

### **A Few Words From Dilbert**







#### **Lecture #2 Outline**

- Status Check
- AVR Processor Resources
  - Interrupts
  - Timers
- Extra Lab Time?





### **Status Check**

- How is Lab #1 going?
- Got access to the EE281 lab yet?
- More STK500 kits are coming...





#### **AVR Processor Resources**

- Interrupts
- Timers
- UART (Universal Asynchronous Receiver/Transmitter)
- A/D Converters (Analog to Digital)
- SPI (Serial Peripheral Interface)
- Analog Comparator





### **AVR AT90S8515 Pinout**

- General Purpose Ports
  - PORTA
  - PORTB
  - PORTC
  - PORTD
  - (Special Functions)
- Special Purpose Pins
  - Crystal (XTAL1/XTAL2)
  - RESET
  - ICP, OLE, OC1B
- Power (VCC/GND)







### **'8515 Functional Architecture**

- 32 Registers (R0-R31)
- 4K Prog ROM
- 512 bytes RAM
- 512 bytes EEPROM
- 32 I/O lines
- 13 Interrupts
- Lots of fun built-in peripherals





### Interrupts

- Interrupts halt normal code execution in order to go do something more important or time sensitive
- Interrupt "Handlers"
  - Using the Interrupt Vectors
- Interrupts are used for:
  - RESET
  - Timers and Time-Critical Code
  - Hardware signaling
    - "I'm done"
    - "Something's happened that you want to know about"
    - "I have something for you"



## **Interrupt Vectors**

Table 2. Reset and Interrupt Vectors

| Vector No. | Program Address | Source       | Interrupt Definition                              |  |
|------------|-----------------|--------------|---------------------------------------------------|--|
| 1          | \$000           | RESET        | External Reset, Power-on Reset and Watchdog Reset |  |
| 2          | \$001           | INT0         | External Interrupt Request 0                      |  |
| 3          | \$002           | INT1         | External Interrupt Request 1                      |  |
| 4          | \$003           | TIMER1 CAPT  | Timer/Counter1 Capture Event                      |  |
| 5          | \$004           | TIMER1 COMPA | Timer/Counter1 Compare Match A                    |  |
| 6          | \$005           | TIMER1 COMPB | Timer/Counter1 Compare Match B                    |  |
| 7          | \$006           | TIMER1 OVF   | Timer/Counter1 Overflow                           |  |
| 8          | \$007           | TIMERO, OVF  | Timer/Counter0 Overflow                           |  |
| 9          | \$008           | SPI, STC     | Serial Transfer Complete                          |  |
| 10         | \$009           | UART, RX     | UART, Rx Complete                                 |  |
| 11         | \$00A           | UART, UDRE   | UART Data Register Empty                          |  |
| 12         | \$00B           | UART, TX     | UART, Tx Complete                                 |  |
| 13         | \$00C           | ANA_COMP     | Analog Comparator                                 |  |



### Interrupts: Code Example

```
; setup reset/interrupt vectors
        .cseq
        .orq
                0 \times 0.00
                                 ; $000 HW Reset or Watchdog Handler
    rjmp
          reset
                                 ; $001 External IRO 0 Handler
    rjmp
          reset
    rjmp
                                 ; $002 External IRQ 1 Handler
          reset
    rjmp
          reset
                                 ; $003 Timer/Counter1 Capture Event Handler
    rjmp
                                 ; $004 Timer/Counter1 Compare Match A Handler
          reset
    rjmp
                                 ; $005 Timer/Counter1 Compare Match B Handler
          reset
                                 ; $006 Timer/Counter1 Overflow Handler
    rjmp
          reset
          Timer0Isr
                                 ; $007 Timer/Counter0 Overflow Handler
    rjmp
    rjmp
          reset
                                 ; $008 SPI Serial Transfer Complete Handler
    rjmp
                                 ; $009 UART Rx Complete Handler
          reset
    rjmp
                                 ; $00A UART Data Register Empty Handler
          reset
                                 ; $00B UART Tx Complete Handler
    rjmp
          reset
    rjmp
                                 ; $00C Analog Comparator Handler
          reset
; begin code
                      ; your main code goes here
reset:
TimerOIsr:
                      ; TimerO overflow interrupt code here
                      ; don't forget to return from your interrupt!
          RETT
```





## Timers: Why we need them

- Provide accurately timed delays or actions independent of code execution time
- How are Timers used?
  - Accurate delay
    - Read the timer, store value as K. Loop until timer reaches K+100.
  - Schedule important events
    - Setup an Output Compare to trigger an interrupt at a precise time
  - Measure time between events
    - When event#1 happens, store timer value as K
    - When event#2 happens, read timer value and subtract K
    - The difference is the time elapsed between the two events





### **AVR Timer/Counter 0**

- 8 Bit Up Counter
  - counts from 0 to 255 (0xFF), then loops to 0
  - Internal or External Clock source
    - Prescaler
- Interrupt on Overflow
  - Transition from 255 to 0 can trigger interrupt if desired



## **AVR Timer/Counter 0 (cont'd)**





### **AVR Timer/Counter 1**

- 16 Bit Up Counter
  - Counts from 0 to 65535 (0xFFFF), then loops
  - Internal clock source with prescaler or External Clock
- Dual Comparators
- Interrupts possible on:
  - Overflow
  - Compare A/B
  - Input Capture of external event on ICP pin
- Can also act as an 8, 9 or 10 bit PWM Up-Down Counter

## **AVR Timer/Counter 1 (cont'd)**





## **Timer 1 and Output Compare**

- The 8515 has two *output compares* (OCR1A/B)
  - OCR1A/B are 16-bit registers
  - When the value of OCR1x matches that of Timer1:
    - A user-defined action can take place on the OC1x pin (set/clear/inv)
    - An interrupt can be triggered
    - Timer1 can be cleared to zero
  - Once set up, output compares operate continuously without software intervention
  - Great for:
    - Precise recurring timing
    - Frequency/Tone generation (maybe sound effects)
    - All kinds of digital signal generation
      - Infrared communications
      - Software-driven serial ports





#### Timer 1 and PWM

- Pulse-Width Modulation
  - Useful for using digital circuits to achieve analog-like control of motors, LEDs, etc
  - Timer 1 has two channels of PWM output on OCR1A and OCR1B







## Timer Control: I/O space

- Timer 0
  - Timer/Counter0 (TCNT0)
  - Control Register (TCCR0)
- Timer 1
  - Timer/Counter1 (TCNT1)
  - Control Register A & B (TCCR1A/B)
  - Input Capture Register (ICR1)
  - Timer/Counter1 Output Compare Register A and B (OCR1A/B)
- Timer Interrupt Registers
  - Timer Interrupt Mask Register (TIMSK)
  - Timer Interrupt Flag Register (TIFR)
  - Common to Both Timers





### **Timer/Counter Clock Sources**

- Prescaler
  - Shut Off
  - Divided System Clock
  - External Input (rising or falling)

| CS02 | CS01 | CS00 | 0 Description                        |  |
|------|------|------|--------------------------------------|--|
| 0    | 0    | 0    | Stop, the Timer/Counter0 is stopped. |  |
| 0    | 0    | 1    | СК                                   |  |
| 0    | 1    | 0    | CK/8                                 |  |
| 0    | 1    | 1    | CK/64                                |  |
| 1    | 0    | 0    | CK/256                               |  |
| 1    | 0    | 1    | CK/1024                              |  |
| 1    | 1    | 0    | External Pin T0, falling edge        |  |
| 1    | 1    | 1    | External Pin T0, rising edge         |  |



## **Timer: Example Code**

- Timer0.asm
  - Gives a complete example of one way to use timer 0 with a timer interrupt handler
  - Heavily commented
  - Highlights helpful coding practices for all programs
    - Use .equ to define constants
    - Use .def to define register "nicknames"
  - Available on the course website

