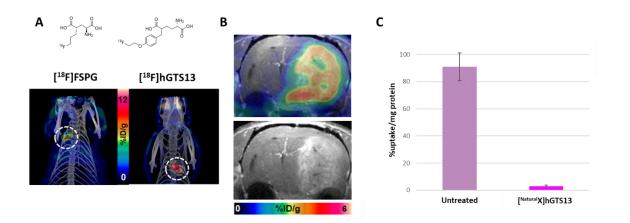
hGTS13: a promising halogenated theranostic for high-grade glioma and Non-Small Cell Lung Cancer

<u>Rim Malek</u>¹, Abraham Moses¹, M. Tansel Kendrili², Lawrence Recht² Corinne Beinat¹

¹Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, 94305, USA

²Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA


Introduction: System x_c^- is an amino acid antiporter playing a key role in cellular redox homeostasis. It is overexpressed in multiple cancers such as glioma and Non-Small Cell Lung Cancer (NSCLC) and is associated with cancer cell proliferation, invasion, metastasis, development of chemo-resistance and poor survival.^[1,2] Consequently, system x_c^- is a promising target for targeted radionuclide therapy (TRT). [¹⁸F]FSPG (Fig. 1A) is the most widely studied radiotracer targeting system x_c^- . However, it is limited by its high uptake in inflammation, and elevated kidney and pancreas uptake. [¹⁸F]hGTS13 (Fig.1A) is a second-generation radiotracer targeting x_c^- showing an improved tumor uptake in NSCLC rat models, and lower pancreas and kidney retention but higher liver uptake compared to [¹⁸F]FSPG.^[3] We report here the evaluation of [¹⁸F]hGTS13 in rat model of high-grade glioma and the effect of the replacement of ¹⁸F by the natural isotope of a therapeutic halogen (^{Natural}X) on the celluar uptake of the hGTS13 scaffold in NSCLC cells.

Methods: First, we evaluated [¹⁸F]hGTS13 tumor uptake in rat models of glioma. Sprague-Dawley rats (n=5) were orthotopically implanted with C6 glioma cells into the right entorhinal cortex and tumor growth monitored by contrast-enhanced T1-weighted MRI. 3-weeks after implantation, rats were administered ~25 MBq [¹⁸F]hGTS13 and imaged for 60min. Next, we realized a competition assay using NSCLC cells H460. Cells were plated 24h prior to the experiment. The next day, media was replaced by HBSS for the control (n=4) and 0.5M of [^{Natural}X]hGTS13 in HBSS for the tests (n=4) and cells were incubated 10-min at 37°C. Then, 0.185 MBq [¹⁸F]hGTS13 were added and the cells incubated for 60-min. Media was removed, cells washed then lysed and the activity counted.

Results: Dynamic PET/CT imaging of C6-glioma bearing rats with [¹⁸F]hGTS13 revealed high and sustained uptake within the intracranial gliomas (Fig. 1B). Tumor uptake peaked within the first few minutes post-injection ($4.8 \pm 0.8\%$ ID/g) and remained steady throughout the scanning with a tumor-to-background ratio of 18.1 ± 4.8 at the 60-min timepoint. The competition assay in NSCLC cells showed a strong inhibition of [¹⁸F]hGTS13 uptake by co-incubation with [^{Natural}X]hGTS13 as the uptake decreased from 90.9 ± 10.1% uptake/mg protein to 3 ± 0.6% (Fig1.C).

Conclusions: Our imaging results prove that $[{}^{18}F]hGTS13$ has a high and sustained glioma uptake in rats. Our NSCLC cell study demonstrates that hGTS13 maintains a good binding affinity for x_c^- after the replacement of ${}^{18}F$ by the natural isotope of a therapeutic halogen. We expect similar results when using the therapeutic radionuclide. Hence, $[{}^{18}F/X]$ -hGTS-13 is a promising small molecule theranostic pair for high-grade glioma and NSCLC.

Acknowledgments: We thank the Stanford Cyclotron and Radiochemistry Facility and Stanford Small Animal Imaging Facility.

Figure 1. A. Structures of the radiotracers [¹⁸F]FSPG and [¹⁸F]hGTS13 and their comparative tumor uptake in NSCLC rat models. Images are all shown 60-70 min post-injection. **B**. Representative ¹⁸F-hGTS13 PET/MRI image of a rat bearing an orthotopic C6 glioma, image is summed 30-60min post-injection. **C**. Competition study of [¹⁸F]hGTS13 with the natural halogenated therapeutic counterpart in H460 cells at 60 min post-addition of radioactivity.

References:

- [1] J. Liu, X. Xia, P. Huang, *Molecular Therapy*, 2020, 28, 2358.
- [2] Y. Huang et al., Cancer Research, 2005, 65, 7446.
- [3] C. Beinat et al., Journal of Nuclear Medicine, 2019, 60, 1812.