

ACM RecSys Challenge 2019

Two-stage Model for Automatic Hotel Recommendation at Scale

XIANZHE ZHANG, XIAO WANG, JIAOKUN LIU MENTOR: ROBERT PALOVICS

CS341 Project in Mining Massive Data Sets Stanford University

Task Introduction – ACM RecSys Challenge

Find your ideal hotel on Trivago

Dataset and Evaluation Metrics

user_id	session_id	timestamp	step	action_type	reference	platform	city	device	current_filters	impressions
93F7WGHBPO3A	569f5ea70df51	1541543231	1	search for destination	Barcelona, Spain	US	Barcelona, Spain	desktop		
93F7WGHBPO3A	569f5ea70df51	1541543269	2	filter selection	Focus on Distance	US	Barcelona, Spain	desktop	Focus on Distance	
93F7WGHBPO3A	569f5ea70df51	1541543269	3	search for poi	Port de Barcelona	US	Barcelona, Spain	desktop	Focus on Distance	
93F7WGHBPO3A	569f5ea70df51	1541543371	4	interaction item deals	40255	US	Barcelona, Spain	desktop		
93F7WGHBPO3A	569f5ea70df51	1541543425	5	clickout item	40255	US	Barcelona, Spain	desktop		6744 40181 40630 84610 2282416 1258693 974937 147509 128238 7998246 40255 3058538 1637385 40285 147502 921707 40849 6757 12770 893733 685091 147522 40708 860451 6819
93F7WGHBPO3A	569f5ea70df51	1541543741	6	search for item	81770	US	Barcelona, Spain	desktop		
93F7WGHBPO3A	569f5ea70df51	1541543770	7	interaction item info	81770	US	Barcelona, Spain	desktop		
93F7WGHBPO3A	569f5ea70df51	1541543813	8	clickout item	81770	US	Barcelona, Spain	desktop		6832 40396 6621784 40197 6743 147488 40635 6177052 6742 1319782 40763 945255 83855 39937 1870125 1354432 6812 82400 40181 6834

• Mean Reciprocal Rank (MRR)

$$\mathrm{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{\mathrm{rank}_i}.$$

Query	Proposed Results	Correct response	Rank	Reciprocal rank
cat	catten, cati, cats	cats	3	1/3
tori	torii, tori , toruses	tori	2	1/2
virus	viruses, virii, viri	viruses	1	1

 $(\frac{1}{3} + \frac{1}{2} + 1) / 3 = 0.6111$

Stanford University

81770 | 5056102 | 40797 | 923935 | 40284

Baseline Model - Based on Popularity

Get the number of clickout that each item received
The final submission will have an impression list sorted according to the number of clickout per item

Item

Transition Matrix

• Item-Item transition (0.3)

$$P = \begin{bmatrix} P_{1,1} & P_{1,2} & \dots & P_{1,j} & \dots & P_{1,S} \\ P_{2,1} & P_{2,2} & \dots & P_{2,j} & \dots & P_{2,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i,1} & P_{i,2} & \dots & P_{i,j} & \dots & P_{i,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{S,1} & P_{S,2} & \dots & P_{S,j} & \dots & P_{S,S} \end{bmatrix}.$$

$$\hat{a}_{l,i} = \hat{p}(i \in B_t | l \in B_{t-1}) = \frac{\hat{p}(i \in B_t \land l \in B_{t-1})}{\hat{p}(l \in B_{t-1})} = \frac{|\{(B_t, B_{t-1}) : i \in B_t \land l \in B_{t-1}\}|}{|\{(B_t, B_{t-1}) : l \in B_{t-1}\}|}$$

• Personalized item-item transition matrix (0.5)

Feature Engineering - Statistics

- Users : 730, 803
- Sessions: 826, 842
- Clickout: 910, 683
- Records: 15, 932, 992
- Time range: 6 days
- User Distribution: Asian, Europe, North and South America

Feature Engineering - Session Features

- Interact before: The user interacted with the item before in another session
- Position in the list: The front positions are more likely to be chosen
- First interact: The item first interaction in one session period

session_	id	step	reference	item id
f7c78f27		1	interaction item info	7818446
f7c78f27		2	interaction item image	7818446
f7c78f27		3	interaction item image	7818446
f7c78f27		4	interaction item deals	7818446
f7c78f27		5	interaction item deals	7818446
f7c78f27		6	interaction item deals	7818446
f7c78f27		7	interaction item deals	7818446
f7c78f27		8	search for item	2681512
f7c78f27		9	interaction item image	2681512
f7c78f27		10	interaction item image	2681512
f7c78f27		11	clickout item	2681512
f7c78f27		12	interaction item image	2099360
f7c78f27		13	interaction item image	2099360
f7c78f27		14	interaction item image	929533
f7c78f27		15	interaction item image	929533
f7c78f27		16	interaction item image	929533
f7c78f27		17	interaction item image	929533

Feature Engineering - Interaction Features interaction item image, interaction item info, interaction item deals, search for item

Methodology - Binary Classification Label Positive examples 1: clicked out item

Negative examples 0: unclicked out items

Pipeline

Logistic Regression (LR) as baseline: AUC 0.78 Decision Tree (DT): AUC 0.80 XGBoost with hyper - parameters tuning: AUC 0.83

More useful features – item metadata

- Over 150 items properties can be derived from data given
- Directly input into model decreases performance
- SVD can reduce redundant information
 - Five-star hotels always have wifi

- We need a model to find features' relationship and items' relationship
- MRR = 0.58 based on item information

CNN based Model

• Input user-item interaction info by concatenating transition prob

Stamora Omversity

Full pipeline

MRR

Leaderboard MRRScore Ensemble 0.60 CNN 0.59 XGBoost 0.58

Transition Matrix 0.50

Baseline 0.28

Lessons Learned and future work

Importance of feature engineering

Large intermedia result

Test more models