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Table: Numerical results for test set 1.

n MINRES SCG SWI(2) SWI(5) SWI(8)
768 Iter 563 191 237 221 219

CPU 0.0254 0.0697 0.0161 0.0205 0.0327
3 072 Iter 2 001 378 429 427 384

CPU 0.3808 0.8316 0.0838 0.1403 0.1486
12 288 Iter 7 367 735 827 818 741

CPU 4.4968 11.0272 0.5950 0.9618 1.2020
27 648 Iter 16 088 1 091 1 217 1 211 1 096

CPU 21.0000 49.7991 1.8228 3.1293 4.8511
49 152 Iter 27 974 1 435 1 609 1 601 1 462

CPU 64.1672 150.0516 4.4440 10.0289 13.8535
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Figure: Relative residual vs. k for test set 1 (n = 3072).
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Saddle-point problem

Given a function f : Rnx×ny → R1, find a saddle point z∗ = [x∗, y∗] ∈ Rn,
where x∗ ∈ Rnx , y∗ ∈ Rny and n = nx + ny , such that

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x , y∗), ∀x ∈ Rnx , y ∈ Rny .

Assumption.
Function f (x , y) is strongly convex in x and strongly concave in y .

⇒ There exists a saddle point z∗, and it is unique.
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Relation to unconstrained minimization

Observation.
When ny = 0, the variable y vanishes in f , and then the saddle point
problem is reduced to minimizing f (x) in x ∈ Rnx .

Aim.
Develop saddle-point search algorithms which, in the case of ny = 0,
would reduce to known unconstrained minimization algorithms.

Publications.
Burdakov O.P. Conjugate direction methods for solving systems of
equations and finding saddle points. I
Engineering Cybernetics (1982) 20, No. 3, pp. 13–19.

Burdakov O.P. Conjugate direction methods for solving systems of
equations and finding saddle points. II
Engineering Cybernetics (1982) 20, No. 4, pp. 23–32.
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Monotone equations

Let f (z) be sufficiently smooth. Denote

F (z) = E∇f (z),

where

E =

[
Inx 0
0 −Iny

]
.

Ef ′′(z) =

[
f ′′xx(z) f ′′xy (z)
−f ′′yx(z) −f ′′yy (z)

]
.

The saddle point problem is equivalent to solving the system of nonlinear
monotone equations

F (z) = 0.
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Oleg Burdakov (Linköping University) Saddle-point problems, monotone equations ISMP18, Bordeaux 6 / 28



Monotone equations

Let f (z) be sufficiently smooth. Denote

F (z) = E∇f (z),

where

E =

[
Inx 0
0 −Iny

]
.

Ef ′′(z) =

[
f ′′xx(z) f ′′xy (z)
−f ′′yx(z) −f ′′yy (z)

]
.

The saddle point problem is equivalent to solving the system of nonlinear
monotone equations

F (z) = 0.
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Properties of F (z)

f (z) is strongly convex-concave
⇓

There exists a scalar c > 0 such that, for all z ∈ Rn,

〈f ′′xx(z)px , px〉 ≥ c‖px‖2, ∀px ∈ Rnx ,

〈f ′′yy (z)py , py 〉 ≤ −c‖py‖2, ∀py ∈ Rny .

⇓

〈Ef ′′(z)p, p〉 = 〈f ′′xx(z)px , px〉 − 〈f ′′yy (z)py , py 〉
≥ c‖p‖2, ∀p = [px , py ] ∈ Rn,

i.e. the matrix Ef ′′(z) = F ′(z) is positively definite.

⇓
The mapping F is strongly monotone

〈F (u)− F (v), u − v〉 ≥ c‖u − v‖2, ∀u, v ∈ Rn.
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Line search for saddle point problem

zk+1 = zk + αkpk

Orthogonality-based line search:

〈E∇f (zk + αpk), pk〉 = 0.

Since f (x , y) is strongly convex-concave, the solution αk to this
equation exists and unique for any nonzero pk .

When ny = 0, the line search reduces to minimization of f (x) along
pk .
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A trade-off provided by the line search

Partitioning:
pk = [px , py ] and ∇z f (zk+1) = [∇x f ,∇y f ]

Assumption:
〈∇x f , px〉 6= 0 (⇒ 〈∇y f , py 〉 6= 0, because E∇f (zk+1) ⊥ pk)

Given a sufficiently small ε > 0, consider
f ∗x = mint∈[−ε,ε] f (xk+1+tpx , yk+1), f ∗y = maxt∈[−ε,ε] f (xk+1, yk+1+tpy )
⇓
t∗x = ±ε, t∗y = −t∗x
f ∗x = f (zk+1)−ε|〈px ,∇x f 〉|+o(ε2), f ∗y = f (zk+1) +ε|〈py ,∇y f 〉|+o(ε2)

Thus, the gain in minimizing f (x , yk+1) along px is equal to the gain in
maximizing f (xk+1, y) along py to the first-order approximation. This
means that the orthogonality-based line search provides in the resulting
point zk+1 a kind of ‘equal opportunities’ for a local minimization over px
and a local maximization over py .
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Newton’s method

Newton’s search direction: pk = −(f ′′k )−1∇fk = −(F ′k)−1Fk

Properties of the orthogonality-based line search:

αk → 1, k →∞
zk → z∗ superlinearly / quadratically
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Oleg Burdakov (Linköping University) Saddle-point problems, monotone equations ISMP18, Bordeaux 10 / 28



Conjugate direction methods for unconstrained
optimization

Let f(x) be a strictly convex quadratic function in Rn with f ′′ = A. Given
a system of conjugate directions {pi}n−1i=0 :

〈Api , pj〉 = 0, ∀0 ≤ i , j ≤ n − 1, i 6= j .

Then, for any starting point x0, the exact-line-search-based iterates

xk+1 = xk + αkpk

converges to x∗ in at most n iterations, because

〈∇f (xk+1), pi 〉 = 0, ∀0 ≤ i ≤ k

Q: How to build a sequence of conjugate directions?

Example: the conjugate gradient method
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Derivative-free conjugate direction methods for
unconstrained optimization

C.S. Smith (1962), M.J.D. Powell (1964):

Given a, b, p ∈ Rn. Let xa and xb be the minimizers of f (x) along p
from a and b, respectively. Then

〈A(xb − xa), p〉 = 0

Given a, b ∈ Rn and a linear subspace L ∈ Rm. Let xa and xb be the
minimizers of f (x) in the linear manifolds a + L and b + L,
respectively. Then

〈A(xb − xa), p〉 = 0, ∀p ∈ L
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Saddle problem search case

OB (1980, 1982):
Let f (x , y) be a strictly convex-concave quadratic function in Rn with
f ′′ = A.

Given a, b, p ∈ Rn. Let xa = a + αap and xb = b + αbp be such that

〈E∇f (xa), p〉 = 0 and 〈E∇f (xb), p〉 = 0,

respectively. Then
〈EA(xb − xa), p〉 = 0

Given a, b ∈ Rn and a linear subspace L ∈ Rm. Let xa ∈ a + L and
xb ∈ b + L be such that

〈E∇f (xa), p〉 = 0 and 〈E∇f (xb), p〉 = 0, ∀p ∈ L,

respectively. Then

〈EA(xb − xa), p〉 = 0, ∀p ∈ L
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Semi-conjugate directions

G.W. Stewart (1973), V.V. Voevodin (1979), OB (1980, 1982):

Ordered vectors p0, p1, . . . , pn−1 in Rn are called semi-conjugate, if

〈EApi , pj〉 = 0, ∀0 ≤ j < i ≤ n − 1.

Semi-conjugate direction methods:

zk+1 = zk + αkpk ,

where αk is produced by the orthogonality-based line search.

Properties:

〈E∇f (zk+1), pi 〉 = 0, ∀0 ≤ i ≤ k .

For any z0, the sequence zk converges to z∗ in at most n iterations.

When ny = 0, the semi-conjugate direction methods reduce to the
conjugate direction methods.
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For any z0, the sequence zk converges to z∗ in at most n iterations.

When ny = 0, the semi-conjugate direction methods reduce to the
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Semi-conjugate direction methods: Non-quadratic case

Local quadratic rate of convergence zk → z∗, OB (1982).

Sketch of the proof

1 If the search directions are uniformly linearly independent, then
zk → z∗ quadratically.

2 If, on the contrary, the convergence is not quadratic, then the search
directions must be uniformly linearly independent, which implies that
zk → z∗ quadratically.
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Numerical experiments

Saddle point problem for the quadratic function

f (x , y) =
1

2
zTAz + `T z ,

where

A =

(
A BT

B −C

)
∈ R(nx+ny )×(nx+ny ),

A,C � 0.

SCG - semi-conjugate gradient algorithm.
SWI - limited memory (sliding window) version of SCG.

Stopping criteria:
‖∇f (zk)‖2
‖`‖2

≤ 10−6.
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Test set 1 (Navier-Stokes equation)

` = (1, · · · , 1)T and the matrices A, B and C are defined as follows:

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 ,

B =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2 , C = diag(1, 2, · · · , p2) ∈ Rp2×p2 .

Here

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
· tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ being the Kronecker product symbol and h = 1
p+1 the

discretization meshsize.
The problem size is n = 3p2, where p = 16, 32, 64, 96 128 was considered.
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Table: Numerical results for test set 1.

n MINRES SCG SWI(2) SWI(5) SWI(8)
768 Iter 563 191 237 221 219

CPU 0.0254 0.0697 0.0161 0.0205 0.0327
3 072 Iter 2 001 378 429 427 384

CPU 0.3808 0.8316 0.0838 0.1403 0.1486
12 288 Iter 7 367 735 827 818 741

CPU 4.4968 11.0272 0.5950 0.9618 1.2020
27 648 Iter 16 088 1 091 1 217 1 211 1 096

CPU 21.0000 49.7991 1.8228 3.1293 4.8511
49 152 Iter 27 974 1 435 1 609 1 601 1 462

CPU 64.1672 150.0516 4.4440 10.0289 13.8535
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Figure: Relative residual vs. k for test set 1 (n = 3072).
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Test set 2

A = diag(1, 2, · · · , nx), C = diag(ny , ny − 1, · · · , 1),
B = [Iny , rand(ny , nx − ny )], ny = 0.8nx , ` = (1, · · · , 1)T

Table: Numerical results for test set 2.

n MINRES SCG SWI(3) SWI(6) SWI(9)
1 800 Iter 2 680 182 235 216 194

CPU 1.6227 0.2014 0.1336 0.1586 0.1515
3 600 Iter 5 466 255 335 304 269

CPU 11.6519 0.8854 0.6879 0.6685 0.6147
7 200 Iter 11 049 358 482 427 377

CPU 80.7257 3.7414 3.2795 3.0208 2.7506
14 400 Iter 22 238 501 696 595 531

CPU 622.1941 18.3640 18.7429 16.3657 15.0092
28 800 Iter 44 647 702 1 016 774 800

CPU 4976.7783 96.3985 111.2124 85.6512 90.5496
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Figure: Relative residual vs. k for test set 2 (n = 1800).
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Test set 3

A = ÂT Â + 1
nx
Wnx , B = randn(ny , nx), and C = ĈT Ĉ + Wny , where

Â = randn(nx), Ĉ = randn(ny ) and Wr = diag(1, 2, · · · , r).
ny = 0.8nx , ` = (1, 2, . . . , r)T .

Table: Numerical results for test set 3.

n MINRES SCG SWI(3) SWI(6) SWI(9)
3 600 Iter 4 072 504 550 530 548

CPU 40.5615 6.7709 5.4802 5.4223 5.6892
7 200 Iter 5 753 696 750 747 725

CPU 190.9926 28.2574 24.5692 24.1950 24.6226
10 800 Iter 7 157 864 912 896 907

CPU 640.1808 90.8115 80.0332 78.7759 80.3283
14 400 Iter 8 209 997 1 034 1 027 1 031

CPU 1259.3554 177.2851 157.7605 160.0064 161.6104
18 000 Iter 9 158 1 108 1 156 1 142 1 152

CPU 2278.7554 301.9440 273.5980 272.0086 275.4546
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Figure: Relative residual vs. k for test set 3 (n = 3600).
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Test set 4

System of linear monotone equations:

Az = `

A = ATA + c(B − B ′)
A = rand(n)
B = rand(n)
` = (1, 1, · · · , 1)T ∈ Rn

c = 0.1, 1, 10
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Table: Numerical results for test set 4 with c = 0.1.

n GMRES SCG SWI(40) SWI(50) SWI(60)
3000 Iter 1530 653 774 736 726

CPU 20.9385 43.0067 10.2724 10.7132 10.8520
6000 Iter 2244 766 1118 931 876

CPU 122.9305 141.5028 57.6757 49.0868 46.8783
9000 Iter 2814 884 1036 989 944

CPU 347.1497 323.4416 129.6058 117.4073 114.0603
12000 Iter 3011 947 1126 1181 1022

CPU 640.8991 556.3637 225.6072 248.1383 208.3967
15000 Iter 3592 1028 1171 1144 1131

CPU 1273.3257 892.4290 387.7717 381.3977 379.2692

Oleg Burdakov (Linköping University) Saddle-point problems, monotone equations ISMP18, Bordeaux 25 / 28



Figure: Relative residual vs. k for test set 4 (n = 3000, c = 0.1).
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Table: Numerical results for test set 4 with c = 1.

n GMRES SCG SWI(10) SWI(30) SWI(50)
3000 Iter 215 166 189 174 171

CPU 3.0300 4.2487 2.4171 2.2814 2.5199
6000 Iter 276 200 239 211 206

CPU 14.9939 17.2486 12.0735 11.1798 11.2197
9000 Iter 336 222 245 235 228

CPU 41.2403 40.3821 27.3158 26.9847 26.6925
12000 Iter 355 239 332 249 245

CPU 78.2420 77.2898 66.6002 50.7532 50.8405
15000 Iter 371 253 321 264 257

CPU 135.6248 130.9967 105.1391 87.9882 87.9408
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Figure: Relative residual vs. k for test set 4 (n = 3000, c = 1).
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Table: Numerical results for test set 4 with c = 10.

n GMRES SCG SWI(20) SWI(30) SWI(40)
3000 Iter 78 75 79 78 77

CPU 1.0892 1.2266 0.9830 0.9885 0.9855
6000 Iter 78 77 80 79 78

CPU 4.2441 4.7223 3.9465 3.9935 3.9919
9000 Iter 80 78 81 80 79

CPU 9.8569 11.1940 9.3261 9.4335 9.2561
12000 Iter 84 80 84 83 81

CPU 18.4798 20.8381 16.8601 17.1527 16.8352
15000 Iter 85 81 84 83 82

CPU 31.1470 33.5072 27.8080 27.3828 27.3301
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Figure: Relative residual vs. k for test set 4 (n = 3000, c = 10).
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