
BLUEWAND
A versatile remote control and pointing device

University of Karlsruhe, Germany

Team members Manuel Odendahl

Markus Klein

Christian Ceelen

Alexander Lange

Mentor Dr. Thomas Fuhrmann University of Karlsruhe

BLUEWAND - Karlsruhe 1

1 Abstract

BLUEWAND is a small device that can be used to control other Bluetooth enabled devices by

hand-movements. It can be used with a mobile phone or a DiscMan, during a beamer presen-

tation, or to play games while being on the move. BLUEWAND is also suited for controlling

machines on the factory floor and supporting disabled people.

Technically, BLUEWAND is based on a 4-axis accelerometer system combined with specific

analysis algorithms that detect hand-movements and extract both movement and pointing di-

rection. It employs two Analog Devices ADXL202E sensors and an Atmel AVR ATmega103

microcontroller. We have built a complete working prototype and integrated it into a common

operating system, enabling various sample applications to use the BLUEWAND.

2 System overview

2.1 Vision

Bluetooth technology is promoting the trend of the vanishing computer. Most obviously, Blue-

tooth helps to break up universal machines into separate functional entities, e.g., earphone,

mobile phone, and PDA. As a result, the electronic world decomposes into highly specialized

tools. Given this vison, there is an immediate need for a specialized control device that acts as

human computer interface (HCI) to all these devices.

BLUEWAND - Karlsruhe 2

2.2 Objectives

BLUEWAND is designed to provide a HCI for situations where other forms of HCI would be

unnatural. Typical examples that guided our design process are:

� Audio applications consisting of an earphone and e.g. a mobile phone or DiscMan where

both involved devices are an awkward place for the HCI since one is plugged into your

ear and the other stored safely in your clothing or in a backpack.

� Beamer presentations where the ease of using a laser-pointer is still unparalleled by any

digital control device.

� Mobile gaming of the future where people use head-mounted devices as display and

BLUEWAND e.g. as laser-saber.

During the design process it became clear that the BLUEWAND might also be useful for other

purposes besides the major use-cases that guided our design: Directing robots and other ma-

chines on the factory-floor or construction sites by demonstrating the desired movements;

Providing authentification for access control by a combination of cryptographic key stored in

the device with a personal signature-movement that protects against loss or theft of the BLUE-

WAND; Guiding blind people in unacquainted areas. In order to ease a future universal usage,

BLUEWAND should also be able to replace various devices like remote controls, joysticks, etc.

2.3 Team organization and design methodology

After defining our objectives, we cut the project into different tasks, each of which was as-

signed to a team member who became responsible for that task. These tasks were: sensor

BLUEWAND - Karlsruhe 3

system, hardware (excluding sensors), Bluetooth stack, software aspects (excluding BT stack

and applications), and the two different application scenarios ”controlling” (DiscMan, mobile

phone, etc.) and ”pointing” (mouse, joystick, etc.). Depending on individual work-load from

lectures and other university activities some team members were concerned with more than

one task.

Collaboration within the team was ensured by regular meetings of the whole team, where in-

terfaces between the different tasks were discussed and decided. Additionally, these meetings

gave us the opportunity to help one another with problems that occured within the individual

work packages.

Due to the different nature of the tasks, we also pursued different design methodologies. They

are more closely described in section 3. To share specifications, source code, documentation,

and other project material, we used the Concurrent Versions System (CVS).

2.4 Performance requirements

To meet the objectives listed above, we designed BLUEWAND to comfortably fit into the hu-

man hand. This limited not only size but also weight of the device. Both requirements then

influenced most of the design decisions (power supply, power consumption, sensor technol-

ogy, etc.) as will be discussed in the following. Since BLUEWAND aims at the mass market,

we paid special attention to cost and manufacturability issues.

BLUEWAND - Karlsruhe 4

2.5 Innovation and Related Technology

Data gloves are a well known tool for digitization of hand-movements. However, we think

that permanently wearing a glove is a handicap in practice, keeping users from using it widely.

BLUEWAND is a cost-effective tool that focuses on pointing and controlling. Thus the over-

head of a full data glove can be avoided.

We know of two other projects that pursue the same approach, yet are based on different

measurement principles:

� IBM has shown a prototype of a wrist-watch named WatchPad that contains a 2-axis

accelerometer. Since a watch can be worn permanently without blocking one’s hands,

this is a very good place for this device. However, such a solution is only capable of

detecting arm movements not the much more common hand movements. Even more,

BLUEWAND is based on a 4-axis system yielding the full spatial orientation.

� Gyration offers a pointing device (GyroMouse) that is based on a miniature gyroscope.

Due to the different measurement principle, GyroMouse is better capable of detecting

rotations. BLUEWAND on the other hand benefits from its absolute tilt measurement and

the ability to detect both linear and rotational movements.

The current interest in employing accelerometers or gyroscopes as HCI shows in our opinion

the great potential behind these ideas.

BLUEWAND - Karlsruhe 5

3 Implementation

3.1 Hardware

The hardware design was governed by the need for a small, lightweight and cost-efficient

device. This guided our choice of microcontroller and sensors and led us to use SMD parts

where possible. Some trade-offs had to be made, since our design had to house the Ericsson

Bluetooth module that we were provided with (see below).

In the beginning we used a bread board and the Atmel STK300+ development kit to test our

design. Timing conditions were measured using an oscilloscope. After a stable design stage

was reached, the circuit was transformed into a printed circuit board by the EAGLE layout

programm. Actual manufacturing was outsourced to a company specialized on that task (see

cost table 1).

3.1.1 Microcontroller: Atmel AVR ATmega103

BLUEWAND is based on the Atmel AVR ATmega 103 microcontroller. This is a high-performance

low-power RISC architecture with 4 kB of internal SRAM. Its 128 kB, in-system programmable

flash facilitates quick development cycles. The on-chip UART provides connection to the

Bluetooth module. The 16-bit timer/counter can capture interrupt timestamps needed for the

sensors. In the BLUEWAND, the ATmega 103 is operated at 7.3728 MHz, i.e. 22 % above

the specified value of 6 MHz but below the maximum value of the AVR family. This clock

frequency matches the UART baud rate, gives us a little bit of extra computing power, and has

been proven to work stably in the BLUEWAND.

BLUEWAND - Karlsruhe 6

Figure 1: BLUEWAND held in the human hand – Red arrows show sensor axes

3.1.2 ADXL202 accelerometers

Movements of the BLUEWAND are tracked by two ADXL202 accelerometers from Analog

Devices. These sensors are low-cost, low-power, complete 2-axis accelerometers, available as

SMD packages. Compared to gyroscope approaches, these sensors allow us to measure the

absolute tilt values (i.e. no drift in measurements) and the full lateral movement of the BLUE-

WAND. As one sensor can track two orthogonal axes, we had to use two orthogonal sensors

(i.e. four axes) to track the full 3D orientation. Since the casing of the final BLUEWAND

product is supposed to fit into the human hand in one defined orientation only, we can use the

fourth (i.e. duplicate) axis to detect wrist rotation (cf. figure 1). To realize this specific ori-

entation, the sensors were placed together with their external resistors and capacitors on two

mini-boards mounted upright on the board via pin connectors. The complete arrangement of

the sensors and their axes is also shown in figure 2. We decided to use the digital output to

ensure a better signal quality. The sensors provide analog and digital output. The latter uses

BLUEWAND - Karlsruhe 7

Figure 2: BLUEWAND Board with both sensor mini-boards attached (red boxes)

duty cycles that are proportional to the acceleration on each of the corresponding axes. A duty

cycle is the ratio of pulse-width
���

to period � (cf. figure 3).

3.1.3 Aquisition and preprocessing of sensor output

The sensor output lines are directly connected to the I/O ports of the ATmega103. Additionally,

the sensors trigger an interrupt each time one of the signals changes. This is achieved by

combining the sensor signals using XOR-gates. Two monoflops, one reacting on a falling edge

and the other on a rising edge, generate a pulse that is long enough for the interrupt routine

to record the sensor values. This is needed to properly identify sensor state and interrupt

timestamp. The outputs of the monoflops are wired through an OR-gate to the interrupt capture

pin of the AVR ATmega103.

BLUEWAND - Karlsruhe 8

XOR signal

interrupt strobes

sensor 1 axis 1

sensor 1 axis 2

T

ti i+1t

Figure 3: Duty cycles of the sensors and generation of interrupt strobes

3.1.4 Connection of Ericsson Bluetooth module

The BLUEWAND is equipped with connectors for the UART and power supply pins of the

Ericsson Bluetooth module, so that the module can be put (upside-down) on the board. Ad-

ditionally, the microcontroller’s TxD and RxD ports are connected to a MAX232ECSE level

converter. This step is only required because we didn’t want to change the provided Erics-

son module. In a final product, the level converter is obsolete: Then the voltage can also be

changed from 5V to 3.3V, thus further reducing the power consumption.

3.1.5 Power Supply

We use a Maxim MAX1674 step-up converter as power supply for our board, producing a

stabilized 5V output from two AA batteries, keeping size and weight of the device low. The

achieved battery lifetime is approximately one day, which is rather acceptable. In a final

product, we could even use a single AA battery to provide the minimum 0.7V required by

BLUEWAND - Karlsruhe 9

Figure 4: BLUEWAND board with mounted Ericsson bluetooth module and power supply

the MAX1674. This was not possible with our prototype, as the level converter had stability

problems when running at this voltage. A final board could hence not only be considerably

more power efficient, but also more lightweight.

3.1.6 Interfaces

Besides the sensors and the UART, our board has several external interfaces:

� In-circuit programming interface: The AVR ATmega103 is programmed using a simple,

STK200 compatible dongle attached to the parallel port of the PC. As the TxD and RxD

pins of the UART interface are also used as MISO-MOSI programming pins, an HC

4053 multiplexer enables us to program the microcontroller without hardware changes.

1

1We found an error in the official documentation of the STK300+ board. The first pin of the microcontroller
(PEN) is connected to Vcc, not ground as indicated.

BLUEWAND - Karlsruhe 10

� Two status LEDs, indicating power and programming status, enable us to control the

status of our board. Further LEDs can be attached to provide end-user feedback.

� A button is needed for point and click applications. The prototype has solder pads for a

button. In the final product this button can be mounted at the casing of the board.

� For haptical feedback to the user, a small circuit is integrated on the board to control a

vibration stimulator. We use a small motor with an excentrical weight that we took from

a mobile phone add-on. This vibration stimulator should also be mounted at the casing

of the final product.

The overall circuit schematics is shown in figure 3.1.6. The total cost of our prototype is given

in table 1. The total weight of BLUEWAND is 100 g (25 g BLUEWAND board, 15 g Ericsson

module, and 60 g batteries).

Part costs
1 ATmega 103 22.50 $
2 ADXL202 39.90 $
1 MAX1674 1.60 $
1 MAX232 2.10 $
1 Vibration Engine � 8.95 $
1 Board 31.25 $

TTL compatible glue logic, resistors, capacitors � 10 $�
116.30 $

Table 1: Total costs of the prototype’s hardware components

3.2 Data Capture

As described above, the accelerometers are connected to the AVR ATmega103 such that edges

in the sensor signals trigger an interrupt which automatically records a 16bit-timestamp. At

BLUEWAND - Karlsruhe 11

Figure 5: Circuit schematics

BLUEWAND - Karlsruhe 12

7.373MHz, the corresponding timer wraps every 8.89 � s, so the sensors are required to run at

more than 112 cycles per second. designed to work with 184 cycles and a A 10Hz low-pass

filter in the accelerometers satisfies the Nyquist condition and reduces noise in the acceleration

measurement. Both cycle-time and low-pass filter can be controlled by the capacitors and

resistors on the sensors’ mini-boards. The expected noise of well below 1% is confirmed by

our results.

Upon each interrupt request the AVR ATmega103 reads the four sensor output lines and stores

the pattern together with the corresponding timestamp in a circular buffer. All further prepro-

cessing is done outside the interrupt handler in order to keep the dead time as low as possible2.

Rising and falling edges are combined to calculate both the duty-cycle
�	�

and the sensor cycle

� of the corresponding axis (cf. figure 3). Since � is only slowly varying, the rare case of an

erroneous measurement is detected by a sanity check on � . If a value is failing this test, the

corresponding axis is marked as invalid for that sample point.

3.3 Data Analysis

These raw acceleration values can either be used directly or be subjected to further preprocess-

ing. One possible step is scaling the raw values to physical values using the gauge provided by

the earth’s gravitational field. The required gauge values need to be measured for all three fun-

damental orientations while the device is in rest. These values can be stored in the EEPROM

since they only need to be measured during initial calibration of the BLUEWAND.

Another preprocessing step is the separation of tilt and motion-induced acceleration. After test-

ing several approaches we came up with our fundamental assumption that both components

2The same care was applied to all other parts of the code where interrupts had to be disabled for various
reasons.

BLUEWAND - Karlsruhe 13

can be separated due to their different timescales: Tilt is assumed to be either only slowly

varying or – if changing more quickly – to change steadily to a new value without oscillation.

Thus we can assume all oscillations on short timescales (less than about 300ms) to be caused

by movements, i.e., accelerations followed by retardations. This separation is achieved by a

least-square fit procedure with a window of 64 sample points. The fit is performed both for-

wards and backwards. Afterwards, both fits are combined by a weighted selection such that the

resulting fit closely follows even sharp bents in the tilt curve instead of erroneously smoothing

them out (cf. figure 6). This algorithm proved to be the best variant among many approaches

we studied. The inevitable latency that is introduced by the 300ms fit window has shown to be

pretty acceptable in practice3. As an additional advantage, the computing complexity of the fit

algorithm does not depend on the window size, yielding a good performance.

After the separation of tilt and motion-induced acceleration the latter can be integrated to a

velocity vector. Depending of the separation accuracy, this integration may or may not be

sufficiently exact to match
���
 after a movement. To avoid drifts by erroneous velocity

residuals, our analysis algorithm resets the velocity to
���
 if the acceleration change falls

below a certain threshold (cf. figure 7).

3.4 Bluetooth stack

Our Bluetooth [1] software operates within two environments that are bridged via the Blue-

tooth link: firstly, sensor data that is gathered and preprocessed on the BLUEWAND, secondly,

it has to be further processed on the controlled device. The BLUEWAND software needs to

run on an AVR ATmega103 microcontroller, i.e. it has to work with less than 4 kB of RAM

3This result might be surprising if one knows that the human’s auditive cortex is sensitive to latencies as small
as 100ms. However, haptical feedback seems to be less rigorous.

BLUEWAND - Karlsruhe 14

Figure 6: Single axis showing tilt-like hand-movement. Raw data (blue) shows saccadic movement
that is typical for human motion. Smoothed data (red) contains undistorted tilt.

and 128 kB of flash memory, while our sample applications are implemented on a PC running

Linux. Since up to now no flexible and free Bluetooth stack for the AVR ATmega103 has been

available, we decided to write our own. Things looked different on the Linux PC: the BlueZ

Bluetooth stack is integrated into the linux kernel since version 2.4, Axis Communication has

opensourced its version of the OpenBT stack and IBM has made its BlueDrekar stack avail-

able. But since even the ”official” stack (BlueZ) has stability problems, and since we needed a

stack for the AVR ATmega103 anyway, we decided to combine the AVR and Linux Bluetooth

stacks to make a single, flexible and portable stack.

BLUEWAND - Karlsruhe 15

Figure 7: Single axis showing thrust-like hand-movement. Lower curves show raw and smoothed
data. Upper curves (black) show integrated data, i.e. velocity values. Note that an unsteady background
and motion timescale above 300ms (right figure) can lead to residuals that the algorithm automatically
resets as soon as the movement stops.

3.4.1 Development environment

Thus, we had to write a software which would be able, with a few exceptions, to compile

for both a Linux host computer and an AVR ATmega103 microcontroller. The stack design

was separated into platform dependent (UART communication, device initialization and de-

bugging/error output) and platform independent (HCI implementation, Bluetooth stack core)

routines and modules.

Crossdevelopment was quite easy, as the GNU toolchain (containing the GNU C compiler,

assembler, linker, object dumper), a conforming freestanding implementation of the standard

C library (that is, a compliant subset of the ANSI C library) and a flash program to upload the

software were available for the AVR microcontroller family. With these opensource, UNIX

based tools, we were able to write platform independent code. Special attention was given to

portability issues on the host side: the stack conforms to the Single Unix Specification [2], and

care was given to byte order and memory alignment issues, so the software would also work on

BLUEWAND - Karlsruhe 16

Platform independent

Platform dependent

Bluetooth Stack

Device

HCI

L2CAP

Serial Output

Callbacks

Application

Figure 8: Internal organization of the stack

other UNIX flavors and hardware architectures (our Bluetooth stack was tested on Linux/x86,

Linux/Sparc, OpenBSD/Sparc, HP-UX/PaRISC and tru64/alpha).

3.4.2 Stack design

The Bluetooth stack is split into three main parts: device handling (initializing the device,

packing and sending HCI commands), HCI handling (unpacking HCI commands, HCI state

machine) and L2CAP handling (unpacking L2CAP commands, L2CAP state machine). The

final application interacts with the Bluetooth module using setup functions, and by passing

a callback structure to the HCI state machine. The stack calls specific application functions

upon device initialization, connection establishment, pincode request, received data or when it

is idle, allowing the application to do its own work. Figure 8 depicts the internal organization

of the stack.

The BLUEWAND Bluetooth stack was designed to support two application scenarios. In the

first scenario, depicted in Figure 9, the host side contacts the BLUEWAND, which then starts

transmitting sensor data. The host application makes a Bluetooth inquiry, and pages devices

BLUEWAND - Karlsruhe 17

BlueWand Host side application

authenticated Bluetooth link

sensor data

configuration parameters

Figure 9: First scenario

matching our specifically defined BlueWand class of device. After an authenticated connection

is established (the AVR ATmega103 EEPROM stores a pincode that is used to establish a

common link key), the AVR ATmega103 starts sending connectionless L2CAP packets (format

is shown in Figure 10) to the host side, containing the sensor data. Additionally, the host side

can send configuration packets to the BLUEWAND in order to configure various parameters,

such as sensor calibration, requested amount of preprocessing, etc. BLUEWAND will mostly

be used in short sessions; therefore, the Bluetooth authentication algorithms, while having

some critical security issues [4], is considered to be secure enough.

In the second application scenario, depicted in Figure 11, the BlueWand device periodically

makes a Bluetooth inquiry, in order to find devices that offer to be controlled by the BlueWand

Figure 10: Data packet format

BLUEWAND - Karlsruhe 18

BlueWand

authenticated Bluetooth link

Bluetooth
inquiry

Commands

Bluetooth information

Audio playback device

Audio data

Controlled device

Figure 11: Second scenario

(for example, a CD player, a VCR, or a PC). If those devices are able to generate audio feed-

back, devices which can playback this feedback are searched. The BLUEWAND then makes

an authenticated connection to the device to be controlled, sending it the information required

to connect to the playback device (the Bluetooth device address, as well as the clock offset

difference between its own internal clock and the remote clock). The controlled device can

then efficiently connect to the playback device without having to make an inquiry. It then

sends audio feedback of commands triggered by the BLUEWAND via this new connection.

The same mechanism is supposed to be used to efficiently connect to a BLUEWAND that is

moving, e.g. in a building. In such a scenario, the rendez-vous layer protocols for Bluetooth

devices designed at the ETH Zürich [3] can be used to drastically reduce the number of re-

quired inquiries.

BLUEWAND - Karlsruhe 19

3.4.3 Tradeoffs and debugging

Obviously, the limited RAM- and ROM-size of the AVR ATmega103 microcontroller forced

some constraints upon the design of the stack. In our first approach we used a cut-down

version of the GNU libc memory allocator that was provided in the AVR libc. There upon,

the Bluetooth stack was implemented using dynamic structures, for example for queuing HCI

commands, or maintaining Bluetooth peer lists while doing Bluetooth inquiries. Memory us-

age was measured with the dmalloc library, which makes an exhaustive report of used memory,

allocation frequency and wasted memory space due to fragmentation of the program it is linked

with. Although the dmalloc library reported a maximal memory usage of only 800 bytes for

the finished application, the Bluetooth stack ended up overwriting part of the function call

stack. Thus we were forced to rewrite the stack to use static memory structures, replacing

the linked lists and dynamic arrays with static arrays. Memory usage can now be controlled

by defining maximum numbers for simultaneous connections and number of peers. Accurate

memory measurements are given in Table 2. Our CPU time measurements showed that 95 %

of the AVR application time is spent idling, allowing for massive power consumption savings

by using the ATmega103 sleep capabilities (which we don’t use by now), and for extended

preprocessing.

While working with the Xircom CreditCard Bluetooth adapter, we had problems with serial

communication to this PCMCIA card. When the throughput increased (for example when

receiving sensor data), the Xircom card seemed to randomly send duplicate bytes, confusing

the Bluetooth stack. Even though our Bluetooth stack was able to resynchronize with the

adapter most of the time, this still was a problem, which could not be resolved by updating the

BLUEWAND - Karlsruhe 20

Application Code size Memory usage Application parameters

AVR (stack-avr) 12600 bytes 840 bytes (1 peer, 1 connection)

Linux/x86 (bt-mouse) 9888 bytes 2012 bytes (15 peers, 15 connections)

Table 2: Memory requirements

firmware. This problem was also confirmed by the developers of the BlueZ stack. In order to

avoid this problem we used an Ericsson module instead.

Since most of the development was done on the host side, debugging was fairly easy. On the

AVR ATmega103 microcontroller, on the other hand, the only available UART was already

used by the Bluetooth controller. One possible solution would have been an i � c debug con-

nection. But since there was no slave i � c implementation available under Linux, we instead

implemented a special gateway program that runs on a Linux PC with two serial ports. This

program filters out debugging messages before the UART data is sent onward to the Bluetooth

module. The AVR ATmega103 marks these messages by prepending a special ”magic key”

bytestring to the message before sending them out to the UART.

3.5 The BLUEWAND Audio Player

3.5.1 Idea

Among our initial ideas for BLUEWAND was a control device for a small, portable audio

player. There are several kinds of highly successful personal audio players on the market,

based on either Compact Disc, MiniDisc or MP3 technologies. All of these portable players

use either buttons on the device or a remote control for user input and a liquid crystal display

(LCD) for information output. These personal audio players are designed to be small enough

BLUEWAND - Karlsruhe 21

to fit into a pocket; we believe it to be quite awkward to press buttons located directly on the

device to operate them. An independent and wirelessly controlled device for command input

will increase the comfort of portable audio players.

3.5.2 Concept

With the BLUEWAND, the user can operate the portable audio player using gestures to express

basic commands such as: Play, Pause, Stop, Next/Previous title/album, Volume up/down.

We want the user to be able to leave the audio player in their pocket. Therefore, there is no

visual feedback through the display, but through the audio channel instead. As the portable

player has the hardware capabilities for audio playback anyway, both devices can be linked via

Bluetooth; we simply have to store prerecorded voice samples like ”Play”, ”Stop” etc. in the

player’s memory for audio feedback.

3.5.3 Gestures

The BLUEWAND is sensitive to movements in three dimensions. Additionally, it has a button

the user can operate to indicate that a movement with BLUEWAND actually is a command.

Otherwise, the audio player could misinterpret any random movement as a command.

We have kept gestures as simple as possible, using the six main vectors of three-dimensional

space and being context sensitive. When the user gives a command through a gesture, the

audio feedback of the command is played back from a prerecorded sample. If the gesture has

been understood correctly, the user confirms it with the ”Yes” command. A command can

optionally be canceled with a ”No” gesture or by waiting for two seconds. Gestures are given

in table 3.

BLUEWAND - Karlsruhe 22

command gesture
Yes (Confirmation) quick forward movement
No (Escape) quick backward movement
Play (from Pause or Stop mode) quick forward movement
Stop (from Play or Pause mode) quick backward movement
Pause (from Play mode) quick forward movement
Increase volume upward movement
Decrease volume downward movement
Next title single rightward movement
Next album double rightward movement
Previous title single leftward movement
Previous album double leftward movement

Table 3: Commands of the BLUEWAND Audio Player and their gestures. Forward means a
movement away from the body. A double rightward/leftward movement means to turn the
BLUEWAND right/left twice within two seconds.

3.5.4 Implementation

Since we do not have a customized Bluetooth-enabled portable audio player, we modified

an existing MP3 player running on a laptop computer with Linux. We used the open-source

”madplay” [7], program which is a command-line operated MP3 player, as a basis for our

Bluetooth audio player. It was enhanced to receive sensor data packets from our own Bluetooth

stack. Gestures are recognized by comparing the velocity peaks sent by the BLUEWAND with

threshold values.

To be able to play MP3 audio files and voice command files at the same time, we use the

Analog Realtime Synthesizer ”aRts” [8] from the KDE project. The artsd sound server handles

playing multiple sound files simultaneously on the sound hardware.

3.5.5 Future Applications

We envision the use of BLUEWAND for other mobile devices that have restricted room for

buttons and a display. Mobile phones are often operated through menus with a two-axis con-

BLUEWAND - Karlsruhe 23

trol. We can easily define four gestures according to this menu control. A visual feedback

isn’t needed when the user has a headphone connected via Bluetooth or cable to the phone.

Menus can be read to the user by the phone. Even new data like telephone numbers can be

entered either through gesture recognition (using BLUEWAND) or voice recognition (using

the microphone). Even more, with gesture recognition and audio feedback, blind people get a

simple-to-operate means for many advanced appliances.

Imagine a world were clumsy mobile phones, audio players and personal digital assistants can

be kept inside your jacket or briefcase. All you need to communicate with them is a light-

weight wireless headset and a BLUEWAND in your hands!

3.6 Linux Integration for BLUEWAND

So far, we have described the BLUEWAND and a single demo application. In the following,

we present our approach to integrate the BLUEWAND with the Linux input system. Thereby,

all Linux applications can be controlled by the BLUEWAND without being adapted.

3.6.1 Overview

Although there are already several Bluetooth stacks available for Linux, up to now no sys-

tem supports a flexible management of resources necessary to handle a changing diversity of

Bluetooth devices, including BLUEWAND. The Linux input core (a part of the Linux console

project [5]) supports a device and driver management for keyboards, joysticks and mice. As

a first step towards the integration of BLUEWAND, we started with a modular, component

based device manager. Using this methodology, it was possible to encapsulate device drivers,

communication and management layers into different orthogonal components and services.

BLUEWAND - Karlsruhe 24

Convertion

Device
Specific

Data

Device Y

Device X

Joystick

Keyboard

Mouse

BTRC

Filter
Device

......

Linux

Kernel

X11

Application
Standard

native
Application

native
Application

Device
and

Connection
Manager

Name− and

Server

BT−Stack Local
Connection

Authentication

Figure 12: Possible Connection Scenario for a BLUEWAND enabled system

3.6.2 Implementation

The management system consists of a set of simple services to locate and identify devices

and interfaces and connect these. The overall system is composed of three base services, a

Connection Manager, a Name Server and an Authentication Server. These services implement

a simple resource and connection management for mobile devices, their attachable drivers

and specifies an easy connection interface for higher-level protocols, like BTRC [6]. Figure

12 gives a brief overview of a possible system. The service interfaces are specified in the

CORBA Interface Definition Language.

3.6.3 Input and Output Devices

Input and output devices represent all kinds of external entities that can send data (input de-

vice), receive data (output device) or both. The manager views these devices as proxies which

represent hardware or software interfaces. Between these it builds connections and automati-

cally translates data from one format into another via a filter.

BLUEWAND - Karlsruhe 25

3.6.4 Filters

The integrated filters can be used to implement further data preprocessing extending the steps

explained in chapter 3.3. The design of the device manager allows stacking of multiple filters,

allowing transparent data transformation to be performed at any stage. For example, data

delivered by an input device can be processed by a gesture recognition filter. The thus extracted

commands are then forwarded to further local or remote devices.

3.6.5 Integration of BLUEWAND

In the course of this project, several output and filter components were implemented, for in-

stance a bus mouse driver which can be connected to the the Gnu Pointing Manager (GPM)

or the X11-server and thereby enabling the use of BLUEWAND in Linux applications. Thus,

it is possible to control the mouse cursor with the BLUEWAND. This enable us to use existing

programs like xstroke for script recognition while writing to a virtual white board. A special

kernel module, that exports the interface of the Linux input core to the Connection Manager,

was implemented in order to use the BLUEWAND with other output interfaces such as joysticks

and keyboards. This way it is possible to control various Linux applications (for example the

X Multimedia System [XMMS], a graphical multimedia player, or X-MAME, a video game

emulator) with the BLUEWAND.

BLUEWAND - Karlsruhe 26

4 Summary

Our design goal behind BLUEWAND was to create a working tool that would both fit into our

vision of a world of specialized tools linked via Bluetooth, and, at the same time, be realistic

enough to suit production for the mass market. Special care was taken to constantly validate

our design throughout the various steps of the project. Thereby, we were able to reveal and

resolve several obstacles that had not been obvious in the beginning (e.g. bugs in material we

tried to build upon).

By clearly defining tasks and associated personal responsability, we were able accomplish our

goal in the given timeframe, and even had time left to start implementing sample applica-

tions demonstrating our vision. The Linux input core extension we developed provides useful

functionality even beyond the BLUEWAND project itself.

Our future work will be focused on further improving the analysis of the sensor data, poten-

tially leading to a graffiti alphabet of gestures, and on location-based services using stationary

controlled devices as beacons. Resources in the microcontroller we used are still sufficient

to make both extensions conceivable. Maybe, one day, BLUEWAND will really become a

universal tool in everyday life.

BLUEWAND - Karlsruhe 27

References

[1] Bluetooth SIG, Specification of the Bluetooth System (Core), http://www.bluetooth.com/

[2] The Open Group, The Single UNIX Specification, version 3, http://www.unix-

systems.org/version3/

[3] Frank Siegemund and Michael Rohs, Rendezvous Layer Protocols for Bluetooth-Enabled

Smart Devices, In Proc. ARCS 2002

[4] Juha T. Vainio, Bluetooth Security, http://www.niksula.cs.hut.fi/ jitv/bluesec.html

[5] Linux Console Project, http://linuxconsole.sourceforge.net/input/input.html

[6] Ivan Ivanov, Manuel Odendahl, Alexander Paar, Dr. rer. nat. Fridtjof Feldbusch, A Blue-

tooth Remote Control System, Proceedings of the 1st Int. Conference on Architecture of

Computing Systems, ARCS, April 2002.

[7] Rob Leslie, MAD: MPEG Audio Decoder, http://www.mars.org/home/rob/proj/mpeg/

[8] KDE Project, Analog Realtime Synthesizer, http://multimedia.kde.org/arts.php

