

Lecture #1 Outline

- Welcome Back
- AVR Hardware
 - Pins and Ports
- AVR Programming
 - AVR Memory and Addressing Modes
 - AVR Instruction Set
 - Timers
- Project Ideas

Survey: Have you...

- Subscribed to the E-mail list?
- Started on Lab #0 Yet?
- Started on Lab #1 Yet?
- Got access to the EE281 lab yet?
- Got your account set up on the lab machines?
- Read over the AVR Instruction Set?
- Played with AVR Studio?
- Simulated blink.asm?

Lab Kits: STK500 for all

- Get these items after class
 - Atmel AVR STK500
 - The AT90S8515 processor
 - Configurable options:
 - Port connections (LEDs and switches)
 - Supply Voltage (*be careful)
 - Processor frequency
 - Atmel Web Site CD (everything and more)
 - Power Transformer
 - Databook (*while they last)

Software Notes

- AVR Studio 4.0
 - The only software you need for the STK500
 - Works as editor for Assembly and C
 - Has built-in AVR assembler
 - Has built-in AVR simulator
 - Has built-in STK500 programmer
- PonyProg2000
 - Don't need it for the STK500
 - But...it's perfect for programming your final project!

AVR AT90S8515 Pinout

- General Purpose Ports
 - PORTA
 - PORTB
 - PORTC
 - PORTD
 - (Special Functions)
- Special Purpose Pins
 - Crystal (XTAL1/XTAL2)
 - RESET
 - ICP, OLE, OC1B
- Power (VCC/GND)

'8515 Functional Architecture

- 32 Registers (R0-R31)
- 4K Prog ROM
- 512 bytes RAM
- 512 bytes EEPROM
- 32 I/O lines
- 13 Interrupts
- Lots of fun built-in peripherals

AVR Memory Spaces

- Program Flash
 - Vectors, Code, and (Unchangeable) Constant Data
- Working Registers
 - Includes X, Y, and Z registers.
- I/O Register Space
 - Includes "named" registers
- SRAM Data Space
 - Runtime Variables and Data
 - Stack space
- EEPROM space
 - For non-volatile but alterable data

AVR Data Memory Map: Part 1

Register File	Data Address Space
R0	\$0000
R1	\$0001
R2	\$0002
R29	\$001D
R30	\$001E
R31	\$001F
I/O Registers	
\$00	\$0020
\$01	\$0021
\$02	\$0022
\$3D	\$005D
\$3E	\$005E
\$3F	\$005F

EE281

AVR Data Memory Map: Part 2

Embedded System Design Laboratory

Internal SRAM

\$0060
\$0061
\$015E/\$025E
\$015F/\$025F

External SRAM

AVR I/O Memory Map

- Peripherals and Ports are I/O mapped
- Use IN/OUT instructions to access
- Excerpt from I/O map showing ports:

\$1D (\$3D)	EEDH		EEPHOW Data Hegister				page 39			
\$1C (\$3C)	EECR	-	-	-	-		EEMWE	EEWE	EERE	page 39
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	page 54
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	page 54
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	page 54
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 56
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 56
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 56
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	page 61
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	page 61
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 61
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 63
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 63
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 63
\$0F (\$2F)	SPDR	SPI Data Register					page 44			
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-			-	-	page 44
\$0D (\$2D)	6DUD	QDIE	QDE .	DODD	MCTD	CDOI	CDHV	QDD1	SDDV	nage 43

AVR Addressing Modes

- Register Direct, with 1 and 2 registers
- I/O Direct
- Data Direct
- Data Indirect
 - with pre-decrement
 - with post-increment
- Code Memory Addressing

Register Direct: 1 Register

Register Direct: 2 Registers

I/O Direct

Data Direct

Data Indirect

Data Indirect w/ Displacement

Data Indirect: Pre-Decrement

Data Indirect: Post-Increment

Prog. Memory Addressing

Indirect Program Addressing

Relative Program Addressing

I/O Register \$3F : SREG

- All Bits are R/W:
 - I − Global Interrupt Enable
 - T − Bit Copy Storage
 - − H − Half Carry Flag
 - -S Sign Bit
 - ∨ Two's Complement Overflow Flag
 - − N − Negative Flag
 - − Z − Zero Flag
 - − C − Carry Flag

Instruction Examples: Add

- Math
 - Add
 - ADD Rd, Rr Adds two registers
 - Rd < Rd + Rr
 - ADC Rd, Rr Add with Carry two registers
 - Rd < Rd + Rr + C
 - ADIW Rdl, K-Add Immediate to Word
 - Rdh:Rdl < Rdh:Rdl + K

Other Math and Logic

- Subtract
- Logical AND
- Logical OR
- Exclusive OR
- One's Complement
- Two's Complement
- Increment/Decrement
- Set/Clear Registers and Bits in Registers

Branch Instructions

- RJMP/RCALL Relative Jmp (+/-k)
- IJMP/ICALL Indirect Jmp (Z Reg)
- RET/RETI Return from call/interrupt
- CP* Compare
- SB* Skip if Bit in Register or I/O is set/clr
- BR* Branch if condition is met

Data Transfer Instructions

- MOV Move between registers
- LD/LDI Load / Load Immediate
- ST/STI Store / Store Immediate
- LPM Load Program Memory
 - Hardwired to load R0 with (Z) in code.
- IN/OUT − In and Out Ports
- PUSH/POP On and off stack

Bit and Bit Test Instructions

- SBI/CBI Set / Clear Bit in register
- LSL/LSR Logical Shift Left / Right
- ROL/ROR Rotate Left / Right (thru Carry bit)
- ASR Arithmetic Shift Right
- SWAP − Swap Nibbles
- BST/BLD Bit Store / Load
- BSET/BCLR Set / Clear Status Bits by number
- SE*/CL* Set / Clear Status Bits by name

Other Instructions

- NOP Do nothing for 1 cycle
- SLEEP Sleep until reset or interrupted
- WDR Watch Dog Reset

AVR Timer/Counter 0

- 8 Bit
- Wrap-Around Up Counter
- Interrupt on Overflow

AVR Timer/Counter 0 (cont'd)

AVR Timer/Counter 1

- 16 Bit
- Dual Comparators A,B (output captures)
- Up Counter
- Interrupt on:
 - Overflow
 - Compare A/B
 - Input Capture of external event on ICP pin.
- Can also act as an 8, 9 or 10 bit PWM Up-Down Counter.

AVR Timer/Counter 1 (cont'd)

Timer Control: I/O space

- Timer 0:
 - Control Register (TCCR0)
 - Timer/Counter0 (TCNT0)
- Timer 1:
 - Control Register A & B (TCCR1A/B)
 - Input Capture Register (ICR1)
 - Timer/Counter1 Output Compare Register A and B (OCR1A/B)
 - Timer/Counter1 (TCNT1)
- Timer Interrupt Registers (Mask and Flag Registers) are Common to Both Timers

AVR Timer/Counter Sources

- Shut Off
- CPU frequency divided by 1,8,64,256,1024
 - At 8MHz that's: 1/8uS, 1uS, 8uS, 32uS, 128uS
- External Input (rising or falling).

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

Project Ideas?

- Automatic Timed Fish Feeder (extra credit :-)
- Laser Light Show Controller
- Animated Light Controller (stimulated by music?)
- Programmable Universal Remote Control
- Reactive Juggling Ball (accelerometers, FSR)
- Sports Car Performance Analyzer
- Very Small Web Server
- Communication Gadget
- Automated Remote Weather Station

