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Abstract

Biological structure and function depend on complex regulatory interactions between

many genes. A wealth of gene expression data is available from high-throughput

genome-wide measurement and single-cell measurement technologies, but systematic

gene regulation modeling strategies and effective inference methods are still needed.

This thesis focuses on biophysics-based dynamical system models of gene regulation

that capture the mechanisms of transcriptional regulation at various degrees of de-

tail. Deterministic modeling is fairly well-established, but algorithms for inferring the

structure of novel gene regulatory systems are still lacking. We propose a method for

learning the parameters of a standard nonlinear deterministc model from experimental

data, in which we transform the nonlinear fitting problem into a convex optimization

problem by restricting attention to steady-states and using the lasso for parameter

selection. Stochastic modeling is much less mature. The Master equation model cap-

tures the mechanisms of gene regulation in full molecular detail, but it is intractable

for all but the simplest systems, so simulation and approximations are essential. To

help clarify the often-confusing situation, we present a simulation study to demon-

strate the qualitative behavior of multistable systems and compare the performance

of the van Kampen expansion, Gillespie algorithm, and Langevin simulation.
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Chapter 1

Introduction

1.1 Motivation

Complex interactions between many genes give rise to biological structure and func-

tion that sustain life. The Central Dogma [JM61, Cri70] provides a qualitative

description of how these processes occur, but precise quantitative modeling is still

needed [TCN03, Ros11]. Research into the detailed mechanisms of gene expres-

sion over the past few decades has shown that expression is regulated by a com-

plex system of gene interactions. Recently, microarray and sequencing technologies

[DIB97, RRW+00, RHB+07, MWM+08] have enabled high-throughput genome-wide

expression level measurements, enabling detailed study of gene networks [HJW+98,

LRR+02, TYHC03, SSR+03, BJGL+03, HKI07, ZCMW07]. Even newer single-cell

technologies allow for unprecedented resolution that reveals the stochastic character

of gene regulation [IKN06, BBO+09, TBO+08, OBB+10]. Appropriate mathematical

frameworks are essential for making sense of the data, and can even suggest promising

experimental designs for future studies. Our overarching goal is to use mathematical

models to understand how genes interact to give rise to the biochemical complexity

that allows organisms to live, grow and reproduce.

1
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Figure 1.1: Basic steps of gene expression. 1. RNA polymerase (RNAP) binds to
the gene promoter. 2. RNAP transcribes DNA sequence of gene to create an RNA
copy. 3. Ribosome translates RNA transcript into a protein (amino acid sequence).
4. Protein folds into its functional configuration.

1.2 Introduction to gene regulation

For our purposes, a simplified view of the biology of gene regulation is sufficient. As

Figure 1.1 shows, there are four basic steps involved in the expression of a particular

gene (that is, production of the protein encoded by the gene). First, RNA polymerase

(RNAP) binds to the gene promoter (a DNA region physically separate from the gene

with a regulatory role). Next, the RNAP transcribes an RNA copy of the informa-

tion encoded in the gene’s DNA sequence. A ribosome then translates the RNA

transcript to create a protein (consisting of a sequence of amino acids, each encoded

by a sequence of four RNA ‘letters’, or base pairs). Finally, the protein folds into the

final configuration that allows it to perform its function in the cell. Gene regulation

(mostly) occurs during the RNAP binding step. As Figure 1.2 shows, regulatory

proteins called transcription factors (TFs) can bind the gene promoter and modulate

the binding energy of RNAP, thereby affecting the rate of gene expression. A TF
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Figure 1.2: Gene expression is regulated by the binding of regulatory proteins (tran-
scription factors, or TFs) to the gene promoter, which modulates RNAP binding
energy. Activators encourage RNAP binding and accelerate gene expression, while
repressors discourage or disallow RNAP binding, slowing or stopping gene expression.
A particular gene may be regulated by zero, one, or several TFs.

is called an activator if, when bound to the promoter, it encourages RNAP binding

and increases gene expression. A repressor makes RNAP binding more difficult or

impossible, decreasing or stopping gene expression.

Each gene may be regulated by zero, one, or multiple TFs, each of which is a

protein (or complex of multiple proteins) encoded by another gene (or in the case of

self-regulation, by the gene itself). We say that gene A regulates gene B if the protein

product of gene A is a TF that activates or represses gene B. Complex effects can

arise when a relatively small collection of genes all regulate each other, giving rise to

a gene network. A good example is the gene network responsible for pluripotency in

embryonic stem cells, which we will discuss in much greater detail later on.

1.3 Literature review

The main contributions of this work will be an inference algorithm for learning a

nonlinear deterministic dynamical system model of gene regulation, and a detailed

simulation study comparing different approaches to stochastic modeling of gene reg-

ulation. In this section we will very briefly summarize some of the most important

achievements in these two areas, on which our work builds. Additional literature

review is provided in the chapters as appropriate.
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1.3.1 Gene regulatory network inference

Gene expression measurements contain information useful for reconstructing the un-

derlying interaction structure [DIB97, HJW+98, HMJ+00] because gene regulatory

systems have a defined ordering [AW92], forming pathways that connect to form

networks [Alo07, DSM10]. Many gene regulation pathways have been discovered

over the past few decades [HHG+10, AJL+07]. At the turn of the century, re-

searchers began applying statistical tools to genome-wide expression data to under-

stand complex gene interactions. Eisen et al. (1998) showed that genes from the

same pathways and with similar functions cluster together by expression pattern.

Soon afterward, module-based network inference methods appeared, which group

co-expressed genes into cellular function modules [SSR+03, BJGL+03]. Recently,

methods based on descriptive but non-mechanistic mathematical models [GdBLC03,

TYHC03, BBAIdB07, FHT+07, Fri04] have gained prominence. These models de-

scribe gene regulation quantitatively and can be used to simulate and predict sys-

tems behaviors [Pal11, DESGS11]. However, more work is needed to develop effective

model-based methods for inferring gene network structure from experimental data.

Existing inference methods typically rely either on heuristic approaches or on very

simple, local models, like linear differential equation models in a neighborhood of a

particular steady-state. Statistical corrrelation is a common method of establishing

network connections [DESGS11] and can be very useful when hundreds or thousands

of genes are monitored under specific, local cellular conditions (for instance, for group-

ing genes with similar functions). However, this approach works poorly when pertur-

bations drive the network far from the original steady-state. Global nonlinear models

are essential to account for complex global system behaviors, like the transformation

of a normal cell into a cancerous cell via amplification of a particular gene.

1.3.2 Stochasticity

Experimental studies using single-cell biotechnologies have revealed that the bio-

logical mechanisms of gene regulation, including promoter activation and deactiva-

tion, transcription, translation, and degradation, are inherently stochastic [ELSS02,
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OTK+02, BKCC03] [RWA02, KEBC05, RvO08, MNvO12] [HMM09]. Stochasticity

can sometimes dramatically affect the behavior of gene regulatory networks [KS10,

RvO08, PvO05] as stochasticity leads to different phase diagrams and can cause

instability [KE01], and small molecular numbers can seriously impact system behav-

ior [MWHL12]. These observations have important implications in synthetic biol-

ogy, including the engineering of switches, feedback loops, and oscillatory systems

[EL00, GCC00, HMC+02, OTL+04].

A number of stochastic models have been applied to gene regulation problem,

since it is clear that additive noise (independent of expression level) is not sufficient

in many cases [FCSI12]. Since gene regulation depends on a series of chemical re-

actions (including the binding of TFs and RNAP to the promoter, transcription,

translation, and degradation), it can therefore be modeled with chemical equations

[NT97, ARM98]. A number of ad-hoc approaches have also shown promise, in-

clude Poisson models (a birth-and-death model with constant rates has a Poisson

steady-state distribution, but expression regulation or extrinsic noise often lead to

non-constant rates, disrupting the Poisson character), fluctuation noise analysis in

small systems [TvO01, OTK+02, Tao04, RYA+05, KSK+07, MTK09], and structural

inference on large networks based on noise correlation [DCL+08, SOWES12]. The

highest resolution is obtained from more sophisticated analysis based on the Mas-

ter equation [VK07], including approximation methods [PMK06, HBS+07, KSK+07,

MBBS08, SK12], and more accurate modeling via simulation or theoretical deduction

[WWA10, LQ10, FCSI12, MWHL12, GMD12, KH08].

1.4 Objectives

We focus on dynamical system models of gene regulation since we require detailed,

quantitative models that capture cells’ ability to assume many different characters

as they progress through their lifecycles and respond to stimuli. Dynamical systems

models of gene regulation can be divided into two basic categories: deterministic and

stochastic. In this thesis, we aim to advance the current state of knowledge in both

categories by contributing a inference method for a standard deterministic model,
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and a simulation study comparing several different stochastic modeling approaches

based on the Master equation.

1.4.1 Nonlinear inference

The deterministic domain is fairly well-established. A nonlinear deterministic model

based from the thermodynamics of gene regulation [BBG+05b, BBG+05a] is consid-

ered standard and sufficiently complex for almost any application, and simplifications

can easily be made for applications where simpler models are more appropriate. If

we knew the model terms and parameters for a particular system, we would under-

stand how it maintains and transitions between steady-states, and could predict its

future behavior under a variety of conditions. Of course, the model is generally not

known except for a few very well-studied systems, and identifying the terms and their

coefficients directly is very difficult, if not impossible. We address this deficiency by

proposing a systems-level inference method for selecting and fitting the parameters of

the model, which brings the deterministic program full circle by enabling novel gene

regulatory systems to be recovered directly from gene expression measurements.

1.4.2 Stochastic models

In the stochastic domain, not only are inference methods lacking, but researchers

have not even reached a clear consensus on the correct approach to modeling. While

the Master equation is generally accepted as the gold standard for modeling the

processes of gene regulation in molecular detail, it is too complex to support network

inference from experimental data. Approximations are needed to make it useful, but

there is still disagreement and confusion over the proper way to carry them out.

We attempt to shed light on this discussion by showing how N. G. van Kampen’s

theoretical expansion of the Master equation [VK07] applies to gene regulation, and

by performing a detailed simulation study comparing several different approximation

and simulation methods applied to synthetic systems with a variety of qualitative

characteristics.
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1.4.3 A hierarchy of gene regulation models

In this work, we discuss a number of different dynamical system models of gene regu-

lation. To clarify the relationships between, we can organize them into a hierarchical

family of models of decreasing complexity. At the apex of the hierarchy lies the Master

equation model, which captures the full stochastic complexity of gene regulation. In

this model, the RNA transcripts counts for each gene are stochastic random variables

whose probability distributions evolve according to a system of differential equations

called the Master equation. Many different stochastic approximations of the Master

equation reduce the computational complexity at some cost to the accuracy.

The nonlinear deterministic model can be derived as an approximation of the Mas-

ter equation (specifically, the master equation mean obeys the deterministic model to

constant order) by appropriately truncating van Kampen’s master equation expan-

sion in the system size ([VK07]); other, higher-order approximations can be obtained

in a similar principled manner. The great advantage of the deterministic model is a

conceptually straightforward and experimentally feasible associated inference proce-

dure that allows the underlying structure and parameters of a novel gene regulatory

system to be recovered using perturbed steady-state data collected from a systematic

set of experiments.

The nonlinear deterministic differential equations from the linear noise approx-

imation can be linearized about any given steady-state to yield a linear system of

deterministic differential equations that approximate the local behavior of the system

near that steady-state. This model lends itself to a simple and robust inference pro-

cedure, although the recovered model’s validity is of course limited to a neighborhood

of the steady-state of interest. This approach is most appropriate for situations in

which we are mostly interested in a particular steady-state as opposed to the global

system behavior, or where data is either limited or very noisy.

1.4.4 Outline of the chapters

Our program in this dissertation will be to discuss gene regulation models and as-

sociated inference methods from simplest to most complex for clarity and a natural
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progression. The first few chapters focus on methods for learning linear and nonlinear

deterministic dynamical systems models from experimental data, while the last two

concentrate on stochastic modeling approaches to modeling.

In chapter 2, we will lay the groundwork by introducing linear and nonlinear de-

terministic dynamical system models of gene regulation, and discussing some of their

quantitative and qualitative structural properties, including a review of Lyapunov

stability theory. In chapter 3 we will show how the parameters of a deterministic

linear dynamical system model can be robustly inferred from systematically-collected

experimental data via convex optimization. In chapter 4 we will develop an experi-

mental design and associated statistical inference method for learning this nonlinear

model by transforming the fitting problem into a convex optimization problem by

restricting attention to steady-states. We illustrate the method in detail by applying

it to a synthetic six-gene network based on an embryonic stem cell subnetwork. In

chapter 5, we discuss a nonlinear, stochastic Master equation model for gene reg-

ulation, which fully captures the mechanisms of the gene regulation in molecular

detail. Since approximations and simulations of the Master equation are essential for

studying large systems with multiple genes, we discuss van Kampen’s expansion and

multistable-system theory, the Gillespie algorithm, and the Langevin simulation, and

show how each approach can be applied to the gene regulation problem. In chap-

ter 6 we perform a detailed simulation study (including a new heuristic approach to

constructing artificial multistable systems) to illustrate the behavior of systems with

single versus multiple steady-states and compare the applicability and accuracy of

the approximations and simulations described in chapter 5.



Chapter 2

Dynamical system models of gene

regulation

Dynamical system models are ideal for quantitatively capturing cells’ ability to as-

sume different characters as they transition through their lifecycles and respond to

stimuli. Their quantitative form means that they can be used to predict systems’

future behavior, and they lend themselves to inference algorithms that allow the

structure of novel gene regulatory systems to be learned from data. In the standard

dynamical system model of gene regulation, the levels of RNA and protein evolve

according to a system of differential equations. The basic assumptions is that each

species of RNA is transcribed at a rate proportional the the probability of RNAP

binding to the gene promoter (as a function of the expression levels of the TF pro-

teins that regulate it) and degrades at a rate proportional to its current level, while

the corresponding protein is translated at a rate proportional to the current RNA

level and also degrades at a rate proportional to its own level.

While the translation and degradation rate constants are assumed to be fixed, the

RNAP binding probability function is flexible both in its form and specific parameters.

Depending on the level of detail required for a particular application, we may choose a

linear form or one of several possible nonlinear forms. Choosing a linear binding prob-

ability function leads to a simple model and intuitive inference method (discussed in

chapter 3), but has the drawback that the resulting system has only one steady-state,

9



CHAPTER 2. DYNAMICAL SYSTEM MODELS OF GENE REGULATION 10

while the majority of interesting biological gene regulatory networks have multiple

steady-states. Nonlinear forms allow us to model systems with multiple steady-states

and thereby capture the range of states available to cells during their complex life-

cycles. Many different nonlinear functional forms are possible, but a thermodynamic

model due to Bintu et al is considered standard [BBG+05b, BBG+05a].

In this chapter, we first introduce general deterministic dynamical system models

of gene regulation. Next we discuss the critical issue of steady-states and their sta-

bility, providing both a biological description and the necessary mathematical theory

due to A. Lyapunov. Finally, we discuss standard linear and nonlinear forms of the

RNAP binding probability function, which model the strongest mechanism of gene

regulation. We focus primarily on the standard flexible biophysics-based nonlinear

model due to Bintu et al, the basis of much of the work of the following chapters.

2.1 Dynamical system model

We can model gene expression regulation as a dynamical system by letting x ∈ Rn

represent RNA concentrations and y ∈ Rn represent protein concentrations corre-

sponding to a set of n genes. We assume that the production rate of the RNA

transcript xi of gene i is proportional to the probability f(y) that RNA polymerase

(RNAP) is bound to the promoter. That is, RNA transcription occurs at a rate τi

whenever RNAP is bound to promoter. We model the probability that RNAP is

bound to promoter as a nonlinear function f of y, since RNAP binding is regulated

by a set of TFs. Further, we assume that the production of protein product yi of gene

i is proportional to the concentration of the RNA transcript xi with rate ri, and that

both the RNA transcript and protein products of gene i degrade at fixed rates (γr
i ,

γp
i ). Figures 1.1 and 1.2 may clarify the situation for the non-biologist. The resulting

system of differential equations is:

dxi
dt

= τifi(y)− γr
ixi

dyi
dt

= rixi − γp
i yi. (2.1)
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2.1.1 RNA-only simplification

In many situations, it is necessary or more appropriate to ignore the distinction

between RNA and protein and use a model of the form:

dxi
dt

= τifi(x)− γixi, (2.2)

involving only the RNA concentrations x, which serve as a surrogate for the protein

concentrations y. From a practical perspective, this model is often the only choice

in applications involving experimental data, where protein data may not be avail-

able. While microarray and sequencing technologies enable fast genome-wide RNA

expression level measurements [DvdHM+00, RHB+07, MWM+08], proteonomics has

traditionally been much more difficult, although this is changing due to recent ad-

vances in mass spectrometry [VM12]. In certain situations, the model is not only the

most practical but also the most accurate: for example, prokaryotes lack a distinct

nucleus and perform transcription and translation simultaneously [Ral08].

The passage from (2.1) to (2.2) can be justified by assuming that the translation

rate is fast relative to the time-scale of transcriptional regulation, so the protein

reactions equilibriate quickly compared to the RNA reaction, that is dyi
dt
≈ 0. This

implies that yi(t) = ri
γProtein
i

xi(t), which means that the simplified equation holds by

adjusting f to take the proportionality constant into account. The validity of this

assumption is debatable, however, since transcription rates are still not very well

understood. However, the RNA-only model is often the only practical option, since

experimental technologies for measuring both mRNA and protein levels concurrently

are not yet available.

2.2 Steady-states

One of the most important characteristics of gene regulatory networks is their ability

to maintain multiple stable steady-states. Since steady-states and their stability are

central to our problem, we pause to discuss their biological meaning and to review

the mathematical tools needed for describing steady-states and determining stability.
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Biologically, a steady-state of a gene regulatory system is one in which RNA and

protein levels are constant: dxi
dt

= dyi
dt

= 0. Steady-states of the system correspond

to cell states with roughly constant gene expression levels, like embyronic stem cell,

skin cell or liver cell. In contrast, an embryonic stem cell in the process of differen-

tiating is not in steady state. One of the most interesting features of certain gene

regulatory networks is their ability to maintain multiple stable steady-states. For in-

stance, the embryonic stem cell gene regulatory network can also maintain endoderm,

trophectoderm, and differentiated stem cell steady-states.

2.2.1 Lyapunov stability theory

The classical theory for general dynamical systems due A. Lyapunov (1857-1918)

provides all we need to characterize steady-states and their stability mathematially.

We will outline the key definitions and theorems here; for a complete discussion,

see a text like Walker’s Dynamical systems and evolution equations, [Wal39]. The

Lyapunov stability criterion will be very useful here, and again in chapters 5 and 6.

Consider a general nonlinear dynamical system of the form

ẋ(t) = f(x(t)), (2.3)

where x(t) ∈ Rn, f : Rn → Rn, and f is continous. Assume that this system has an

equilibrium point xe, i.e. f(xe) = 0. If f is linear or affine, f(xe) = 0 has exactly one

solution so the system has exactly one steady-state; if f is nonlinear the system may

have zero, one, or multiple steady-states. (We must therefore use nonlinear functions

to model gene regulatory systems if we wish to capture their ability to maintain

multiple stable steady-states.) Let φ(t; x̄) denote the unique solution trajectory x(t)

corresponding to x(0) = x̄. Lyapunov defined stability and a stronger condition,

asymptotic stability as follows:

Definition: The equilibrium xe is said to be stable if for all ε > 0 there exists δ > 0

such that

x̄ ∈ B(xe, δ) =⇒ φ(t; x̄) ∈ B(xe, δ), for all t ≥ 0,
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(where B(x, ε) denotes the open ball of radius ε centered at x).

It is said to be asymptotically stable if it is stable, and for all ε > 0 there exists δ > 0

such that

x̄ ∈ B(xe, δ) =⇒ lim
t→∞

φ(t; x̄) = xe.

In essence, stability means that that there exists a neighborhood of the steady-state

such that trajectories that start inside that neighborhood remain there for all time.

Asymptotical stability means that in addition to this, nearby trajectories are attracted

to the steady-state and eventually get infinitely close to it. The next theorem provides

the essential stability criterion.

Theorem: Assume f ∈ C1(Rn), and set A = ∂f
∂x

(xe) (the Jacobian matrix at xe). If

there exists a symmetric positive definite matrix P such that ATP + PA ≺ 0, then

xe is asymptotically stable.

2.3 Linear model

Gene regulatory systems’ ability to maintain multiple stable steady-states is an im-

portant feature, and dynamical systems of the form (2.1) can only have multiple

steady-states if the functions fi modeling the RNA-promoter binding probability have

a nonlinear form. However, researchers are sometimes mainly interested in the regu-

latory network responsible for maintaining a single steady-state of the system. The

simplest and often most effective way to do this use a linear model, which represents

the most basic effects of the regulators on their targets in a neighborhood of that

steady-state. We can always derive such a model from a more complex one by lin-

earizing the system about the steady-state of interest. As we will see in chapter 3,

the linear model lends itself to a simple, robust and intuitive inference method based

on perturbing each gene in turn and observing the system response.

The dynamical system model (2.1) is linear if the functions fi are linear or affine:

fi(y) =
∑
j

bijyj + ci, (2.4)
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for some constants bij, ci ∈ R. The interpretation is simple: gene i has a baseline

transcription rate τci, it is activated by yj if bj > 0, and it is repressed by yj if

bij < 0. The activation or repression is linear in the regulators yj and does not

“plateau” for large regulator concentrations (that is, there are no saturation effects).

For this reason, the model is usually only physically realistic in a limited range.

Linearization about a steady-state

We can always derive a linear model from a nonlinear one by linearizing about a

particular steady-state. Suppose we model the cell state as a time-varying vector

x(t) ∈ Rn of gene expression levels that evolves according to

dx

dt
= A(x(t)),

where A : Rn → Rn is a smooth nonlinear function. We can either use RNA levels as

a surrogate for gene expression as in equation (2.2), in which case Ai(x) = fi(x)−γixi,
or model both RNA and protein levels as in in equation (2.1), in which case we set

z = (x, y) ∈ R2n and define

Ai(z) =

fi(y)− γRi xi, if 1 ≤ i ≤ n

rixi − γPi yi, if n+ 1 ≤ i ≤ 2n
.

Steady-states µ such that A(µ) = 0 correspond to basic cell types like embryonic stem

cell or liver cell. Taylor expanding A about a steady-state µ yields:

dx

dt
= A(x) ≈ T (x− µ) =⇒ x(t)− µ ≈ etT (x0 − µ), (2.5)

where T is the n × n Jacobian matrix of A at µ and x is close to µ. The matrix T

models the regulatory network at equilibrium: Ti,j > 0 if gene j up-regulates gene

i; Ti,j < 0 corresponds to down-regulation. The diagonals of T reflect not only self-

regulation, but also degradation of gene products. (We assume that gene degradation

occurs at a known fixed rate γ.) The resulting model is reasonably accurate in a
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neighborhood of the steady-state µ. Furthermore, it is useful as a basis for learning

the basic structure of the underlying gene network that maintains that particular

steady-state.

2.4 Nonlinear models

Although linear models are appropriate in certain situations, their usefulness is limited

by the fact that they cannot capture the ability of gene regulatory systems to maintain

multiple stable steady-states. Since multistability is a key feature that often motivates

the study of gene regulatory networks, we now turn our attention to nonlinear models.

In this section we discuss some of the most popular choices.

Michaelis-Menten kinetics and the Hill equation are classical nonlinear model for

activation or repression by a single factor, based on thermodynamic theory. Michaelis-

Menten kinetics [MM13] can be applied to gene regulation by a single transcription

factor by modeling transcription as the enzymatic reaction series

X +D0
k±1←→ D1

D1 + P
kt−→ D1 + P + Y,

where X is an activator, D0 is an unbound promoter, D1 is an activator-bound pro-

moter, P is an RNA polymerase, and Y is an RNA transcript. The corresponding

kinetic equations are:

dD1

dt
= k1D0X − k−1D1 (2.6)

dY

dt
= ktPD1. (2.7)

Let us assume that the reversible TF-promoter binding and RNAP-promoter binding

reactions occur much faster than gene transcription, so that the quasi-steady-state

assumption
dD1

dt
= 0
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approximately holds. That is, the bound- and unbound- promoter states maintain

equilibrium concentrations. Then we can rearrange to obtain:

dY

dt
= ktP

DTX

K1 +X
, where K1 =

k−1

k1

, DT = D0 +D1.

A model for gene repression can be derived in a similar manner by replacing equation

(2.7) with

D0 + P
kt−→ D0 + P + Y,

(since now transcription only occurs for the unbound promoter), leading to:

dY

dt
= ktP

DTK1

K1 +X
, where K1 =

k−1

k1

, DT = D0 +D1.

The Hill equation [Hil13] is another classical model with a similar form, which models

cooperative binding. For activation by a single transcription factor, for example, it

has the form:

dY

dt
=

Z

1 + Z
, where Z =

X

K1

n

,

where n is the Hill coefficient.

In order to account for multiple regulatory mechanisms in sufficient detail and

generality, however, we require more complex approaches. We will focus primar-

ily on a standard global nonlinear model: the quantitative, experimentally inter-

pretable biophysics-based ordinary differential equation (ODE) gene regulation model

of Bintu et al [BBG+05b, BBG+05a]. Many models of this type have been proposed,

and the idea traces back to the beginning of systems biology in the biophysics field

[AJS82, SA85, vHRGW74], but the Bintu model is widely accepted within the bio-

physics community [BBG+05a, BBG+05b]. The Bintu model is based on the thermo-

dynamics of RNA transcription, the process at the core of gene expression regulation

[HJW+98, HKI07]. Transcription occurs when RNA polymerase (RNAP) binds the

gene promoter; transcription factors (TFs) can modulate the RNAP binding energy

to activate or repress transcription. RNA transcripts are then translated into protein.



CHAPTER 2. DYNAMICAL SYSTEM MODELS OF GENE REGULATION 17

promoter' gene'

RNAP'

regulator'

Figure 2.1: Illustration of the basic thermodynamic argument in the derivation of the
Bintu et al form of RNAP binding probability function. The probability is equal to
the weighted sum of system configurations in which RNAP is bound to the promoter
divided by the weighted sum of all possible configurations.

Bintu models the mechanism of transcription in detail, using physically interpretable

parameters. The form of the equations is rich and flexible enough to include the

full range of gene regulatory behavior. Another notable biophysics-based model is

that of the annual DREAM competition, but it has many biochemical assumptions

and model parameters, like the Hill coefficient of transcription factor binding events,

that cannot be estimated using gene expression measurements, so the network recon-

struction requires ad hoc inference methods to learn the underlying gene interactions

[YAYG10, PSdlF10, MPS+10, SMF11]. Compared to the DREAM model, the Bintu

model has the advantages of simplicity and interpretability, and better lends itself to

principled inference.

2.5 Bintu model for binding probabilities

Based on the thermodynamics of RNAP and TF binding, one can deduce the following

nonlinear form for the RNAP binding probability functions fi that appear in equation
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(2.1):

fi(y) =
bi0 +

∑m
j=1 bijΠk∈Sij

yk

1 +
∑m

j=1 cijΠk∈Sij
yk

, (2.8)

where Sij lists the gene products that interact to form a regulatory complex, and bij, cij

are nonnegative coefficients that must satisfy cij ≥ bij ≥ 0 [BBG+05b, BBG+05a].

(We assume that the concentration of each complex is proportional to the product of

the concentrations of the constituent proteins, and absorb the proportionality con-

stant into corresponding coefficients bij, cij). The coefficients bij and cij depend on

the binding energies of regulator complexes to the promoter. bi0 and ci0 correspond

to the case when the promoter is not bound by any regulator (Πk∈Si0
yk = 1), and the

coefficients are normalized so that ci0 = 1. A detailed derivation is given in appendix

A1, but Figure 2.1 illustrates the basic thermodynamic principle: the numerator of

f represents the weighted sum of possible configurations in which RNAP is bound to

the promoter (with or without a TF), and the denominator is the weighted sum of

all possible configurations of the system (RNAP and TF bound or unbound).

The form of fi allows us to model the full spectrum of regulatory behavior in

quantitative detail. Terms that appear in the denominator only are repressors, and

the degree of repression depends on the magnitude of the coefficient, while terms that

appear in the numerator and denominator may act as either activators or repressors

depending on the relative magnitudes of the coefficients and the current gene expres-

sion levels. Terms may represent either single genes or gene complexes. The model

can even be extended to account for environmental factors that affect gene regulation,

though we will not discuss it further here.

As an example, consider the simple two-gene network shown in Figure 2.2. Sup-

pose that genes 1 and 2 have RNA concentrations x1, x2, and protein concentrations

y1, y2, respectively, and that gene 1 is activated by protein 2 and repressed by its own

product, while gene 2 is repressed by a complex formed by proteins 1 and 2. The
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!"#"

Figure 2.2: Simple two-gene network example described by equation 2.9 (with pa-
rameters b11 = c11 = 0.1 for activators; c12 = 10 for repressors; and b10 = 0.01 for
constants in the numerator). Gene 1 is activated by the protein product of gene 2
and repressed by its own product (an example of self-regulation). Gene 2 is repressed
by a complex formed by the product of gene 1 and its own product (synergistic self-
regulation). In the diagram, the edge colors indicate activation (green) or repression
(red) and the edge weights indicate coefficient sizes, illustrated above with typical
sizes.

situation corresponds to the following equations:

dx1

dt
= τ1

b10 + b11y2

1 + c11y2 + c12y1

− γRNA1 x1,
dy1

dt
= r1x1 − γProtein1 y1

dx2

dt
= τ2

b20

1 + c21y1y2

− γRNA2 x2,
dy2

dt
= r2x2 − γProtein2 y2. (2.9)

In the notation above, we have S11 = {2}, S12 = {1}, S21 = {1, 2}. The parameters

b10, b11, c11, . . . determine the magnitude of the repression or activation. As this ex-

ample shows, the model is flexible enough to capture a wide range of effects, including

self-regulation (that is, regulation of a gene by its own protein product, most com-

monly as repression) and synergistic regulation by protein complexes (two or more

proteins bound together to form a regulatory unit), in quantitative detail. Further-

more, the model is predictive: if we know or can infer the coefficients in the model,

we can predict the future behavior of the system starting from any initial condition.



Chapter 3

Linear Inference

The simplest way to study the regulatory network responsible for maintaining a single

steady-state of the system is based on a linear model (equation (2.1) with f of the

form (2.4)), which represents the most basic effects of the regulators on their targets

in a neighborhood of that steady-state. The linear model lends itself to a simple,

intuitive and robust inference methods based on observing the system response to

various perturbations. The perturbation-response approach is probably the most

popular method of ODE-based gene network inference since it is so straightforward

[FHT+07], and has led to many successes [BBAIdB07, GdBLC03, dBTG+05], but it

has the drawbacks of being limited to a neighborhood of a single steady-state, and

requiring timeseries data that can be rather challenging to obtain experimentally.

Furthermore, the inevitably noisy data can lead to high variance and produce models

which are not physically realistic. In this chapter, we explain the basic approach and

discuss regularization techniques that help alleviate the issues related to noise. We

analyze their effectiveness by applying them to a synthetic six-gene network.

3.1 Steady-state network inference

Consider a linear dynamical system of the form

dx

dt
= T (x− µ)

20
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with a single steady-state µ. In the last chapter we derived this equation by linearizing

a nonlinear system about the steady-state µ: T was the Jacobian of the original

nonlinear rate function evaluated at µ. Alternatively, we may simply accept this

form. The solution is given by:

x(t)− µ ≈ etT (x0 − µ),

but for model fitting purposes it is easier to work with the differential form.

It is straightforward to infer T at a particular steady-state µ using perturbation-

response data. There are two basic approaches, depending on the nature of the

perturbation. If the perturbation is permanent (that is, the system does not eventu-

ally return to its original steady-state) but small enough not to send the underlying

system to a completely different steady-state, then

Tx+ u = 0,

where u represents a perturbation. Given n linearly independent perturbations u

and noiseless measurements of x, we could solve a linear system of equations for T

exactly. Both Gardner and di Bernardo [GdBLC03, dBTG+05] used this approach

with different types of perturbations.

Bansal et al [BBAIdB07] used a slightly different approach, which will adopt for

the remainder of chapter. If we measure the derivative shortly after a perturbation

x0 = µ+ ε, then
∆x

∆t
|x0 ≈ Tε, where

∆x

∆t
|x0 =

x(t)− x0

t− t0
.

In principle, with n linearly independent perturbations and exact derivative measure-

ments we could recover T exactly. To be even more concrete, suppose we perturb one

gene at a time, i.e. x0
j = µ+ εej, where ej(k) = δj,k. Then

∆x

∆t
|x0j ≈ εtj,

where tj is the jth row of T . That is, the response to a single-gene perturbation
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determines the corresponding row of T (whose entries describe the regulatory effects

of gene j on every other gene).

Of course, the data are likely to be very noisy, leading to parameter estimates with

high variance and hence large error. Regularization based on structural knowledge can

reduce error and also produce more physically-interpretable and biologically useful

models. We know that the regulatory network is sparse, since each regulator has only

a few targets. That is, T + γI should be sparse (taking the degradation rate γ into

account on the diagonal). Furthermore, we know the equilibrium is stable, since the

cell recovers from small perturbations [LB03]. Mathematically, µ is stable if there

exists a Lyapunov matrix P such that PT + T TP ≺ 0 [Wal39], or equivalently, if the

eigenvalues of T all have non-positive real parts.

To recover the network matrix T from noisy data x(t) following a perturbation

x0, we can solve

minimize ‖x(t)−x0
t−t0 − T (x0 − µ)‖2 + λ

∑
i,j |(T + γI)i,j|

subject to PT + T TP ≺ 0

with variables T ∈ Rn×n, P ∈ Rn×n, and data t, γ ∈ R, µ, x0, x(t) ∈ Rn. The `1-

regularization term encourages sparsity [Tib96]. The problem is not jointly convex in

T and P , so we will use an iterative heuristic to solve it approximately and efficiently

[ZJPP11]. We will alternately fix one variable and solve in the other, starting with

P = I fixed.

For simplicity, we gave the formulation for one perturbation x0 and one mea-

surement, while we actually need at least n perturbations to recover T ∈ Rn×n, and

might have several measurements. Assuming N perturbations x
(j)
0 leading to trajec-

tories x(j)(t), j = 1, . . . , N and m measurements per trajectory, the problem data

are µ ∈ Rn, γ ∈ R, ti ∈ R, x(j)
0 , x(j)(ti), j = 1, . . . , N, i = 1, . . . ,m, and the complete

problem is:

minimize
∑N

j=1

∑m
i=1 ‖

x(j)(ti)−x
(j)
0

ti−t0 − T (x
(j)
0 − µ)‖2 + λ(

∑
i 6=j |(T + γI)ij|

subject to PT + T TP ≺ 0



CHAPTER 3. LINEAR INFERENCE 23

with variables T, P .

3.2 Knockdown data

One way to obtain perturbation data is from noisy genome-wide expression measure-

ments shortly after a gene “knockdown,” in which the expression level of one gene is

reduced to a fixed level. Since gene knockdown can often send gene regulatory sys-

tems to a completely different steady-state, this type of perturbation is usually too

severe for approach (1). With this type of data, it is better to apply approach (2) to

derivatives estimated from expression levels measured shortly after the perturbation,

since we can at least be fairly confident that the system is still in a neighborhood of

the steady-state of interest. Modeling a knockdown as a small perturbation and the

subsequent evolution as an exponential trajectory is a rather poor approximation,

but data fitting combined with regularization can still allow approximate network

recovery. Recovering the diagonals of T is particularly challenging, since the knock-

downs fix gene expression at a reduced level, thereby preventing direct detection of

self-regulation. Multiple time points can yield indirect information, since perturbing

a regulator at time t0 leads to perturbed targets at time t1, and we can observe the

effects of target self-regulation at time t2. However, the signal is very weak compared

to the direct signal, so regularization is especially important for the diagonals.

3.3 Demonstration

We demonstrate the approach on a synthetic model of a six-gene subnetwork in em-

bryonic stem cell, where the network matrix Ttrue is known [CP08]. The network and

Ttrue are shown in Figure 3.1, and the system is discussed in much more detail in the

next chapter. To generate data, we fix each gene in turn at 50% of equilibrium level

and let the others evolve. We sample x(t1), x(t2) for small t1, t2. To generate noisy

versions of the data, we add 10% Gaussian noise to the signal.
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Figure 3.1: Network structure; Ttrue; basic clean recovery; basic noisy recovery (with-
out enforcing sparsity or stability).

3.3.1 Basic Recovery

We first try basic recovery, minimizing ‖(x(t)− x0)− tT (x0− µ)‖2 without enforcing

sparsity or stability (Figure 3.1). In the noiseless case, the recovery works well. The

matrix is not quite sparse or stable, but it has many nearly-zero entries and only one

small positive eigenvalue. With noisy data, Trecovered is still nearly sparse, but the

diagonals are not recovered and the matrix has large positive eigenvalues, violating

the stability constraint.

3.3.2 Enforcing sparsity
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Figure 3.2: Sparsity parameter selection. Cross-validation for several noisy instances
(left); absolute error in Trecovered compared to Ttrue versus λ (center); sparsity of
Trecovered versus λ (right).

For noisy data, `1 regularization can improve both sparsity and diagonal recovery.

We tune the sparsity parameter λ with leave-one-out cross validation, omitting each
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Figure 3.3: Stability iteration. Objective value of iterates Tk (left); maximum eigen-
value (real-part) of iterates Tk (right).

knockdown in turn, fitting on the other five, and testing on the omitted data. We

then average the prediction error over all the test sets. Figure 3.2 (left) shows the

results for several noisy data instances. The error drops sharply at around λ = 0.09;

further increasing λ does not significantly change the error, but choosing λ too large

makes the recovery too sparse. λ = 0.1 seems a reasonable choice. The plots of the

absolute error and sparsity of T versus λ in Figure 3.2 indicate that λ = 0.1 provides

a good tradeoff between accuracy and sparsity.

3.3.3 Enforcing stability

We enforce the stability constraint using an iterative heuristic in which we solve

alternately in T and P , starting with P = I. The iterates are always feasible (PkTk +

T Tk Pk ≺ 0 ∀k), but the iteration is not guaranteed to converge to the solution, nor are

there non-heuristic stopping criteria. We terminate when ‖Tk − Tk−1‖ ≤ ε for some
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tolerance ε.

P = I; k = 1;

while ‖Tk − Tk−1‖ ≥ tol

Tk = argmin
PkT+TTPk≺0

‖(x(t)− x0)− tT (x0 − µ)‖2 + λ
∑
i,j

|(T + γI)i,j|

Pk = argmin
PTk+TT

k P≺0

(0)

k = k + 1.

We test on noisy data with λ = 0.1. Plots of the objective value and maximum

eigenvalue of the iterates Tk are shown in Figure 3.3. The optimum objective value is

unknown. The objective values of the iterates do appear to converge to the objective

value of the matrix recovered from the same noisy data instance without enforcing

stability. Ttrue has a higher objective value (since our model is only approximate,

the recovered matrices fit it better than Ttrue does). Since stability is equivalent to

Re(λi(T )) ≤ 0 ∀i, the maximum eigenvalue of the Tk provides a measure of stability.

The maximum eigenvalues of the iterates increase quickly to just below zero, so the

stability condition is not unnecessarily strict in the end.

3.4 Conclusions

We can recover the network matrix T from noisy data quite successfully using the lin-

ear model with `1-regularization and iterative enforcement of the stability constraint.

Figure 3.4 shows a matrix recovered from noisy data using this method. It has the

right sparsity level, corresponds to a stable equilibrium at µ, and captures the off-

diagonals of Ttrue very well and the diagonals reasonably well. The basic unregularized

approach works reasonably well by itself, but the sparsity and stability constraints

help by imparting desired qualitative properties to the network, and also by regu-

larizing the solution, greatly improving the network recovery from noisy data. The

basic perturbed-response inference approach and variants like this one are among the
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Figure 3.4: Successful recovery. Ttrue (left) (16 zeros and Re(λmax) = 0.03); T re-
covered from noisy data with sparsity and stability (right) (17 zeros and Re(λmax) =
0.0006).

most popular methods for learning gene networks, but their applicability is restricted

to neighborhoods of a particular steady-state. In the next chapter we overcome this

limitation by proposing a method for learning a nonlinear model of gene regulation.



Chapter 4

Nonlinear Inference

In this chapter, we propose an experimental design and associated statistical method

for inferring an unknown gene network by fitting the standard global nonlinear Bintu

model of gene regulation [MLCW13]. The required data is gene expression measure-

ments at a set of perturbed steady-states induced by gene knockdown and overex-

pression [HGYI05]. We show how to design a sequence of experiments to collect the

data and how to use it to fit the parameters of the Bintu model, leading to a set of

ODEs that quantitatively characterize the regulatory network. Although the original

fitting problem is nonlinear, we can transform it into a convex optimization problem

by restricting our attention to steady-states. We use the lasso [Tib96] for parameter

selection. As a proof of principle, we test the method on a simulated embryonic stem

cell (ESC) transcription network [CP08] given by a system of ODEs based on the

Bintu model. Here, we demonstrate that the inference algorithm is computationally

efficient, accounts for synergistic regulation and self-regulation, and correctly recov-

ers the parameters used to generate the data. Furthermore, the method requires

only a set of steady-state gene expression measurements. Experimental researchers

in the biological sciences can use this method to infer gene networks in a much more

principled, detailed manner than earlier approaches allowed.

28
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4.1 Inference problem

The model given by equations (2.1) and (2.8) fully describes the evolution of RNA

and protein levels and provides a comprehensive, quantitative model of gene regula-

tion, provided we know the parameters. Unfortunately, bij, cij are extremely difficult

to measure, as they depend on binding energies of RNAP and TFs to the gene pro-

moter. The sheer number of measurements required to characterize all possible TFs

(both individual proteins and complexes) also makes this approach infeasible. There-

fore, our goal is to use a systems level approach to fit the model using RNA expression

data. Specifically, we will assume that τi, λ
RNA
i , λProteini are known or can be mea-

sured (if these these quantities are not available we can simply absorb them into

the coefficients bij, cij, although more accurate rate estimates will likely improve the

coefficient estimates). Our data will be measurements of the RNA concentrations

x at many different cellular steady states (which correspond to steady-states of the

dynamical system). The problem is to infer the values of the coefficients bij, cij.

4.2 Linear problem at steady-state

The key to solving this problem efficiently is to restrict our attention to steady-states,

as proposed by Choi [Cho12]. This restriction allows us to transform a nonlinear

ODE fitting problem into a linear regression problem. A steady-state of the system

is one in which RNA and protein levels are constant: dxi
dt

= dyi
dt

= 0. As discussed in

Chapter 2, steady-states of the system correspond to cell states with roughly constant

gene expression levels, like embyronic stem cell, skin cell or liver cell; in contrast, an

embryonic stem cell in the process of differentiating is not in steady state. Perturbed

steady-states are particularly interesting. After a perturbation like gene knockdown,

a cell’s gene expression levels are in flux for some time while they adjust to the

change. Eventually, if it is still viable, the cell may settle to a new steady-state

[HGYI05]. These perturbed steady-states are especially helpful for understanding

gene regulation.
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In our model, the steady-state conditions dxi
dt

= dyi
dt

= 0 mean that:

0 = τifi(y)− λRNAi xi, 0 = rixi − λProteini yi =⇒ yi =
rixi

λProteini

.

Defining f̃i(z) = fi(
ri

λProtein
i

z) yields

0 = τif̃i(x)− λRNAi xi,

Absorbing the constants into the coefficients bij, cij, (so that b̃ij = bijΠk∈Sij

rk
λProtein
k

,

c̃ij = cijΠk∈Sij

rk
λProtein
k

) we obtain the final equation

τi
bi0 +

∑
j bijΠk∈Sij

xk

1 +
∑

j cijΠk∈Sij
xk
− γixi = 0,

or

τi(bi0 +
∑
j

bijΠk∈Sij
xk)− γixi(1 +

∑
j

cijΠk∈Sij
xk) = 0,

(by multiplying both sides by the denominator). The last equation is linear in the

coefficients bij, cij! In order to solve for bij, cij, we will need to collect many different

expression measurements x at both naturally occurring and perturbed steady-states.

Each steady-state measurement will lead to a different linear equation. These equa-

tions can be arranged into a linear system that we can solve for the coefficients.

4.3 Problem formulation

Our problem is to find bij, cij such that

0 = τi(bi0 +
∑
j

bijΠk∈Sij
x

(m)
k )− γixi(1 +

∑
j

cijΠk∈Sij
x

(m)
k ), ∀m = 1, . . . ,M,

given RNA expression data x(m) at many different steady-state points m = 1, . . . ,M

and known translation and degradation rates τi, λ
RNA
i , λProteini . (The experimental

means of collecting the necessary steady-state expression data will be discussed in
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the next section.) We solve a separate problem for each gene i, since the coefficients

bij, cij in the differential equation dxi/dt = . . . for gene i are independent of the

coefficients in the differential equations for other genes. Since we cannot know ahead

of time which potential regulatory terms Πk∈Sij
xk are actually involved, we include

all possible terms up to second-order and look for sparse bij, cij, intepreting cij = 0

to mean that term Πk∈Sij
xk is not a regulator of gene i.

Consider gene 2 in the two-gene example. Suppose we have expression measure-

ments for a naturally occurring steady state (x0
1, x

0
2), and a perturbed steady-state

following gene 1-knockout (0, x1
2). We obtain two linear equations in the coefficients

b20, c21:

τb20 − λ2x
0
2(1 + c21x

0
1x

0
2) = 0, (steady-state (x0

1, x
0
2))

τb20 − λ2x
1
2 = 0, (steady-state (0, x1

2)).

If we knew a priori that complex x1x2 was the only regulator of gene 2, these two

equations would allow us to solve for the coefficients (b20 =
λ2x12
τ

, c21 =
x02−x12
(x02)2

). Typ-

ically we do not know the regulators beforehand, however, and we need to use the

data to identify them. That is, we include all possible terms (up to second-order) in

the equations:

τ(b20+b21x
(m)
1 x

(m)
2 +b22x

(m)
1 +b23x

(m)
2 )−λ2x

(m)
2 (1+c21x

(m)
1 x

(m)
2 +c22x

(m)
1 +c22x

(m)
2 ) = 0.

and estimate sparse coefficients bij, cij using several steady-state measurements

(x
(m)
1 , x

(m)
2 ). (We should find that the recovered coefficients b21, b22, b23, c22, c23 are

very close to zero, since the corresponding terms do not appear in the true equation.)

Temporarily suppressing the superscript m denoting the observation, we can com-

pactly express the general system above by defining zi as the vector with entries

zi(j) = Πk∈Sij
xk (with the convention that zi(0) = 1, zi(j) = xj for j = 1, . . . , n),

which yields

0 = τib
T
i zi − γizi(i)cTi zi,

for each observation (m = 1, . . . ,M). If we form a matrix Gi by concatenating
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the row vectors z
(1)
i , . . . , z

(M)
i and let Di be a diagonal matrix with entries z

(m)
i (i),

m = 1, . . . ,M , we can express this as

[
τiGi −γiDiGi

] [bi
ci

]
= 0.

with the constraints 0 ≤ bi ≤ ci, ci(0) = 1. Stating the problem in this form elu-

cidates the required number of steady-state measurements, M . If the linear system

above were dense and had no constraints on the coefficients bij, cij, and the steady-

state expression vectors were (numerically) linearly independent, then we would re-

quire M = 2Tn,k, where Tn,k is the number of the terms in the rational-form poly-

nomial of degree k in n genes (k = 2 if we include up to second-order regulatory

interactions). Tn,k is equal to the number of subsets of {1, 2, . . . , n} with k or fewer el-

ements since each term represents an interaction between j distinct genes (0 ≤ j ≤ k),

hence Tn,k =
∑k

j=0

(
n
j

)
≤ nk for k ≤ n (Tn,2 ≤ n2, for example). However, the con-

straints reduce the dimension of the solution space (ci(0) = 1 reduces it by 1, while

0 ≤ bi ≤ ci reduces it by up to n), and our algorithm also uses `1-regression to search

for sparse solutions, which may allow us to reconstruct the coeffcients from far fewer

measurements than 2Tn,k.

4.4 Experimental approach

The set of steady-state gene expression measurements needed to fit the model can

be generated via a systematic sequence of gene perturbation experiments. Figure 4.1

summarizes the overall approach to finding the regulatory interactions among a set

of genes comprising a (roughly) self-contained network of interest. First, molecular

perturbations targeting each gene, or possibly pair of genes, in the network would be

designed and applied one at a time. Following each perturbation, the cells would be

allowed to settle down to a new steady-state, at which point the gene expression levels

would be measured. The collection of gene expression measurements from different

steady-states would be input to the inference algorithm described in the next section,
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Figure 4.1: Experimental approach for gene network inference. (1) Design and per-
form perturbation experiments targeting each gene (or possibly pair of genes) in the
network: these may include overexpression, knockdowns, or knockouts. (2) Following
each perturbation, allow the system to settle to a new steady-state. (3) Measure
expression levels of all genes at each induced steady-state, and collect results in a
data matrix. (4) Use steady-state expression data as input to inference algorithm.
(5) Construct regulatory network from inference algorithm output.
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which outputs a dynamical systems model of the gene network capable of predicting

the behavior of the network following other perturbations. Perturbation data not

used in the inference algorithm could be used to validate the recovered model.

The key experimental steps in this procedure, gene perturbations and gene ex-

pression measurements, are established technologies. Gene perturbations, including

overexpression, knockdown, and knockout, are routinely used in biological studies

to investigate gene function. These experiments can be performed for many labo-

ratory organisms and cell lines both in vitro and in vivo [AJL+07]. Overexpression

experiments amplify a gene’s expression level, usually by introducing an extra copy of

the gene. Knockdown experiments typically use RNAi technology: the cell is trans-

fected with a short DNA sequence, driven by a (possibly inducible) promoter element,

that produces siRNA or shRNA that specifically binds the RNA transcripts of the

gene of interest and triggers degradation. Morpholinos can also be used for gene

knockdown. Gene knockout can be achieved by removing all or part of a gene to

permanently disrupt transcription [AJL+07]. Overexpression [RVL+07], knockdown

[RVL+07, FCJ+08], and knockout [LCH+11] experiments have all been performed

for the Oct4 gene, which helps maintain the stem cell steady-state. In some cases,

much of the work is already done: for example, the Saccharomyces Genome Deletion

Project has a nearly complete library of deletion mutants [WSA+99].

Techniques for gene expression measurement are also well-established. Gene ex-

pression is usually measured at the transcript level: the RNA transcripts are extracted

and reverse-transcribed into cDNA, which can be quantified with either RT-qPCR,

microarray, or sequencing technologies [AJL+07, MWM+08]. Housekeeping gene ex-

pression measurements are used as controls to determine the expression levels of the

genes of interest. The gene perturbations and subsequent expression measurements

required to collect data for our inference algorithm may be time-consuming due to the

large number of perturbations, but all the experimental techniques are quite standard

and resources like deletion libraries can be extremely helpful.
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4.5 Algorithm

We need to solve the linear system

[
τiGi −γiDiGi

] [bi
ci

]
= 0.

for bi, ci, subject to the constraints 0 ≤ bi ≤ ci, ci(0) = 1. To account for measurement

noise and encourage sparsity in bi, ci (since we know that each gene has only a few

regulators), we will minimize the `2-norm error with `1 regularization [Tib96], which

leads to the convex optimization problem

minimize

∥∥∥∥∥[τiGi −γiDiGi

] [bi
ci

]∥∥∥∥∥
2

2

+ λ (‖bi‖1 + ‖ci‖1)

subject to 0 ≤ bi ≤ ci, ci(0) = 1, (4.1)

where λ is a parameter controlling sparsity that we can choose using cross validation.

Since the problem is convex, it can be solved very efficiently even for large values of

n and m.

Note that we use `1-regularization as a convex relaxation of a cardinality-constrained

quadratic program, but the problem could also be stated as a mixed-integer quadratic

program, which is feasible to solve for moderately sized systems. While our discussion

focuses on the `1-regularized problem, the mixed-integer quadratic program approach

is analogous: in particular, the same data is required, and we can choose the appro-

priate sparsity parameters using cross-validation.

4.6 Nonidentifiability

Our model’s ability to capture self-regulation is very powerful, but it also leads to

a particular form of nonidentifiability. For certain forms of the equation, given only

steady-state measurements, it can be impossible to determine whether self-regulation

is either completely absent or present in every term. Specifically, any valid equation
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of the form:

dxi
dt

=
bi0 +

∑N
j=1 bijΠk∈Sij

xk

1 +
∑N

j=1 cijΠk∈Sij
xk
− γixi, bi0 < 1 (4.2)

is indistinguishable at steady-state from any member of the following family of valid

equations indexed by the constant w:

dxi
dt

=
(wbi0 + γi)xi +

∑N
j=1 wbijΠk∈Sij

xixk

1 + wxi +
∑N

j=1wcijΠk∈Sij
xixk

− γixi, w ≥ γ

1− bi0
. (4.3)

We will refer to these as the ‘simple’ and ‘higher-order’ forms of the equation, respec-

tively. The short proof of their equivalence is given in appendix A2. The condition

w ≥ γ
1−bi0 guarantees that w > 0 and 0 ≤ wbi0 + γi ≤ w (since 0 ≤ bi0 < 1) and

0 ≤ wbij ≤ wcij (since 0 ≤ bij ≤ cij).

We can distinguish between these two alternative forms by measuring the deriva-

tive of the concentration away from steady-state and comparing it to the derivative

predicted by each form of the equation. This requires only a few extra thoughtfully-

selected measurements. The details are in appendix A3.

4.7 Simulated six-gene subnetwork in mouse ESC

To demonstrate the inference approach, we apply our method to a synthetic six-gene

system based on the Oct4, Sox2, Nanog, Cdx2, Gcnf, Gata6 subnetwork in mouse

embryonic stem cell (ESC). Chickarmane and Peterson (2008) developed this system

based on a synthesis of knowledge about ESC gene regulation accumulated over the

past two decades [CP08]. The network structure is shown in Figure 4.3(a), and the
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Figure 4.2: Gene expression trajectories during an Oct4 knockdown from SC steady-
state. The expression of Oct4 is artificially reduced to 20% of its SC steady-state
expression level and held there, causing the expression levels of the targets of Oct4
to change in response, which in turn impact their targets. The system eventually
reaches a new steady-state different from SC. We measure the vector of expression
levels at the new steady-state and use it as data in the inference algorithm. Since
Oct4 is knocked down, this induced steady state does not provide useful information
about the Oct4 equation, but it is useful for understanding the role of Oct4 and other
genes in the equations of the remaining five genes.

detailed model is given by the following system of ODEs in the six genes:

d[O]

dt
=

0.001 + [A] + 0.005[O][S] + 0.025[O][S][N ]

1 + [A] + 0.001[O] + 0.005[O][S] + 0.025[O][S][N ] + 10[O][C] + 10[Gc]

− 0.1[O]

d[S]

dt
=

0.001 + 0.005[O][S] + 0.025[O][S][N ]

1 + 0.001[O] + 0.005[O][S] + 0.025[O][S][N ]
− 0.1[S]

d[N ]

dt
=

0.001 + 0.1[O][S] + 0.1[O][S][N ]

1 + 0.001[O] + 0.1[O][S] + 0.1[O][S][N ] + 10[O][G]
− 0.1[N ]

d[C]

dt
=

0.001 + 2[C]

1 + 2[C] + 5[O][C]
− 0.1[C]

d[Gc]

dt
=

0.001 + 0.1[C] + 0.1[G]

1 + 0.1[C] + 0.1[G]
− 0.1[Gc]

d[G]

dt
=

0.1 + [O] + 0.00025[G]

1 + [O] + 0.00025[G] + 15[N ]
− 0.1[G]. (4.4)
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This model has many of the same qualitative characteristics as the biological mouse

ESC network [CP08]. In particular, the system can support four different steady-

states: embryonic stem cell (ESC), differentiated stem cell (DSC), endoderm and

trophectoderm, and can switch from one to another when certain genes’ expression

levels are changed. In the Oct4 equation, A represents an external activating factor,

whose concentration [A] depends on the culture condition. Each of the four steady-

states has a corresponding value of [A]: 10 for ESC and DSC, 25 for endoderm,

and 1 for trophectoderm. For the remainder of this paper, we will regard [A] as

known. The explicit system of ODEs (4.4) allows us to generate data to fit our model

and also to quantitatively compare our recovered solution to the ground truth. The

qualitative similarity of this synthetic network to a real biological network gives us

confidence that our results in this numerical experiment are likely to translate well

to real biological networks. We observe that the Cdx2, Gcnf and Gata6 equations

have alternative forms (provided we ignore the very small constant term in the d[C]
dt

equation and [G] term in the d[G]
dt

) . With the minimum possible value of w, the

alternative forms are:

d[C]

dt
=

0.95

1 + 2.5[O]
(w = 2)

d[Gc]

dt
=

0.1001[Gc] + 0.01[C][Gc] + 0.01[Gc][G]

1 + 0.1[Gc] + 0.01[C][Gc] + 0.01[Gc][G]
− 0.1[Gc] (w = 0.1)

d[G]

dt
=

0.111[G] + 0.111[O][G]

1 + 0.111[G] + 0.111[O][G] + 1.67[N ][G]
− 0.1[G] (w = 0.111). (4.5)

To resolve the specific form, we will apply our method twice, once allowing self-

regulation and again disallowing it. Then we will compare the two recovered forms

of each equation and the quality of the fits to determine whether nonidentifiability

exists in each case. If so, we will break the tie by examining derivatives.

The details of the simulation are given in appendix A4. We begin by testing the

algorithm on noiseless data. We solve the optimization problem (4.1) once, then we

solve it again with additional constraints prohibiting self-regulation. In each case, we

use cross validation to select the sparsity parameter λ (Figure A1). The quality of the

fit is comparable for the latter three equations whether we allow self-regulation or not,
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Figure 4.3: Recovery of a synthetic gene regulatory network based on the biologi-
cal ESC network using our inference algorithm. The diagrams represent systems of
ODEs that quantitatively model the gene interactions. Edge color indicates activation
(green) or repression (red), and edge weights correspond to coefficient magnitudes.
The arrows point from regulator to target, and self-loops indicate self-regulation. The
yellow star represents the third-order complex OSN. (In addition to all possible first-
and second-order terms, we allow this special third-order term with a free coefficient.)
The left figure represents the original system of ODEs used to generate the data. The
center figure shows the network recovered using our inference algorithm on noiseless
data, and the right figure shows the recovery with 1% noise added. Both recovered
networks reflect coefficient thresholding at 0.1% (noiseless case) or 1% (noisy case)
of the largest recovered coefficent in each gene equation (with the exception of the
noiseless-case Oct4 equation, thresholded at 0.01% to show the sucessful recovery of
weak edges). The algorithm performs almost perfectly in the noiseless case, except
for a false positive repressor on Gata6 and two very weak activation edges missing. In
the noisy case, the algorithm recovers all of the strong edges, but misses some of the
weaker ones and returns a few small false positives at our chosen thresholding level.
Overall, the method captures the major network structure even in the noisy case.

while for the first three equations disallowing self-regulation has a significant negative

impact on the fit (Table A1), indicating that the first three equations are unambiguous

while the last three have two possible forms. To resolve the nonidentifiability in

the latter three equations, we measure the derivatives of Cdx3, Gcnf and Gata6

immediately after some additional informative perturbations: Oct4, Cdx2 and Nanog

knockouts, respectively (Figure A2). The test reveals that that Gcnf and Gata6 have

the simple form, while Cdx2 has a higher-order form. In this example, the original
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Figure 4.4: ROC curves for recovered networks from noiseless (left) and noisy (right)
data showing the tradeoff between true positive rate (TPR) and false positive rate
(FPR) for edge recovery. The ROC curves show the TPR and FPR that result from
a range of coefficient threshold choices above which we consider an edge to have been
recovered. For the equation dxi/dt = . . . and threshold t, TPR is defined as the
proportion of true edges j with crecovered

ij > t and FPR as the proportion of false edges
with crecovered

ij > t. For equations with two possible forms, we compare the simple
forms of the true and recovered equations. Each gene equation has a different ROC
curve as indicated by the legend. The dotted black line is the expected ROC curve for
‘random guessing’ algorithm, while the (0, 1) point corresponds to a perfect algorithm
(in fact, our algorithm performs perfectly for the Gcnf equation).

coefficients are recovered almost exactly:

d[O]

dt
=

0.001 + [A] + (0.005[O][S] + 0.025[O][S][N ])

1 + [A] + (0.001[O] + 0.005[O][S] + 0.025[O][S][N ]) + 10[O][C] + 10[Gc]

− 0.1[O]

d[S]

dt
=

0.001 + 0.005[O][S] + 0.025[O][S][N ]

1 + 0.005[O][S] + 0.025[O][S][N ]
− 0.1[S]

d[N ]

dt
=

0.1[O][S] + 0.1[O][S][N ]

1 + 0.1[O][S] + 0.1[O][S][N ] + 10[O][G]
− 0.1[N ]

d[C]

dt
=

2[C]

1 + 2[C] + 5[O][C]
− 0.1[C]

d[Gc]

dt
=

0.001 + 0.1[C] + 0.1[G]

1 + 0.1[C] + 0.1[G]
− 0.1[Gc]

d[G]

dt
=

0.1 + [O]

1 + [O] + 0.03[N ][Gc] + 15[N ]
− 0.1[G]. (4.6)
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Next we add zero-mean Gaussian noise to each measurement, with standard deviation

1% of the measurement magnitude. We use the same steady-states as in the noiseless

case, plus overexpression-knockdown of each pair of genes starting from ESC and

DSC. Using a similar approach (detailed in appendix A4), we recover:

d[O]

dt
=

[A]

1 + [A] + 9.9[Gc] + 9.9[O][C]
− 0.1[O]

d[S]

dt
=

0.001[O][S] + 0.0005[S][N ] + 0.025[O][S][N ]

1 + 0.001[O][S] + 0.0005[S][N ] + 0.025[O][S][N ]
− 0.1[S]

d[N ]

dt
=

0.09[O][S][N ]

1 + 0.1[G][Gc] + 0.09[O][S][N ] + 9.1[O][G]
− 0.1[N ]

d[C]

dt
=

2[C]

1 + 2[C] + 5[O][C]
− 0.1[C]

d[Gc]

dt
=

0.1[C] + 0.1[G]

1 + 0.1[C] + 0.1[G]
− 0.1[Gc]

d[G]

dt
=

0.1 + 0.9[O]

1 + 0.9[O] + 14.2[N ]
− 0.1[G]. (4.7)

In order to produce clean equations and network diagrams, we choose appropriate

thresholds for each equation below which we zero the coefficients. (In practice, choos-

ing thresholds is a judgment call based on the expected number of regulators, the

noise level of the data, and the level of detail appropriate for the application.) We

set the thresholds at 0.1% (noiseless case) or 1% (noisy case) of the largest coeffi-

cient recovered for each equation. For example, the largest recovered coefficient in

the d[G]/dt equation is roughly 15 in either case, so we zero the coefficients that fall

below 0.015 (noiseless case) or 0.15 (noisy case). The recovered systems of equations

shown above reflect these choices. In the noiseless case, relaxing the threshold on the

Oct4 equation to 0.01% leads to the recovery of more correct terms, listed in paren-

theses. For completeness, we also provide receiver operating characteristic (ROC)

curves in Figure 4.4 to show the tradeoff between true positives and false positives

at other thresholds. The network diagrams in Figure 4.3(b,c) include an edge if the

corresponding coefficient is above the threshold, with weights reflecting the size of the

coefficients. These diagrams show that the recovery is nearly perfect in the noiseless
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case: using the gentler threshold for the Oct4 equation we recover all the true edges

except for three very weak ones, and return just one small false positive repressor in

the Gata6 equation. In the noisy case, we recover all the large coefficients correctly,

although there are a few small false positives and the we miss several of the weakest

edges. Overall, the method is able to capture the major network structure.

4.8 Discussion

Our experiment on the synthetic ESC system demonstrates that our algorithm can

be used to infer a complex dynamical systems model of gene regulation and that

the method can tolerate low levels of noise. Term selection from among all possible

single gene and gene-complex regulators (up to second-degree interactions, plus the

third-degree interaction OSN) was successful. The inferred equations are easy to

interpret in terms of gene networks, and the detailed quantitative information allows

for prediction of future expression trajectories from any starting point.

The approach is also scalable. Since we have formulated our problem as the convex

optimization problem (4.1), it can be solved efficiently even for large systems using

prepackaged software. Furthermore, it is trivially parallelizable, since we need to solve

a version of (4.1) to infer the differential equation coefficients bij, cij for each gene i.

Parallelization is even more helpful for the cross validation step, where we need to

solve (4.1) for each gene and a sequence of choices sparsity parameter λ. We tested

the scalability by running the algorithm with the parallelization discussed above on a

simulated 100-gene system. The algorithm ran correctly in a reasonable time frame

(a few hours) on a computing cluster.

The high resolution of our model is one of its most valuable features, but it means

that accurate term selection may require much data, especially in the presence of

noise. In our experiment, when we added 1% Gaussian noise, we needed extra data

(knockdown/overexpression pairs) in order to accurately select terms. When we tried

5% noise, the algorithm consistently selected the large terms in five of the six equa-

tions, but we had to add even more data in order to correctly identify the major repres-

sor in the Nanog equation. The Nanog equation is subtle in that Oct4 acts as both an



CHAPTER 4. NONLINEAR INFERENCE 43

activator in complexes with Sox2 and Nanog and a repressor in a complex with Gata6,

so the algorithm tends to select different Gata6 complexes (or the Gata6 singleton)

as the major repressor when the data is insufficient. In the 5% noise case, we needed

additional data on the role of Gata6 (double-knockdowns and double-overexpression

of pairs including Gata6 from ESC and DSC) in order to select Oct4-Gata6 as the

major repressor of Nanog fairly consistently. As discussed earlier, another difficulty is

the nonidentifiability that arises from accounting for self-regulation while restricting

data to steady-states. Distinguishing between the two possible forms of nonidentifi-

able equations requires extra derivative data (which can be collected experimentally,

although it is more difficult and time-consuming) and extra steps in the algorithm.

The constraints on the convex optimization problem (4.1), which arise from ther-

modynamic considerations, are sufficient to prevent further nonidentifiability, but in

certain cases, certain problems can suffer from near-nonidentifiability of other forms,

which may contribute to the challenge of term-selection with noisy or limited data.

We ensure accurate term selection by making sure we include enough diverse, high-

quality steady-state measurements.

Finally, it is important to note that the processes of gene transcription and trans-

lation are inherently stochastic, since TF and RNAP binding result from chance

collisions between molecules in the cell. We will study stochasticity in detail in the

following chapters. Although the model discussed in this chapter does not explicitly

account for intrinsic noise, we will show that is the first-order approximation of a

Markovian model that captures the stochasticity of gene regulation in full molecu-

lar detail. We will also see that stochasticity in systems with multiple steady-states

leads to multimodal steady-state expression distributions. Therefore, our algorithm

is valid as long as we collect gene expression data by measuring the location of gene

expression peaks, rather than measuring mean expression levels.

4.9 Conclusions

The model we use is based on the detailed thermodynamics of gene transcription,

and quantitatively captures the full spectrum of regulatory phenomena in a detailed,
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physically interpretable, predictive manner. Since we can formulate the model fitting

problem as a convex optimization problem, we can solve it efficiently and scalably

using prepackaged software. `1-regularization allows for term-selection while main-

taining the problem convexity. The experiments required to collect the necessary

steady-state gene expression data are straightforward to perform, as technologies for

knockdowns and overexpression are well-established and measuring gene expression is

relatively simple. The model accounts for activation and repression by single-protein

TFs and synergistic complexes as well as self-regulation, and describes the magni-

tude of each type of regulation in quantitative detail. Furthermore, the model can

be extended to account for environmental effects and auxiliary proteins involved in

regulation, including enhancers and chromatin remodelers. The fitted model can pre-

dict the evolution of the system from any starting point. Given a set of steady-states

gene expression measurements, our algorithm can be used to fit a model which not

only predicts further steady-states of the system, but also fully describes the transi-

tions between them. Finally, beside the study of gene regulation, our approach will

be useful in many other application areas where it is necessary to infer a nonlinear

dynamical system by suitable experimentation and statistical analysis.



Chapter 5

Intrinsic Noise

Like any physical quantity, gene expression level measurements are subject to noise. In

fact, the experimental techniques for measuring gene expression levels and biological

quantities in general tend to be much noisier than measurements in other scientific

disciplines. Fortunately, the extrinsic noise arising from measurement error can be

modeled with a Gaussian distribution, so taking the mean of enough experimental

replicates yields an accurate estimate of the true quantity. However, in addition to

straightforward extrinsic noise, gene expression is also characterized by intrinsic noise

arising from the fundamental stochasticity of the underlying processes, which cannot

be simply averaged away [SES02, Pau04].

Intrinsic noise arises from the inherent stochasticity of gene transcription, trans-

lation, and degradation [ELSS02, RO05, OTK+02, NT97, ARM98]. The probability

that RNAP binds a gene promoter depends on the presence of regulators, which also

bind the promoter with probability proportional to their concentrations. Degradation

of each RNA transcript, and translation of RNA transcripts into proteins, are also

stochastic processes.

In this chapter, we describe a model for gene regulation that properly accounts

for the stochastic nature of the processes involved, namely, the Master equation.

Since we cannot hope to solve the Master equation exactly except in simple cases,

we discuss theoretical approximation based on an expansion method due to N. G.

van Kampen and R. Kubo, and simulation algorithms due to Gillespie and Langevin.

45
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The van Kampen expansion shows that the stochastic model reduces to the deter-

ministic model (2.1) of the previous chapters in a first-order approximation, provided

the system has a single stable steady-state. Stochastic systems with multiple stable

steady-states are much more complex and alternate theory (also due to van Kam-

pen) applies. The simulation studies of chapter 6 will provide further insight into the

behavior of these systems.

5.1 The Master Equation

The basic approach to treating the stochasticity of gene regulation is to model gene

expression level as a Markov process, whose future state depends probabilistically

only on the current state. This is the most appropriate description for most processes

in physics and chemisty ([VK07]), and this case is no exception: the mechanisms

of transcription, translation, and degradation mean that the probability of each of

these events depends only on current quantity of each of the species involved in these

processes, including RNAP, transcription factors, and ribosomes (each of which is the

product of one or more genes, and can therefore be accounted for our formulation). In

this section we introduce the Master equation, which follows directly from the Markov

property ([VK07]). The Master equation is the natural model for gene regulation

under the Markov assumption.

A Markov process is a stochastic process such that for any t1 < t2 < . . . < tn:

P(yn, tn|y1, t1; . . . ; yn−1, tn−1) = P(yn, tn|yn−1, tn−1).

Hence a Markov process is completely determined by the functions P (y1, t1) and the

transition probabilities P (y2, t2|y1, t1). The Master Equation holds for any Markov

process: appendix A7 contains a complete derivation of the Master Equation as an

equivalent form of the Chapman-Kolmogorov equation, which is a direct consequence

of the Markov property (adapted from chapters IV and X of van Kampen’s Stochastic

Processes in Physics and Chemistry [VK07]). For a general Markov process Y , the
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Master Equation reads:

∂P (y, t)

∂t
=

∫
{W (y|y′)P (y′, t)−W (y′|y)P (y, t)}dy′, (5.1)

where W (y′|y) ≥ 0 is the transition probability per unit time from y to y′. If the

range of Y is a discrete set of states labeled by n, then (5.1) reduces to:

dpn(t)

dt
=
∑
n

(Wn,n′pn′(t)−Wn′,npn(t)) . (5.2)

Birth-and-death processes

Birth-and-death (or one-step) processes are a special class of Markov processes whose

range consists of integers n and whose transition matrix permits only jumps between

adjacent sites:

Wn,n′ = rnδn,n′−1 + gn′δn,n′+1.

(Note that this does not mean that it is impossible for the system to make two jumps

within one timestep ∆t, but only that the probability is O(∆t2).) Hence the Master

equation reduces to

ṗn = rn+1pn+1 + gn−1pn−1 − (rn + gn)pn. (5.3)

The birth and death rates, gn, rn, respectively, can be arbitrary functions of n, even

nonlinear ones. If only non-negative integers are allowed, then for n = 0 we must

replace ṗ with

ṗ0 = r1p1 − g0p0,

or alternatively we may define r0 = g−1 = 0.

One important example of a one-step process with constant transition rates is the

Poisson process : rn = 0, gn = q, pn(0) = δn, 0, i.e.

ṗn = q(pn−1 − pn).
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It is random walk over the integers taking steps to the right only, but at random

times. The negative Poisson process (taking steps to the left) is a good model for

protein degradation, as we will see in the next section.

Multivariable birth-and-death processes

The generalization to multiple variables is straightforward. Consider an n-dimensional

birth-and-death process X(t) ∈ Zn with birth and death rates g, r : Rn → Rn,

respectively. That is, gj(k), rj(k) denote the birth and death rates, respectively, of

the jth species when X = k ∈ Zn. The Master equation governing this process is

given by:

dP (k, t)

dt
=

n∑
j=1

[
gj(E−j k)P (E−j k, t) + rj(E+

j k)P (E+
j k, t)− (gj(k) + rj(k))P (k, t)

]
where E±j k =

[
k1, . . . , kj−1, kj ± 1, kj+1, . . . , kn

]T
.

The quasi-steady-state-assumption (QSSA)

It is often necessary or expedient to make the simplifying assumption that a certain

species involved in a process is approximately in steady-state relative to other species.

This is typically justified by separation-of-time-scales: for example, for a two-step re-

action involving a fast reaction between a primary and intermediate species followed

by a slower conversion of the intermediate into a final product (especially an irre-

versible reaction), we may assume that the net rate of formation of the intermediate

species is approximately zero, since the first reaction equilibrates so quickly relative

to the second. This is called the quasi-steady-state-assumption (QSSA). In the ex-

ample, the QSSA lets us assume that the ratio of primary to intermediate species is

approximately equal to its thermodynamic steady-state value. Appendix A6 follows

Rao and Arkin in showing how to use the QSSA to eliminate an intermediate species

from a multivariate Master equation [RA03].
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5.1.1 The Master equation for gene regulation

We now wish to develop a stochastic model for gene regulation. We will start simply,

considering a system with a single gene, and temporarily ignoring the distinction

between RNA and protein. Let X(t) be a discrete random variable representing

the number of RNA transcripts present in the cell at time t. X(t) has a time-

dependent probability distribution given by P (k, t) ≡ P{X(t) = k}. We can model

X(t) as a birth-and-death process with birth rate τF (k) and death rate λk, where F

models the RNAP-promoter binding probability as a function of the current number

of transcripts (in the single-gene case, we can only account for self-regulation). If

there are initially k RNA transcripts, then over an infinitesimal timestep ∆t either

a degradation event may occur with probability λk∆t, a RNAP-promoter binding

event may occur followed by RNA transcription with probability τF (k)∆t, or neither

may occur. (It is highly unlikely (O(∆t2)) that two or more of these events occur

within a single timestep.) Hence, as Figure 5.1 shows, the probability P (k, t) increases

by P (k − 1) times the probability transcription plus P (k − 1) times the probability

degradation, and decreases by P (k) times the probability of transcription plus the

probability of degradation. The Master Equation governing the evolution of P (k, t)

over time is therefore:

dP (k, t)

dt
= τF (k − 1)P (k − 1, t) + λ(k + 1)P (k + 1, t)− (τF (k) + λk)P (k, t).

(5.4)

Explicit steady-state solution for one gene systems

A general single-species birth-and-death process governed by the Master equation

ṗk = rk+1pk+1 + gk−1pk−1 − (rk + gk)pk.

has an explicit steady-state probability distribution given by

psk =
g0g1 . . . gk−1

r1r2 . . . rk
p0, (5.5)
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λ(k + 1)λk

k + 1kk − 1

−(τF (k) + λk)P (k)

τF (k − 1) τF (k)

dP (k)

dt
= τF (k − 1)P (k − 1) + λ(k + 1)P (k + 1)

Figure 5.1: Informal derivation of the Master equation for gene regulation. In a
infinitesimal timestep, P (k, t), the probability of k RNA transcripts, increases by
P (k − 1, t) times the probability, F (k − 1), of a transcription event (number of tran-
scripts increases by one) plus P (k+1, t) times the probability, λ(k+1), of a degrada-
tion event (number of transcripts decreases by one). It decreases by P (k) times the
probability of transcription plus P (k) time the probability of degradation.

(van Kampen VI.3.8 [VK07]). The proof is by induction. Applied to a single-gene

system, this formula becomes

P s(k) = P s(0)
(Ωτ/λ)k

k!

k−1∏
j=0

f(
j

Ω
). (5.6)

This formula, which Chao Du independently derived and brought to my attention in

October 2012, is very useful for studying one-gene systems with little computation.

For example, it can be used to directly compute the steady-state mean and variance

of a single-gene system.

Multiple genes

In order to study stochasticity in gene regulation, we must extend our framework to

include multiple-gene systems as well. In order to do this we can apply the Master
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equation for multivariate birth-and-death processes. Consider a system with n genes,

and let X(t) ∈ Zn be a discrete random vector, where Xj(t) represents the number

of RNA transcripts of gene j present in the cell at time t. X(t) has a time-dependent

probability distribution given by P (k, t) ≡ P(X(t) = k) = P{Xj(t) = kj, 1 ≤ j ≤ n},
for k ∈ Zn. Similar to the one-gene case, we can model X(t) as a birth-and-death

process with Master equation:

dP (k, t)

dt
=

n∑
j=1

[
τjFj(E−j k)P (E−j k, t) + λj(kj + 1)P (E+

j k, t)− (τjFj(k) + λjkj)P (k, t)
]

where E±j k =
[
k1, . . . , kj−1, kj ± 1, kj+1, . . . , kn

]T
. (5.7)

RNA and protein

Initially, we simplified the discussion by ignoring protein translation and focusing

only on the number of RNA transcripts of each gene. The same multivariate Mas-

ter equation that allowed us to handle multiple genes also allows us to model the

stochasticity of protein translation. If we introduce another a discrete random vector

Y(t) ∈ Zn, where Yj(t) denotes the number of protein translates of gene j, and define

P (kr,kp, t) ≡ P(X(t) = kr,Y(t) = kp) the Master equation corresponding to the

deterministic model (2.1) is:

dP (kr,kp, t)

dt
=

n∑
j=1

{τjFj(E−j kp)P (kr,E−j kp, t) + λrj(kj + 1)P (E+
j kr,kp, t)

+ rj(k
r
j − 1)P (E−j kr,kp, t) + λpj(k

p
j + 1)P (kr,E+

j kp, t)

− (τjFj(k
p) + λrjk

r
j + rjk

r
j + λpjk

p
j )P (kr, kp, t)}.

If we apply the QSSA to the translation step as described in appendix A6, that is, we

assume that protein levels are approximately proportional to RNA levels at all times

(which may or may not be biologically accurate, as discussed in chapter 2), then this

equation reduces to the form (5.7).
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5.1.2 Implicit assumptions and simplifications

Any modeling effort is necessarily a compromise between accuracy and tractability,

and this case is no exception. Since the biological mechanisms of gene transcrip-

tion are extraordinary complex and not completely understood, our model relies on

a number of simplifying assumptions, both biological and physical in nature. One of

the most explicit is the assumption that the rates of degradation, translation, and

transcription (when RNAP is bound) are constant for each gene. In reality, the rates

are affected by many other processes including chromatin remodeling, translational

regulation, and protein folding. However, especially since it can be quite difficult to

measure the rates accurately, the hope is that average rates suffice and the nonlinear

form of f is flexible enough to capture much of the complexity. There are also a few

key assumptions implicit in the form of f . One is that RNAP levels are approxi-

mately constant on the time scale of interest. A second is that nonspecific binding

energy is equal for all non-promoter locations the RNAP could occupy. Finally, the

model omits several reversible intermediate reactions such as binding and unbinding

of RNAP and TFs. Since these reactions typically occur very quickly relative to the

transcription time-scale, we can reasonably assume that the quantities involved are in

thermodynamic steady-state, and apply Rao and Arkin’s QSSA argument (appendix

A6) to eliminate the reversible reactions from the model [RA03].

5.2 Expansion and simulation methods

The Master equation cannot be solved explicitly except in the simplest cases. For a

one-gene system, we have an explicit formula for the steady-state distribution (equa-

tion 5.6), but no such formula exist for multiple genes. Therefore, in order to make

further progress we will need approximations of the Master equation and efficient

simulation methods. Fortunately, much of the work has already been done by physi-

cists studying the Master equation, beginning in the 1970’s. N. G. van Kampen

([VK07] and Ryogo Kubo ([KMK73]) developed a systematic expansion method for
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approximating the Master equation at any level of detail. Gillespie created a stochas-

tic simulation algorithm to generate statistically correct trajectories of the Master

equation; another simulation method based on the Langevin equation is less accurate

but more efficient. We will summarize their findings in this section and show how

they can be applied to the gene regulation problem. In the next chapter we will

perform simulation studies on simple synthetic gene regulatory systems to illustrate

the application of these methods and understand their strengths and weaknesses.

5.2.1 The Gillespie algorithm

The Gillespie algorithm enables numerical simulation of statistically correct trajec-

tories of a system governed by the Master equation. The iterative Monte Carlo

procedure randomly chooses the next event that will occur and the intervening time

interval, then updates the molecular numbers of each species and the trajectory time

[Gil77]. If the simulated system is in state X(t) at time t, the waiting time τ before

its next jump is drawn from an exponential distribution, and the probability of jump-

ing to state X(µ) is wµ = W (X(µ)|X) (the Master equation transition probability for

X → X(µ) per unit time). The basic steps of the algorithm are:

1. Initialize the molecular numbers of each species, X1, . . . , Xn, and set t = 0.

2. Randomly choose the next event to occur, and an exponential waiting time τ ,

by generating uniform random numbers u, v from Unif(0,1), and setting

w0 =
∑
µ

wµ, τ =
1

w0

log
1

u
, µ :

µ−1∑
ν=1

wν < w0v <

µ∑
ν=1

wν .

3. Update the time and molecular numbers based on the chosen event and time:

t← t+ τ, X(t)← Xµ.

4. Repeat steps 2-3 until the simulation time limit is reached (t > Tsim).
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The Gillespie algorithm provides an exact simulation of the Master equation at a

high computational cost, which increases rapidly with the number of species and

the system size. While it is very attractive for small systems, we require alternative

approaches for gene regulatory systems with many genes and large systems sizes. In

the next few sections, we will discuss theoretical approximations as well as an efficient

but inexact simulation method based on the Langevin equation.

5.2.2 The van Kampen expansion

N. G. van Kampen provides a systematic approximation method involving an expan-

sion in the powers of small parameter inversely related to system size [VK07]. The

Master equation can be approximated at any level of detail by truncating the expan-

sion to omit the higher-order terms. Ryogo Kubo, a contemporary of van Kampen,

arrived at an equivalent formulation by a slightly different approach ([KMK73]). We

will follow van Kampen’s development here since it is more transparent.

In order to establish the relative scales of macroscropic and microscopic (jump)

events, van Kampen introduces a system-size parameter Ω, such that for large Ω the

fluctuations are relatively small. His approximation takes the form of an expansion in

the powers of Ω−
1
2 . A critical assumption is that the transition probability function

W has the form:

WΩ(X + r|X) ≡ ΩΦ(
X

Ω
; r),

which means that the transition probabilities depend only on the macroscopic variable

x = X
Ω
∈ R and on the size of the jumps r ∈ Z. In our application, this assumption

holds and the jumps can only have magnitude 1:

W (X + 1|X) = F (X) ≡ Ωf(
X

Ω
) ⇐⇒ Φ0(x; +1) = f(x)

W (X − 1|X) = λX ⇐⇒ Φ0(x;−1) = λx.

The expansion begins with the Ansatz that the probability distribution P (X, t) has
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a peak of order Ω tracking the macroscopic solution, with width of order Ω
1
2 corre-

sponding to the fluctuations:

X(t) = Ωφ(t) + Ω
1
2 ξ. (5.8)

The motivation for the Ansatz is the observation that the relative fluctuation effects

in chemical systems tend to scale as the inverse square root of the system size [Gil00].

It is justified a posteriori by the fact that P (x, t), expressed in terms of ξ, turns out

to be independent of Ω to first approximation. As part of the expansion procedure,

φ is chosen to track the peak, and turns out be exactly the deterministic solution.

To compute the expansion, van Kampen redefines P (X, t) as a function Π of the

new parameters φ, ξ via

P (X, t) = P (Ωφ(t) + Ω
1
2 ξ, t) ≡ Π(ξ, t),

rewrites the Master equation in terms of Π, and proceeds to expand it in negative

powers of Ω. To simplify the calculations, he defines the jump moments

αν(x) =

∫
rνΦ(x; r)dr. (5.9)

The first jump moment corresponds to the deterministic equation:

dy

dt
= α1(y) =

1

Ω

∫
rWΩ(Y + r|Y )dr.

For a birth-and-death process, this simplifies to:

α1(y) =
1

Ω
WΩ(Y + 1|Y )− 1

Ω
WΩ(Y − 1|Y );

in our case α1(y) = f(y)− λy, α2(y) = f(y) + λy.

The complete calculation (adapted from chapter 10 of van Kampen) is provided

in appendix A7. A crucial step in the expansion is the cancellation of terms of order

Ω
1
2 , which cannot belong to a proper expansion for large Ω. The cancellation is made
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possible by choosing φ(t) (the macroscopic part of X) such that

dφ

dt
= α1(φ).

That is, φ exactly satisfies the deterministic equation!

The final result (to order Ω−1) is that

∂Π

∂t
= −α′1(φ)

∂ξΠ

∂ξ
+

1

2
α2(φ)

∂2Π

∂ξ2
+

1

2
Ω−

1
2 (α′2(φ)

∂2ξΠ

∂ξ2

− α′′1(φ)
∂ξ2Π

∂ξ
− 1

3!
α3(φ)

∂3Π

∂ξ3
) +O(Ω−1) (5.10)

with jump moments αν defined by (5.9).

As we will discuss in greater detail later, the validity of the expansion relies on the

assumption that the macroscopic equation dφ
dt

= α1(φ) has a single stable stationary

state (satisfying α1(φ) = 0, α′1(φ) ≤ −ε < 0), which attracts all trajectories. If this

is not the case, it is possible for a random fluctuation to send a stochastic trajectory

out of the domain of attraction of the deterministic steady-state near which we would

expect it to remain. For now, we will assume that the condition holds. Then the ex-

pansion is valid and can be truncated at the desired level of detail and translated back

into the original variable via X(t) = Ωφ(t) + Ω
1
2 ξ(t) to yield various approximation

schemes.

5.2.3 The linear noise approximation

Restricting attention to the terms of order Ω0 = 1 in this expansion yields the linear

noise approximation

∂Π

∂t
= −α′1(φ)

∂ξΠ

∂ξ
+

1

2
α2(φ)

∂2Π

∂ξ2
+O(Ω−

1
2 ). (5.11)
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This is a linear Fokker-Planck equation, and the solution turns out to be a Gaussian

(see van Kampen VIII.6 [VK07]). Hence it is completely characterized by the first

and second moments of ξ, which are of the most interest to us anyway. Multiplying

equation 5.11 by ξ and ξ2, respectively, yields

∂

∂t
〈ξ〉 = α′1(φ)〈ξ〉 (5.12)

∂

∂t
〈〈ξ〉〉 = 2α′1(φ)〈〈ξ〉〉+ α2(φ). (5.13)

After solving for 〈ξ〉, 〈〈ξ〉〉 and solving the deterministic equation for φ, we can use

the Ansatz (5.8) to find the mean and variance of X:

〈X(t)〉 = Ωφ(t) + Ω
1
2 〈ξ(t)〉, 〈〈X(t)〉〉 = Ω〈〈ξ〉〉.

The initial condition P (X, 0) = δ(X − X0) implies φ0 = x0 and 〈ξ〉0 = 〈〈ξ〉〉0 = 0,

hence 〈ξ〉t ≡ 0. (Even if ξ has a nonzero initial distribution, if α′1(φ) < −ε < 0 we

still will have 〈ξ〉 ≤ e−εt → 0.) Hence the mean of the solution to the Master equation

with initial distribution δx0 approximately satisfies the deterministic equation:

∂

∂t
〈x〉 = α1(〈x〉) +O(Ω−1). (5.14)

5.2.4 Connection to the nonlinear deterministic model

Equation 5.14 provides the link between the stochastic Master equation and the non-

linear deterministic dynamical system model of chapter 4. It shows that the deter-

ministic equation is an approximate model for the evolution of the mean expression

of the stochastic process. That is,

∂

∂t
〈x〉 ≈ α1(〈x〉) = f(〈x〉)− λ〈x〉,

with error on the order of a single molecule. Therefore, under a few reasonable

assumptions about system size and steady-state stability, the population mean still

approximately satisfies the nonlinear deterministic equation of the last chapter.
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5.2.5 The Fokker-Planck and Langevin equations

In the last section, we saw that the linear noise approximation gave rise to a lin-

ear Fokker-Planck equation. Fokker-Planck or (mathematically equivalent) Langevin

equations predate the van Kampen expansion and are still often used as approxima-

tions of the Master equation or directly as models of Markov processes with small

jumps (although this sometimes leads to difficulties that must be resolved by van

Kampen’s approach). In this section we will discuss these two types of equations

and their application the gene regulation. Although the approximation is not entirely

consistent due to the nonlinearity of the problem, the Langevin equation is the basis

of an efficient simulation approach that enables large-scale simulations of multiple-

gene systems.

The Fokker-Planck equation is a differential equation consisting of a “transport term”

and a “diffusion term”:

∂P (y, t)

∂t
= − ∂

∂y
α1(y)P +

1

2

∂2Π

∂y2
α2(y)P. (5.15)

In the general form of the equation, α1, α2 are any real differentiable functions with

α2 > 0, but in Planck’s derivation of the equation as an approximation to the Master

equation [PG58], they are exactly the first and second jump moments (5.9). Since the

Fokker-Planck equation is always linear in P , we follow van Kampen in appropriating

the term linear to mean that α1 is linear and α2 constant.

The Langevin equation is a stochastic differential equation (SDE) of the form

dy = α1(y)dt+
√
α2(y)dW, (5.16)

where W (t) is a Wiener process, or Brownian motion. (Again, α1, α2 > 0 may be

any C1 functions in general, but in the case of interest to us, they represent the

jump moments.) Equations 5.15 and 5.16 are mathematically equivalent using the

Ito intepretation of 5.16 (see van Kampen IX.4 [VK07] for the proof).

These equations are very appealing for modeling physical processes since they
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are easy to derive and interpret. For both equations, α1, α2 (thought of for now as

general functions, not as the jump moments) can be inferred without even knowing the

underlying Master equation, using only the macroscopic law and fluctuations around

the steady-state solution (known from statistical mechanics). The approach works

very well in situations where the macroscopic law α1 is linear [PG58, Ray91, Ein06,

VS06]. However, confusion can arise when α1 is nonlinear, since effects on the order of

the fluctuations are invisible macroscopically [VK65]. One of the major motivations

for van Kampen’s systematic expansion was the need to resolve disagreements between

authors who had developed different but equally plausible characterizations of the

noise in nonlinear systems using this approach.

For systems with linear deterministic equations, the van Kampen approximation

agrees exactly with the Fokker-Planck model, since the linear noise approximation

yields a linear Fokker-Planck equation. However, discrepancies may arise for nonlin-

ear systems, and we should consider the van Kampen theory definitive in such cases.

The error in the nonlinear Fokker-Planck model is that it retains the full functional

dependence on the nonlinear functions α1, α2 (in effect, keeping infinitely many terms

of their Taylor expansions) while cutting off their third-order and higher derivatives

in the expansion about the deterministic path φ(t). In contrast, the truncated van

Kampen expansion replaces α1, α2 by their Taylor polynomials at a level of detail

consistent with the order of the approximation. The van Kampen expansion provides

a completely consistent approximation of the Master equation to any desired order

of accuracy, while the Fokker-Planck model is a slightly inconsistent second-order ap-

proximation only. Nevertheless, the discrepancy between the Fokker-Planck and van

Kampen approximations is often not too serious (and a second-order approximation

is typically good enough), so the model are still very useful in many cases.

The Langevin equation, in particular, lends itself to efficient simulation [KH08,

Gil00]. Simulation provides insight into the behavior of individual trajectories as well

as moment information, and applies directly to multistable systems (while van Kam-

pen requires alternative theory since the expansion method only applies to systems

with one stable steady-state). However, simulation can be very expensive. The exact

Gillespie algorithm and other direct simulation methods are only computationally
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feasible for very small systems. Fortunately, the Langevin simulation works well for

large systems with many genes, since trajectories of the Langevin equation can be

simulated by evolving a small system of stochastic differential equations, rather than

accounting for every single reaction like the Gillespie algorithm. Hence the Langevin

simulation is appropriate for large systems with complex qualitative structures.

With these risks and potential rewards in mind, we will show how to naively apply

the Langevin approach to the gene regulation problem. In the next chapter we will

compare the results of Langevin simulations with the more accurate predictions of

van Kampen or the direct Master equation simulation, where possible. Using the

first- and second- jump moments for our problem:

α1(y) = f(y)− λy, α2(y) = f(y) + λy,

the Langevin equation is:

dx = (f(x)− λx)dt+
√
f(x)dW1 +

√
λxdW2, (5.17)

where W1,W2 are independent Wiener processes.

5.3 Systems with multiple stable steady-states

We have alluded several times to the fact that stochasticity can lead to unexpected

results for systems with multiple stable steady-states. The basic reason is that random

fluctuations can send stochastic trajectories out of the domain of attraction of one

deterministic steady-state and into the domain of another. van Kampen treats these

issues in detail in chapter XIII of his book [VK07]. In this section, we will summarize

the points that are most relevant to our topic. In the next chapter, simulation studies

will illustrate these points and provide additional insight.

For simplicity, consider a birth-and-death process with two distinct stable steady-

states, φa < φc and an unstable steady-state φb (φa < φb < φc). By this we mean that
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the corresponding deterministic equation dφ/dt = α1(φ) has those properties, i.e.

α1(φa) = α1(φb) = α1(φc) = 0, (5.18)

α′1(φa) < 0, α′1(φb) > 0, α′1(φc) < 0. (5.19)

A deterministic trajectory will eventually converge to the nearest stable steady-state:

that is, trajectories with initial conditions ≤ φb will converge to φa, and those with

initial conditions ≥ φb will converge to φc. (A trajectory with initial condition φb

will remain there, but this is not physically meaningful even in the deterministic case

since the slightest perturbation will send the trajectory toward φa or φb.)

When we take stochasticity into account, it is also possible for a large fluctuation to

send a trajectory out of the domain of attraction of φa and into that of φc. These large

fluctuations are usually unlikely, so it may take a very long time before one occurs.

For systems of macroscopic size, this escape time can be so long that the event may

never be observed. In smaller systems, however, transitions between steady-state

domains can be a fairly common occurrence.

For systems in which giant fluctuations are relatively rare, we can distinguish

two time scales: a short time scale on which equilibrium is established within the

domain of attraction of a particular steady-state, and a long time scale on which

giant fluctuations occur (sending trajectories out of the domain of attraction of one

steady-state and into another). These time scales are distinct as long as the peaks

at the deterministic steady-states are sharp relative to the distance between them.

The rate of occurence of the giant fluctuations is roughly equal to the height of the

steady-state distribution at the unstable point φb, which means that the escape time

scales exponentially with the system size, Ω.

A system that starts out near the unstable point φb evolves in three basic stages.

At first, each trajectory has a reasonable probability of moving toward either of the

stable points φa or φb, so the distribution widens quickly, but fluctuations across φb

are quite possible. In the next stage, the probability has split into two autonomous

parts, and fluctuations across φb cease, since each trajectory has settled into the

domain of attraction of either φa or φb. In the final stage, the probability has reached



CHAPTER 5. INTRINSIC NOISE 62

a final bimodal stochastic steady-state distribution peaked at φa and φb. There is

still a chance that fluctuations will send trajectories from one regime to another, but

the probabilities are balanced so as to maintain the distribution.

A system that starts out near the stable point φa evolves differently, but eventually

reaches the same bimodal stochastic steady-state distribution peaked at φa and φb

(i.e. stage three), although it takes much longer to do so. Giant fluctuations can

release trajectories from the domain of attraction of φa, but these occur on the long

time-scale, so the probability peak at φc builds up much more slowly. Of course,

if giant fluctuations are not particularly rare (in small systems, for example), then

the initial condition has little impact on the time required to reach the steady-state

distribution.

The relationship between the escape times and the probability of the regimes in

the stochastic steady-state distribution is simple. Define the probabilities πa, πc of a

trajectory φ(t) being in the domain of φa, φc, respectively, by

πa =

φb∑
−∞

pn(t), πc =
∞∑
φb

pn(t).

Let τac, τca represent the escape times: that is, 1
τac

is the probability per unit time

for a trajectory in the domain of φc to cross the boundary φb into the domain of φa.

Then we have

π̇a = −π̇c = − πa
τca

+
πc
τac

[van Kampen XIII.1.4].

At steady-state (π̇a = π̇c = 0),
πsa
τca

=
πsc
τac
.

We can identify the escape time τca with the mean first-passage time from φa to

φc. For the one-dimensional process defined by equation 5.3, the mean first-passage
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Figure 5.2: Bistability in a stochastic system modeled by a Fokker-Planck equation of
the form (5.21), corresponding to deterministic equation dx

dt
= dU

dt
. The deterministic

function dU
dt

(left) has zeros at the three steady-states φa ≈ 1, φb ≈ 4, φc ≈ 8. The
points φa and φc are stable, while φb is unstable. The potential U(x) (center) has
minima at φa and φb and a maximum at φc, corresponding to low energy (favorable) at
the two steady-states and high energy (unfavorable) at the unstable state. φb is more
stable than φa since its potential well is deeper and wider. The stationary distribution
(right), to which the stochastic system will eventually converge, is bimodal with peaks
at φa and φc. The peak at φc is higher since φc is more stable than φa.

time from φa to φc is given by

τca =
c−1∑
k=a

1

gkpsk

k∑
j=0

psj , where ps is the stationary distribution (5.5), (5.20)

as shown in appendix A8. The escape rate is O(psb), the height of stationary distri-

bution at the unstable point b, so the escape time scales exponentially in the system

size [BHK98].

The relative stability of the two stable steady-states, πs
a

πs
c
, depends on the relative

depths and widths of the two corresponding potential energy wells. To illustrate this,

consider the Fokker-Planck equation modeling diffusion in a potential U :

∂P (x, t)

∂t
=

∂

∂x
U ′(x)P + θ

∂2P

∂x2
. (5.21)

Although this model is not even approximately appropriate for the gene regulation
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problem since the diffusion coefficient is constant, while in the gene regulation problem

it is a function of x, it helps clarify some important issues. To that end, suppose the

derivative of U satisfies the bistability conditions (5.19), so that dU/dx and U have

the shapes shown in Figure 5.2. dU/dx has zeros at the steady-states φa, φb, φc, and

U has minima at the stable points φa, φc and a maximum at the unstable point φb.

The corresponding deterministic equation is ẋ = −U ′(x). The stationary distri-

bution is given by

P s(x) = Ce−U(x)/θ, C−1 =

∫
e−U(x)/θdx,

and for small θ we can approximate

C−1 ≈ e−U(a)/θ

√
2πθ

U ′′(a)
+ e−U(c)/θ

√
2πθ

U ′′(c)

πsa ≈
∫ b

−∞
P s(x)dx = C

√
2πθ

U ′′(a)
, πsc ≈

∫ ∞
b

P s(x)dx = C

√
2πθ

U ′′(c)

πsa
πsc
≈ e−(U(a)−U(c))/θ

√
U ′′(c)

U ′′(a)
[van Kampen XIII.1.10− 1.11].

Hence the relative stability of the two stable steady-states depends on both the depths

of the potential energy wells (U(a) and U(c)) and their widths (U ′′(a) and U ′′(c)). In

Figure 5.2, φc is more stable than φa, since its potential energy is lower and energy

well is wider. The relative stability in this example is about πa
πc

= 0.76, meaning that

at stochastic steady-state, about 43% of trajectories will be near φa and 57% will be

near φc at a given time (as shown in Figure 5.2, right pane).

Similarly, we can approximate the escape time (mean first-passage time) by

τca ≈
2π√

U ′′(a)|U ′′(b)|
e(U(b)−U(a))/θ [van Kampen XIII.2.2].

Hence the escape time depends on the height of the energy barrier U(b) and energy

well U(a), and the widths U ′′(a), U ′′(b) of the well and barrier. Since the potential

energy difference is O(Ω), we see again that the escape time scales exponentially with
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the system size.

In order to extend some of these ideas to the gene regulation problem, at least

approximately, we need a non-constant diffusion term in the Fokker-Planck equa-

tion. The Fokker-Planck approximation corresponding to the fully nonlinear Master

equation used for gene regulation is given by:

∂P (x, t)

∂t
= − ∂

∂x
α1(x)P +

1

2

∂2

∂x2
(α2(x)P ).

(As we noted earlier, although this does not technically constitute a consistent ap-

proximation, it works well in most cases.) The steady-state solution is given by:

P s(y) =
C

α2(y)
exp

(
2

∫ y

0

α1(t)

α2(t)
dt

)
. [van Kampen VIII.1.4] (5.22)

We can define an “effective potential” by

Ueffective = −2

∫ y

0

α1(t)

α2(t)
dt+ log(α2(y). (5.23)

and numerically evaluate πa, πc, and the relative stability, using

πsa ≈
∫ b

−∞
P s(x)dx, πsc ≈

∫ ∞
b

P s(x)dx.

For the escape time, van Kampen (XII.3.7) gives:

τca =

∫ c

a

eΦ(y′)dy′
∫ y′

a

e−Φ(y′′) 2dy′′

α2(y′′)
, Φ(y) = −

∫ y

a

2α1(y′)

α2(y′)
.

In the one-dimensional case, we could use the exact steady-state solution of the Mas-

ter equation (5.6) and the escape time (5.20) instead, although the Fokker-Planck

stationary solution may be more convenient. In multivariate case, we must the the

Fokker-Planck approach, since there is no general approach to finding stationary so-

lutions of multivariate Master equations. In contrast, finding the stationary solution

(if it exists) of a Fokker-Planck equation amounts to solving a second-order partial
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differential equation, which is straightforward numerically and sometimes even ex-

plicitly.

5.4 Summary

Nonlinear Master equation models capture the stochastic mechanisms of gene regu-

lation in full molecular detail. The Master equation can rarely be solved explicitly

for multiple gene systems, but theoretical approximations and simulation algorithms

can give insight into these systems. The Gillespie algorithm allows us to numerically

simulate exact trajectories of the Master equation, although the computational cost

becomes prohibitive for large systems with many genes. The van Kampen expan-

sion method allows us to rigorously approximate the Master equation at any level

of detail we desire (the deterministic model (2.1) being the simplest), provided the

system has only one stable steady-state, and van Kampen provides alternative the-

ory for analyzing systems with multiple stable steady-states. The Langevin equation

(equivalent to the Fokker-Planck equation) is an inexact approximation to the Master

equation and is the basis of a highly efficient simulation method that is well-suited for

large multiple-gene systems. In the next chapter, we will perform simulation studies

on simple synthetic gene regulatory systems to illustrate the application of each of

these methods and evaluate their performance. As one might expect, the behavior of

systems with multiple stable steady-states is particular interesting.



Chapter 6

Stochastic simulation studies

In this chapter, we study several small synthetic gene regulatory systems in order

to gain insight into the effects of stochasticity on systems with different qualitative

characteristics, and the suitability and accuracy of different approximation and sim-

ulation methods in various situations. The simulation studies will compare the true

Master equation (when feasible), second-order van Kampen approximation, deter-

ministic equation (linear-noise approximation), Gillespie simulation, and Langevin

simulation, in order to understand the strengths and limitations of each.

6.1 One gene system with one stable steady-state

Consider a single self-repressing gene whose self-regulation is governed by the deter-

ministic differential equation

dy

dt
= f(y)− γy, f(y) =

2γ

1 + y
, γ = 0.1. (6.1)

It has a single (non-negative) deterministic steady-state at y = 1, satisfying f(y) −
γy = 0. (The other solution, y = −2, is negative and therefore not physically mean-

ingful, nor is it realizable by the system assuming a non-negative initial condition.)

67
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Figure 6.1: Steady-state probability distributions of a one gene system with one
steady-state (6.1) for increasing system sizes Ω = 1, 10, 100. The distribution always
peaks at the deterministic steady-state solution (y = 1), and the variance decreases
as Ω increases. For smaller values of Ω, it’s clear that the mean lies slightly above the
deterministic solution, but as Ω increases, the distribution becomes quite symmetric.

The corresponding Master equation is

dP (k)

dt
= F (k − 1)P (k − 1) + γ(k + 1)P (k + 1)− (F (k) + γk)P (k), (6.2)

where F (k) = Ωf(k/Ω). Numerical evolution of the Master equation by iteratively

updating a vector of probabilities according to (6.2) is feasible in this case because the

system is so simple. The Master equation also has the explicit steady-state solution :

P s(k) =
P s(0)

γkk!

k−1∏
j=0

2γΩ

(1 + j
Ω

)
.

Figure 6.1 shows the stationary probability distributions for a range of values of Ω,

revealing that as Ω increases, the distribution is increasingly sharply peaked at ys = 1.

That is, the mean approaches ys = 1, and the variance goes to zero as Ω increases.

To second order, the van Kampen expansion gives:
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dφ

dt
= α1(φ) = f(φ)− γφ

d〈ξ〉
dt

= α′1(φ)〈ξ〉+
1

2
Ω−

1
2α′′1(φ)〈ξ2〉 = (f ′(φ)− γ)〈ξ〉+

1

2
Ω−

1
2f ′′(φ)〈ξ2〉

d〈ξ2〉
dt

= 2α′1(φ)〈ξ2〉+ α2(φ) = 2(f ′(φ)− γ)〈ξ2〉+ (f(φ) + γφ).

We can solve for the steady-state values of φ, 〈ξ〉, and 〈ξ2〉 by setting the left-hand-

sides of all three equations to zero. The first equation is the deterministic evolution

equation: we already know that its only non-negative solution is φs = 1. Evaluating

f and its derivatives at φs:

f(φs) = 0.2(1 + φs)−1 = 0.1; f ′(φs) = −0.05; f ′′(φs) = 0.05

and plugging into the last two equations yields

φs = 1, 〈ξ2〉 =
2

3
, 〈ξ〉 =

1

9
Ω−

1
2 .

Finally we obtain expressions for the steady-state mean and variance in terms of Ω:

〈xs〉 = φs + Ω−
1
2 〈ξs〉 = 1 +

1

9Ω

〈〈xs〉〉 = Ω−1〈〈ξs〉〉 =
2

3Ω
.

The Langevin model for this system is given by the SDE

dX = (F (X)− γX)dt+
√
F (X)dW1 +

√
γXdW2,

where W1(t),W2(t) are independent Wiener processes.

Figure 6.2 compares the exact Master equation, second-order van Kampen approx-

imation, Gillespie simulation, and Langevin simulation for this system with initial

condition ys = 1 (the steady-state value) and three different values of Ω. As Ω in-

creases, the agreement improves as the mean approaches the deterministic trajectory

(that is, the steady-state value ys = 1), and the variance decreases. The discrepancy

between the stochastic mean and the deterministic trajectory and the variance are
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both O(Ω−1) (as predicted by the van Kampen expansion).

The Master equation governs the evolution of the probability distribution; Figure

6.3 shows the final probability distributions for each value of Ω. In each case, the

initial probability is a delta-distribution centered at Ωys, and the probability spreads

out over time to reach a steady-state distribution, which is extremely close to a

Gaussian for Ω >> 1. For larger values of Ω, the final probability distribution

remains sharply peaked around ys.

6.2 Two gene system with one stable steady-state

Next we consider a two gene system, again with a single stable steady state, governed

by the deterministic differential equation

dy1

dt
= f1(y)− γy1, f1(y) =

0.1 + 0.1y2

1 + y
(6.3)

dy2

dt
= f2(y)− γy2, f2(y) =

0.4 + 0.1y1y2

1 + y1y2

, γ = 0.1. (6.4)

It has a single deterministic steady-state at y1 = 1, y2 = 2. With two genes, directly

evolving the Master equation is very expensive for moderately sized systems, as each

probability distribution is now two-dimensional (in general, the computational cost

of evolving the Master equation with system size Ω is O(Ωn) per timestep), so we

omit this method and focus on the van Kampen approximation and the Gillespie and

Langevin simulations. Figure 6.4 shows that the situation is qualitatively very simi-

lar to the one gene case we just discussed. The approximation and simulation means

differ from the deterministic trajectory by O(Ω−1), and the variance is also O(Ω−1).

For Ω = 1, the y2 variance and mean discrepancy of the Langevin simulation and the

van Kampen approximation are slightly lower than those of the exact Gillespie trajec-

tories. This inaccuracy arises from zero-boundary effects and the non-Gaussianity of

the probability distribution at small system sizes (on the order of a single molecule).
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Figure 6.2: One gene system with one steady-state (6.1). Mean (left) and variance
(right) trajectories via Master equation (black), van Kampen approximation (blue),
and average of 100 trajectories of the Gillespie (red) and Langevin simulation (cyan)
with Ω = 1, 10, 100 (top to bottom, respectively). Excellent agreement between
simulations, van Kampen approximation, and exact Master equation for both mean
and variance. Discrepancy between the stochastic mean and deterministic trajectory
and magnitude of the variance are both O(Ω−1).
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Figure 6.3: Final probability distributions of the exact Master equation for a one gene
system with one steady-state (6.1), with Ω = 1, 10, 100. The probabilities converge
to approximately Gaussian steady-state distributions peaked near the deterministic
steady-state. For larger system sizes, the distribution is more Gaussian and the peak
is sharper.

6.3 Constructing multistable systems

Gene regulatory systems with multiple stable steady-states are ubiquitous in nature

as this property plays a key role in cellular lifecycles and responses to external stimuli.

However, constructing synthetic systems with multiple stable steady-states with our

chosen functional form (2.8) can be challenging. One approach, which Chickarmane

et al used to develop their ESC-inspired system ([CP08]), is to start with a well-

understood biological network with multiple steady-states and use experimental data

and knowledge of qualitative behavior to suggest the appropriate terms and parameter

values. This can be an interesting and useful program, especially as the synthetic

network may later be useful for gaining further insight into the behavior of the original

biological network; however, there are very few biological networks well-understood

enough to lend themselves to this type of modeling. Furthermore, it is limiting in

the sense that it relies on existing known networks, and provides little insight into

methods for generating original networks. Ideally, we would like to be able to create

novel networks from scratch with specific properties of our own choosing. In this
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Figure 6.4: Two gene system with one stable steady-state (6.4). Mean (left) and
variance (right) trajectories of van Kampen approximation (blue) and average of 100
trajectories of Gillespie (red) and Langevin simulation (cyan) with Ω = 1, 10, 100 (top
to bottom, respectively). As for the one-gene system, agreement between the simula-
tions and the van Kampen approximation is excellent, and both the variance and the
discrepancy between the mean and deterministic trajectory are O(Ω−1). The only
exception is for Ω = 1, where slight inaccuracy of the Langevin simulation and van
Kampen expansion arises from the non-Gaussianity of the probability distribution.
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section we will discuss our efforts toward this end. Although we have not fully solved

this problem by any means and would encourage further work in this direction, we

have developed a heuristic algorithm that, together with some trial-and-error, allowed

us to generate the two multistable synthetic gene networks we study later in this

chapter.

Suppose we wish to construct an n-gene system with k stable steady-states e1, . . . , ek,

of our choosing. That is, we want to find parameters bij, cij, i = 1, . . . , n, j =

1, . . . ,m, where m is the number of terms in the model, so that

fi(y) =
bi0 +

∑m
j=1 bijΠk∈Sij

yk

1 +
∑m

j=1 cijΠk∈Sij
yk

=⇒ fi(ej)− γe1j,i = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Furthermore, e1, . . . , ek should be stable, so we require

∃Pj � 0 such that Jf (ej)
TP + PJf (ej) ≺ 0, 1 ≤ j ≤ m,

where Jf (y) denotes the n× n Jacobian matrix of f at y ∈ Rn.

Hence, we wish to find bij, cij such that fi(ej) = γej,i while satisfying the Jacobian

condition and the other constraints. That is, we want to solve the feasibility problem:

find bi, ci

subject to fi(ej) = γej,i

0 ≤ bi ≤ ci, ci(0) = 1,

∃Pj : Jf (ej)
TP + PJf (ej) ≺ −ε, 1 ≤ j ≤ m. (6.5)

If the problem is feasible, then bi, ci parametrize a system with the desired properties.

Not all choices of the ej necessarily lead to a feasible problem, so we may have to try

several possibilities before we find a system with multiple stable steady-states.

The problem is nonconvex due to the rational form of f , so we can either use

a nonconvex solver, or use heuristics and trial-and-error and solve with a convex

solver. Specifically, we can we can use the iterative approach described in chapter

2 to enforce the stability constraint, and simply replace the denominator of each f
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with a constant value and add a constraint forcing the denominator to be equal to

that constant. Of course, not all constant values lead to feasible problems, so if we

use the heuristic approach, we must guess-and-check the denominator values as well

as the steady-state locations.

6.4 One gene system with two stable steady-states

In this section, we study a one gene system with two stable steady-states (and one

unstable steady-state) inspired by a synthetic system developed by Chao Du and

refined using the algorithm of the previous section. The deterministic equation:

dy

dt
= f(y)− γy, f(x) =

0.1 + x+ 0.1x4

1 + 10x+ 0.5x2 + 0.1x4
, γ = 0.1 (6.6)

gives rise to two stable steady-states: e1 ≈ 1.0431 and e2 ≈ 7.9845, and an unstable

steady-state e3 ≈ 4.0416.

At the end of the last chapter, we discussed methods from chapter XIII of van

Kampen’s book for analyzing the equilibrium behavior of systems with multiple sta-

ble steady-states. These tools provide a great deal of insight into long-term system

behavior with minimal computation, since they only require the stationary probabil-

ity distribution (which can be computed directly in the single-gene case using (5.6),

or approximated using the Fokker-Planck equation in general). These tools will al-

low us to predict some of the basic behavior of system (6.6) with very little effort.

Simulations will confirm and complete the picture.

Let us first examine the most basic properties of the system with Ω = 1. As

Figure 6.5 shows, the deterministic system is bistable. The deterministic function

α1(x) = f(x) − γx, has three zeros corresponding to the three deterministic steady-

states. The derivative of the deterministic function is negative (dα1/dt < 0) at

the stable steady-states, and positive at the unstable steady-state. The stationary

distribution has a strong peak at the more stable steady-state, e1, and a weaker one

at the less-stable point e2. The system is three times as likely to be in the domain of

e1 than in the domain of e2. We can use the relative stability of the two stable points
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Figure 6.5: The deterministic function α1(x) = f(x) − γx for the system (6.6)
with Ω = 1, has three zeros corresponding to the three deterministic steady-states,
e1, e2, e3. The derivative of the deterministic function is negative (dα1/dt < 0) at the
stable steady-states e1, e2, and positive at the unstable steady-state e3. The station-
ary distribution (computed with equation (5.6)) has a strong peak at e1 and a weaker
one at e2. The system is much more likely to be in the domain of e1 (x < e3) than in
the domain of e2 (x > e3): specifically, π1 ≈ 0.75, and π2 ≈ 0.25. The steady-state
mean is given by π1e1 + π2e2 ≈ 2.78.

to estimate the steady-state mean: π1e1 + π2e2 ≈ 2.78, which will be confirmed by

our simulation study.

Next, let us examine the system with Ω = 10. Figure 6.6 shows the determin-

istic function, the effective potential, and the (approximate) stationary distribution,

computed using the Fokker-Planck approach. The deterministic function and sta-

tionary distribution have the same qualitative properties as they did for Ω = 1,

except the e1 peak of the stationary distribution is now even higher relative to e2

(π1 ≈ 97%, π2 ≈ 3%) and the steady-state mean, 1.24 is therefore closer to e1. The

effective potential has minima at the stable steady-states, but the “energy” of the

more stable state, e1, is much lower.

Simulations reveal how the mean, variance, and probability distribution of the

system actually evolve. Figures 6.7, 6.10 and 6.11 compare the exact Master equa-

tion, second-order van Kampen approximation, and Master equation and Langevin
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Figure 6.6: The deterministic function, effective potential, and (approximate) sta-
tionary distribution for system (6.6) with Ω = 10, computed with the Fokker-Planck
approximation and equations (5.22, 5.23). (The result is nearly identical to what
we would have obtained with the explicit equation (5.6)). The deterministic func-
tion and stationary distribution have the same qualitative properties as they did
with Ω = 1, except the e1 peak in the stationary distribution is now even higher
relative to e2 (π1 ≈ 97%, π2 ≈ 3%), and the steady-state mean is shifted toward e1:
π1e1 +π2e2 ≈ 1.24. The effective potential has minima at the two stable steady-states
e1, e2, and a maximum at e3. The more stable steady-state, e1, has lower “energy”.

simulations for Ω = 1, 10, and all but the exact Master equation for Ω = 100 (due to

instability), respectively. Unlike for the one gene system described by equation (6.1),

the exact Master equation and both simulations deviate dramatically from both the

van Kampen approximation and the deterministic trajectory, at least for Ω = 1, 10.

The reason for this is the bistability of the system. Especially when Ω is fairly small

(hence the variance is relatively large) each stochastic trajectory starting from steady-

state e1 has a reasonably large probability of escaping from the domain of attraction

of e1 and being attracted to e2, and vice versa. In the long run, the system settles to a

bimodal steady-state distribution, in which both stable steady-states are represented

proportional to their relative stability. Therefore, the steady-state mean regardless

of the starting point converges to the roughly the weighted average of the two de-

terministic stable steady-states predicted by the basic stability analysis described in

Figure 6.5. The second-order van Kampen expansion centered at either of the two
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steady-states does not account for this blending effect and therefore underestimates

both the variance and the deviation of the mean trajectory from the deterministic

trajectory. In reality, the second-order expansion should never have been applied in

this case since it is only valid for systems with a single stable steady-state, as van

Kampen explains in chapter X of his book ([VK07]).

Figure 6.8 shows how the probability distribution evolves from two different initial

conditions, peaked at e1 and e2, respectively. Regardless of the starting point, the

probability distributions eventually converge to identical steady-state distributions,

with a strong, sharp peak near e1 and a weaker peak centered near e2. When the

initial condition is a peak at e1, the probability spreads out over time and shifts some

of its weight toward e2, and vice-versa, although much more weight is shifted from e2

to e1 than the other direction.

The system behavior with Ω = 10 is qualitatively similar, as Figure 6.10 shows,

but the bimodal steady-state probability distribution is even more sharply peaked at

e1 and the stochastic mean converges to an an average closer to e1, in agreement with

the analysis of Figure 6.6.

The situation appears to be different for Ω = 100, as shown in Figure 6.11.

In fact, the system seems to behave much more like a single stable steady-state

system, in that the stochastic mean remains close to the initial steady-state, the van

Kampen approximation agrees well with the simulation results, and the variance and

the difference between the mean and deterministic trajectory are both on the order

of O(Ω−1). The explanation is that for very large systems, the probability of a jump

between e1 and e2 is extremely small, so the escape time is much longer than the length

of the simulation. Figure 6.4 confirms that the escape time scales exponentially with

the system size, as discussed in chapter 5 and appendix A8. Therefore, for a large

system like this one, the stochastic trajectories are highly unlikely to diverge from the

deterministic steady-state where they originated for the duration of the simulation. If

the simulation ran long enough, some trajectories would eventually escape from their

initial domains of attraction, and the same blending of the two steady-states that

we observed in the smaller systems would occur. The large system size means that

the initial time period in which the two stable steady-states operate independently of



CHAPTER 6. STOCHASTIC SIMULATION STUDIES 79

each other takes up the entire simulation, however, so we never observe this blending.

6.5 Two gene system with two stable steady-states

We constructed a two-gene system with two stable steady-states using the heuristic

approach described in section 6.3. The two steady-states are:

e1 =

[
3

1

]
, e2 =

[
2

4

]
.

The deterministic model is

dyi
dt

= fi(y)− γyi, fi(y) =
b(i)T z(x)

c(i)T z(x)
, i = 1, 2

z(x) =
[
1 x1 x2 x1x2 x2

1 x2
2

]T
, γ = 0.1, (6.7)

with bi, ci, i = 1, 2, given in appendix A9.

Figure 6.12 compares the second-order van Kampen approximation, and the Gille-

spie and Langevin simulations for Ω = 10 and Ω = 1000. The qualitative behavior

of this system is exactly the same as that of the bistable one gene system. For small

system sizes, each stochastic trajectory has a reasonable probability of escaping from

the domain of attraction of one stable steady-state and being attracted to the other,

so in the long run, the system settles to a bimodal steady-state distribution. Hence,

regardless of the initial condition, the steady-state mean converges to a weighted av-

erage of the two deterministic stable steady-states. The second-order van Kampen

approximation centered at either of the two steady-states does not properly apply,

and would seriously underestimate both the variance and the deviation of the mean

trajectory from the deterministic trajectory. For very large systems, in contrast, the

probability of a giant fluctuation between e1 and e2 is very small. Since the escape

time scales exponentially with the system size, it can far exceed the length of the sim-

ulation for large systems. Therefore, the stochastic trajectories remain close to the

deterministic steady-state where they originated for the duration of the simulation,
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Figure 6.7: One gene system with two stable deterministic steady-states (6.6), Ω = 1.
Mean (left) and variance (right) trajectories via the Master equation (black), the
(improperly applied) van Kampen expansion (blue), and the average of 100 trajecto-
ries of the Gillespie (red) and Langevin simulation (cyan). Regardless of the starting
point, the stochastic mean trajectory eventually converges to the weighted average
of the two deterministic stable steady-states predicted by the analysis of Figure 6.5:
π1e1 +π2e2 ≈ 2.78. The (improperly applied) van Kampen expansion seriously under-
estimates the discrepancy between the mean and the deterministic trajectory since,
as an expansion about e1, it effectively ignores e2, and vice versa; van Kampen’s
stability analysis is therefore the correct theoretical approach in this case.
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Figure 6.8: Initial (left), intermediate (center), and final (right) probability distribu-
tions of the exact Master equation for the one gene system with two stable steady-
states (6.6), starting from e1 (top) or e2 (bottom), with Ω = 1. The probability
distributions start out peaked at their respective initial conditions. Over time, some
of the probability begins to flow from one deterministic steady-state to the other.
Regardless of the initial condition, the system eventually reaches a single bimodal
stochastic steady-state (the same distribution shown in Figure 6.5), with a stronger
peak at e1 (the more stable of the two points) and a weaker peak at e2.
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Figure 6.9: Escape time τ2,1 versus system size Ω for system (6.6) (left), computed
as mean first-passage time via equation (5.20). The plot of log(τ2,1) vs. Ω (right) is
linear, confirming that the escape time grows exponentially with the system size.
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Figure 6.10: One gene system with two stable steady-states (6.6), Ω = 10. Just as
in Figures 6.7 and 6.8, regardless of the initial condition, the probability converges
to a bimodal distribution with a strong peak at e1 (π1 = 97%) and weaker peak at
e2 (π2 = 3%), and the mean converges to the weighted average π1e1 + π2e2 ≈ 1.24
predicted in our stability analysis for Ω = 10.
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Figure 6.11: One gene system with two stable steady-states (6.6), Ω = 100. Mean
(left) and variance (right) trajectories via (improperly applied) van Kampen approx-
imation (blue) and average of 100 trajectories of the Gillespie (red) and Langevin
simulation (cyan). The exact Master equation calculation suffered from instability
(oscillations) so the trajectory is not shown here. Since the system is so large, the
probability of a jump between e1 and e2 is extremely small, so the escape time is
longer than the length of the simulation. Therefore the stochastic trajectories remain
close to the deterministic steady-state where they originated for the duration of the
simulation. Since the two deterministic steady-states operate mostly independently
of each other in the simulation time-frame, the van Kampen approximation agrees
quite well, unlike for smaller system sizes. The variance and the difference between
the mean and deterministic trajectory are both on the order of O(Ω−1).
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and the van Kampen approximation is quite accurate within this time-frame.

6.6 Conclusions

Our simulation studies support and illustrate the theory discussed in chapter 5 by

comparing the van Kampen expansion, Gillespie simulation, and Langevin simulation

for systems with one or multiple stable steady-states, hence very different qualitative

characteristics. For one gene systems, we can compare the performance of each ap-

proach to the exact trajectory of the Master equation. Our study of a one-gene system

with one stable steady-state shows that for system-size Ω, both the variance and the

difference between the stochastic mean and deterministic trajectory are O(Ω−1), and

the van Kampen expansion, Gillespie simulation and Langevin simulation are all in

excellent agreement with Master equation, (except for slight inaccuracy in the van

Kampen and Langevin approximations for very small systems). Furthermore, the

deterministic and stochastic trajectories are almost identical for large systems. As

the system size increases, the final probability distribution of the stochastic system

becomes increasingly sharply peaked at the deterministic steady-state. The two gene

system with one stable steady-state confirms these observations. The bistable systems

exhibit much more complex behavior. Rather than staying near the initial determin-

istic steady-state, the Gillespie and Langevin simulations (and exact Master equation,

for the one-gene system) deviate dramatically from both the (improperly applied) van

Kampen expansion and the deterministic trajectory, at least for small Ω. The expla-

nation is that each stochastic trajectory has a reasonable probability of escaping from

the domain of attraction of one stable steady-state and being attracted to another.

In the long run, the system settles to a bimodal steady-state distribution, in which

both stable steady-states are represented proportional to their relative stability, and

the mean is the weighted average of the two stable steady-states (as predicted by

the alternative van Kampen theory for multiple stable steady-states). However, for

large bistable systems, the escape time can far exceed the length of the simulation,

since escape time scales exponentially with system size. Therefore, the stochastic

trajectories remain close to the deterministic steady-state where they originated for
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Figure 6.12: Two gene system with two stable steady-states (6.7), with Ω = 10
(top) and Ω = 1000 (bottom): Mean and variance via van Kampen approximation
(blue), and average over 100 simulations of the Gillespie (red) and Langevin simulation
(cyan). For small systems (Ω = 10), the stochastic mean trajectory converges to a
weighted average of e1 and e2 corresponding to a bimodal stochastic steady-state.
For large systems (Ω = 1000), jumps between e1 and e2 are very rare, so the escape
time is large and the trajectories remain near their initial conditions for the duration
of the simulation, hence the van Kampen approximation is quite accurate (though
technically not applicable) and the variance and mean-deterministic discrepancy are
both O(Ω−1).
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the duration of the simulation.

We can draw several important conclusions from the theory of chapter 5 and

the results of these studies. The first is that for large systems with a single stable

steady-state, the deterministic model is sufficient for almost any practical purpose.

In particular, we are entirely justified in applying the deterministic model-based in-

ference method of chapter 4 to biological data if these conditions hold. Of course,

systems with only one stable steady-state are not of much interest biologically. Fortu-

nately, for large multistable systems, the escape time is so large that the steady-states

operate independently of each other practically indefinitely (assuming the system can

be initialized with sharp peaks at stable steady-states). Even for moderately-sized or

randomly initialized multistable systems, the final probablity distributions are mul-

timodal with peaks at the locations of the deterministic steady-states. Hence we can

still measure the deterministic steady-state expression levels needed for our algorithm

if, rather than averaging the expression levels, we instead locate the expression peaks.

For the large system sizes typical in gene expression studies, the expression peaks will

be extremely close to the deterministic steady-states.

It is worth specifically relating the effects of stochasticity to gene perturbation,

since perturbed steady-states are central to our inference algorithm. A gene regulatory

system immediately following a perturbation like gene knockdown is not in steady-

state, so the expression distribution will be in flux for some period of time before

reaching a final stochastic steady-state consistent with the perturbation. This steady-

state is, in general, a multimodal distribution, different from the system’s natural

steady-state distribution due to the perturbation. The peaks of the distribution

correspond to deterministic stable steady-states consistent with the fixed expression

levels of the perturbed genes. If there is only one such deterministic steady-state, the

final distribution will be unimodal; if there are multiple, the system will eventually

explore them all. Generally, a perturbed system does not start out very close to

a particular deterministic steady-state, so it has a reasonable probability of initial

attraction to any possible state and the distribution quickly reaches its multimodal

steady-state (on a very short time scale relative to the escape time, as discussed in

section 5.3). To collect data for the inference algorithm, the experimenter should
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apply each perturbation, wait for the system to settle to its stochastic steady-state

distribution, and measure the expression peaks, which correspond to deterministic

perturbed steady-states.

Stochastic effects become more dominant for small systems, where fluctuations

have greater impact relative to the system as a whole. In particular, stochastic mod-

eling can be critical for genes with very low expression numbers. In these cases, exact

but expensive methods like the explicit Master equation solution for one-gene systems

or the Gillespie algorithm may be attractive. Our results indicate that the Langevin

simulation is also reasonably accurate, especially for moderately sized systems, at

much lower computational cost than the Gillespie algorithm. For systems with one

stable steady-state, the van Kampen expansion is excellent for approximating the

Master equation at any level of detail desired, and alternative van Kampen theory

can yield insight into the asymptotic behavior of multistable systems. We hope our

discussion of gene regulation modeling via the Master equation and our analysis and

demonstration of approximation and simulation methods will help future researchers

treat stochasticity in gene regulation more confidently and effectively.



Appendix A

A1 Thermodynamic model

In equation 2.1, the function fi(y) represents the probability that RNAP binds to the

ith gene promoter. We claim that fi(y) has the form:

fi(y) ≡ p
(i)
bound(y) =

∑
j e
−β∆εRNAP

ij Pe−β∆εijΠk∈Sij
yk∑

j(1 + e−β∆εRNAP
ij P )e−β∆εijΠk∈Sij

yk
,

where ∆εij is the binding energy of the jth complex to the promoter, ∆εRNAP
ij is

the binding energy of RNAP to the jth promoter-bound complex, and P, xj are the

concentrations of RNAP and gene product j [BBG+05a, BBG+05b].

Any type of regulator (including no regulator at all) can be represented in this

framework. For no regulator, we take Sij = ∅ with the convention that Πk∈∅yk = 1,

set ∆εij = 0, and take ∆εRNAP
ij as the base binding energy of RNAP to the promoter.

For a repressor, ∆εij < 0 and ∆εRNAP
ij > 0; for an activator, ∆εij < 0 and ∆εRNAP

ij < 0.

Setting

bij = e−β∆εRNAP
ij Pe−β∆εij

cij = (1 + e−β∆εRNAP
ij P )e−β∆εij ,

we obtain the form given in Section 1:

fi(y) =
bijΠk∈Sij

yk∑
j cijΠk∈Sij

yk
.
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Constant terms in the numerator and denominator correspond to the no-regulator

case. Letting ci0 denote the constant appearing in the denominator, our convention

will be to divide all of the coefficients in the numerator and denominator by ci0 so

that the constant 1 appears in the denominator.

A1.1 Simplified derivation

The derivation we present here follows Bintu et al and Garcia et al [BBG+05a,

BBG+05b, GKO+11]. For simplicity, we will prove the following claim for the simpli-

fied case with one regulator y1 (as well as the possibility of RNAP binding with no

regulator):

p
(i)
bound =

e−β∆εRNAP
i0 p+ e−β∆εRNAP

i1 pe−β∆εi1y1

(1 + e−β∆εRNAP
i0 p) + (1 + e−β∆εRNAP

ij p)e−β∆εi1y1

.

We will use the following notation: εSP,i1 is the energy of the state in which RNAP is

specifically bound to the regulator-promoter complex, εSP,i0 is the energy of the state

in which RNAP is specifically bound to the promoter without the regulator, εNSP is

the energy when RNAP is bound to a nonspecific binding site, εSi1 is the energy when

y1 is specifically bound to the promoter, and εNSi1 is energy when y1 is bound to a

nonspecific binding site. Then

∆εRNAP
i0 = ∆εP,i0 ≡ εSP,i0−εNSP , ∆εRNAP

i1 = ∆εP,i1 ≡ εSP,i1−εNSP , ∆εi1 ≡ εSy1−εNSy1 .

Suppose that we have j RNA polymerase molecules and k molecules of gene product

1 (the regulator). We model the genome as a “reservoir” with n nonspecific binding

sites (to which either RNAP or regulator can bind). One of these sites is the promoter

of gene i. Three different classes of configurations interest us:

1. empty promoter

2. regulator bound to promoter

3. regulator and RNAP bound to promoter
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4. RNAP only bound to promoter

These correspond to the following partial partition functions, which represent the

“unnormalized probabilities” of each configuration.

1. Z(j, k)

2. Z(j, k − 1)e−βε
S
i1

3. Z(j − 1, k − 1)e−βε
S
i1e−βε

S
P,i1

4. Z(j − 1, k)e−βε
S
P,i0

where Z(j, k) = n!
j!k!(n−j−k)!

e−βrε
NS
i1 e−βε

NS
P .

Z(j, k) is equal to the total number of arragements of RNAP and regulator on

the nonspecific binding sites times the Boltzmann factor, which gives the relative

probability e−βε of a particular state in terms of its energy ε.

Since RNAP binds the promoter only in the third and fourth classes of configu-

rations, the probability that RNAP binds the promoter is equal to the unnormalized

probability of the third and fourth configurations divided by the “total probability”

(the sum of the unnormalized probabilities of all classes of configurations). Hence

pbound =
Z(j − 1, k)e−βε

S
P,i0 + Z(j − 1, k − 1)e−βε

S
i1e−βε

S
P,i1

Z(j, k) + Z(j − 1, k)e−βε
S
P,i0 + Z(j, k − 1)e−βε

S
i1 + Z(j − 1, k − 1)e−βε

S
i1e−βε

S
P,i1

≈
nj−1nk

(j−1)!k!
e−βkε

NS
i1 e−β(j−1)εNS

P e−βε
S
P,i0 + nj−1nk−1

(j−1)!(k−1)!
e−β(k−1)εNS

i1 e−β(j−1)εNS
P e−βε

S
i1e−βε

S
P,i1

njnk

j!k!
e−βkε

NS
i1 e−βjε

NS
P + nj−1nk

(j−1)!k!
e−βkε

NS
i1 e−β(j−1)εNS

P e−βε
S
P,i0 + . . .

=
j
n
eβε

NS
P e−βε

S
P,i0 + j

n
k
n
eβε

NS
i1 eβε

NS
P e−βε

S
i1e−βε

S
P,i1

1 + j
n
eβε

NS
P e−βε

S
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n
eβε

NS
i1 e−βε

S
i1 + j

n
k
n
eβε

NS
i1 eβε

NS
P e−βε

S
i1e−βε

S
P,i1

=
j
n
e−β∆εP,i0 + j

n
k
n
e−β∆εi1e−β∆εP,i1
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=
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1 + j
n
e−β∆εP,i0 + k

n
e−β∆εi1(1 + j

n
e−β∆εP,i1)

=
pe−β∆εRNAP

i0 + py1e
−β∆εi1e−β∆εRNAP

i1

1 + pe−β∆εRNAP
i0 + y1e−β∆εi1(1 + pe−β∆εRNAP

i1 )
,
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where in the second line we used the approximation n!
j!k!(n−j−k)!

≈ njnk

j!k!
whichs hold

for j, k << n, in the third we divided by njnk

j!k!
e−βkε

NS
i1 e−βε

NS
P , in the fourth we used the

identities ∆εP,i0 = εSP,i0 − εNSP , ∆εP,i1 = εSP,i1 − εNSP , ∆εi1 ≡ εSi1 − εNSi1 , and in the last

we substituted in the definitions j
n

= p, k
n

= y1, ∆εRNAP
i0 = ∆εP,i0, ∆εRNAP

i1 = ∆εP,i1.

A2 Nonidentifiability

To see that the equations

dxi
dt

=
bi0 +

∑N
j=1 bijΠk∈Sij

xk

1 +
∑N

j=1 cijΠk∈Sij
xk
− γixi, bi0 < 1.

and
dxi
dt

=
(wbi0 + γi)xi +

∑N
j=1wbijΠk∈Sij

xixk

1 + wxi +
∑N

j=1wcijΠk∈Sij
xixk

− γixi, w ≥ γ

1− bi0

(equations 4.2, 4.3 in the main text) reduce to the same equation at any steady-state

where xi 6= 0, choose any 0 ≤ bi0 < 1, 0 ≤ bij ≤ cij, 1 < j ≤ N , w ≥ γ
1−bi0 , and

calculate:

0 =
(wbi0 + γi)xi +

∑N
j=1wbijΠk∈Sij

xixk

1 + wxi +
∑N

j=1wcijΠk∈Sij
xixk

− γixi

⇐⇒ 0 = (wbi0 + γi)xi +
N∑
j=1

wbijΠk∈Sij
xixk − γixi(1 + wxi +

N∑
j=1

wcijΠk∈Sij
xixk)

= wxi(bi0 +
N∑
j=1

bijΠk∈Sij
xk − γixi(1 +

N∑
j=1

cijΠk∈Sij
xk))

⇐⇒ 0 = bi0 +
N∑
j=1

bijΠk∈Sij
xk − γixi(1 +

N∑
j=1

cijΠk∈Sij
xk) (provided xi 6= 0)

⇐⇒ 0 =
bi0 +

∑N
j=1 bijΠk∈Sij

xk

1 +
∑N

j=1 cijΠk∈Sij
xk
− γixi
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A3 Tie-breaking

Assuming that we allow only first and second-order terms, we can determine whether

a given equation is ambiguous as follows. If it includes no self-regulation at all, it is of

the simple form, and has a class of alternatives of the higher-order form parametrized

by w ≥ γ
1−bi0 . On the other hand, if it includes self-regulation in every term except

for the constant 1 in the denominator, and the coefficient of xi in the denominator

is greater than γi, then it is of the higher-order form and has an alternative of the

simple form.

Practically, the simplest way to make this decision is solve the convex optimization

problem (4.1) twice: once normally, and once without allowing self-regulation (that

is, adding the additional constraints that bij = 0 whenever xi is in the jth complex).

We can compare the forms of the recovered equations as well as the quality of the

fit (i.e. the unregularized objective). If the equation is ambiguous, the restriction on

self-regulation will have little effect on the quality of fit, since it will simply cause

the algorithm to choose the simple alternative. Comparing the recovered equations,

we will also notice that they are either the same, or have the relationship given by

equations 4.2 and 4.3. On the other hand, if the equation is unambiguous, the first

recovered equation will not have the form of either equation 4.2 or equation 4.3, and

the quality of the fit will be significantly worse when self-regulation is restricted. This

test may not always be conclusive (for example, this occurs for the Nanog and Gata6

equations in the noisy simulation), but if we are unsure we can always apply the

derivative tie-breaker described below to both versions of the ambiguous equation

as well the equation recovered normally, and select the form that makes the best

prediction.

In order to choose between the possible forms of an ambiguous equation (and

possibly find w), we can measure the derivative dxi
dt

experimentally and check whether

it agrees with the value predicted by the simple form of the equation. Specifically,

we can choose and perform a perturbation that is likely to have a major impact

on the system, measure the concentrations shortly afterwards, and approximate the
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derivative by:
dxi
dt

(t0) ≈ xi(t1)− xi(t0)

t1 − t0
.

(This type of experiment is not easy to carry out on a large scale, so we must choose

which derivatives to measure with care, and do so only when necessary.) Next we

predict the derivative following the perturbation using the simple equation. For ex-

ample, if we knock out term Πk∈SiJ
xk starting from steady-state µ, the simple form

predicts:
dxi
dt

=
bi0 +

∑
j 6=J bijΠk∈Sij

µk

1 +
∑

j 6=J cijΠk∈Sij
µk
− γiµi.

If the measured and predicted derivatives agree, we know that the simple form is

correct. Otherwise, we conclude that the true equation has the higher-order form,

and estimate w as follows:

w =
−dxi

dt

(dxi
dt

+ γixi)(xi +
∑N

j=1 cijΠk∈Sij
xixk)− bi0xi −

∑N
j=1 bijΠk∈Sij

xixk
. (A1)

From a practical perspective, the measured derivative will not agree exactly with the

predicted derivative, so if we are unsure whether we have a match, we can solve for

w and determine whether it is possible (w ≥ γ
1−bi0 ) and reasonable. Furthermore,

if we are unsure whether or not the equation is ambiguous, we can also predict

the derivative with the equation recovered without restrictions, and compare this

prediction with those of the two alternative equations.

A4 Simulated six-gene subnetwork in mouse ESC

We test our method on a synthetic network governed by the system of ODEs (4.4).

The d[C]
dt

, d[Gc]
dt

, and d[G]
dt

equations are ambiguous with the alternative forms given in

(4.5) (provided we ignore the very small constant term in the d[C]
dt

equation and [G]

term in the d[G]
dt

) . The d[C]
dt

equation has the higher-order form and an alternative

simple form, while the d[Gc]
dt

, and d[G]
dt

equations have the simple form and alternative

higher-order forms. (Although [S] appears in every term of the d[S]
dt

equation, it is



APPENDIX A. 94

not ambiguous since wbi0 + γi = 0, which is impossible since w > 0, bi0 ≥ 0.) We

apply our method twice, once allowing self-regulation and again disallowing it. Then

we compare the two recovered forms of each equation and their fit to the data to

determine whether nonidentifiability exists in each case. If so, we break the tie by

examining derivatives. We do this for both noiseless and noisy data.

Without noise, we use a total of 52 measurements: the expression levels at each

of the system steady-states (ESC, DSC, Endo and Trophect) and expression levels

at the steady states reached after overexpressing each gene at twice its steady-state

level, and knocking it down to one-fifth of its steady-state level, starting from each

basic steady-state. We use cross validation (CV) to select the sparsity paramter λ for

each equation, with and without self-regulation (Figure A1). We use CVX software

to solve the convex optimization problem [GB11, GB08]. When we solve without

restricting self-regulation (using the sparsity parameters chosen by CV), we recover

the following equations (with coefficients thresholded at 0.1% of the largest recovered

coefficient, except Oct4, which is thresholded at 0.01%):

d[O]

dt
=

[A] + 0.001 + (0.005[O][S] + 0.025[O][S][N ])

1 + [A] + (0.001[O] + 0.005[O][S] + 0.025[O])[S][N ] + 10[O][C] + 10[Gc]

− 0.1[O]

d[S]

dt
=

0.001 + 0.005[O][S] + 0.025[O][S][N ]

1 + 0.005[O][S] + 0.025[O][S][N ]
− 0.1[S]

d[N ]

dt
=

0.1[O][S] + 0.1[O][S][N ]

1 + 0.1[O][S] + 0.1[O][S][N ] + 10[O][G]
− 0.1[N ]

d[C]

dt
=

0.95

1 + 2.5[O]
− 0.1[C]

d[Gc]

dt
=

0.1[Gc] + 0.01[C][Gc] + 0.01[G][Gc]

1 + 0.1[Gc] + 0.01[C][Gc] + 0.01[G][Gc]
− 0.1[Gc]

d[G]

dt
=

0.1 + 0.95[O]

1 + 0.95[O] + 14.25[N ] + 0.04[S][N ] + 0.08[N ][C] + 0.02[N ][Gc] + 0.08[N ][G]

− 0.1[G]
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Table A1: Quality of fit (unregularized objective value) for noiseless data
Equation unrestricted solution no self-regulation
Oct4 1.249× 10−5 5.7674
Sox2 1.1226× 10−9 0.4269
Nanog 6.7426× 10−8 0.7664
Cdx2 3.5627× 10−7 9.7365× 10−7

Gcnf 1.2954× 10−7 2.130× 10−7

Gata6 7.7505× 10−7 7.9072× 10−5

When we solve the same problem, disallowing self-regulation (again using the appro-

priate CV sparsity parameters), we recover the following equations.

d[O]

dt
=

[A] + 0.14[C] + 0.57[G] + 0.12[S][G] + 0.04[N ][C] + 0.20[N ][Gc]

1 + [A] + 20[C] + 9.6[Gc] + 3.3[G] + 0.33[S][C] + 0.04[N ][C] + 0.20[N ][Gc]

− 0.1[O]

d[S]

dt
=

0.18[O][N ]

1 + 0.18[O][N ]
− 0.1[S]

d[N ]

dt
=

0.01 + 0.12[O][S]

1 + 0.12[O][S]
− 0.1[N ]

d[C]

dt
=

0.95

1 + 2.5[O]
− 0.1[C]

d[Gc]

dt
=

0.001 + 0.1[C] + 0.1[G]

1 + 0.1[C] + 0.1[G]
− 0.1[Gc]

d[G]

dt
=

0.1 + [O]

1 + [O] + 0.03[N ][Gc] + 15[N ]
− 0.1[G]

We measure the quality of the fit by the unregularized objective value ‖Gibi −
γDiGici‖ from equation 4.1 for each recovered equation. These values are given in

Table A1. We can tell that the first three equations are unambiguous, while the

last three have alternative forms, since the quality of fit is roughly the same for

the last three equations whether or not we restrict self-regulation, while for the first

three, the fit is much worse when self-regulation is prohibited. Therefore, we can use

the recovered forms of the first three equations, but we need to break ties between

alternative forms of the last three equations.
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It’s easiest to start with the simple forms of the last three equations, and deter-

mine the corresponding higher-order forms. To break the tie, we look at derivatives

following Oct4, Cdx2, and Nanog knockouts, respectively, since these regulators are

important in each of the three ambiguous equations (Figure A2). After each knock-

out we estimate the derivative with a finite difference, compare it to the derivative

prediction made by the simple form of the equation, and accept this form if the match

is good. Otherwise we compute w using equation A1, and (provided it is reasonable),

accept the higher-order form with this choice of w.

In this case, we measure d[C]
dt
≈ 0.6004825 immediately after Oct4 knockout from

ESC steady-state using a finite difference. The simple form of the equation yields
d[C]
dt
≈ 0.78 immediately following the knockout, which is a poor match. Therefore we

select the higher-order form and use the measured derivative to compute w = 2, which

yields d[C]
dt

= 0.60. For the d[Gc]
dt

equation we measure d[Gc]
dt
≈ −0.13 immediately after

Cdx2 knockout from SC, and the simple form is a good match at −0.13 (computing

w for the higher-order form using the derivative yields an unreasonably large w ≈ 86;

using the minimum value w = 0.1 in the higher-order form yields d[Gc]
dt

= −0.017).

Similarly, for the d[G]
dt

equation we measure d[Gc]
dt
≈ 0.69 immediately after Nanog

knockout from SC, and the simple form is a good match at 0.69. In the end, we select

the equations given in (4.6).

Next we test the algorithm using noisy data by adding zero-mean Gaussian noise

to each measurement, with standard deviation 1% of the measurement magnitude.

We use the 4 basic steady-states, the steady states reached after knockdown and

overexpression of each individual gene from each basic steady state, and those reached

after knocking one gene up and one gene down from each pair of genes, starting from

ESC and DSC. Again, we use cross validation to select the sparsity parameters (Figure

A3).
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Figure A1: Cross validation (8-fold) on noiseless data. We estimate the test error for
each gene equation and various choices of sparsity parameter by randomly dividing the
52 observations into 8 folds (groups), then leaving out each fold out in turn, training
the model on the remaining 7 folds, testing on the omitted fold, and finally averaging
the 8 resulting test errors. After repeating this process for each gene equation and
several choices of sparsity parameter, we select the sparsity parameters corresponding
to the lowest error for each equation. (a) Unrestricted case: we selected sparsity
parameters [10−1, 10−5, 10−6, 10−4, 10−2, 10−6]. (b) No self-regulation: we selected
[10−2, 10−5, 10−1, 10−1, 10−4, 10−5].
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Figure A2: Derivative measurements to break ties between alternative forms. (left)

Trajectory of Cdx2 following Oct4 knockout from ESC: d[C]
dt

(t0) ≈ 0.6004825. (center)

Gcnf trajectory following Cdx2 knockout from ESC: d[Gc]
dt

(t0) ≈ −0.1261507. (right)

Gata6 trajectory following Nanog knockout from ESC: d[G]
dt

(t0) ≈ 0.6908821.
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Figure A3: Cross validation (8-fold on 108 observations, with the approach described
in Figure A1) on noisy data (1% Gaussian noise): (left) unrestricted: we selected spar-
sity parameters [0.1, 1, 0.01, 0.01, 0.1, 0.00001] (right) No self-regulation: we selected
[0.1, 1, 0.01, 0.001, 0.1, 0.01].
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When we solve the problem with noisy data (with no restriction on self-regulation)

and threshold at a level of 1% of the largest recovered coefficient, we recover:

d[O]

dt
=

[A]

1 + [A] + 9.9[Gc] + 9.9[O][C]
− 0.1[O]

d[S]

dt
=

0.001[O][S] + 0.0005[S][N ] + 0.025[O][S][N ]

1 + 0.001[O][S] + 0.0005[S][N ] + 0.025[O][S][N ]
− 0.1[S]

d[N ]

dt
=

0.09[O][S][N ]

1 + 0.1[G][Gc] + 0.09[O][S][N ] + 9.1[O][G]
− 0.1[N ]

d[C]

dt
=

0.94

1 + 2.4[O]
− 0.1[C]

d[Gc]

dt
=

0.1[Gc] + 0.01[C][Gc] + 0.01[G][Gc]

1 + 0.1[Gc] + 0.01[C][Gc] + 0.01[G][Gc]
− 0.1[Gc]

d[G]

dt
=

0.1[G] + 0.1[O][G]

1 + 0.2[N ] + 0.1[G] + 0.05[O][N ] + 0.1[O][G] + 0.05[S][N ] + 1.4[N ][G]

− 0.1[G]

When we solve without allowing self-regulation, we recover:

d[O]

dt
=

[A] + 0.3[G]

1 + [A] + 15.4[C] + 9.7[Gc] + 3.1[G] + 0.5[S][C] + 0.6[N ][C]
− 0.1[O]

d[S]

dt
=

0.2[O][N ]

1 + 0.2[O][N ]
− 0.1[S]

d[N ]

dt
=

0.03 + 0.17[S] + 0.03[S][C]

1 + 0.17[S] + 0.03[S][C]
− 0.1[N ]

d[C]

dt
=

0.95

1 + 2.5[O]
− 0.1[C]

d[Gc]

dt
=

0.1[C] + 0.1[G]

1 + 0.1[C] + 0.1[G]
− 0.1[Gc]

d[G]

dt
=

0.1 + 0.9[O]

1 + 0.9[O] + 14.2[N ]
− 0.1[G]

Table A2 shows that for noisy data, the quality of fit does not indicate as clearly which

equations are ambiguous. For the Oct4 and Sox2 equations, the quality of fit drops

dramatically when we restrict self-regulation, while it changes very little for Cdx2,

Gcnf and Gata6, revealing that the Oct4 and Sox2 equations are correct, while Cdx2,
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Table A2: Quality of fit (unregularized objective value) for noisy data
Equation unrestricted no self-reg
Oct4 1.5170 8.1241
Sox2 0.2800 1.006
Nanog 0.6877 1.9347
Cdx2 0.5634 0.8208
Gcnf 0.0278 0.0599
Gata6 0.1278 0.2224

Gcnf and Gata6 have a simple and a higher-order form. We break the tie between the

two forms of the last three equations using derivatives as before. The Nanog equation

isstill unclear, so we analyze derivatives to decide between the two alternative forms

and the solution of the unrestricted optimization problem. First we observe that the

higher-order version of the ambiguous form is illegal as it contains third-order terms,

so we only need to choose between the unrestricted equation and the simple equation

recovered without self-regulation. We simulate the trajectory after Gata6 knockout

from ESC and compare the derivative (d[N ]
dt

= 0.023) to the predictions of the first

equation (d[N ]
dt

= 0.044) and the simple version (d[N ]
dt

= −0.070), concluding that the

first equation is correct. Finally, we obtain the equations given in equation 4.7.

A5 Derivation of the Master Equation

The following derivation, simplified and adapted from Chapters IV and X of van

Kampen’s Stochastic Processes in Physics and Chemistry [VK07], is provided here

for the reader’s convenience.

A5.1 The Chapman-Kolmogorov equation

A Markov process is a stochastic process such that for any t1 < t2 < . . . < tn,

P (yn, tn|y1, t1; . . . ; yn−1, tn−1) = P (yn, tn|yn−1, tn−1).
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Hence a Markov process is completely determined by the functions P (y1, t1) and the

transition probabilities P (y2, t2|y1, t1). For example, for any t1 < t2 < t3:

P (y1, t1; y2, t2; y3, t3) = P (y1, t1; y2, t2)P (y3, t3|y1, t1; y2, t2)

= P (y1, t1)P (y2, t2|y1, t1)P (y3, t3|y2, t2)

If we integrate this identity over y2 and divide both sides by P (y1, t1), we obtain the

Chapman-Kolmogorov equation, which necessarily holds for any Markov process:

P (y1, t1; y3, t3) = P (y1, t1)

∫
P (y2, t2|y1, t1)P (y3, t3|y2, t2)dy2

=⇒ P (y3, t3|y1, t1) =

∫
P (y2, t2|y1, t1)P (y3, t3|y2, t2)dy2. (A2)

A5.2 The Master equation

The Master equation is an equivalent form of the Chapman-Kolmogorov equation

for Markov processes, but it is more convenient and easier to relate to physical con-

cepts. In order to derive it, we first assume for convenience that the process is

time-homogeneous, so we can write the transition probabilities as Tτ , i.e.

Tτ (y2|y1) ≡ P (y2, t+ τ |y1, t).

It can be shown (see van Kampen IV.6) that for small τ ′, Tτ ′(y2|y1) has the form

Tτ ′(y2|y1) = (1− a0τ
′)δy2,y1 + τ ′W (y2|y1) + o(τ ′), (A3)

where W (y2|y1) is the y1 → y2 transition probability per unit time. The coefficient

in front of the delta is the probability that no transition occurs during τ ′, so

a0(y1) =

∫
W (y2|y1)dy2.
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Inserting (A3) in place of T ′τ in the Chapman-Kolmogorov equation (A2) yields:

Tτ+τ ′(y3|y1) =

∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2

=

∫
((1− a0(y2)τ ′)δy3,y2 + τ ′W (y3|y2))Tτ (y2|y1)dy2

= (1− a0(y3)τ ′)Tτ (y3|y1) + τ ′
∫
W (y3|y2)Tτ (y2|y1)dy2

∂

∂τ
Tτ (y3|y1) = lim

τ ′→0

Tτ+τ ′(y3|y1)− Tτ (y3|y1)

τ ′

= −a0(y3)Tτ (y3|y1) +

∫
W (y3|y2)Tτ (y2|y1)dy2

=

∫
{W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)}dy2

We can rewrite this equation as (5.1) from the main text as follows:

P (y3, τ) =

∫
Tτ (y3|y1)P (y1, 0)dy1 as τ → 0

=⇒ ∂P (y3, τ)

∂τ
=

∫
∂

∂τ
Tτ (y3|y1)P (y1, 0)dy1

=

∫ ∫
P (y1, 0){W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)}dy1dy2

=

∫
{W (y3|y2)P (y2, τ)−W (y2|y3)P (y3|τ)}dy2

Or, changing the names of the variables:

∂P (y, t)

∂t
=

∫
{W (y|y′)P (y′, t)−W (y′|y)P (y, t)}dy′.

A6 Eliminating intermediate species with the QSSA

The following calculation, adapted from Rao and Arkin [RA03] to fit the needs of our

application, shows how to use the quasi-steady-state-assumption (QSSA) to eliminate

an intermediate species from the multivariate Master equation.

Consider a chemical reaction with n species, m different reactions with propensities
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ak(x), and stoichiometries vk, 1 ≤ k ≤ m. Let x ≡ (y, z), where y is a primary and z

is an intermediate species. Assume that the following QSSA holds:

dP (z|y; t)

dt
≈ 0.

Then we can simplify a Master equation in x = (y, z) to an equation in y, as follows:

dP (x; t)

dt
=

m∑
k=0

[ak(x− vk)P (x− vk; t)− ak(x)P (x; t)]

dP (y, z; t)

dt
=

m∑
k=0

[ak(y − vyk , z − vzk)P (y − vyk , z − vzk; t)− ak(y, z)P (y, z; t)]

P (y, z; t) = P (z|y; t)P (y; t)

dP (y, z; t)

dt
= P (y; t)

dP (z|y; t)

dt
+ P (z|y; t)

dP (y; t)

dt
≈ P (z|y; t)

dP (y; t)

dt
(QSSA)

P (z|y; t)
dP (y; t)

dt
=

m∑
k=0

[ak(y − vyk , z − vzk)P (z − vzk|y − vyk)P (y − vyk)− ak(y, z)P (z|y)P (y)]

dP (y; t)

dt
=
∑
z

P (z|y; t)
dP (y; t)

dt

=⇒ dP (y; t)

dt
=

m∑
k=0

[bk(y − vyk)P (y − vyk ; t)− bk(y)P (y; t)],

where bk(y) =
∑
z

ak(y, z)P (z|y).

A7 van Kampen’s Master equation expansion

This calculation is adapted from van Kampen, chapter X ([VK07]); it is simplified

from the original by assuming a birth-and-death process, and provided here for the

reader’s convenience.

The Master equation for a birth-and-death process given by:

∂P (X, t)

∂t
= W (X|X − 1)P (X − 1, t) +W (X|X + 1)P (X + 1, t)

− [W (X + 1|X) +W (X − 1|X)]P (X, t)
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Assume that the transition probabilties have the special form:

WΩ(X + r|X) = ΩΦ0(
X

Ω
; r),

and define

αν(x) =
∑
r

rνΦ0(x; r) = Φ+
0 (x) + (−1)νΦ−0 (x).

For birth-and-death processes, we have

WΩ(X+1|X) = ΩΦ0(
X

Ω
; +1) ≡ ΩΦ+

0 (
X

Ω
), WΩ(X−1|X) = ΩΦ0(

X

Ω
;−1) ≡ ΩΦ−0 (

X

Ω
)

α1(φ) = Φ+
0 (φ(t))− Φ−0 φ(t), α2(φ) = Φ+

0 (φ(t)) + Φ−0 (φ(t)).

Hence the Master equation becomes

∂P (X, t)

∂t
= Ω{Φ+

0 (
X − 1

Ω
)P (X − 1, t) + Φ−0 (

X + 1

Ω
)P (X + 1, t)

− (Φ+
0 (
X

Ω
) + Φ−0 (

X

Ω
))P (X, t)}. (A4)

As discussed in the main text, we make the Ansatz:

X(t) = Ωφ(t) + Ω
1
2 ξ

and define Π by:

P (X, t) = P (Ωφ(t) + Ω
1
2 ξ) ≡ Π(ξ, t).

The partial derivatives are Π are given by:

∂νΠ

∂ξν
= Ω

1
2
∂νP

∂Xν

∂Π

∂t
=
∂P

∂t
+ Ω

dφ

dt

∂P

∂X
=
∂P

∂t
+ Ω

1
2
dφ

dt

∂Π

∂ξ
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Therefore we can rewrite (A4) as:

∂Π

∂t
− Ω

1
2
dφ

dt

∂Π

∂ξ
= Ω{Φ+

0 (φ(t) + Ω−
1
2 (ξ − Ω−

1
2 ))Π(ξ − Ω−

1
2 , t)

+ Φ−0 (φ(t) + Ω−
1
2 (ξ + Ω−

1
2 ))Π(ξ + Ω−

1
2 , t)

− (Φ+
0 (φ(t) + Ω−

1
2 ξ) + Φ−0 (φ(t) + Ω−

1
2 ξ))Π(ξ, t)}

Taylor expanding α1(φ+ Ω−
1
2 (ξ − Ω−

1
2 )Π(ξ − Ω−

1
2 ) about ξ yields

∂Π

∂t
− Ω

1
2
dφ

dt

∂Π

∂ξ
= −Ω

1
2
∂

∂ξ
[α1(φ(t) + Ω−

1
2 ξ)Π(ξ, t)] +

Ω0

2!

∂2

∂ξ2
[α2(φ+ Ω−

1
2 ξ)Π(ξ, t)]

− Ω−
1
2

3!

∂3

∂ξ2
[α1(φ+ Ω−

1
2 ξ)Π(ξ, t)] +O(Ω−1).

A second Taylor expansion of α1(φ+ Ω−
1
2 ξ) about φ gives:

∂Π

∂t
− Ω

1
2
dφ

dt

∂Π

∂ξ
= −Ω

1
2α1(φ)

∂Π

∂ξ
− α′1(φ)

∂ξΠ

∂ξ
− 1

2
Ω−

1
2α′′1(φ)

∂ξ2Π

∂ξ

+
1

2
α2(φ)

∂2Π

∂ξ2
+

1

2
Ω−

1
2α′2(φ)

∂2ξΠ

∂ξ2
− Ω−

1
2

3!
α3(φ)

∂3Π

∂ξ3
+O(Ω−1)

We can cancel the O(Ω
1
2 ) terms on the right- and left-hand-sides by choosing:

dφ

dt
= α1(φ).

=⇒ ∂Π

∂t
= −α′1(φ)

∂ξΠ

∂ξ
+

1

2
α2(φ)

∂2Π

∂ξ2

+
1

2
Ω−

1
2 (α′2(φ)

∂2ξΠ

∂ξ2
− α′′1(φ)

∂ξ2Π

∂ξ
− 1

3!
α3(φ)

∂3Π

∂ξ3
) +O(Ω−1)

This is the final form of the expansion. It can be truncated at any level of detail

desired and translated back into the original variables to yield various approximations

of the Master equation. Note that it is only applicable for systems with a single stable

steady-state, as discussed in the main text and in more detail in [VK07].
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A8 Mean first-passage time

For a birth-and-death process with states 0, 1, 2, . . ., we can derive a simple formula

for the mean first-passage time. Suppose the system starts at state m and we want

to find the mean first-passage time to state n. Let τi denote the expected time to

reach state n starting from state i. Clearly τn = 0, and the quantity of interest is τm.

Let gk, rk denote the birth and death rates of the chain, respectively, and tk denote

the waiting time in state k before a transition. The waiting times and transition

probabilities are related to the rates as follows:

tk =
1

gk + rk
, P(k → k + 1) = tkgk, P(k → k − 1) = tkrk.

Then we have:

τk = tk(rkτk−1 + gkτk+1 + 1), k = 0, . . . , n− 1

=⇒ τk+1 − τk =
1

gk
[rk(τk − τk−1)− 1], by noting that tk(gk + rk) = 1

=⇒ τk+1 − τk =
1

gk

j∑
i=0

i−1∏
j=k

gj
rj

=
1

gkpsk

j∑
i=0

psi

=⇒ τm =
n−1∑
k=m

(τk+1 − τk) =
n−1∑
k=m

1

gkpsk

j∑
i=0

psi ,

where ps is the stationary distribution (5.5). Observe that if n,m are stable points

and l with m ≤ l ≤ n is an unstable point, then the stationary distribution will

have peaks at n and m and a valley at l. The most important terms in the sum are

therefore those with psl is the denominator, and inner sum is then πm, which is O(1).

Hence the escape rate is on the order of psl ; that is,

τm ∼ O

(
1

psl

)
∼ O(eΩ).

The escape time scales as eΩ since the stationary distribution is approximately a

mixture of Gaussians with peaks of order Ω at the stable points, so psl is O(e−Ω).
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A9 Coefficients of the bistable two-gene system

The coefficients of system (6.7) are given by:

[
b1 c1 b2 c2

]
=



0.3991 1 0.0557 1

0.2271 0.6814 0.0173 0.3009

0.1485 0.6703 0.0369 0.2304

0.0672 0.3161 0.0127 0.0866

0.1035 0.3283 0.0059 0.1531

0.0375 0.3821 0.1648 0.2295





Bibliography

[AJL+07] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter.

Molecular Biology of the Cell. Garland Science, 5th edition, 2007.

[AJS82] G. K. Ackers, A. D. Johnson, and M. A. Shea. Quantitative model

for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci.

U.S.A., 79(4):1129–1133, Feb 1982.

[Alo07] U. Alon. Network motifs: theory and experimental approaches. Nat.

Rev. Genet., 8(6):450–461, Jun 2007.

[ARM98] A. Arkin, J. Ross, and H. H. McAdams. Stochastic kinetic analysis of

developmental pathway bifurcation in phage -infected escherichia coli

cells. Genetics, 149(4):16331648, 1998.

[AW92] L. Avery and S. Wasserman. Ordering gene function: the interpretation

of epistasis in regulatory hierarchies. Trends Genet., 8(9):312–316, Sep

1992.

[BBAIdB07] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo.

How to infer gene networks from expression profiles. Mol. Syst. Biol.,

3:78, 2007.

[BBG+05a] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kon-

dev, T. Kuhlman, and R. Phillips. Transcriptional regulation by the

numbers: applications. Curr. Opin. Genet. Dev., 15(2):125–135, Apr

2005.

108



BIBLIOGRAPHY 109

[BBG+05b] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev,

and R. Phillips. Transcriptional regulation by the numbers: models.

Curr. Opin. Genet. Dev., 15(2):116–124, Apr 2005.

[BBO+09] Dmitry R Bandura, Vladimir I Baranov, Olga I Ornatsky, Alexei

Antonov, Robert Kinach, Xudong Lou, Serguei Pavlov, Sergey Voro-

biev, John E Dick, and Scott D Tanner. Mass cytometry: technique

for real time single cell multitarget immunoassay based on inductively

coupled plasma time-of-flight mass spectrometry. Analytical Chemistry,

81(16):6813–6822, 2009.

[BHK98] Arie Bar-Haim and Joseph Klafter. Geometric versus energetic com-

petition in light harvesting by dendrimers. The Journal of Physical

Chemistry B, 102(10):1662–1664, 1998.

[BJGL+03] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo,

F. Robert, D. B. Gordon, E. Fraenkel, T. S. Jaakkola, R. A. Young, and

D. K. Gifford. Computational discovery of gene modules and regulatory

networks. Nat. Biotechnol., 21(11):1337–1342, Nov 2003.

[BKCC03] W. J. Blake, M. Krn, C. R. Cantor, and J. J. Collins. Noise in eukaryotic

gene expression. Nature, 422(6932):633–637, 2003.

[Cho12] B. Choi. Learning Networks in Biological Systems, Ph.D. thesis, De-

partment of Applied Physics, Stanford University, Stanford, California

(thesis supervisor: W.H.Wong). 2012.

[CP08] V. Chickarmane and C. Peterson. A computational model for under-

standing stem cell, trophectoderm and endoderm lineage determina-

tion. PLoS One, 3(10):e3478, 2008.

[Cri70] F. Crick. Central dogma of molecular biology. Nature, 227(5258):561–

563, Aug 1970.



BIBLIOGRAPHY 110

[dBTG+05] D. di Bernardo, M. J. Thompson, T. S. Gardner, S. E. Chobot, E. L.

Eastwood, A. P. Wojtovich, S. J. Elliott, S. E. Schaus, and J. J.

Collins. Chemogenomic profiling on a genome-wide scale using reverse-

engineered gene networks. Nat. Biotechnol., 23(3):377–383, Mar 2005.

[DCL+08] M. J. Dunlop, R. S. Cox, J. H. Levine, R. M. Murray, and M. B.

Elowitz. Regulatory activity revealed by dynamic correlations in gene

expression noise. Nature genetics, 40(12):14931498, 2008.

[DESGS11] M. Dehmer, F. Emmert-Streib, A. Graber, and A. Salvador. Applied

Statistics for Network Biology: Methods in Systems Biology. Wiley-

VCH, 2011. to appear.

[DIB97] J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic

and genetic control of gene expression on a genomic scale. Science,

278(5338):680–686, Oct 1997.

[DSM10] R. De Smet and K. Marchal. Advantages and limitations of current

network inference methods. Nat. Rev. Microbiol., 8(10):717–729, Oct

2010.

[DvdHM+00] Joseph DeRisi, Bart van den Hazel, Philippe Marc, Elisabetta Balzi,

Patrick Brown, Claude Jacq, and André Goffeau. Genome microar-

ray analysis of transcriptional activation in multidrug resistance yeast

mutants. FEBS letters, 470(2):156–160, 2000.

[Ein06] Albert Einstein. Eine neue bestimmung der moleküldimensionen. An-
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