EE281 Fall 2002 EECS192 Pring 2000 Project Presentation

Erik Olson Toru Kuzuhara

What is Natcar?

- Small annual competition sponsored by National Semiconductor
- Goal is to design an autonomous car to navigate a racecourse specified with a current carrying wire and tape
- Participating Universities:
 - UC Berkeley
 - UC Davis
 - San Jose State
 - Stanford, Oklahoma State, Sacramento State as well

Natcar Rules

- 1/10 scale car powered with a single 7.2V NiCd battery
- The motor and the steering servo may be purchased commercially, but all sensing and control electronics must be designed and built
- Course marked by white tape on dark carpet
- The tape is put down on top of a wire which is formed in a complete circuit and driven by a 75 kHz sinusoidal signal. The loop is driven with 100 mA RMS +/10%
- The course may cross itself at an angle of greater than 60 degrees
- May be a 6 inch straight section followed by a 3 inch "jog"

Components of a Workable Solution

- Sensor Design
- Steering/Motor
- DC/DC Converters
- Feedback Control

Sensor Design

- Optical solution
 - Emit light onto the floor, and try to detect if white tape is there
 - Digital signal, basically on the tape, or off
 - Relatively noise free
 - Could use multiple sensors to get a relative position

Better Sensor Design

- Detect the magnetic field of the wire under the tape using coils (inductors)
 - Analog signal, dependent on distance from wire, angle of B field
 - Could be noisy

Sensor Amplification

The current picked up by the inductor is very small, and it is AC

Feed to A/D converter

Then low pass

Speed Sensor

LED + Phototransistor can be used to detect speed (Hamamatsu S6846)

Steering

- High torque digital servos (>\$50)
 - Highly accurate control
 - Fast response time
 - Simple to control (PWM input)

Motor Control

- Motor controlled by sending PWM to power MOSFET (NDP7060L)
 - Need high Vgs to prevent MOSFET failure
 - Easy to get linear speed control

DC/DC Converters

- Only allowed a 7.2V battery
- Need to generate 5V for electronics
 - Regulate 7.2V (LM2940)
- >9V for power MOSFET
 - Step-up DC/DC converter
- May need redundant regulators to deal with noise from motor/servo

Feedback Control (Simplified)

Feedback control is a great way to control the car!

Proportional Control

- Compensate with the measured error times constant Kp
 - Easy to implement
 - Likely to overshoot

Proportional + Derivative Control

- Compensate with the measured error times constant Kp + derivative of error times Kd
 - Harder to implement, need to tune Kp and Kd very carefully
 - With the right values, you can get very good damping, and little or no overshoot

Natcar 2000

Our Implementation

Objectives

- Understand how to model real world behavior using theoretical calculations
- Gain practical experience with circuit design and implementation

Strategy

- KISS Keep It Simple Stupid
- Simple, robust hardware
- Simple, reliable software

Power Configuration

- •2200uF cap to smooth voltage spikes caused by motor
- •inefficient regulator
- \rightarrow DC-DC \rightarrow regulator path
- Simple
- •Reliable

Sensor Configuration

- Four sensors to provide greater stability
- Different heights for variable range
- POTs to adjust for optimal gain

Software

- Simplicity
 - Easy to Code
 - Easy to Debug
 - Fast Execution
- Depends on linearity of delta

Control Code

```
if (sum >= 60){
    delta = (ch1 + ch2 - ch3 - ch4)/2;
    ServoPWM = 165 + delta;
} else if (ServoPWM > TURN_CENTER){
    ServoPWM = TURN_HARD_LEFT;
    MotorPWM = 15;
} else {
    ServoPWM = TURN_HARD_RIGHT;
    MotorPWM = 15;
}
/* Delta ranges from 16 to -16 */
if (delta > 0){
    MotorPWM = 25 - (delta/2);
} else {
    MotorPWM = 25 + (delta/2);
}
```

Control

- Proportional Control
- Key Issues for Performance
 - Sensor Placement
 - Sensor Range
 - Software Digital Filtering
- Problems
 - Some instability due to narrow sensor range
 - Confusion at crossings

Simulated Sensor Values

Observed Performance

- Not the same as simulated performance!
 - Difficult to simulate sensor noise
- Real sensors, servos, wheel alignment, motor noise, etc. can cause problems
- Track variations are unpredictable

Step Response

Additional Features to be Implemented

- Derivative control
- Hamamatsu velocity control
- Special jog and line crossing algorithms
 - weak on large jogs
 - consistently has trouble with 60 degree crossings
- Improvement of sensor placement
- Course memorization (maybe)

Results

Place	Team	Course Time (s)	Average Speed (ft/sec)	Racers
151	UCB4	31.76	9.82	Max, Weng, & Ben-Artzi
2 nd	UCD3	40.95	7.62	Evan Scarisbrick & Adrien Hagen
3rd	UCD4	51.74	6.03	Brett Bodine & Steve Maldonado
4 th	UCB3	52.45	5.95	Kuzuhara & Olson
5 th	SJSU2	56.00	5.57	Kwan, Chi, & Xie
6th	SJSU4	67.44	4.63	Chung & Ho
7 th	SJSU1	70.50	4.43	Durrin, Haastrup, Bradbury, & Duell
8th	UCB5	72.58	4.30	Hori
9th	UCD1	78.13	3.99	Fang & Z. Chen

More information

- Natcar
 - http://www.ece.ucdavis.edu/natcar/
- Stanford
 - http://www.stanford.edu/group/natcar/
- Berkeley (a great source for detail on everything in this presentation)
 - http://www-inst.eecs.berkeley.edu/~ee192/