214

M. A. Saunders. The complexity of LU updating. In R. 5. Anderssen and R. P. Brent, editors,
The Complexity of Computational Problem Solving, pages 214-230. University of Queensland
Press, 1976.

THE COMFLEXITY OF LU UPDATING

IN THE SIMPLEX METHOD
M_A. Saunders

Al,flie.d., Mathematics Division, DSIR, Wellington, New Zealand

1. Introduction

Two Tmethods have become established as the most efficient implementations of the simplex

methed (Dantzig [3]) for solving the general large-scale linear programming problem

minimize GT xz

subject to Ax=b, 20,

These methods are based on the factorization B = LU/ , where § 1is the usual m x m basis
matrix, L is a product of permutation and elimination matrices, and ¥ is upper triangular.

They are

Method BG, due to Bartels and Golub [1], [2], implemented by Reid [8], [9], and
"y
Method FT, due to Forrest and Tomlin [u],
Their efficiency stems from the fact that the LU factorization of a general sparse matrix B
normally requires less storage than any other factorization. Furthermore the sparsity is
maintained remarkably well when L and U are updated to reflect a change of basis (when a

colump of B is replaced by some column from A). Experimental evidence to this effect has

been given by Tomlin [10] and Reid [9], for both methods.

215

1.1, QUALITATIVE COMPARISON

Suppose that the p-th column of B is replaced by some column aq from A , and let the

“partially updated" vector u be computed from the equation

The main features of either method for updating L and U are as follows:

*
1. the p-th column of U is deleted (giving U say)} and the vector u is appended

- * . .
as a new column, giving an intermediate matrix H# = [/ u] which is upper Hessenberg;

2. some elimination transformation E is computed such that ER is either a triangle

or a permuted trianglej
3. the new LU factors are B = L |J where

T =15l (stoved in product form)

and
¥ = EH {computed explicitly).

The difference between the two methods is in the choice of . E , and from an implementation
point of view this implies a vital difference in the data structure used for storing & . In
Methed BG, F is chosen primarily to maintain numerical stability and is such that additional
nonzery elements may be created in U . The simplest approach is to use an in-core linked list
for U ({e.g. Reid [8]), but problem size is then limited by the amount of real core storage
available, since the random-access nature of linked lists could cause what is known as thrashing
on a machine with a paged memory. An alternative is to use a simple ordered list and to make a
new copy of U {with appropriate changes) each simplex iteration. This would allow use of

either virtual memory or disk, but it effectively doubles the total storage required for U .

In contrast, Method FT was designed expressly to aveid insertion of nonzeros inte U , and
in fact nonzeros can only be deleted. This means U can be stored in a sequential disk file in
what amounts to ordinary preduct form: new columns are added one by one to the end of the file,
and no re-writing of pre;ious parts of the file is mecessary. The penalty for this significant
advantage is nimerical stability {(although in practice this is by no means catastrophic). Also,
the complexity of the method in terms of growth of nonzeros (see next section) appears from the

results of Reid [9] to be non-optimali.

216

Hence interest contimues in altermative methods. By investigating the complexity of Method
BG, our aim here is to find ways of handling arbitrarily large U's on a machine with a paged
memory. We avoid use of linked lists and prefer not to re-write unchanged parts of U .

1.2. COMPLEXITY . "

Since computational complexity involves the study of upper and lower bounds on the time
requived to execute an algorithm, our attention here focuses on the number of matrix elements
which must be manipulated each iteration of the simplex method. Thus we ﬁay ask the following

questions of any relevant method for updating LU factors.
Cl: How many nonsero alements (in E above} are added to L each iteration?
c2: What g the probable number of nonzeros in u , the new colum of U7
For Method BG we may alsc ask

€3: How much fill-in oceure at each iteration when H {e reduced to the triangular

form T ?

Cy: In particular, is it possible to define wheve the fill-in occurs, so that storage

for all medified U's con be allocated in advance?

In pesing guestion C4, we indicate that the complexity of Method BG will be reduced by

aveiding random access te U .

1.3, SUMMARY
The main results of this paper are as follows:

1, Method MBG is suggested (Modified Bartels and Gelub) in which the new columns of
U need not be added to the end of ¥ . Instead they may be inserted somewhere

between existing columns. This reduces the gréwth of nonzeros in both [and U .

'y
2. We can answer "Yes" to question CY above. Thus an implementation scheme is
suggested which should allow the method te operate efficiently in a virtual memory

environment.

Qur analysis is intimately linked with the "bump and spike' structure associated with the

Preassigned Pivot Procedures of Hellerman and Rarick [51, [6]1, and represents a first attempt to

217
estimate the effect of the spike distributicn on iterations subsequent to "reinversion",

2. Notation

Matrices are denoted by capitals (4, B , etc) and vectors by lower case (u, v , ete), The

following elementary transformations are used:

(a) Cyelie permutations P-::j (£ 2 j} . In the product P';:jv the element ¥, is

moved down to pesition j and elements LZ to v;,u' are moved wp one place.

(b} Interchanges Ii.?' (2 = J) . The product I‘i;fu interchanges v, and vﬂ' .

(c) Eliminations Mi,}' (£ £ J) . The matrix Mij is equal to the identity matrix

except for its (£, j) element which iz some multiplier Mg

The work gpike is used repeatedly to mean a column of either B or U , specifically one
which has some monzerc elements above the diagonal, A spike column of ¢ when stored in packed

. form is commonly called an eta vector.

3. Bumps and spikes

Here we assume the reader to be familiar with the structure of a typical LF basis matrix,
as desceribed by Hellerman and Rarick [5], [6] in connection 'gi'th their Preassigned Pivot
Procedures. Briefly, the facts are that the rows and columns of the basis can be permuted in
such a way that the resulting matrix B is block lower triangular, and furthermore each block
(bump} is almost strictly lower triangular except for a few colums (spikes) which have some

nonzeres above the diagonal,
This structure is well-suited to LI factorization for the following reasons:

1, Gaussian elimination with eolwm interchanges preserves both stability and
sparsity. The interchanges can be confined to each bump separately and seldom
ecreate more spikes thar in the preassigned ordering. (In any one bump, if a
:eolumn has a small pivot the only alternatives are the spikes in the same bump.
A spike/spike interchange leaves the number of spikes unaltered, while an

occasional non-spike/spike swap usually causes an increase of one,}

2. Fill-in occurs only in the spike columns of B . Hence [is essentially the

same as B and can be imbedded in the full matrix 4 as suggested by Kalan [7],

3. Most of the "weight" is in L , while U is extremely sparse., {Tor example, if
B is trpiangular then L =B and ¥ =1 ,) Since storage of U is the main

problem we prefer this approach to others which put more weight in U .

- 4, Modified LKy factors

Here we describe a slightly generalized updating scheme which includes Methods BG and FT as

special cases. Let g, vreplace the p-th colum of F , and since the vector u = L-laq will

in general be sparse, let its first and last nonzero elements be in positions f and I ,

respectively. Clearly we have
f=p=ilsm.

(It will usually be true that { < m and we take advantage of this in §7.)

Now the matrix L °F is the same as U except that its p-th column is replaced by u .

A cyclic permutation of columns p through I gives the upper Hessenberg matrix
eI
= (z E]P;' L

as shown in Figure la, Various methods for obtaining a new triangular matrix U are listed

below. We use the notation

BU) 2By) By peee By B

to mean the product of % - p matrices Ej (F =Py eney k-1)

P ' P j

Fig 1a Fig tb

The p~th co!um.n of U deleted The p—th row moved down to row |

218

1, Method BG. Bartels and Golub assume that % =m and eliminate-the sub-diagonal

elements hj+l i (7 = Ps +2es m-1} using row interchanges to preserve stability. Thus
kL

U = E(m)# 1is a strict triangle and each Ej is one of three types:

.E’J. = Ij,j+1 (4.1a)
Ej = Mj+l‘j . (4.1b)
E (4.1c)

L =M, T, . .
J Jti,0 J.dt1

When U dis sparse, most of the Ej will be simple interchange matrices (%.la). Note however
‘that Ej = I is mever true, so there are always m - p transformations to be appended to I .

2. Method FT, Forrest and Tomlin again take ¢ = m and use elimination without inter-

changes o zerc out the p-th row of # (except for the p-th element of u). Thus

U = E(n) is a permuted triangle and each Ej is one of two types:

Ej =7 (4.2a)
E.‘f = Mp,j+1 - (4.2b)

Most of the Ej will be the identity (4%.2a} and hence considerably fewer than m - p

transformations are appended to L . [In practice, the numbers required to store the non-trivial

E. are exactly those required to store the nonzero elements of the sparse vector r where

UTyl=uppep ; e.g. see Tomlin [11].)

3. Method MBGa (Modified Bartels and Golub), A natural combination of the first two
methods is to eliminate elements p to I - 1 of the p-th row of A using interchanges te
preserve stability and/or sparsity. Thus T = E(1)¥ will be a permuted triangle, and in

addition to (4.2a) and (#.2b} we may also have

E {L4,2¢c)

=M, T L.
fi P.dtl padtl

As with Method FT, most of the Ej will be identities and in gemeral much fewer than % - p

transformations will be added to L .

4. Method MBGh, If the same cyclic permutation which produced H is applied to the rous

220

of # , the matrix P, ZE of Figure 1b is obtained. The subdiagenal elements in the mew I-th

p

row can be eliminated using interchanges to give a strict upper triangle U = E(Z)PpIH » wWhere

each Ej is one of three types:

EJ =T (l4,3a)
E. =M, . ' i, 3b
1. ()

=M, I, . W,
E;; HI,J 7.1 (4,3¢c)

Again most of the Ej will be identities (4.3a), so there will be fewer than [- p tramns-

formations. This method is equivalent to Method MBGa except for the permutation matrices

involved.

Note that the transformation Pply requires physically altering row indices in the packed

columns of U . This is very inconvenient if U is stored on disk, and is avoided by Forrest
and Tomlin by allowing U to be a permuted triangle. Similariy the first version of Method MBG
is more efficient. However it is much easier to visualize what is happening if strict triangles

are maintained, so we shall henceforth discuss Method MBGh.

5, The growth of &

As we saw in §3, Hellerman and Rarick's bump and spike structure leads to a very sparse LU
after each refactorization. In particular, the bumps and spikes are inherited by ¥ . We now
look at the effect this siructure has e L and ¥ in subsequent iterations. In §§5 and 6 we

assume that I = m so that all new columns are added to the end of U ,

Figure 2 shews & typical sparse ¥ which originally came from a basis with three bumps
containing 4, 5 and 2 spikes respectively. After k iterations there are k more spikes at

the end of ¥ (k = 5 is shown). THe heavy dots may ©r may not be nonzeros in the spikes; they

.\

can be ignored until §6.

Recall that when U is updated at the XR-th iteration, the p-th colum of ¥ is deleted
ané the p-th row of U is permuted to the bottom. In Figure 2, we suppose that the p-th
column was near the front of the second bump (just before the first spike in that bump). Cbserve
that any nonzereos in the new Sottom row come from some of the spikes in the second bump and some

of the %k spikes at the end of U . Possible positions are marked by open dots, When Gaussian

w

2

=

o

E

[=

8.9-

. £ 3

2 e 2

£EDE &

E_g?}'i
o

5 g 8 £

E &5

gg‘;;

gSEc

£ o 8 ©

= N £

o 5 5 O

I-E%t:'u_)

[(I
o

a— O o
T
=
o
i

elimination with row interchanges is used to eliminate them, some additicnal nonzeres may be
created in the bottom row, but again they can come only from the second bump and from the last k

spikes, Hence the following result, which provides an answer to Complexity Question Cl.

THEOREM 1. At the k-th Lteration, if the column deleted from U <e in a bump containing

8; apikes, the mumber of elementary transformations added to L is bownded by B+ k.
Note that &, =0 is possible {if the p-th column was between two bumps).

The storage required for each transformation M . or M .7, in (4.3bk, <) is
mad Mmad FsM
essentially one nonzero (a multiplier and the index J }. Also, if g = E 8 is the total
el
number of spikes in the initial ¥ , we have 8; =5 . Hence Theorem 1 can be restated as
follows, in a slightly looser form.
THEQREM 2. 7The nwumber of elements added to I atf the Kk-th <iteration is at most the

current mumber of spikes, and £ bounded by s + k .

This bound could be reached only if all spikes in U were of a similar "height" and if p

. e e g e = =

222

preceded the first spike. At any rate s << m 1s generally trus and the growth of L is seen

to 2e minimal.

6. Bounding the fill-in of ¥

Since the number of nonzeros in a vector u = L—laq is arbitrary except in the case of

structured problems (e.g. see §7.2), it does not seem possible in gepmeral to bound the total size
of U . Thus we put complexity question C2 aside and move on to question C3; i.e. we accept
however many nonzeros there might be in a spike u when that spike is created, and cbtain a

bound on the fill-in that could occur in u during later iterations.

Let ¢ =8 + kK be the total number of spikes in U after k iterations. These define a
subset of the m colums of U . We now consider the same subset of the rows of U . Thus we

may write U as the sum of two matrices:
UasR+F

where F will be called the intersection matriz and is zerc except for t rows and columns

(including ¢ diagonals) which have been extracted from U . Then we define R =0 - F ,

With the aid of Figure 2, the non-trivial columns of F may be thought of as parallel roads
going North, and the rows of F are like cross-roads travelling Past from the foot of each
spike, crossing the North-bound recads in at meat #t(Z+l) intersections. Note however that not
all intersections arve present, since the North-bound roads are all "blind", i,e. they stop at
varicus points depending 01.1 the height of the corresponding spikes. In Figure 2, the relevant
peints of F are marked by heavy dots., Note that these points of F may be zmeros or nonzeros

in the spikes of U .

Thus R and F are both upper triangular matrices which are sparse in the same sense as

U , as they have only a few spike columns which are themselves sparse.

.
Now recall the situation in §5 where a yow of “I/ was permuted to the bottem ready for
vy
elimination. In Figure 2, the nonzeros to be eliminated ave marked by open dots. Close
inspection of which rows of ¥ are actually affected by the elimination leads directly to the

following result:

THEOREM 3. Except for monzercs deleted from the p-th rew each iteration, the only
elements of U that can be altared by subsequent updates are those of the intersection matrix

F 3 Zi.e. at most Xkt(t+1) elementsa,

223

This means that oniy in F can Fillein potentially occur, while the matrix R is
essentially Read-only. Moreover, when a new spike of U is created, the disposition of ail
previous spikes defines exactly which elements are in the new column of F . Some of these may

already be nonzerc; the remainder are subject to fill-in during later iterations.

6.1. PRACTICAL IMPLICATIONS

We can now answer "Yes" to complexity question. C4, and an implementation scheme comes to
mind in which storage is allocated in advance for all possible nonzeres in F . Each column of
F can be stored in a segment of (virtual) memory of predetermined size, and there is no longer

any need for linked-lists to cater for random access,

During solution of systems of the form Uz = Y , corresponding colums of B and F must
be accessed at the same time, but they need not be stored together; in fact they may be regarded
as "split eta veetors" as commonly used in product—form algorithms when a transformation spans
two or more physical I/0 records. Separation of R from F would be beneficial in any
virtual memory system which aveids writing unaltered pages to disk during overlays {e.g. 0S5/VS1
and O5/VS2 on the IBM System/370). Alternatively, R can be stored in product form on disk,
as it is analogous to the full & of Method FT. For each iteration, provision must still be
made for deleting elements in the p-th row, since these are usuaily in R . {They are in F
only if the p-th column of ¥ is a spike.)

Precise implementation details will depend on the relative sizes of R and F . In some
cases, it would be simpler to keep R and F together in virtual memory and ignore the read-
only property of R . (For example, the Burroughs BB700 operating system re-writes data segments

to disk whether they have been altered or not.) Deletion of elements from U would then require

no special treatment,

6.2, COMPLEXITY

Since B is a submatrix of U , we already know from the results of Tomlin [10] and Reid

[9] that it is extremely sparse in practice. The main question to be asked now is C3, which

might be rephrased as

C3: How many potential nonzeros must be allowed for in each colum of F, and in

this number considerably less than the obvious bound of m?

To refine the bound given in Theorem 3, we comsider spikes in the initial ¥ separalelyv from

S e g s

EW‘#-«N'-:"} Lai R Tl

224
those added during updates, If 8; is the number of spikes in the ¢-th bump we clearly have

THEQREM 4. The storege required in F to allew for fill-in in the i-th bump of the

initial U ie bounded by f, = %, [s_;«,l) .

Hellerman and Rarick [5] give statistics for five medium-scale problems, for which the
average number of spikes per bump is in the ramge (1.5, 7.7) . Of course most of the total
number of spikes (ranging from 23 to 108) could have been in cne particular bump, but if we

|

assume an even distribution and take these five problems to be typical, we might expect 8, to

be of order 10 , so that fq., = 50 . Since the avevage number of bumfzs is of order 15 the

fill-in in the initial U is minimal {= 15 x 50 = 750) regardlesa of the mumber of subsequent

iterations.

During updating, if all new spikes are added to the end of U they tend to make U into

one large bump. If & = E 8 is the total number of spikes in the initial U we have
z .

THEQREM 5. The storage requirved in F to allow for alterations to the k-th new columt

of U i at most 8 + K .

The value of & may not be large in general (the average is g = 50 in the examples of
{53, with a median of 8 = 32), but if k is allowed to grow te 200 or 300 iterations, the

cumulative effect starts to look significant:
THEOREM 6. The storage requived in F to allow for fill-in in k new colums of U is

k
bownded by Fk) = Y (a+j) = ke + K> .
i1 .

i

With g = 50 , this gives 7(50) = 3750 , f(100) £ 10 Q00 and f(200) = 30 000 . However,
if g were as large as 50 , refactorizatien would probably be performed for cther efficiency

reagons for some k& = 100 . !

6.3. RELEVANCE TO METHOD FT

When new columns of U are created, they could already be nonzero in previous pivot rows
(i.e. in the pows of the intersection matrix F). If so, the bound f{k) of Theorem & has
meaning even with Method FT. In particular, the term {skz corresponds to the bottom

triangle of U (see Figure 2) and it does seem likely that this part of ¥ will be dense.

225

In this context it is interesting to note the growth rates given by Forrest and Tomlin [4]
for three large-scale problems, After 70 iterations of Method FT the total increase in
nonzeros in both L and ¥ is 4097 , 6705 and 11398 , respectively. A large part of this
growth is probably attributable to the term %kz (= 2500 when %k = 70). The term kg would

account for all remaining growth, if 8 were

23, &0 and 127 {6.1)

respectively. Certainly the true values of & could be larger if complete f£ill-in did not
occur, but since some of the total growth reporied must have been in I and R it seems
reasonzble to suppose that (6.1) gives a realistic estimate of the total number of spikes in the

starting basiz (and hence in the initial ¥) for each problem.
One might venture to call this discussion backward etq analysis,

NOTE. In [4] the list of columns of § is called the backward eta file,

6.4. CAN WE DO BETTER?

The bounds giver in the previous theorems are conservative because they assume that the
spikes in any one bump are all of similar height, and that the new spikes span all bumps of the
Initial ¥ . This is unlikely to be the case in practice, and storage can be minimized

accordingly.

For example,in the bound of Theorem 6, the ks term will be conservative if some of the
new spikes are short. This does not matter because 5t is easy to avold allocating storage for F

above the top of such spikes.

On the other hand, it seems likely that a %kz growth rate ean be expected with the
standard Method BG (assuming bump and spike-type ordering for the initial LU }. With a view to
lowering this part of the bound, we now consider putting new columns of U somewhere other than

at the end,

7. The MIDDLE rule

In 54, we saw that if the last nonzerc of the new spike u is in position I then the
number of updating transformaticns can be reduced by making % the I-th colwm of ¥, In
practice this means that the previocus spikes must be listed in some order and the new spike must

be inserted somewhere in the middle of the list. We shail call this the MIDDLE rule: Merge (the

b

226

new spike) Into the Dispesition Defined by its Last Element.

7.1. IMPLEMENTATION ASPECTS

Regarding virtual memory (VM) as one large array of storage, the simplest scheme would be
to pack spikes into storage ome after the other (just as before) and to maintain ap ordered list
of pointers to the start and finish of each spike. If the current U occupies the first w
words of store the next spike may occupy words ® + 1 onwards, Alternatively, it may use
storage vacated by deleted spikes, if a large encugh gap is availsble. 1;1 either case, the
pointers are easily updated to reflect the proper logical ordering and no moving of previous

spikes is required.

Since the elements of any one spike occupy contiguous words of storage, this scheme
satisfies a basic rule of thurb for economic use of VM, viz. that memory references be clustered,

As such, it would be considerably more efficient than storing U in one large linked list.

Greater efficiency should be possible, if some attention is given to page boundaries. Note
that a segment of 256 words on a Burroughs B&6700 and a page of 4096 bytes on an IBM 370/168
could hold sbout 200 and U40G packed nonzeros respectively. Hence a particularly large spike
may require 2 or 3 pages of store, but often there may be several spikes packed into a
single page. In the latter case it would be ideal (i,e. page-swapping would be minimized}, if
those spikes were close together in the ordered sequence. With this in wind we suggest the

followling schemes

1. For the initial ¥ , pack spikes cne after the other without regard to page
boundaries. (Alternatively, the first spike in each bump could begin a new page.)

¥

2, For each new spike, if less than one page is required find the nearest logical
neighbour whose page(s} contain sufficient unused storage. Otherwise, or if no

such neighbour exists, assign the spike to consecutives pages of its own.

This scheme will lead to some internal fragmentatioms (wasted space inside pages}, but it extends

the préviously mentioned clustering of memory references.

One other problem with the MIDDLE rule is that it requires insertion of new rows into the
intersection matrix, Strictly speaking, the k-th new spike should allow for fill-in of
g + k # (n-%k) elements instead of the ¢ + k& in Thecrem 5, i.e. a ccnstant s + n elements,
where n 1is the refactorization frequency. However from a probabilistie point of view this
would be very cconservative. The best means of.economizing in this area must be left to

experiment,

227

7.2. Is 1T <m?

Suppose that the matrix A has block-angular structure and that, when a basis B is
factorized, the row and column permutations are chesen to maximize sparsity inside blocks without
destroying the overall amgular structure. The resulting structure of L and ¢ is shown in

Figure 3 (a 3-block example), where Lj’ Uj and Vj arise from basis wectors in the J-th

block of B . If cclumn aq enters the basis from the J-th block of 4 , it is clear that aq

and u = L_laq are of the form

0
a, u.
a = |9, u=|"*
T lo 0
c. W,
2, J
where all guantities are vectors. The best we can say is that if cj = 0 , then t,JJ._ =0 . 1In

this way, it would certainly be advantagecus to apply the MIDDLE rule and insert uj somewhere

amongst the columns of U,;-‘ ., for then only Lj’ Uj and Vj will be altered.

- -

_—=
|
|
|
|

Ll
N
BN

. J—

Figure 3 LU factors of a basis matrix from a problem

with block—angular form

{P is a permutation matrix.)

228

In other words, if a variasble entering the basis from bleck J 1is not coupled to the other
blocks, the updating preocedure will automatically affect only those parts of [and o

belonging to block J . This seems to be a desirable property.

Simiiar statements can be made, if A4 has dual-angular structure.

For gereral problems, the distribution of the last nonzero of L_laq remains to be

determined experimentally, We anticipate that use of the MIDDLE rule will spread the new spikes
of [evenly among the initial bumps, so that the bumps will slowly expand and merge into one

another, as suggested by the drawing in Figure 4.

Figure 4 Expansion and merging of bumps

| — spikes in initial U

l = spikes added during updates

8. Conclusions

The numerical results obtained by Reid [81, [9] show that, in Method BG, the freedom to
interchange rows of U for both stability and sparsity reasons can lead to significantly lowen
growth of nenzeros than in Method FT. This is an instance of a rather rare situyation, wherein
the search for inereased numeriecal reliability (of LU"updating) has actually led to an

algorithm which has greater efficiency. More often the two ave conflicting desiderata,

Likewise, the motive for obtaining bounds on the complexity of Method BG (how serious fa the
fill-in of ¥ ?) was provided by a wish to extend the method to virtual memory machines., This
led to the realization that potential storage requirements are known in advance, so that

implementation shouid be straightforward, It also led to the MIDBLE rule of §7 which promises to

reduce the growth of nonzeros below that of both Method FT and the original Methed BG. In this
case, the search for inereased applicability of a reliable wethod has led to an algorithm of

greater efficiency.

To summarize, we suggest colwm-wise storage of U , along with explicit storage of the
intersection matrix of §6, as a natural means of implementing the method of Bartels and Golub in
a paging environment, We alse suggest use of the MIDDLE rule to reduce the size of the inter-

v
section matrix, and to minimize the growth of. “L and U in any other implementation of the

original method. Finally we hope that the actual benefits cbtainable can be investigated

experimentally in the near future.

Acknowledgements

I am very grateful to Dr John Reid for providing details [3] of his work on sparse linear

programing.

References

[1] Bartels, R.H., A stabilization of the simplex method. Mum. Math. 16, L1y-bay, 1971,

[2] Bartels, R.H. and Golub, G.H., The simplex method of linear programming using LU
decomposition. Comm. ACM 12, 266-268, 1989,

'[3] Dantzig, G.B., Linear Programwming and Extensions. Princeton University Press, Princeton,
N.J., 1963,

[4] Forrest, J.J.H. and Tomtin, J.A., Updating triangular factors of the basis to maintain
sparsity in the product form simplex method. Mathematieal Programming 2, 263-278, 13972.

[5] Hellerman, E. and Rarick, D., Reinversiop with the preassigned pivot procedure.
Mathematical Programming 1, 195-216, 1871,

[6] Hellerman, E. and Rarick, D., The partitioned preassigned pivot procedure [Pq) . 67-76%
in Sﬁmvse Matrices end their Applicationg, D.J. Rose and R.A. Willoughby {eds). Plenum
Press, N.Y., 1972,) e

[7] Kalan, J.E., Aspects of large-scale in-core linear programming. Proceedings of ACM Annual
Conference, Chicago, I1linois, 1971,

[8] Reid, J.K., Sparse linear programming using 1:-he Bartels-Golub decomposition, presented =t
the VIII International Symposium on Mathematical Programming, Stanford University, August

1973,

e = et

TR

91
[10]

[11]

Reid, J.K., Leeture Notes on Sparse Linear Programming, 1974.

Tomiin, J.A., Modifying triangular factors of the basis in the si_mple::'. method, 77-85; in
Sparse Matrices and their Applications, D.J. Rose and R.A. Willouéhhy {eds). Plenum Press,
N.Y., 1872,

Tomlin, J.4., On pricing and backward transformation 1n linear programming, Mathematical

Programming &, 42-u7, 1974,

