
ACM RecSys Challenge 2019

Xianzhe Zhang

Stanford University
xianzhez@stanford.edu

Xiao Wang

Stanford University
xiao1105@stanford.edu

Jiaokun Liu

Stanford University
louisliu@stanford.edu

Mentor: Róbert Pálovics

Stanford University
palovics@stanford.edu

Abstract

The theme of the ACM RecSys Challenge 2019 is to develop a session-based and
context-aware recommender system using the dataset from Trivago, which is a
global hotel search platform. In this task, our goal is to predict which accommoda-
tions have been clicked in the search result during the last part of a user session.
In this paper we present our approaches to this challenge. We extract features
from training data and feed them into binary classification models, like XGBoost,
Logistic Regression, etc. Besides basic models. We also try deep learning models
like CNN to further explore item meta data. Our full model pipeline is a two-stage
model combining binary classification and deep learning, and achieves 0.604 MRR
score.

1 Problem Description

RecSys Challenge is an annual data science challenge for the ACM Recommender Systems confer-
ence, which gives anyone who’s interested the chance to work on real-world data science problems
and large data sets.

Trivago provides the dataset for the ACM Recommendation System Challenge 2019[8]. When a user
visits the website of Trivago, a list of items will be shown to the user and all of the user’s actions (e.g.
filter usage, search refinements, item interactions, item searches, item click-outs) will be recorded as
a session. Based on given training dataset, we are supposed to train a model using various extracted
features to predict which item has been clicked in the given impression list.

2 Related Work

Latent Collaborative Filtering (CF) model Weighted Regularized Matrix Factorization (WRMF) [2]
has proven to be an simple and effective model in recommendation system. By reducing the session
data and extra users action, it is easy to build WRMF based on click-on information and user ID.
In 2018 music recommendation challenge, the top performance team constructed complex vectors
based on music information includes vocabulary, style, semantics and other well-chosen feature [4].
Another team utilized neighborhood-based to construct item-item and user-user matrix [3] and fed
them directly to neural networks.

3 Data

3.1 Dataset Overview

In this problem, Trivago has released a public dataset of hotel search sessions. The dataset consists
of a training set (train.csv) and test set (test.csv), and meta data (item_metadata.csv) for accommo-
dations, i.e., items. The training set contains user actions up to a specified time (split date). The
recommendations should be provided for a test set that contains information about sessions after the
split date but do not include the information about the accommodations that have been clicked in the
last part of the sessions. The required output is a list of maximum 25 items for each click-out ordered
by preferences for the specific user. The following Figure 1 illustrates how the dataset was split and
how sessions were recorded.

Figure 1: Illustration of the problem setting

Figure 10 (in appendix) displays an entire session action data for a specific user. The action types
actually contain more information than the figure shows, including: click out item, interaction item
rating, interaction item info, interaction item image, interaction item deals, change of sort order,
filter selection, search for item, search for destination, search for point of interest. The training
data can be used to build models of user interactions and specifies the type of action that has been
performed (filter usage, search refinements, item interactions, item searches, item click-outs) as well
as information about impressed items and prices at the time of a clickout item.

3.2 Statistics

In order to generate features, we dug into the dataset to get insights about the details, which could
help us better understand the dataset and define our problem. We investigated various statistics of
the whole train dataset. Some basic statistics is shown in Table 1. In the dataset, there are more than
15M records, 730K users and 826K sessions during the time span of 6 days. We found that some
of the sessions have no clickout item (i.e. the item has been clicked by the user), and some of the
sessions have more than one clickout item. Therefore, we plot a pie chart to visualize the distribution
of clickout count in a session as shown in Figure 2. There are 60.8% of sessions with only one
clickout, 20.0% of sessions with two clickouts, etc. We believe there are some correlations among
the clickouts in the same session, especially for the session with more than one clickout. Hence, it
would become one of our concentrations to extract features.

2

Table 1: Basic statistics

We plotted distribution of session time length, which shows heavily tailed effect (see Figure 3). The
session time might reflect some information about the behavior of most people when they browse the
website. We extracted some useful features about session time in the following steps.

Figure 2: Clickout Number in a Session Distri-
bution

Figure 3: Session Length Distribution

Furthermore, item price is one of the important factors that could affect the choice of a user. We
measured the price of clickout item and calculated their relative price in the impression list. The
relative price is calculated by min-max normalization Prelative = (Pi � Pmin)/(Pmax � Pmin).
The distribution is show in Figure 4. We found that most of the user would choose the cheaper one
which make much sense. At the same time, we also found that the position of item in the impression
list is also highly related with the clickout probability. Most of the clickout item is in the top 3 of the
impression list as shown in Figure 5.

Figure 4: Normalized Price of Clickout Item
Distribution

Figure 5: Position of Clickout Items Distribution

3

Figure 6: User Origin and Destination Distribution.

We investigated the position of users to explore the popularity of cities all over the world. Specifically,
we explored the origin cities which are the cities that users are located and the destination cities that
users are interested in. We plotted the top 30 cities separately as shown in Figure 6. London, New
York, Tokyo are the top 3 cities that the most users are from. London, Paris, New York are the top 3
cities that users are most interested in.

We also explored lots of other properties and statistics of the dataset, such as the country distribution
of users (Figure 11), interaction time and clikout (Figure 12), time distance between interaction and
clickout (Figure 13), platfrom distribution (Figure 14), date distribution (Figure 15), etc. You could
find more diagrams in appendix.

3.3 Feature set

We believe that an user’s behavior is affected by item’s own properties, user-item interaction and
actions in the session. Therefore, we explore item properties features, session based features, user
based features and some global features in this subsection.

3.3.1 Item properties features

We have 927,142 different items in the data set (item_metadata.csv) and each item has many properties.
The total number of property categories in item data is 157. The top 10 properties are listed by the
number of occurrences and by clickout item probability under each property separately. The clickout
item probability under each property formula is listed below. From Table 2, we can see most items
have properties like "Satisfactory Rating", "Car Park", "Good Rating" and etc. Under properties like
“Water Slide”, “5 Star”, “Convention Hotel”, items are more likely to be clicked out.

p(clickout|property) =
p(clickout)p(property|clickout)

p(property)

3.3.2 Session based features

Another kind of important features are session based features. We list the names and definitions of
these features in Table3. Some of the important features here are “interact before”, “position in the
list” and “first interact”. It indicates that whether the user interacts with the item before plays an
important role in recommending the item. If the item is in the front of impression list or the item is
interacted before, it is more likely to be clicked out.

4

Table 2: Important Item Properties

Table 3: Session Features

3.3.3 User based features

User based features capture the users’ preference of price and item position. Some users may like
items with high price and in the front, while others may not. For every user, we filter out all the click
out item prices and positions in list and calculate the average price and position.

3.3.4 Global features

Besides the features above, we also have global features (see Figure 4, which are not dependent on
sessions and users. We can observe the probability of click out under different interaction actions
from Figure 7. Most clickout items are distributed in probability interval of [0, 0.2] and [0.9, 1].

5

Table 4: Global Features

Figure 7: Probability of click out under different interactions

4 Methodology

4.1 Pipeline

We tried to split the train data into train and validation dataset according to the number of sessions
we have in train.csv. We choose 90% of the data as train dataset and 10% of the data as validation
dataset.

After processing the raw data by exploding the impression list, adding item property features, session
features, global features and user features we prepared, which can be fed into our model. Our model
will give a value between 0 and 1 which is a probability that a user might click this item. On validation
dataset, we could calculate the MRR locally according to our reference in validation set to evaluate
the performance of our model. Then, we could format final result to get the submission format.

4.2 Feature Selection

Whenever we calculated a new feature, we use XGBoost to train on new features combined with old
features. After fine tuning, if MMR score improves, we classify it as a useful feature. Otherwise, we
discard this feature. We also tried different feature set to find the best combination that could help us
achieve better performance.

6

4.3 Models

We tried different models and expect to use these models to explore extracted features in different
perspectives. Then we ensembled different models to get our final result. Following subsections
explain more about our models.

4.3.1 Baseline model

Before we try any complex model, we will start with simple and effective models to better understand
the data and set the baseline model. The baseline model for the problem is based on item popularity.
In the train dataset, we firstly get the number of clickouts that each item received, and then recommend
each user a list of items according to the number of clickout for each item in the impression list in the
test dataset.

4.3.2 Transition model

A Markov chain of order m is defined as:

p(Xt = xt|Xt�1 = xt�1, . . . , Xt�m = xt�m)

Therefore, in recommendation system, random variables are defined over I (item set). And each
clickout over impression list can be treated as clikout over a bucket (B). As a resuit, an unpersonalized
Markov chain can be written as:

p(Bt) = p(Bt�1)

In order to predict the future clickout, we treat entire training data as time t� 1, and estimation of
transition probabilities as clickout probability[5],

probl,i = p̂(i 2 Bt|l 2 Bt�1) =
p̂(i 2 Bt ^ l 2 Bt�1)

p̂(l 2 Bt�1)
=

|{(Bt, Bt�1 : i 2 Bt ^Bt�1}|
|{(Bt, Bt�1) : l 2 Bt�1}|

MRR score for this model is 0.3, slightly higher than baseline model.
Next, we extend this model to personalized transition model . Instead of maintain a item-item 2D
transition model, we construct a 3D personalized transition model, building separate transition models
for different users[6]. In following equation u stands for one user,

probu,l,i = p̂(i 2 Bu
t |l 2 Bu

t�1) =
p̂(i 2 Bu

t ^ l 2 Bu
t�1)

p̂(l 2 Bu
t�1)

=
|{(Bu

t , B
u
t�1 : i 2 Bu

t ^Bu
t�1}|

|{(Bu
t , B

u
t�1) : l 2 Bu

t�1}|

MRR score for this model is 0.5, much higher than baseline model and improves unpersonalized
transition model.

Another important implementation detail should be noticed is that since we are mining massive
dataset, building a full matrix using numpy is not feasible. Here, we use nested dictionary to build
sparse matrix to reduce cost on memory.

4.3.3 Binary classification model

We used binary classification method by setting clickout items as positive samples and unclickout
items as negative samples. Because of unbalanced training data, we used downsample method to
reduce number of negative samples to 90% of training data. We also tried to change the the ratio of
negative and positive samples to other values but the AUC result does not change a lot.

Our first model is binary logistic regression (LR) model. The LR model is the baseline for binary
classification methods. For each user and each session, we want to classify whether the user click the
item or not and give the probability of clicking out for each item. Then, we recommend each user a
list of items according to clickout probability.

Another binary classification model is XGBoost. XGBoost is an optimized distributed gradient
boosting designed to be highly efficient, flexible and portable. We try to tune hpyer parameters of
max depth, learning rate, n estimators and regularization of the XGBoost.

7

4.3.4 CNN based model

Besides item-user interact information and user information included in the session features, user
features and global features, we still have not made full use of item meta data.

There are 157 features in item meta data in total. If we directly feed them into binary classification
model, the performance in MRR score will decrease. One potential reason behind this is that there
are too many useless features that overwhelmed important features. One way to alleviate this effect is
to use Singular Value Decomposition (SVD) to reduce dimension on item properties features. After
some experiments, we find out best reduction dimension is 8.

Since we also need to compare items across one session, CNN model can help to explore comparison
between item by kernels. Combined with global features, session features and user features, we
grouped items information in a session together into a 2D matrix. By feeding this matrix (1 channel *
feature length * impression length) into CNN, and using architecture shown in following figure, we
can achieve 0.58 MRR score.

Inspired by model architecture from paper [7], we also include personalized item-item transition
model into CNN model. By concatenating estimation transition probability into final fully connected
layer, we can achieve 0.595 MRR score.

Figure 8: CNN model Framework

4.3.5 Ensemble and full pipeline

To combine these two models, we use a two-stage model architecture similar to paper [9].

At first, data are extracted into important features, combined with item meta data, fed into transition-
CNN model. Then, in the second stage session features and global features are directly connected
to XGBoost model together with CNN prediction results. Last but not least, we also use different
models for sessions without any user actions, which is called cold-start handling in the figure.

5 Experiment

5.1 Evaluation

The main evaluation method we use for our project is the mean reciprocal rank (MRR) which is the
official evaluation metric for submissions of Trivago RecSys Challenge 2019. The reciprocal rank of

8

Figure 9: Model Architecture

a query response is the multiplicative inverse of the rank of the first correct answer[1]. This challenge
also provides a leaderboard displaying the metric calculated result on the validation dataset. It will
recalculate the final score on a different dataset (confirmation group) at the end of the challenge. The
challenge also provides a simple baseline algorithm that could help us verify the submission format.
The calculation of MRR could be defined as following, where |Q| is the number of queries:

MRR =
1

|Q|

|Q|X

i=1

1

ranki

To evaluate the approaches and models, we will also use other evaluation metrics to help us improve
our model. For example, we tried methods such as receiver operating characteristic (ROC) curve and
area under the curve (AUC) in binary classification model as the evaluation metrics of the challenge.

5.2 Results

So far, we have achieved different results progressively using different models as shown in Table 5.
The best one is that we ensembled these models and get the final MRR as 0.604 on the ACM RecSys
2019 leaderboard.

Table 5: MRR results

6 Brief Conclusion

In this project, we made use of user information, item information, user-item interaction data and
build models to understand them. After a lot of tedious work on feature engineering, we find some
really important features (interact time, item position, etc.) that can boost performance for simple
models, like XGBoost, Logistic Regression, etc. To fully exploit these features, deep learning models
and traditional recommendation system are also applied. Our final model architecture is a ensemble
of XGBoost, transition model and CNN model.

9

7 Future work

Our project has served as the first step for 2019 RecSys challenge. We’ve already achieved quite good
results but we need to further explore the dataset and extract more features. More, many classical
recommendation models have not been tried like session-KNN, etc. We also plan to use more deep
learning models to make full use of features list.

References

[1] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal rank for
graded relevance. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 621–630, New York, NY, USA, 2009. ACM.

[2] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272. Ieee,
2008.

[3] Jaehun Kim, Minz Won, Cynthia Liem, and Alan Hanjalic. Towards seed-free music playlist
generation: Enhancing collaborative filtering with playlist title information. In Proceedings of
the ACM Recommender Systems Challenge 2018, page 14. ACM, 2018.

[4] Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaël Troncy, Michael
Fell, Elena Cabrio, and Maurizio Morisio. An ensemble approach of recurrent neural networks
using pre-trained embeddings for playlist completion. In Proceedings of the ACM Recommender
Systems Challenge 2018, page 13. ACM, 2018.

[5] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 811–820, New York, NY, USA, 2010. ACM.

[6] Xiaodan Song, Belle L. Tseng, Ching-Yung Lin, and Ming-Ting Sun. Personalized recommenda-
tion driven by information flow. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’06, pages 509–516,
New York, NY, USA, 2006. ACM.

[7] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, WSDM ’18, pages 565–573, New York, NY, USA, 2018. ACM.

[8] trivago. trivago RecSys Challenge 2019 Dataset.

[9] Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott Sanner. Two-
stage model for automatic playlist continuation at scale. In Proceedings of the ACM Recommender
Systems Challenge 2018, page 9. ACM, 2018.

10

8 Appendix

Figure 10: A user’s actions in a sample session

Figure 11: User Country Distribution.

11

https://recsys.trivago.cloud/site/templates/images/recsys_session_details.jpg

Figure 12: Interaction time and clickout distribution

Figure 13: Time distance between clickout and interaction distribution

Figure 14: Platform distribution

12

Figure 15: Date distribution

13

