Raspberry Pi that can be
connected to these camera traps. We show that our best
model achieves a mean-per-class accuracy of 87.6% and
can quickly run inference in real-time, on-device, using min-
imal power.

1. Introduction
Our project focuses on techniques to do real-time detec-

tion of wildlife from video feeds on a Raspberry Pi. In par-
ticular, we explore machine learning based approaches that
have been shown to be successful on the dataset that we are
exploring.

Jasper Ridge Biological Preserve is 15 minutes north of
Stanford and home to a variety of flora and fauna that are
protected from significant human interaction. Several kinds
of research are conducted here to track their natural lifecy-
cles and those of the surrounding ecosystem. Jasper Ridge
has deployed a fleet of 18 cameras around the park for the
purposes of capturing photos of animals naturally exploring
the park.

In CS341 last year, a team worked on designing a neu-
ral network based solution to identify a variety of wildlife
tracked within the park. They designed this to help reduce
the load on the volunteers for the park who were helping
classify the images.

This year, we need to take things a step further. Last
years model was optimized for accuracy but not compute.
Jasper Ridge is now working on designing cameras that
have Raspberry Pi-like compute systems and long range ra-

dio signals. Our task is to design power-efficient models
that can run on the Raspberry Pi and identify a significantly
smaller number of classes. The goal is to be able to deploy
this in real-time as well, so we seek to evaluate model ar-
chitectures that are both fast and computationally efficient.
Eventually, we may also work on being able to send a no-
tification (containing a thumbnail of the image for verifica-
tion) if we identify a human with a gun in order to identify
poachers and potentially trigger a law enforcement action.

2. Data

The dataset consists of 3 classes - humans, mountain li-
ons, and coyotes. This consists of only 33.9% of the orig-
inal dataset, which contained up to 24 classes of wildlife.
Moreover, the dataset is imbalanced, with 86% of the
dataset corresponding to just the human class (See Figure
2). This is a classic problem with real world datasets, where
the distributions of the things you see are not nearly similar.

The original dataset is composed of almost 200,000
JPEG images, originating from several different cameras
at different angles in different places and collected over 10
years. For each camera array, there is an Excel sheet that
corresponds to the correct labels. This Excel sheet also con-
tains metadata like the light levels and the temperature. The
subset that we work with in this project contains approxi-
mately 64,000 images.

Figure 1. Jasper Ridge Dataset: We observe how this specific task
uses only a subset of the data, and within that data, there is a sig-
nificant class imbalance.
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3. Related Work
Some of the first attempts at using machine learning to

detect wildlife from camera trap images used hand-crafted
features. For example, Yu et al. [7] used sparse coding
spatial pyramid matching (ScSPM) to extract features and
then used a linear SVM to make predictions on classify-
ing different species. However, for complex tasks such as
image detection and classification, deep learning methods
which dont require hand-crafted features have proven to be
more effective [3]. Villa et al. [6] shows that such meth-
ods are also effective for wildlife detection. They use very
deep convolutional neural networks to identify the 26 most
common species in the Snapshot Serengeti (SSe) dataset,
achieving a. 5.4% Top-1 and 60.4% Top-5 accuracy. Others
also attempt similar tasks [4, 5].

Notably, a group in last years offering of CS341 has also
done relevant work: Yu et al. implement deep convolutional
neural networks to identify species in the Jasper Ridge
dataset, which is the same dataset we are using for our
project. They experimented with several data preprocessing
techniques such as background subtraction and oversam-
pling. They also experimented with different CNN based
pipelines, and model ensembling methods. Their best per-
forming ensemble achieved an accuracy of 93.7% and an
average F1 score of 85.73. However, though we use the
same dataset, our task is very different, since we need to
our system to run in real-time on an embedded device with
stringent memory and power constraints.

The need for doing species identification on the edge
is very apparent in large natural parks and biological pre-
serves, such as the Jasper Ridge Biological Preserve in
Stanford, and many parks in Africa, such as the Garamba
National Park in the Democratic Republic of Congo. These
parks are very large and can be in very remote parts, mak-
ing it very difficult to get access to wireless networks that
have enough bandwidth to transfer high-resolution images
to an offsite location with the compute power necessary to
run these large deep learning networks. In [2], Elias et al.
attempt this problem, and explore and implement methods
that use resource rich systems to train convolutional neural
networks, and use edge systems to perform the detection of
bears, deer, and coyotes. They deploy their system at the
UCSB Sedgwick Research Reserve, achieving an accuracy
of 87% on these three classes.

4. Methodology
4.1. Preprocessing

In order to effectively train machine learning models,
train-time augmentations are extremely important. We use
3 common forms of preprocessing to augment our data in
this machine learning model:

Random flipping - flipping the image across the y axis
can help teach the model different perspectives. This is a
data augmentation technique that can help the model not
overfit to a specific pose for a given class.

Random cropping - Cropping the image in different por-
tions helps the model learns more high level salient features
that generalize better to various zoom scales and different
poses and subcrops of the same animal.

Per Image Standardization - several papers show that,
empirically, models find it easier to learn when inputs are
bias and variance normalized. This can be done across the
entire dataset or per-image. In this case, we go with per
image, since the dataset contains a wide variety of scenes
with dramatically different lighting, meaning the variance
is quite high across the entire dataset. It is not as high in a
single given image.

4.2. Input Resolution
Because we are operating in the embedded systems do-

main, it’s important that we consider the compute budget of
the models. While we explore different model types, some
with reduced computational intensity, another great way of
controlling the amount of computation necessary is to ad-
just the input resolution of the image. Models that operate
on thumbnails instead of full resolution images can often
attain similar accuracy in many use cases. Intuitively, this is
quite similar to being able to recognize the kind of animal
something might be even if you’re very far away.

Models trained on different input resolutions often have
subtly different architecture parameters (including filter
sizes and strides in convolutions, which control the recep-
tive field of the convolutional layers). However, as we show,
they can be very effective and useful considering the power
vs. accuracy tradeoff.

4.3. Training
Training our model required us to keep several differ-

ent aspects of Tensorflow in mind from an implementation
standpoint.

4.3.1 Model Architecture and Learning Schedule

The model that we chose to use for this project was the
ResNet model. ResNet is one among several extremely
good architectures, like Inception, MobileNet, ShuffleNet,
DenseNet, etc. which are popular for image classification
tasks. ResNets’ rely on the residual layers to train deeper
networks in a more stable manner, along with being able to
model more complex linearities. ResNets have shown them-
selves to be versatile, in applications from medical imaging
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to serving as the backbone for object detection and in gen-
eral as a feature extractor. It is widely deployed in pro-
duction, and, as such, most performance and compilation
systems have put extra effort into compiling the operations
used in ResNet into optimized kernels.

We use Tensorflow to train our model, implementing
the model in both Tensorflow and Keras, using the offi-
cial/models repository of Tensorflow. We train with a batch-
size based learning rate, which decays every 30 epochs, fol-
lowing the learning schedule used to train on the more com-
plex Imagenet-1000 task. Training required significant time
for the ResNet-50, which needed almost 24 hours to train
on a Tesla V100 GPU, using 8 cores.

4.3.2 Class Imbalance

It’s worth noting that we had significantly more examples
of humans than we had examples of coyotes and lions. As a
result of this, if we trained optimizing for a standard metric
or without regularization and specific learning rates, it was
easy for our model to fall into the local optimum of predict-
ing only the human class for all labels. As such, we take
care to report and optimize for the mean per-class accuracy
and track the accuracy on the individual classes.

We maintained the class imbalance in our validation and
testing splits as well, since we thought it was important to be
evaluating on a dataset as close to the real life distribution
of objects as possible.

4.3.3 Tensorflow Lite on Raspberry Pi

Using Tensorflow models in Tensorflow Lite requires con-
verting the models that are trained in Tensorflow into the
SavedModel format. This requires using the freeze-graph
utility. Then, we use the Tensorflow Lite converter to com-
pile the model, setting flags that will auto-prune computa-
tion and other graph nodes that are unnecessary at inference
time. This prunes our model sizes by nearly 50x. Moreover,
they are compiled into model types that are optimized for
execution on microarchitectures. Special kernels that orga-
nize data in convolutions in a different memory format typ-
ically have significant impact on the runtime and execution
characteristics on low memory and low power architectures.

Furthermore, as part of the deliverable, we needed to be
able to watch for new photos to be taken by the camera trap
and run inference live on those images. As such, we need
to be watching the file system for new files taken when the
camera takes the photo. However, standard libraries in the
Python runtime use a polling based interface that we found
took nearly 15% CPU utilization on average on the Rasp-
berry Pi 3. As part of the effort to focus on performance,
we implemented a system which is event-based and takes
only 2% of CPU while in sleep. This is important, since

the system is in sleep the vast majority of the time, and this
contribution reduces power by nearly 8x.

We implement the preprocessing operations in the Pil-
low image processing library, and we shipped a system that
handles the full process of executing in both Tensorflow and
Tensorflow Lite when configured to work with a given type
of model file.

For the use case in which poachers want to be detected in
Garamaba National Park, we need to be able to also be able
to generate a thumbnail if the model is confident that the
object in the image is a human being. This could be used
to alert authorities to potentially suspicious activity. We set
a flag that logs predictions and thumbnails to a subfolder of
the folder being watched for photo generation by the camera
trap.

4.4. Performance Benchmarking
In order to adequately benchmark on the Raspberry Pi,

we ran a warmup stage to get the CPU and code loading
warmed up. We then measured the average inference and
preprocessing time for the model, combining those into a
total inference execution time. We also had a power me-
ter that we could probe with which we used to measure
in Watts the amount of power that the Raspberry Pi was
drawing throughout inference. This is an important step,
since we hope to establish a power vs. accuracy tradeoff,
and, while execution time serves as a great approximation
of power used, the real measurement is also useful.

It’s important to note that the power utilization of the
system also includes the amount of power that the Rasp-
bian operating system is using to continue running, which
is about 3 Watts from our measurements.

5. Experiments
5.1. Setup

We split our dataset of 64,000 images into a training, val-
idation, and testing set following a rough 80-10-10 split. To
ensure our results can generalize to the actual distribution of
the classes, we made sure the class balance among the dif-
ferent splits was the same. This procedure yielded approxi-
mately 50,000 images in the training set, 8000 in validation,
and 6000 in testing.

We evaluate our models using top-1 accuracy. As we
discuss briefly in section 4.3.2, due to the significant class
imbalance, we also evaluate our models using mean-per-
class accuracy, and the individual accuracy for each class.

Further, because we are ultimately interested in deploy-
ing these models on the edge on a low-power embedded
system, we measure the maximum power drawn by these
models (original model and quantized version), as well as
the execution time for inference on a single image, as we
discussed in section 4.4.
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Figure 2. Full System Process. In Step (1) Users use our model selector, which chooses which model to use, given power/accuracy
constraint. In Step (2), Users launch our script - it efficiently handles power consumption, preprocesses new images, and outputs predictions
with thumbnails.

Table 1. Here, we see the various final top-1 accuracies on the test set (note that the plots shown over time are for the validation set. We see
that the models generalize generalize as we expected them to and rank in the same order in terms of quality as we observed in the validation
set.

MODEL HUMAN ACCURACY COYOTE ACCURACY LION ACCURACY MEAN PER-CLASS ACCURACY

RESNET-18 (64X64) 97.9 57.6 62.7 72.7
RESNET-18 (224X224) 99.3 71.5 81.7 84.2
RESNET-50 (64X64) 98.2 58.0 62.0 72.7
RESNET-50 (224X224) 99.2 80.1 83.7 87.6

5.2. Results

5.2.1 Model Performance

For each of our models, we tune hyperparameters to maxi-
mize performance the validation set, and then evaluate the
models on the test set (See Appendix A for validation scores
during training). These results are shown in in Table 1.
Investigating the results, we immediately see that all four
models were almost perfect at classifying humans. We note
that the best performing model was the ResNet-50 with im-
ages at a 224x224 resolution, with a mean-per-class accu-
racy of 86.6%. This model gets > 80% for all classes. This
is what one would expect – the larger model operating with
a higher resolution does the best.

Interestingly, we see that image resolution makes a big-
ger difference than model size. Specifically, the ResNet-50
and ResNet-18 operating at 224x224 image resolution do
the best, while there is very little difference between the
two models operating at 64x64 image resolution (in fact,
their mean-per-class accuracy is the same). Perhaps model
size will have more significance at much higher resolutions

— but models operating at these resolutions are unlikely to
fit on an embedded device such as Raspberry Pi.

Further it is important to note that the lowest memory
footprint model, the ResNet-18 at 64x64 doesn’t do terri-
ble as it gets a mean-per-class accuracy of 72.7% Such as
model would be ideal for a situation where identifying hu-
mans was relatively more important, since it still achieves
97.9% accuracy on that task.

5.2.2 Model Power Benchmarking

In Table 2, we show the execution time and maximum
power draw of each model as well as its quantized version
compiled with TensorFlow Lite. The Rasberry Pi in an idle
state (with LEDs and WiFi on) draws about 3 W of power
— we report power increases over this baseline.

As we expected, the ResNet-50 at 224x224 took the
longest time to make an inference, on average, and the
Resnet-18 at 64x64 took the shortest amount of time, on
average. Interestingly, we note large differences in execu-
tion time among the TesnorFlow (TF) and TensorFlow Lite
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Table 2. Here, we can see the power times broken down by the framework the model is run on (Naive Tensorflow vs. Tensorflow Lite),
along with seeing the different execution times (Exec Time) and maximum power draws (MPD) for the different models being run at
different resolutions.

MODEL TF LITE EXEC TIME (S) TF EXEC TIME (S) TF LITE MPD (W) TF MPD (W)

RESNET-18 (64X64) 0.39 0.21 1 3
RESNET-18 (224X224) 4.03 1.09 2 4
RESNET-50 (64X64) 0.92 0.41 2 3
RESNET-50 (224X224) 10.58 2.54 2 4

(TF Lite) versions of the models operating at 224x224 im-
age resolution. For example, the TF version of the ResNet-
50 took about 1/4 of the time to classify a single image
than its TF Lite version at a 224x224 resolution. However,
the TF version drew twice the amount of power. The other
models follow a similar trend, though the relative differ-
ences between the two versions of the model may not be
as large. These results introduce an interesting trade-off for
the client: execution time vs power drawn. If there are con-
straints on the maximum current the embedded device can
draw, than it may be advisable to use the TF Lite version
of a given model. However, if energy consumption is the
main concern, it may instead be advisable to the use the TF
version of a model since though we draw more power, it is
for a shorter amount of time. Of course, this trade-off varies
model to model as one can see from Table 2.

5.2.3 Delivered System

Ultimately, we want to deploy a system that can operate
on embedded systems directly connected to the cameras at
the Jasper Ridge Biological Preserve, which run on solar
power. As we discussed in prior sections, there are various
tradeoffs in accuracy, execution time, and power among the
different models. For this reason, we design a system that
provides the following features: (1) Pretrained model selec-
tion, (2) an efficient execution framework, and (3) be able to
run in real-time, on device, and use minimal power for in-
ference. Our system efficiently handles power consumption
with various optimizations discussed in Section 4.3.3, pre-
processes new images as they come from the camera, and
outputs predictions. If the prediction is particularly interest-
ing depending on the use case (this is easily configurable),
it will also output a thumbnail image. This would make
it easy for a lower-power device to transmit this classified
image over a limited-bandwith region. The full process is
shown in Figure 2.

5.3. Challenges
One of the largest challenges we faced in this project was

running the models using TensorFlow Lite (TF Lite) on the
Raspberry Pi. While were were able to compile our mod-

els to TF Lite, we kept getting a memory allocation error
when we tried to load the model on the Raspberry Pi, no
matter which model or resolution we tried. Since this com-
pilation process has been shown to work in literature [1],
we were led to believe the TF Lite model file was corrupt.
To work around this issues, we tried several things. First,
we tried changing the SavedModel file that was exported
by the training code by pruning operators using a describe-
graph utility in Tensorflow. No matter what we changed and
reworked, we would get the same error. Then, we tried con-
verting a checkpoint from training, using a graph descrip-
tion file and converting that into a SavedModel and convert-
ing that into a TF Lite package. Unfortunately, the check-
point to SavedModel step required several hurdles. Even
still, once this worked, conversion to TFLite failed with a
ProtoBuffer error which could not be resolved.

After were unable to get any of the above techniques to
work, we decided to switch to Keras, a higher level frame-
work which can use TensorFlow as a backend, and imple-
mented the same models. With Keras, we were able to
successfully convert our models to TF Lite and then load
and run inference with them on the Raspberry Pi. However,
even after extensive hyperparameter tuning, we were unable
to achieve the same performance with the Keras versions of
the models for whatever reason.

Because of this we decided to take another crack at con-
verting TF models. After much more debugging, we re-
alized that the saved graph that we exported from the TF
model expected inputs of the same size as when training
— this means it expected input in batches of 32! However,
on the Raspberry Pi we want to run inference on a single
image at a time, so we only need a batch size of 1. Be-
cause the saved graph expected input in batches of 32, how-
ever, TF Lite tried to allocate memory for such input when
it loaded the graph, which was much more than it had on
device, resulting in the memory allocation error. After we
set the batch size to 1 in our exported graph, loading and
running models in TF Lite worked perfectly.
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6. Conclusion and Future Work
In conclusion, we developed a highly accurate model for

wildlife detection, with a mean per-class accuracy of 87.6%,
and a human classification accuracy of 99.2%. We also pro-
vided an analysis of power and execution time of the differ-
ent models on a Raspberry Pi, which we hope Jasper Ridge
can utilize to determine which models they should deploy
based on their specific constraints and use cases. To assist
with this, we have built a deployable system that enables
them to easily select which model they would like to use.

In the future, we would like to explore further quantiz-
ing these models, such as by implementing weight pruning.
This would likely decrease accuracy, but may decrease the
power and memory footprint of these models.
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A. Training Curves for Each Model and Class

Figure 3. Mean per-class-accuracy over time for ResNet-18 and
ResNet-50 trained at 64x64 on the whole dataset - ResNet-18 is in
blue, ResNet-50 is in gray.

Figure 4. Lion Accuracy for ResNet-18 and ResNet-50 trained at
64x64 on the whole dataset - ResNet-18 is in blue, ResNet-50 is
in gray.

Figure 5. Coyote Accuracy for ResNet-18 and ResNet-50 trained
at 64x64 on the whole dataset - ResNet-18 is in blue, ResNet-50
is in gray.

Figure 6. Human Accuracy for ResNet-18 and ResNet-50 trained
at 64x64 on the whole dataset - ResNet-18 is in blue, ResNet-50
is in gray.

Figure 7. Mean per-class-accuracy for ResNet-18 and ResNet-50
trained at 224x224 on the whole dataset - ResNet-18 is in blue,
ResNet-50 is in gray.

Figure 8. Lion Accuracy for ResNet-18 and ResNet-50 trained at
224x224 on the whole dataset - ResNet-18 is in blue, ResNet-50
is in red.

Figure 9. Coyote Accuracy for ResNet-18 and ResNet-50 trained
at 224x224 on the whole dataset - ResNet-20 is in blue, ResNet-50
is in red.

Figure 10. Human Accuracy for ResNet-18 and ResNet-50 trained
at 224x224 on the whole dataset - ResNet-18 is in blue, ResNet-50
is in red.
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