

ACM RecSys Challenge 2019

Two-stage Model for Automatic Hotel Recommendation at Scale

> Xianzhe Zhang, Xiao Wang, Jiaokun Liu
> Mentor: Robert Palovics
> CS341 Project in Mining Massive Data Sets Stanford University

Task Introduction - ACM RecSys Challenge

Find your ideal hotel on Trivago

Dataset and Evaluation Metrics

user_id	session_id	timestamp step	action_type	reference	platform	city device	current_filters	impressions				
93F7WGHBPO3A	569f5ea70df51	15415432311	search for destination	Barcelona, Spain	US	Barcelona, Spain desktop						
93F7WGHBPO3A	569f5ea70df51	15415432692	filter selection	Focus on Distance	US	Barcelona, Spain desktop	Focus on Distance					
93F7WGHBPO3A	569f5ea70df51	15415432693	search for poi	Port de Barcelona	US	Barcelona, Spain desktop	Focus on Distance					
93F7WGHBPO3A	569f5ea70df51	15415433714	interaction item deals	40255	US	Barcelona, Spain desktop						
93F7WGHBPO3A	569f5ea70df51	15415434255	clickout item	40255	US	Barcelona, Spain desktop		6744\|40181	40630	84610	2282416	
								1258693\|974937	147509	128238	799824€	
								40255\|3058538	1637385	40285	147502	
								921707\|40849	6757	12770	893733	
								685091\|147522	40708	860451	6819	
93F7WGHBPO3A	569f5ea70df51	15415437416	search for item	81770	US	Barcelona, Spain desktop						
93F7WGHBPO3A	569f5ea70df51	15415437707	interaction item info	81770	US	Barcelona, Spain desktop						
93F7WGHBPO3A	569f5ea70df51	15415438138	clickout item	81770	US	Barcelona, Spain desktop		6832\|40396	6621784	40197	6743	
								147488\|40635	6177052	6742	1319782	
								40763\|945255	83855	39937	1870125	
								1354432\|6812	82400	40181	6834	
								81770\|5056102	40797	923935	40284	

- Mean Reciprocal Rank (MRR)

$$
\operatorname{MRR}=\frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\operatorname{rank}_{i}}
$$

Query	Proposed Results	Correct response	Rank	Reciprocal rank
cat	catten, cati, cats	cats	3	$1 / 3$
tori	torii, tori, toruses	tori	2	$1 / 2$
virus	viruses, virii, viri	viruses	1	1

$$
(1 / 3+1 / 2+1) / 3=0.6111
$$

Baseline Model - Based on Popularity

- Get the number of clickout that each item received
- The final submission will have an impression list sorted according to the number of clickout per item

Item

Results

Leaderboard

Transition Matrix

- Item-Item transition (0.3)

$$
P=\left[\begin{array}{cccccc}
P_{1,1} & P_{1,2} & \ldots & P_{1, j} & \ldots & P_{1, S} \\
P_{2,1} & P_{2,2} & \ldots & P_{2, j} & \ldots & P_{2, S} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
P_{i, 1} & P_{i, 2} & \ldots & P_{i, j} & \ldots & P_{i, S} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
P_{S, 1} & P_{S, 2} & \ldots & P_{S, j} & \ldots & P_{S, S}
\end{array}\right] .
$$

$$
\begin{aligned}
\hat{a}_{l, i} & =\hat{p}\left(i \in B_{t} \mid l \in B_{t-1}\right)=\frac{\hat{p}\left(i \in B_{t} \wedge l \in B_{t-1}\right)}{\hat{p}\left(l \in B_{t-1}\right)}= \\
& =\frac{\left|\left\{\left(B_{t}, B_{t-1}\right): i \in B_{t} \wedge l \in B_{t-1}\right\}\right|}{\left|\left\{\left(B_{t}, B_{t-1}\right): l \in B_{t-1}\right\}\right|}
\end{aligned}
$$

- Personalized item-item transition matrix (0.5)

S^{6}					?	?	?			
										?
$\begin{aligned} & \varepsilon \\ & \triangle=1 \\ & \hline \end{aligned}$	0	1	1	0	0	D?				
	0.5	1	0.5	0	0	?				
E	0.5	1	0.5	0	0	\%?	1			
	?	?	?	?	?	?	1			
	?	?	?	?	?					

Results

Leaderboard

MRRScore

Transition Matrix 0.50

Baseline 0.28

Feature Engineering - Statistics

- Users : 730, 803
- Sessions: 826, 842
- Clickout: 910, 683
- Records: 15, 932, 992
- Time range: 6 days

- User Distribution: Asian, Europe, North and South America

Feature Engineering - Session Features

- Interact before: The user interacted with the item before in another session
- Position in the list: The front positions are more likely to be chosen
- First interact: The item first interaction in one session period

session_id step reference	item id	
f7c78f27	1 interaction item info	7818446
f7c78f27	2 interaction item image	7818446
f7c78f27	3 interaction item image	7818446
f7c78f27	4 interaction item deals	7818446
f7c78f27	5 interaction item deals	7818446
f7c78f27	6 interaction item deals	7818446
f7c78f27	7 interaction item deals	7818446
f7c78f27	8 search for item	2681512
f7c78f27	9 interaction item image	2681512
f7c78f27	10 interaction item image	2681512
f7c78f27	11 clickout item	2681512
f7c78f27	12 interaction item image	2099360
f7c78f27	13 interaction item image	2099360
f7c78f27	14 interaction item image	929533
f7c78f27	15 interaction item image	929533
f7c78f27	16 interaction item image	929533
f7c78f27	17 interaction item image	929533

Feature Engineering - Interaction Features

interaction item image, interaction item info, interaction item deals, search for item

Probability of clickout under interaction item deals

Stanford University

Methodology - Binary Classification

Label
Positive examples 1: clicked out item
Negative examples 0 : unclicked out items
Pipeline

Train		Test
90\%	10\%	
Train	Validation	
Downsample		
0: 90\%	1: 10%	
Logistic Regression (LR) as baseline: AUC 0.78 Decision Tree (DT): AUC 0.80		
XGBoost with hyper - parameters tuning: AUC 0.8		

Results

Leaderboard

MRRScore

XGBoost 0.58
LR, DT: 0.57
Transition Matrix 0.50

Baseline 0.28

More useful features - item metadata

- Over 150 items properties can be derived from data given
- Directly input into model decreases performance
- SVD can reduce redundant information
- Five-star hotels always have wifi

- We need a model to find features' relationship and items' relationship
- $M R R=0.58$ based on item information

CNN based Model

- Input user-item interaction info by concatenating transition prob

Personalized
Transition

Full pipeline

Stanford University

MRR

Leaderboard

MRRScore

Ensemble 0.60
CNN 0.59
XGBoost 0.58

Transition Matrix 0.50

Baseline 0.28

Stanford University

Lessons Learned and future work

-Importance of feature engineering
-Large intermedia result
-Test more models

