
How to Shadow Every Byte of Memory Used by a Program

Nicholas Nethercote
National ICT Australia, Melbourne, Australia

njn@csse.unimelb.edu.au

Julian Seward
OpenWorks LLP, Cambridge, UK

julian@open-works.co.uk

Abstract
Several existing dynamic binary analysis tools use shadow mem-
ory—they shadow, in software, every byte of memory used by a
program with another value that says something about it. Shadow
memory is difficult to implement both efficiently and robustly.
Nonetheless, existing shadow memory implementations have not
been studied in detail. This is unfortunate, because shadow mem-
ory is powerful—for example, some of the existing tools that use it
detect critical errors such as bad memory accesses, data races, and
uses of uninitialised or untrusted data.

In this paper we describe the implementation of shadow mem-
ory in Memcheck, a popular memory checker built with Valgrind, a
dynamic binary instrumentation framework. This implementation
has several novel features that make it efficient: carefully chosen
data structures and operations result in a mean slow-down factor of
only 22.2 and moderate memory usage. This may sound slow, but
we show it is 8.9 times faster and 8.5 times smaller on average than
a naive implementation, and shadow memory operations account
for only about half of Memcheck’s execution time. Equally impor-
tantly, unlike some tools, Memcheck’s shadow memory implemen-
tation is robust: it is used on Linux by thousands of programmers
on sizeable programs such as Mozilla and OpenOffice, and is suited
to almost any memory configuration.

This is the first detailed description of a robust shadow mem-
ory implementation, and the first detailed experimental evaluation
of any shadow memory implementation. The ideas within are ap-
plicable to any shadow memory tool built with any instrumentation
framework.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids, monitors; E.1
[Data Structures]

General Terms Design, Reliability, Performance, Experimenta-
tion

Keywords Shadow memory, Valgrind, Memcheck, dynamic bi-
nary instrumentation, dynamic binary analysis

1. Introduction
This paper describes how to create dynamic analysis tools that use
shadow memory—tools that shadow every byte of memory used by
a program with another value, in software—that are both efficient
and robust.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE 2007 June 13–15, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

1.1 What is Shadow Memory?

Programming tools such as profilers and checkers make program-
ming easier and improve software quality. Dynamic binary analy-
sis (DBA) tools are one class of such tools. They analyse a client
program at the level of machine code as it runs. They can be built
from scratch, but nowadays are usually implemented using a dy-
namic binary instrumentation (DBI) framework such as Pin [9] or
Valgrind [16].

This paper focuses on a class of DBA tools that use shadow
memory, i.e. they shadow, in software, every byte of memory used
by a program with a shadow memory value that says something
about it. We call these tools shadow memory tools. A shadow
memory value may describe the value within a memory location
(e.g. is it from a trusted source?), or it may describe the memory
location itself (e.g. how many times has it been accessed?).

The analysis code added by the tool updates the shadow mem-
ory in response to memory accesses, and uses the shadow mem-
ory to report information to the programmer. The granularity of the
shadowing can vary, but usually every used memory byte or word
has a shadow memory value, and each shadow memory value may
itself be one bit, a few bits, one byte, or one word, for example.

Some tools that use shadow memory also shadow every register
with an extra value. Shadow registers are challenging to implement
in their own right [16] but their implementation details are beyond
the scope of this paper.

1.2 Shadow Memory is Useful

Shadow memory lets a tool remember something about the history
of every memory location and/or value in memory. Consider the
following motivating list of shadow memory tools; the descriptions
are brief but demonstrate that shadow memory (a) is powerful, and
(b) can be used in a wide variety of ways.

Memcheck [21, 12] is a memory checker. It remembers what
allocation/deallocation operations have affected each memory lo-
cation, and can thus detect accesses of unaddressable memory. It
also remembers which values are undefined (uninitialised or de-
rived from undefined values) and can therefore detect dangerous
uses of undefined values. Purify [6] is a similar tool.

TaintCheck [17] is a security tool. It remembers which values
are from untrusted (tainted) sources and which values were subse-
quently derived from them, and can thus detect dangerous uses of
tainted values. TaintTrace [4] and LIFT [18] are similar tools.

Eraser [20] is a data race detector. It remembers which locks are
held when each memory location is accessed, and can thus detect
when a memory location is accessed without a consistent lock-set,
which may imply a data race. VisualThreads [5] and Helgrind [10]
are similar. DRD [19] is another race detector that uses a different
race-detection algorithm.

Hobbes [3] is a run-time type checker. It remembers what oper-
ations have been performed on each value, and can thus detect any
later operations that are inappropriate for a value of that type.

Annelid [13] is a bounds checker. It remembers which values
are array pointers, and can thus detect bounds errors.

Redux [14] is a dataflow visualisation tool. It remembers which
operation created each value, and its inputs, and records these
in a dynamic dataflow graph which can be viewed at program
termination.

pinSEL [11] automatically extracts system call side-effects from
benchmarks so that architectural simulators do not have to emulate
system calls when running those benchmarks. It shadows each
memory location with a copy of itself, and does a “memory diff”
between original and shadow memory values after each system
call executes in order to determine how the system call affected
memory.

All of these tools rely crucially on shadow memory. Eraser,
DRD and pinSEL use shadow memory but not shadow registers, the
others use both shadow memory and shadow registers. The shadow
memory is implemented entirely in software and so these tools run
on stock hardware.

1.3 Shadow Memory is Hard to Implement Well

Speed. The speed of a shadow memory implementation is impor-
tant. Although programmers will use slow tools if the benefits are
high enough, they prefer fast tools.

Shadow memory is inherently expensive. Large amounts of
extra state must be maintained; one shadow byte per byte of live
original memory is typical. Most or all loads and stores must be
instrumented to keep the shadow memory state up-to-date, as must
operations that affect large regions of memory, such as allocations
and deallocations (on the heap, stack or via system calls such as
mmap), reads/writes of large areas by system calls, and the loading
of the program image into memory at start-up.

These requirements unavoidably increase the total amount of
code that is run, increase a program’s memory footprint, and de-
grade the locality of its memory accesses. Shadow memory tools
thus typically slow down programs by a factor of 10–100, and
shadow memory operations cause much more of this slow-down
than other well-studied aspects of tools built with DBI frameworks
such as hot trace formation [1] and code cache management [7].1

Robustness. The robustness of a shadow memory implementa-
tion is also important, arguably even more so than its speed. Real-
world tools must cope with large, uncooperative programs, and if
they are to be portable, cannot rely on particular operating system
characteristics such as memory layouts.

Shadow memory is hard to implement robustly. The shadow
memory must be squeezed into the address space alongside the
original memory in a way that does not conflict with it and does not
change the program’s behaviour. This requires considerable flexi-
bility in the shadow memory structure and layout. It also unavoid-
ably reduces the amount of address space a program can use itself,
which is an important issue on embedded platforms and even 32-bit
machines. Obviously, this becomes less of an issue if shadow mem-
ory can be made smaller, so compact shadow memory is desirable.

Trade-offs. In summary, we want shadow memory to be: (a)
fast (for efficiency); (b) structured flexibly (for robustness); (c)
compact (for efficiency and robustness). Not surprisingly, these
desires conflict and we will see that trade-offs must be made.

1.4 Contributions

In this paper we make four contributions. The first three arise
because we delve more deeply into the topic of shadow memory
than previous publications have.

1 These aspects are more important for lightweight tools [8] where the cost
of analysis is small relative to the cost of running the original code.

• First detailed description of Memcheck’s shadow memory.
Memcheck is a widely-used tool, and this is the first detailed de-
scription of its shadow memory implementation. Previous pub-
lications [21, 12, 16] have discussed in detail every significant
aspect of Memcheck except its shadow memory implementa-
tion.

• First detailed description of any robust shadow memory im-
plementation. This is also the first detailed description of any
robust shadow memory implementation. This is more important
than it may seem, because shadow memory is a topic where
details matter. High-level descriptions are not sufficient; lower-
level implementation details such a data representations are cru-
cial, as they make the difference between a toy and a real-world
tool. Most published descriptions of shadow memory imple-
mentations have been minimal, and the three that have been
discussed in detail are not robust enough, in our opinion, for
use in a widely used tool like Memcheck.

• First experimental evaluation of shadow memory. This is the
first paper that has evaluated and compared multiple versions of
a shadow memory implementation.

The fourth and final contribution advances the state-of-the-art in
shadow memory implementations.

• Novel shadow memory optimisations. Memcheck’s basic shadow
memory data structure is similar to that used in several other
shadow memory tools. However, Memcheck adds several novel
optimisations that speed up common cases, and compress
shadow memory at coarse-grained (per-64KB chunk) and fine-
grained (per-byte) levels. Together they reduce Memcheck’s
mean slow-down factor by 4.0–13.6x and shrink its mean
shadow memory size by a factor of 4.5–213.4 over a naive
implementation. The reduction in shadow memory size also
improves robustness because it allows programs with larger
memory footprints to be run in the same amount of address
space.

Although the paper is centred around the implementation of
Memcheck, the ideas within are general and apply to any shadow
memory tool implemented with any framework.

1.5 Paper Structure

This introduction has discussed several aspects of shadow mem-
ory: (a) what it is, (b) that it is useful and used in several existing
tools, (c) that it is difficult to implement well, and (d) that it has not
been studied closely. Section 2 introduces Memcheck. Section 3
describes the most basic form of Memcheck’s shadow memory im-
plementation, and Section 4 describes the optimisations that im-
prove its performance to an acceptable level. Section 5 evaluates
Memcheck’s robustness, speed and memory usage. Finally, Sec-
tion 6 discusses related work and Section 7 describes future work
and concludes.

2. Overview of Memcheck
Memcheck is our example tool. It is built using Valgrind. It is a
good example because (a) it stores two kinds of shadow memory
values, and so is a challenging example, and (b) it is probably the
most widely-used shadow memory tool.

2.1 Valgrind

Valgrind [16, 12, 15] is a DBI framework designed for building
heavyweight tools. Tools such as Memcheck are written, in C, as
plug-ins to Valgrind’s core, which handles the details of running the
client program. The core translates machine code into a platform-

neutral intermediate representation before instrumentation, which
means tools are naturally platform-independent.

Valgrind tools are used by thousands of programmers (the Val-
grind website [22] averages more than 1000 unique visitors per
day) including the developers of many large projects such as Fire-
fox, OpenOffice, KDE, GNOME, libstdc++, MySQL, Perl, Python,
PHP, Samba, RenderMan and Unreal Tournament. It is a standard
package on most Linux distributions. Valgrind is licensed under the
GPL and is currently available for x86/Linux, AMD64/Linux, and
PPC{32,64}/{Linux,AIX} [22]; experimental ports also exist for
other platforms such as x86/FreeBSD and PPC32/Mac OS X.

2.2 Memcheck

Memcheck is a memory error detector designed primarily for use
with C and C++ programs. It is the main reason for Valgrind’s
popularity–users surveys have indicate it accounts for more than
80% of Valgrind tool use.

When a client program is run under Memcheck, Memcheck in-
struments almost every operation and issues messages about de-
tected memory errors. Memcheck maintains three kinds of meta-
data about the running client.

• A bits. Every memory byte is shadowed with a single A bit (‘A’
is short for “addressability”) which indicates if the client may
legitimately access it. A 0 represents an unaddressable byte, a 1
represents an addressable byte. They are updated as memory is
allocated and freed, and checked on every memory access. With
the A bits Memcheck can detect uses of unaddressable memory
such as heap buffer overflows and wild reads and writes.

• V bits. Every register and memory byte is shadowed with eight
V bits (‘V’ for “validity”) which indicate if the value bits are de-
fined (i.e. initialised, or derived from other defined values). A
0 represents a defined bit, a 1 represents an undefined bit.2 Ev-
ery value-writing operation is shadowed with another operation
that updates the corresponding shadow values. With the V bits
Memcheck can detect dangerous uses of undefined values with
bit-precision [21]. In this paper we are only concerned with V
bits for memory, not V bits for registers.

• Heap blocks. Memcheck records the location of every live heap
block in a hash table. With this information it can detect bad or
repeated frees of heap blocks, and memory leaks.

Conceptually, every register byte has eight shadow bits (the V
bits), and every memory byte has nine shadow bits (eight V bits
and one A bit). This implies that each shadow memory byte has
512 possible states. However, a byte’s V bits are only consulted if
the A bit says it is addressable, so there are 257 meaningful states
for each byte (one “unaddressable” state, and 256 “addressable”
states with different definedness sub-states).

Representing the definedness of every bit is potentially expen-
sive, but crucial for accuracy. Tracking definedness at the byte
level—a commonly-suggested alternative—inevitably causes false
positives and/or false negatives, particularly for programs that use
bit-fields and bit-level operations [21]. We have heard from several
users that Memcheck has identified bugs caused by the use of a
single undefined bit.

Fortunately, the redundancy in the number of states and the high
cost of bit-level definedness tracking can be minimised with the use
of compressed shadow memory (Section 4.4).

The next two sections present Memcheck’s implementation of
shadow memory, i.e. how it stores and accesses the V and A bits for
memory locations. We do not discuss the use of V bits in shadow

2 This counter-intuitive encoding makes many of Memcheck’s V bit shadow
operations simpler [21] for reasons that are beyond the scope of this paper.

PM

0KB 64KB 128KB 192KB

. . .

3904KB 3968KB 4032KB

SM1

VVVVVVVV A
VVVVVVVV A

...
...

VVVVVVVV A
DSM

VVVVVVVV A
VVVVVVVV A

...
...

VVVVVVVV A
SM2

VVVVVVVV A
VVVVVVVV A

...
...

VVVVVVVV A

Figure 1. The two-level table. Entries PM[1] and PM[2] cover
64KB regions that have been written to and so have their own SM.
The remaining PM entries still point to the NOACCESS DSM.

registers, nor the heap block metadata, as they have been covered
by previous publications.

3. A Simple Implementation (M0)
This section presents a simple, robust, but slow implementation of
shadow memory for Memcheck, which we call M0.

No released versions of Memcheck have used this implemen-
tation, but Memcheck has a debugging mode which falls back to
it. Some or all of the optimisations described in Section 4 must be
added to this implementation to obtain acceptable performance.

3.1 Shadow Memory Data Structures

Memcheck’s main shadow memory data structure is a two-level
table somewhat like a page table. It is designed for a 32-bit (4GB)
address space; Section 3.8 describes how it is modified it for 64-
bit address spaces. The address space is divided into 64K chunks
of 64KB each. The primary map (PM) is a global array with 64K
entries, one for each chunk. Each entry is a pointer to a secondary
map (SM) which holds the shadow memory (A and V bits) for a
64KB chunk. (In the code below, the types U1, U4, U8, U32 and U64
are 1, 4, 8, 32 and 64 bit unsigned integers respectively, and Uw,
Addr and SizeT are word-sized unsigned integers.)

typedef struct { // Secondary Map: covers 64KB
U8 abits8[8192]; // 8K A bytes == 64K A bits
U8 vbits8[65536]; // 64K V bytes

} SM;

SM* PM[65536]; // Primary Map: covers 4GB

There is a distinguished secondary map (DSM), called the
NOACCESS DSM, which is marked as entirely “unaddressable”,
and is never modified. All PM entries initially point to it. Figure 1
illustrates the relationship between the PM and the SMs.

Although each SM contains Memcheck-specific data, the basic
two-level table can be used with any tool that uses shadow memory.
Indeed, Section 6 shows that most existing shadow memory tools
use a data structure similar to this.

3.2 Single-byte Loads and Stores

This section defines four fundamental functions used to load and
store individual shadow memory bytes. Our functionally correct but
slow implementation (M0) is built on top of these four functions.

There are two main steps when loading or storing a single
shadow memory byte. In the first step, Memcheck uses the high
16 bits of the address to find the relevant SM within the PM. For
loads, it can use the found SM as-is.

SM* get_SM_for_reading(Addr a)
{
return PM[a >> 16]; // use bits [31..16] of ’a’

}

For stores, Memcheck uses copy-on-write semantics—it checks if
the SM found is the DSM (with is_DSM), and if so, allocates and
initialises a new SM (with copy_for_writing).

SM* get_SM_for_writing(Addr a)
{
SM** sm_p = &PM[a >> 16]; // bits [31..16]
if (is_DSM(*sm_p))

*sm_p = copy_for_writing(*sm_p); // copy-on-write
return *sm_p;

}

In the second step, Memcheck uses the low 16 bits of the
address to find the A and V bits within the SM. Loads are done with
the following function get_abit_and_vbits8. Extracting the V
bits from the SM is straightforward; extracting the single A bit from
a group of eight A bits requires extra shifting and masking.

void get_abit_and_vbits8(Addr a,/*OUT*/Uw* abit,
/*OUT*/Uw* vbits8)

{
SM* sm = get_SM_for_reading(a);
U8 abits8 = sm->abits8[(a & 0xffff) >> 3];//[15..3]
*abit = 0x1 & (abits8 >> (a & 0x7)); //[2..0]
*vbits8 = sm->vbits8[a & 0xffff]; //[15..0]

}

The store case (set_abit_and_vbits8) is similar.

void set_abit_and_vbits8(Addr a, Uw abit, Uw vbits8)
{

SM* sm = get_SM_for_writing(a);
Uw shift = a & 0x7;
Uw i = (a & 0xffff) >> 3;
sm->abits[i] = (sm->abits[i] & ~(1 << shift))

| ((abit & 0x1) << shift);
sm->vbyte[a & 0xffff] = vbits8 & 0xff;

}

The following sections show other shadow memory operations
that are layered on top of these four fundamental functions.

3.3 Multi-byte Loads and Stores

Most memory accesses are multi-byte. Every memory load in the
client program is instrumented with a call to the following func-
tion LOADVn, which does a shadow load of 8, 16, 32 or 64 bits. It
obtains each V byte individually from shadow memory and then
combines them into a single n-bit value. The V bits of each byte
are only used if the A bit indicates that the byte is addressable.
If any unaddressable bytes are touched, Memcheck issues an er-
ror (with record_address_error) and acts as if the bits are all
defined.3 This avoids possible chains of multiple error messages
caused by a single program defect [21]. (The V_BITS* and A_BIT*
constants hold aggregations of one or more V or A bits. For exam-
ple, V_BITS8_DEFINED represents eight defined V bits, i.e. the V
bits for a fully defined byte.)

U64 LOADVn(Addr a, SizeT nBits)
{
U1 abit; U8 vbits8; Int i;

3 All shadow memory tools must handle this case, i.e. provide a reasonable
shadow memory value for memory locations that have not been allocated
and are erroneously accessed.

U64 vbits64 = V_BITS64_UNDEFINED;
SizeT n_bad_addrs = 0;
for (i = 0; i < nBits / 8; i++) {

get_abit_and_vbits8(&abit, &vbits8, a + i);
if (abit != A_BIT_ADDRESSABLE) {
n_bad_addrs++; // Defined-if-
vbits8 = V_BITS8_DEFINED; // unaddressable

}
vbits64 = (vbits64 << 8) | vbits8;

}
if (n_bad_addrs > 0)

record_address_error(a, nBits);
return vbits64;

}

Note that this code assumes memory values are little-endian.
Memcheck also handles big-endian values, but we omit the relevant
details (which are minor) for clarity.

All client stores are instrumented with a call to STOREVn, which
is similar to LOADVn; it copies a given shadow memory value of
8, 16, 32 or 64 bits into shadow memory, one byte at a time. If
any destination byte’s A bits indicate that it is unaddressable, the
relevant V bits are not copied and an error message is issued.

3.4 Range-setting Operations

In certain cases, Memcheck needs to set every shadow memory
byte in a range to one of the following three states.

1. NOACCESS (unaddressable): for memory deallocations (on the
heap, stack, or via system calls such as munmap).

2. UNDEFINED (addressable and fully undefined): for memory al-
locations that do not initialise the allocated memory (such as
malloc, brk, and stack allocations).

3. DEFINED (addressable and fully defined): for memory alloca-
tions that initialise the allocated memory (such as calloc and
mmap), for memory loaded at program start-up, and for when a
system call writes to a block of memory (e.g. gettimeofday
fills in two structs with data).

Valgrind provides an event-tracking system that lets a tool know,
via callbacks, when these operations occur [16]. Memcheck has
three range-setting callback functions: make_mem_noaccess,
make_mem_undefined, and make_mem_defined. They each take
a starting address and a length in bytes, and set the shadow mem-
ory bytes for the given memory range, one byte at a time, using
set_abit_and_vbits8.

A similar function, copy_range, is used to handle realloc
and mremap. It copies A and V bits from one shadow memory
region to another.

3.5 Range-checking Operations

Sometimes Memcheck needs to check A and V bits over ranges of
shadow memory and issue error messages if they do not match what
is required. This is mostly done to check that ranges of memory
passed to system calls have the properties that they should.

Memcheck has three such operations: check_mem_is_addressable
checks that every byte in a range about to be written by a system
call is addressable (and thus safe to write); check_mem_is_defined
checks that every byte in a range about to be read by a system
call is both addressable and fully defined (and thus safe to read);
and check_mem_is_defined_asciiz checks that every byte in a
string of unknown length is safe to read.

3.6 Do Not Shadow the Shadows

There is a subtle problem that can occur in this shadow memory
implementation. For example, consider this memory layout:

SMX (a 72KB SM, which covers 64KB of address space)
Y (4KB of client data)
SMZ (a 72KB SM, which covers 64KB of address space)

Any client accesses to Y causes shadow memory accesses to a
secondary map SMY (it does not matter where SMY is located).
But because SMY covers 64KB of address space, even in the best
case it must cover at least 60KB’s worth of address space from SMX

and/or SMZ. In other words, because of the intermingling of SMs
and client data, some parts of the SMs end up uselessly covering
parts of the address space which are occupied by other SMs. (In
Memcheck, those ranges would be marked as unaddressable by
the client program.) This wastes space. If such intermingling is
frequent, it can lead to a steep increase in the number of SMs
needed. This problem affected early versions of Memcheck.

There are two ways to avoid this problem. If SMs are all nKB
and they are guaranteed to be nKB-aligned, there will be no over-
lapping. But this can be too restrictive; for example, in Section 4.4
we introduce an SM that covers 64KB but is only 16KB in size.
Memcheck uses a simpler approach: ensure that SMs are kept far
away from the client’s original data whenever possible.

3.7 Possible Corruption of Shadow Memory by the Client

It is possible for a buggy client to do wild writes that overwrite
Memcheck’s shadow memory (or any of its other data structures).
When Valgrind only ran on x86/Linux, it used the x86 segment
registers to prevent this. However, this non-portable feature was
removed when Valgrind was ported to other architectures, and we
know of no other way to prevent such wild writes without large
slow-downs.

This problem rarely occurs in practice because Valgrind and
Memcheck’s data tends to be far away from client data, which
minimises the chance of a wild write causing corruption. (This is
another good reason why client data should not be closely inter-
mingled with Valgrind and Memcheck data.) Also, Memcheck will
always warn about any such wild writes by the client before they
happen, because Valgrind and Memcheck data is marked as unad-
dressable via the NOACCESS DSM. (Other shadow memory tools
will not be so lucky.) This is a good example of a trade-off: some
robustness is sacrificed, albeit in rare cases, in favour of perfor-
mance and portability.

3.8 Handling 64-Bit Machines

64-bit address spaces are much larger than 32-bit address spaces.
The obvious extension is to use a three- or four-level table, but
this would make every shadow memory access slower. Instead we
extend the size of the primary map to 2

19 bits (covering 32GB), and
we add a slow, sparse auxiliary table for secondary maps higher
than 32GB, and the Valgrind core avoids allocating above this
32GB point when possible. A below-32GB check has to be done
for every shadow memory operation, but for the fast cases it can
be combined for zero cost in a single mask-and-test operation with
the alignment check used in the optimised shadow loads and stores
(described in Section 4.1 below).

This approach works well under Linux because Valgrind has
enough control over the address space layout that it can allocate
most memory under the 32GB limit. Unfortunately, we have found
that this is not true for PPC64/AIX. Therefore, Memcheck uses
some “semi-fast” cases, similar to those described in Section 4, for
certain accesses above the 32GB limit, e.g. those that are aligned
and fully defined. This avoids the large slow-down that the slow
cases cause, but is still approximately half the speed of the 32-bit
version.

In the future, as 64-bit architectures become more common
and memory footprints grow, this issue will become increasingly
important. It is unclear how this shadow memory scheme can best

be scaled to 64-bit address spaces, so this remains an open research
question for the future.

3.9 Handling Multi-threaded Programs

Threads pose a particular challenge for shadow memory tools. The
reason is that loads and stores become non-atomic: each load or
store translates into the original load/store plus a shadow load/store.

There are two potential problems with this. First, asynchronous
signals may be delivered between these two operations. To avoid
this problem, Valgrind only delivers asynchronous signals to the
client at particular safe points (between the code blocks that Val-
grind’s JIT compiler uses) [16].

Second, on a uni-processor machine, a thread switch might oc-
cur between these two operations. On a multi-processor machine,
concurrent memory accesses to the same memory location may
complete in a different order to their corresponding shadow mem-
ory accesses. It is unclear how to best deal with this, as a fine-
grained locking approach would likely be slow.

To sidestep this second problem, Valgrind uses a thread lock-
ing mechanism; on a thread-switch the kernel still chooses which
thread is to run, but Valgrind dictates when thread-switches occur
and prevents more than one thread from running at a time. This
works well on uni-processor machines—Valgrind can ensure that
thread-switches never occur between a load/store and a shadow
load/store, and Memcheck can simply ignore threading issues. On
multi-processor machines it can also run multi-threaded programs
safely, but only serially. As multi-processor machines become more
popular, this shortcoming will become more critical. Whether the
current approach will remain the optimal one in the future is an
open research question.

4. A Better Implementation
This section presents four optimisations for M0 which when ap-
plied successively give us four new versions which we call M1–
M4. These optimisations use standard principles: make common
cases fast, and reduce storage requirements by exploiting redun-
dancy in data. Together they reduce Memcheck’s mean slow-down
factor by 4.0–13.6x, and reduce its mean shadow memory size by
4.5–213.4x, making it fast enough for widespread use, and compact
enough to handle large programs.

4.1 Faster Loads and Stores (M1)

Multi-byte loads and stores are very common, and we can do
better than use LOADVn and STOREVn with them. For example, the
following function does fast 32-bit shadow loads. If the load is
aligned (which guarantees that all four bytes are covered by the
same SM) and all four bytes are addressable, it obtains the 32 V
bits from the SM in a single operation. Otherwise, it falls back to
the slow, general case.

U32 LOADV32_fast(Addr a) {
SM* sm; U4 abits4; U8 abits8;
if (!IS_32BIT_ALIGNED(a))

return (U32)LOADVn(a, 32);
sm = get_SM_for_reading(a);
abits8 = sm->abits8[(a & 0xffff) >> 3];
abits4 = (abits8 >> (a & 0x4)) & 0xf;
return (A_BITS4_ADDRESSABLE == abits4

? ((U32*)(sm->vbits8))[(a & 0xffff) >> 2]
: (U32)LOADVn(a, 32));

}

This function’s fast path does one alignment test, two SM
lookups, and one addressability check. This is much faster than
LOADVn which does, for 32-bit loads, eight SM lookups, four ad-
dressability checks, and combines the four V bytes together. With

this function present, the slow case is run only every few thousand
or even million loads.

STOREV32_fast is similar, but with the additional fast-path
condition that sm must not be the DSM. The functions for fast 1,
2 and 8 byte shadow loads and stores are similar, except that the
1-byte case does not need the alignment check. These functions
handle all the common multi-byte loads and store cases.

Section 5 shows that this optimisation reduces Memcheck’s
mean slow-down factor by 3.73x.

4.2 Faster Range-setting (M2)

Range-setting operations are also very common. There are three
improvements that can be made to them. Section 5 shows that
together these optimisations reduce Memcheck’s mean slow-down
factor by 1.62x, and reduce its mean shadow memory size by 1.97,
but sometimes drastically more (e.g. more than 30x).

Vectorising set_range. First, set_range from Section 3.4 can
be vectorised so that it sets one byte at a time until the current
address is N -aligned, then sets N bytes at a time, and finally sets
any left-over bytes one at a time. N must be a power of two to
ensure that all N bytes belong to the same SM. Memcheck uses
N = 8.

This improvement is generally helpful, and also occasionally
affects performance greatly by mitigating some nasty performance
cases. Some operations that are very fast natively take far longer
when run under Memcheck. For example, a large stack allocation
takes a single instruction natively, but requires setting a large region
of shadow memory under Memcheck. We have seen one example
program that did a lot of 8KB stack allocations, and with the
improved set_range it ran more than three times faster. This is
a good reminder that it is important to not only make the common
cases fast, but also make the uncommon cases not too slow.

Replacing whole SMs. Second, when setting a 64KB range cov-
ered by a single SM to “unaddressable”, instead of laboriously
marking every byte Memcheck can instead replace the existing SM
with the NOACCESS DSM, achieving the same effect in a single op-
eration (this can be viewed as vectorisation on a much larger scale).
The replaced SM can then be deallocated. This greatly speeds up
large deallocations, such as those done with munmap when unload-
ing a shared object, and reduces shadow memory size as well.

Additional DSMs. The third improvement is more subtle, and
was added to Memcheck more than three years after Memcheck
was first released. It involves the introduction of additional DEFINED
and UNDEFINED DSMs to complement the NOACCESS DSM. This
turns out to be a big win: large code segments and read-only data
regions can be covered by the DEFINED DSM, and because code
segments are rarely written to, Memcheck avoids allocating many
SMs. This saves memory and also improves speed because fewer
SMs need to be initialised.

4.3 Faster Stack Pointer Updates (M3)

Stack pointer updates are very common, and the increment/decrement
sizes are often small, statically known constants such as 4, 8, 12,
16 or 32 bytes. Memcheck uses specialised range-setting functions
for these sizes which are faster than the variable-length range-
setting functions. These functions first check that the stack pointer
is aligned—it almost always is—and then operate like unrolled ver-
sions of the vectorised set_range. These operations are so com-
mon that this optimisation reduces Memcheck’s mean slow-down
factor by 1.28x, as Section 5 shows.

4.4 Compressed V Bits (M4)

This section describes a more elaborate optimisation—a low-level
compression technique that on average further reduces the mean

size of shadow memory by 4.29x and the mean slow-down factor
by 1.16x, as Section 5 shows.

It is an optimisation that may seem obvious in hindsight. How-
ever, we are aware of no other shadow memory tool that uses com-
pression like this, and Memcheck had been publically available for
more than four years before we conceived and implemented it.

Indeed, before this optimisation was implemented, the Valgrind
distribution included a cut-down version of Memcheck (called Ad-
drcheck) which tracked A bits but not V bits (thus recording 1 bit
of shadow information per byte, rather than 9), for use when Mem-
check’s memory overhead was too great. After adding this optimi-
sation to Memcheck, we were able to kill off Addrcheck because
the difference in memory usage (1 bit per byte versus slightly more
than 2 bits) was so much smaller.

4.4.1 The Basic Idea

Memcheck’s tracking of definedness at the level of individual bits
is useful [21], but it is expensive considering that partially defined
bytes (PDBs) are rarely involved in more than 0.1% of memory
accesses, and are not present at all in many programs.

This situation can be improved. Instead of maintaining 8 V
bits and 1 A bit for every used memory byte, we can instead use
only two VA bits per memory byte. With two bits we can mark
each memory byte with one of four states: NOACCESS, DEFINED,
UNDEFINED or PARTDEFINED. The first three states are the familiar
ones from Section 3.4. PARTDEFINED represents PDBs, which have
their full eight V bits stored in a sparse secondary V bit table.

Shadow registers still have eight V bits per byte, so only shadow
loads and stores are affected. Shadow loads uncompress the two
VA bits for each memory byte into the eight V bits for each register
byte, and shadow stores do the opposite. Loads and stores involving
PDBs are much slower because they involve the secondary V bits
table, which is an AVL tree. copy_range is also changed to copy
entries from the secondary V bits table for any bytes that have the
PARTDEFINED state.

This approach makes shadow memory much smaller. And al-
though the PDB cases are slower, this approach is faster overall.
This may be partly due to better cache behaviour but it is mostly
because many shadow operations are simpler in the common case,
as the next section shows.

4.4.2 The Details

Secondary maps now have the following structure.

typedef struct {
U8 vabits8[16384]; // 64K two-bit values

} SM;

The first two of the four fundamental functions introduced in
Section 3.2, get_SM_for_reading and get_SM_for_writing,
are unchanged because the primary map is unchanged. The third
fundamental function, get_abit_and_vbits8 is replaced by the
following function which loads the two VA bits for a memory byte.

U8 get_vabits2(Addr a)
{

SM* sm = get_SM_for_reading(a);
U8 vabits8 = sm->vabits8[(a & 0xffff) >> 2];
vabits8 >>= ((a & 3) << 1);// shift 2 bits down
return 0x3 & vabits8; // mask out the rest

}

It is used by the following function which uncompresses the ob-
tained VA bits into eight V bits, suitable for placing in a shadow
register, and returns a boolean indicating if it was unaddressable. If
the byte is a PDB, get_sec_vbits8 is used to look up the V bits
in the secondary V bits table.

Bool get_vbits8(Addr a, U8* vbits8)
{

U8 vabits2 = get_vabits2(a);
if (VA_BITS2_DEFINED == vabits2) {
*vbits8 = V_BITS8_DEFINED;

} else if (VA_BITS2_UNDEFINED == vabits2) {
*vbits8 = V_BITS8_UNDEFINED;

} else if (VA_BITS2_NOACCESS == vabits2) {
*vbits8 = V_BITS8_DEFINED; // Defined-if-
return False; // unaddressable

} else {
*vbits8 = get_sec_vbits8(a);

}
return True;

}

This function is in turn used by a new version of LOADVn which is
very similar to the original one from Section 3.3.

The fourth fundamental function, set_abit_and_vbits8, is
replaced by a new function set_vabits2 similar to get_vabits2.
A function set_vabits8 (similar to get_vabits8) is built on top
of it; it is used by the new STOREVn.

The fast-case shadow load function LOADV32_fast from Sec-
tion 4.1 now has the following form.

U32 LOADV32_fast(Addr a) {
SM* sm; U8 vabits8;
if (!IS_32BIT_ALIGNED(a))

return (U32)LOADVn(a, 32);
sm = get_SM_for_reading(a);
vabits8 = sm->vabits8[(a & 0xffff) >> 2];
if (VA_BITS8_DEFINED == vabits8)

return V_BITS32_DEFINED;
else if (VA_BITS8_UNDEFINED == vabits8)

return V_BITS32_UNDEFINED;
else

return (U32)LOADVn(a, 32);
}

The alignment check and primary map look-up is the same as
before. The secondary map look-up differs; the cases where the
four bytes are entirely defined or entirely undefined are handled
here, and the decompression of the two VA bits into eight V bits
is straightforward. The remaining cases are handled by the slow
LOADVn function, similar to before. In particular, if any of the bytes
loaded are PDBs—i.e. they have the PARTDEFINED state—LOADVn
looks up the secondary V bits table.

This LOADV32_fast is faster than the previous version in the
fast case because (a) it gets the VA bits with one SM access instead
of two; (b) it does not have to do any shifting and masking to
extract the A bits; and (c) the number of conditional branches is
usually unchanged—most loads are from DEFINED memory, so the
second test (VA_BITS8_DEFINED == vabits8) usually succeeds.
The other fast multi-byte load and store functions have similar
benefits.

Finally, the new versions of set_range (from 4.2) and the stack
operations (from 4.3) both benefit from the faster SM accesses.

4.4.3 The Secondary V Bits Table

The secondary V bits table is an AVL tree that holds the full V bits
for PDBs in memory. It has three subtleties that require care.

• Stale nodes. When a PDB is overwritten with a non-PDB,
we could remove its entry from the table, but checking for
overwritten PDBs on every store would be slow and remove
much of the benefit of compressed V bits. Instead we let these
entries become stale. This does not affect correctness—the stale

values are never read—but we need to garbage collect (GC) the
table when it fills up to prevent space leaks. Memcheck initially
limits the table to 1024 nodes, but doubles that limit after any
GC in which more than half the nodes survive. This scales well
for programs with many PDBs.

• Line Sizes. We can store the V bits for multiple consecutive
memory bytes in a single table node, i.e. have a larger line
size. A node (line) is then stale only if every byte in it is
stale. Bigger lines are better if PDBs are clustered, because
fewer lines will be needed, saving space and lookup time. But
if PDBs are sparsely distributed, bigger lines will just take up
more space. (The issues are similar to those affecting cache line
sizes.) Memcheck uses a line size of 16 bytes, which provides
a good balance.

• Eviction policies. A GC should not immediately evict all stale
lines from the table, because lines may become non-stale soon,
in which case unnecessary work will have been done. Mem-
check uses an aging mechanism: during a GC it only evicts lines
that have not been touched for three GCs.

This policy ensures that the secondary V bits table lookups
have negligible performance impact in all but the most pathological
cases. With the large common-case time and space savings com-
pressed V bits are a clear overall improvement.

4.4.4 Another Trade-off

Compressed V bits show another important trade-off, this time
between precision and performance. Memcheck does not detect
writes to read-only memory before they occur. It would require an
extra read-only state, which would be common, and so five states
would be needed. Five states would not fit neatly into two bits, so
the implementation would be much slower. (A read-only state was
omitted from the pre-compressed V bits representation for similar
reasons.) Besides, the additional benefit would be small because
such errors are rare and they usually cause segmentation faults
which Memcheck can pinpoint immediately afterwards anyway.

5. Evaluation
In this section we evaluate the robustness, speed and memory usage
of Memcheck’s shadow memory implementation.

5.1 Robustness

Memcheck’s key shadow memory robustness feature is its division
of shadow memory into smallish (SM-sized) chunks which can be
laid out very flexibly. The only restriction is that the base Mem-
check executable (which is 4MB and contains some Memcheck
code and some Valgrind code) is statically linked and so must be
loaded at a pre-specified address. The address chosen is one that
is rarely used but never reserved by the kernel. On x86/Linux it
is 0x38000000; no problems have been reported with this address
but a user could change it if necessary by changing a configuration
file and recompiling Valgrind. This restriction is an implementation
detail of Valgrind itself, however, and not inherent in Memcheck’s
shadow memory scheme.

Robustness is not easy to quantify, and we can provide only
anecdotal evidence for Memcheck’s robustness—we cite its num-
ber of users, and the range of software and systems it has been
used on. Section 2.2 described how many users Memcheck has. We
have heard from users that Memcheck has been used successfully
on programs containing up to 25 million lines of code, on 32-bit
and 64-bit platforms, both big-endian and little-endian, on several
flavours of Unix. Despite this broad exposure, we are aware of no
user problems relating to shadow memory layout while the current
scheme has been in place.

In earlier versions, Memcheck used the two-level table, but put
all shadow memory into a large contiguous region towards the high
end of the address space. This region could then never be used
by a client. During this period a number of problems relating to
shadow memory layout were encountered by users. Some programs
wouldn’t work without access to this part of the address space. It
was also incompatible with kernels with uncommon address space
configurations (such as the top 2GB being kernel-only, instead of
the more common 1GB), and with kernels configured to disallow
“over-committing”, i.e. the mapping of more virtual memory than
the machine has physical memory and swap space.

These cases, while not typical, were common enough that we
rewrote Valgrind’s address space management code to give Mem-
check its current flexibility. This flexibility solved the Linux prob-
lems, and is becoming increasingly important as Valgrind and
Memcheck are ported to OSes that have more restrictive address
space layouts than Linux. For example, Mac OS X places the main
stack, shared libraries, C library code and Objective-C runtime
code in the upper half of address space in a manner that is very dif-
ficult to avoid. Similarly, AIX places the main stack, thread stacks,
shared libraries and mapped-in network cards at various locations
in the address space which Valgrind cannot control. Also, many
embedded systems have similarly restrictive address space layouts.

This change also means that Valgrind can now run itself, which
it could not do before this change.4

5.2 Performance

We performed experiments on 25 of the 26 SPEC CPU2000 bench-
marks (we could not run galgel as gfortran failed to compile it).
Eight of the benchmarks invoke their program more than once; for
these (marked with a ‘*’ in Table 1) we ran all of them but only
report the results for the longest-running invocation. We ran them
in 32-bit mode on a 2.4 GHz Intel Core 2 Duo with 1GB RAM and
a 4MB L2 cache running SUSE Linux 10.2, kernel 2.6.18.2. To en-
sure a fair comparison, we implemented all variants using a single
version (a pre-3.2.0 version) of Memcheck as the starting point.

Smaller inputs. The left-hand side of Table 1 shows the slow-
down factors of the five versions (M0–M4) of Memcheck from
Sections 3 and 4.1–4.4 (all with leak-checking off, because it runs
at program termination and is largely orthogonal to the concerns
of this paper) on the SPEC “test” inputs.5 The slow-down factors
for perlbmk and fma3d are omitted; the native run-times were so
short that their slow-down numbers for M4 were both over 200.
The middle portion of the table shows the peak size of shadow
memory—the peak combined size of the primary map, DSMs, non-
distinguished SMs, and the secondary V bit table (for M4)—for
M0–M4.

The four optimisations all improve speed, reducing the mean
slow-downs by 3.73x, 1.62x, 1.28x and 1.16x, for a combined
speed-up factor of 8.9. The optimisations also reduce the mean
memory consumption by a factor of 8.5—extra DSMs by 1.97x
(although occasionally drastically more for programs with a lot of
code and/or read-only data such as mcf and applu), and compressed
V bits by 4.29x. This last figure shows that compressed V bits are
highly effective.

Larger inputs. The right-hand side of Table 1 shows the same
statistics for fully optimised Memcheck (M4) on the SPEC “refer-
ence” inputs. These inputs are so large that the experiments took
several days to run. To get an idea of the proportion of the slow-

4 With one proviso: the “inner” Valgrind must be configured so it (i.e. the
static executable) is loaded at a different address to the “outer” Valgrind.
5 These versions are so slow that larger inputs would have taken weeks to
complete.

down caused by shadow memory, we also give the figures for two
other tools: (a) Nulgrind (NL), the no-instrumentation tool, which
shows the base slow-down due to Valgrind; and (b) Memcheck-lite
(M5), a version of Memcheck with its register-level V bit prop-
agation and checking turned off, in which almost all of the tool
overhead is due to shadow memory operations.

Nulgrind’s mean slow-down factor is 4.6. This is high, but the
no-instrumentation case is mostly uninteresting because the added
instrumentation code dominates execution time, and Valgrind is not
optimised for this case [16]. The mean slow-down of 22.2 for Mem-
check on the “ref” inputs is respectable given the amount of anal-
ysis it is doing. (The improvement over the mean slow-down of
23.4 for the “test” inputs shows how instrumentation costs are usu-
ally amortised in longer-running programs). Memcheck-lite’s mean
slow-down is 16.0x. By subtracting Nulgrind’s slow-down factor
from Memcheck-lite’s slow-down factor, we can estimate that ap-
proximately half of Memcheck’s overhead is related to shadow
memory accesses.

Other tools. Section 6 mentions some published performance re-
sults for other shadow memory tools. We do not perform any di-
rect comparisons with other tools because they (a) are built with
Valgrind and use basically the same implementation (but less opti-
mised) as Memcheck (Annelid, Helgrind, TaintCheck, Redux); or
(b) are proprietary, not publically available, and/or implemented
on different platforms (Purify, Eraser, VisualThreads, Hobbes, pin-
SEL); or (c) use shadow value data structures sufficiently different
to be not worth comparing (DRD—see Section 6); or (d) are only
capable of running a fraction of the SPEC 2000 benchmark suite
(TaintTrace, LIFT).

Nonetheless, as our second and third contributions stated, our
detailed description and evaluation of Memcheck’s shadow mem-
ory implementation exceeds anything else in the literature.

6. Related Work
In this section we compare Memcheck’s shadow memory imple-
mentation to those of other shadow memory tools, all of which were
introduced in Section 1.

Other Valgrind tools. Four of the tools (other than Memcheck)
mentioned in Section 1 were built with Valgrind: Annelid, Hel-
grind, TaintCheck and Redux. Like Memcheck, they all use the
two-level shadow memory data structure. Unlike Memcheck, they
do not use all of Section 4’s optimisations because they are more
experimental, so their performance is not as critical.

Hobbes, TaintTrace and LIFT. Hobbes [3] and TaintTrace [4]
use a simple implementation of shadow memory that we call “half-
and-half”. They put client memory in the bottom 1.5GB of address
space, shadow memory in the next 1.5GB, and assume the top 1GB
is reserved for the kernel (this is all for 32-bit machines). Shadow
memory accesses become so simple—each memory byte’s shadow
byte is found at a 1.5GB offset—that they can be inlined rather than
requiring a C call, which makes them very fast. LIFT [18] is similar,
but shadow memory is 1/8th the size of client memory because each
memory byte has a 1-bit shadow, and so it uses a scaled offset.

Hobbes’ reported slow-downs for SPECint programs were in
the range 30–187x. However, other parts of Hobbes were inefficient
and so this is a poor comparison point. TaintTrace is implemented
with DynamoRIO [1], and its reported average slow-down is only
5.5x for six of the SPECint benchmarks. LIFT [18] is built with
StarDBT, and has a mean slow-down factor of 3.5x for a similar
subset of the SPEC CPU2000 integer benchmarks. There are two
main reasons why they are much faster than Memcheck [16]: (a)
they are doing simpler analyses, and (b) they use some instrumen-
tation techniques that are faster but do not handle as wide a range of

“Test” inputs “Ref” inputs
Slow-down Factor Peak Sh Mem Size (KB) Slow-down Factor ShMem

Prog. M0 M1 M2 M3 M4 Tx M0,M1 M2,M3 M4 Mx NL M4 M5 M4,M5
bzip2* 162.9 45.0 23.7 20.8 19.2 8.5 27,040 21,424 4,880 5.5 3.6 17.1 12.9 47,888
crafty 252.0 110.5 51.3 38.1 35.1 7.2 5,584 3,856 864 6.5 7.0 35.9 26.2 864
eon* 380.7 201.8 133.8 59.8 55.1 6.9 5,296 2,416 656 8.1 8.4 51.9 51.1 704
gap 243.4 113.1 48.4 35.7 30.2 8.1 78,304 43,312 7,664 10.2 4.1 26.7 17.4 49,728
gcc* 234.9 112.5 51.0 39.9 37.0 6.3 14,944 12,064 2,873 5.2 5.2 33.3 24.5 25,523
gzip* 173.9 40.4 26.3 20.3 15.7 11.1 12,496 10,768 2,496 5.0 3.0 13.7 10.6 48,576
mcf 184.9 63.5 32.0 19.5 16.1 11.5 109,264 3,136 512 213.4 2.1 7.1 5.4 528
parser 216.7 72.6 45.0 24.1 18.4 11.8 38,128 8,896 2,144 17.8 3.9 17.9 13.9 7,200
perlbmk* (omitted; run-time too short) 3,496 1,264 464 7.5 4.8 25.3 18.9 40,512
twolf 156.7 47.7 32.8 28.3 25.4 6.2 4,432 2,704 704 6.3 3.2 15.8 11.5 5,584
vortex* 238.9 119.1 64.4 49.0 43.7 5.5 36,904 34,672 7,632 4.8 6.9 41.2 30.8 20,784
vpr* 172.2 52.6 30.9 24.2 21.4 8.0 3,568 2,056 512 7.0 4.3 20.3 14.1 1,552
ammp 113.6 39.9 36.1 32.7 28.2 4.0 28,192 22,504 5,072 5.6 3.6 32.7 27.0 5,088
applu 222.2 38.8 27.5 27.2 25.1 8.9 221,728 13,072 3,008 73.7 5.4 19.3 11.9 47,728
apsi 223.1 26.3 20.6 19.1 16.9 13.2 223,168 221,872 49,392 4.5 3.7 16.2 11.1 49,600
art* 207.1 45.0 44.1 43.0 25.9 8.0 7,024 5,152 1,200 5.9 5.1 24.4 21.6 1,568
equake 205.1 59.4 25.5 21.0 17.9 11.5 29,632 28,696 6,320 4.7 4.3 17.1 13.3 25,472
facerec 135.1 27.4 20.8 16.7 14.2 9.5 33,880 29,056 6,480 5.2 4.9 18.4 11.8 6,848
fma3d (omitted; run-time too short) 5,872 2,704 736 8.0 4.3 25.4 18.2 28,592
lucas 331.8 67.8 37.6 27.2 24.8 13.4 3,928 2,056 576 6.8 4.1 23.3 14.6 37,056
mesa 202.2 109.3 45.1 30.9 29.2 6.9 27,256 11,200 2,560 10.6 5.9 58.8 33.4 2,704
mgrid 205.5 20.0 20.0 20.0 17.5 11.7 67,000 65,632 14,672 4.6 4.1 16.8 11.2 14,720
sixtrack 268.8 34.8 27.8 22.3 20.2 13.3 74,560 39,352 8,464 8.8 6.4 19.8 15.2 9,648
swim 183.8 25.8 16.7 16.0 13.5 13.6 222,736 87,232 19,456 11.4 3.7 10.8 7.1 49,296
wupwise 279.1 63.2 35.6 30.0 25.6 10.9 205,960 204,520 45,520 4.5 7.8 26.9 19.1 45,536
geo. mean 209.6 56.2 34.7 27.2 23.4 8.9 254,65 12,928 3,013 8.5 4.6 22.2 16.0 11,144
rel. imp. 3.73 1.62 1.28 1.16 1.97 4.29 1.38

Table 1. Performance of six Memcheck variants (M0–M5) and Nulgrind (NL). Column 1 gives the program name; integer programs are
listed before floating-point programs. Columns 2–6 give the slow-down factors for M0–M4 (with “test” inputs), and column 7 (Tx) gives
the overall speed improvement from M0 to M4. Columns 8–10 give the shadow memory sizes for M0–M4, and column 11 (Mx) gives the
overall shadow memory reduction from M0 to M4. Columns 12–14 give the slow-down factors for Nulgrind, M4 and M5 (with “ref” inputs).
Column 15 gives the shadow memory size for M4 and M5. The second-last row gives geometric means of each column. The last row gives
the relative improvements in the means for M1–M4.

programs, and half-and-half shadow memory is one of these tech-
niques.

Unfortunately, although half-and-half is simple and fast, its less
flexible layout means it fails for some programs under Linux, and
is incompatible with OSes with more restrictive memory layouts
such as Mac OS X and AIX, as Section 5.1 explained.

For these reasons, for 32-bit machines, half-and-half is unsuit-
able for Memcheck and related Valgrind tools, for which robustness
is as important or more important than performance. For 64-bit ma-
chines the situation is less clear, but we suspect similar problems
would arise with half-and-half in that setting. In comparison, the
two-level table approach provides acceptable performance and ex-
cellent robustness. This is an example of a crucial design trade-off.

The Hobbes, TaintTrace and LIFT papers are notable for being
the only other publications we know of that describe a shadow
memory implementation in detail beyond a couple of sentences.
Also, all three tools could be changed to use a two-level shadow
memory implementation.

Other tools. The original version of Eraser [20] used the half-and-
half approach. The commercial version uses an approach more like
Memcheck’s—each memory page has a shadow page, a shadow
page table does the real-to-shadow page mapping, and an array
is used as a mapping cache (shadow TLB) [2]—but there is no
publication describing it.

Purify [6] uses “a bit table that holds a two-bit state code for
each byte in the heap, stack, data and bss sections”. The two-bit

state code is like Memcheck’s compressed VA bits but without the
PARTDEFINED value for handling PDBs. We know of no published
information about the bit table’s structure.

VisualThreads [5], another data-race detector, uses a two-level
table like Memcheck, but with much larger secondary maps (16MB
vs. 64KB). Judging from the cited paper, the primary map is a
structure with a non-constant lookup time such as a tree. This is in
contrast to Memcheck’s first-level lookup which is constant-time.
Larger secondary maps cause more memory to be wasted in the
cases where secondary maps are only partially used, and DSMs are
likely to be less effective. The paper also says: “This table lookup
was added for improved robustness necessary in a product, even at
the cost of some additional execution overhead.” We suspect this
cryptic statement corroborates our claim that a flexible layout is
required for robustness, as opposed to the half-and-half scheme.

pinSEL [11] uses a two-level table, with smaller secondary
maps than Memcheck (4KB vs. 16KB). Its primary map is a hash
table. The reported slow-down for pinSEL is in the range 10–163x,
with an average of 93x.

DRD [19] structures shadow memory differently. It needs to
record all the memory bytes accessed during a segment (a time-
slice). For each segment it uses a bit-map, where each bit represents
a memory byte. Each bit-map is structured like our two-level table,
but instead with nine levels. This makes lookups slower, but results
in very little wasted space in the sparsely populated segment bit-

maps, which is important as there can be many segments live at
one time. The measured slow-down factors ranged from 10–247.

Other DBI frameworks. Although this paper described a tool
implemented using Valgrind, the techniques described here would
be suitable for use with shadow memory tools built with other DBI
frameworks such as Pin [9] and DynamoRIO [1].

OS page tables. Memcheck’s two-level shadow memory table
looks somewhat like an operating system (OS) page table. The
obvious similarity is that page tables divide address space up into
smallish chunks, as Memcheck’s table does.

However, there are many differences. OS page tables point to
pages of original values rather than shadow values, so there are no
questions about shadow value representation, such as whether com-
pression is suitable. Also, shadow value tools do not have to deal
with issues that OSes do, such as making decisions about which
pages should be swapped out, nor track which files are mapped to
which pages. Finally, the performance issues are completely dif-
ferent because page tables benefit from hardware TLBs. Could a
shadow value tool somehow utilise a hardware TLB to speed it up?
We do not see how it could, since all existing shadow value tools
we know of are user-mode programs.

7. Future Work and Conclusion
A number of powerful DBA tools share one crucial characteris-
tic: the use of shadow memory. We have shown how to implement
shadow memory in a manner that is highly robust and acceptably
fast. We began with a simple but slow implementation in Mem-
check, and improved it by (a) speeding up common cases such as
loads, stores, range-setting and stack pointer updates, and (b) re-
ducing the size of shadow memory using both high-level and low-
level compression. The resulting implementation is fairly fast, very
compact and robust, and used by thousands of programmers daily.
The results show the importance of low-level representation details
and operations in good shadow memory implementations.

We think there are three main areas of future work in shadow
memory. First, the performance issues thrown up by 64-bit address
spaces and multi-processor machines need to be addressed. Second,
the performance of shadow memory tools could still be improved,
perhaps with better representations, or by finding ways to omit
unimportant shadow memory operations. Third, new tools that use
shadow memory in new ways could be created. For example, a
profiling tool that tracks how values flow through memory and how
often they are copied might help programmers reduce the memory
bandwidth requirements of their programs; shadow memory would
be an important part of such a tool.

Shadow memory tools are powerful. We look forward to seeing
them become better, faster, and more widely-used.

Acknowledgments
Thanks to Greg Parker for his Mac OS X expertise, Jeremy
Fitzhardinge for the multiple DSMs idea and implementation,
Donna Robinson for encouragement, and Mike Bond, Kim Hazel-
wood, Kathryn McKinley, Jeremy Singer and the anonymous re-
viewers for helpful comments on earlier versions of this paper.

References
[1] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for

adaptive dynamic optimization. In Proceedings of CGO’03, pages
265–276, San Francisco, California, USA, March 2003.

[2] M. Burrows. Personal communication, February 2006.

[3] M. Burrows, S. N. Freund, and J. L. Wiener. Run-time type checking
for binary programs. In Proceedings of CC 2003, pages 90–105,
Warsaw, Poland, April 2003.

[4] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Proceedings of ISCC
2006, pages 749–754, Cagliari, Sardinia, Italy, June 2006.

[5] J. J. Harrow, Jr. Runtime checking of multithreaded applications
with Visual Threads. In Proceedings of SPIN 2000, pages 331–342,
Stanford, California, USA, August 2000.

[6] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Conference,
pages 125–136, San Francisco, California, USA, January 1992.

[7] K. Hazelwood. Code Cache Management in Dynamic Optimization
Systems. PhD thesis, Harvard University, Cambridge, Mass., USA,
May 2004.

[8] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security
Symposium, pages 191–206, San Francisco, California, USA, August
2002.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of PLDI 2005, pages 191–200, Chicago, Illinois, USA, June 2005.

[10] A. Mühlenfeld and F. Wotawa. Fault detection in multi-threaded
C++ server applications. In Informal Proceedings of TV06, pages
191–200, Seattle, Washington, USA, August 2006.

[11] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operation system effects to guide application-level
architecture simulation. In Proceedings of SIGMetrics/Performance
2006, pages 216–227, St. Malo, France, June 2006.

[12] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, University of Cambridge, United Kingdom, November 2004.

[13] N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs
without recompiling. In Informal Proceedings of SPACE 2004,
Venice, Italy, January 2004.

[14] N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer.
Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[15] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. Electronic Notes in Theoretical Computer Science, 89(2),
2003.

[16] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of
PLDI 2007, San Diego, California, USA, June 2007.

[17] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In Proceedings of NDSS ’05, San Diego, California, USA,
February 2005.

[18] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. Lift:
A low-oeverhead practical information flow tracking system for
detecting security attacks. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (Micro’06), Orlando,
Florida, USA, December 2006.

[19] M. Ronsse, B. Stougie, J. Maebe, F. Cornelis, and K. De Bosschere.
An efficient data race detector backend for DIOTA. In Parallel
Computing: Software Technology, Algorithms, Architectures &
Applications, volume 13, pages 39–46. Elsevier, February 2004.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, November
1997.

[21] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In Proceedings of the USENIX’05
Annual Technical Conference, Anaheim, California, USA, April
2005.

[22] The Valgrind Developers. Valgrind.
http://www.valgrind.org/.

