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A B S T R A C T

This thesis includes four self-contained essays on marketing, economics, and opti-
mization, all sharing a common theme: creating numerical models and algorithms
to tackle computationally challenging optimization problems.

The first essay considers geographic sub-branding via manufacture location in
marketing. Manufacture location, as part of geographic product identity, is be-
coming a significant differential factor among a variety of products and a sub-
branding element in various markets, but there is little empirical research on how
manufacture location influences consumer preference and purchase choices. The
first barrier comes naturally from the market. Most of the time, manufacture loca-
tion is completely correlated with product characteristics. I was fortunately able
to acquire both data and a whole year research grant from Ford Motor Com-
pany. New car buyer data in the Chinese automobile market makes possible the
analysis of manufacture location as a geographic sub-branding element. Hedo-
nic price analysis gives us a quick and intuitive view of how much consumers
are willing to pay for geographic sub-branding products, and also motivates our
new brand and sub-brand definition for a BLP-type random coefficient discrete
choice model. However, using General Method of Moments (GMM) to estimate
the variance-covariance matrix of consumer brand taste coefficients poses another
challenge for all existing optimization solvers. To prevent indefinite unknown
variance-covariance matrices in the constraints of the optimization problem from
terminating the solver, I reformulate the optimization program and successfully
solve the problem. If the computation becomes more difficult, we can also apply
our new algorithm NCL, which is described in details in the third essay. Our re-
sults reveal the strong substitution patterns in the market and confirm our defini-
tion and framework of brand and geographic identity. Furthermore, our method
can be helpful in the analysis of branding and sub-branding in other empirical
settings.

The second essay studies optimal income taxation with multidimensional tax-
payer types in economics. This engendered the subject of the third essay: stabilized
optimization via an NCL algorithm in numerical optimization. The income taxa-
tion literature has generally focused on economies where individuals differ only
in their productivity, i.e., income. In reality, people differ in many ways. In our
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models, we consider people’s productivity, basic needs, distaste for work, the elas-
ticity of labor supply, and the elasticity of demand for consumption. We find that
extra dimensions give us substantially different and interesting results. In certain
cases, high-productivity people may pay negative tax. Therefore, considering in-
come taxation in multiple dimensions is essential, and again is computationally
challenging. All existing optimization solvers fail to find optimal solutions. Even-
tually, we transformed the model, created a new algorithm (NCL), and solved
the high-dimension difficult optimization problems. The nonlinearly constrained
augmented Lagrangian algorithm (NCL) we created was motivated by the bound-
constrained and the linearly constrained augmented Lagrangian algorithms (BCL
and LCL). To facilitate implementation, we take advantage of the mathematical
programming language AMPL. We did not have to write fifty thousand lines of
Fortran code to implement NCL. The third essay on algorithm NCL was pub-
lished this year in Numerical Analysis and Optimization. The taxation part remains
as a working paper. I am excited about not only solving the complex income tax-
ation models, but also creating a general algorithm that can be applied to tough
mathematical models in different fields. For instance, our algorithm NCL can be
easily adapted to nonlinear pricing in economics and marketing.

The fourth essay considers reliable and efficient solution of genome-scale mod-
els of metabolism and macromolecular expression. For many years, scientific com-
puting has advanced in two complementary ways: improved algorithms and im-
proved hardware. In order to solve the large and complicated biochemical net-
work of metabolism in systems biology, we made use of improved machine pre-
cision and created algorithms utilizing software-simulated quadruple precision
arithmetic and successfully solved both original and reformulated optimization
models. This essay is published in Scientific Reports. Today, our linear and non-
linear quadruple precision solver quadMINOS is supporting the research of sys-
tems biologists in their COBRA (COnstraint-Based Reconstruction and Analysis)
Toolbox, and it can also help researchers in many other areas. As my advisor Pro-
fessor Michael Saunders predicts: “Just as double precision floating-point hardware
revolutionized scientific computing in the 1960s, the advent of the quadruple precision
data type, even in software, brings us to a new era of greatly improved reliability in opti-
mization solvers.”
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Part I

G E O G R A P H I C S U B - B R A N D I N G V I A M A N U FA C T U R E
L O C AT I O N : H O W D O E S “ M A D E I N ” C H A N G E Y O U R

P U R C H A S E ?



1
I N T R O D U C T I O N

Manufacture Location, as part of geographic product identity, is becoming a signif-
icant differential factor among a variety of products and a sub-branding element
in various markets, but there is little empirical research on how manufacture lo-
cation influences consumer preference and their purchase choices. We pursue this
topic by analyzing consumer willingness to pay and choice preference in the con-
text of a durable good: automobiles. Using the data from the automobile market
in China, hedonic price analysis shows that manufacture location significantly
influences prices and consumer willingness to pay. We find the “imported" manu-
facture location effect regarding the price premium as high as 9.6% with the con-
trol of product characteristics. With our definition and framework of the brand
and geographic identity, we build a random coefficient discrete choice model to
estimate the correlation between consumer taste parameters of different vehicle
models that share the same brand identity or geographic identity at the manufac-
ture location level. Our method can also be helpful in the analysis of branding and
sub-branding in other empirical settings.

According to the American Marketing Association, a brand is a name, term, de-
sign, symbol, or any other feature that identifies one seller’s good or service as
distinct from those of other sellers.1 Note that brands also recognize distinct dif-
ferences between products sold by a single seller. For instance, Volkswagen Group
owns 12 brands including VW, Audi, Bentley, Bugatti, Lamborghini, Porsche, etc.
2 The brand of a firm has become an essential part of its assets in financial valua-
tions, especially when merger or acquisition happens. The brand of a product or
service unsurprisingly influences consumers’ seemingly reasonable yet irrational
choices, which in turn steers companies’ daily marketing strategy like target mar-
keting and promotions. Farquhar (1989) and Aaker (1991) have studied different
perspectives of brand equity. Keller (1993) conceptualizes brand equity from the
perspective of the individual consumer and provides a conceptual framework for
what consumers know about brands and what such knowledge implies for mar-
keting strategies. Brand knowledge is defined in terms of two components, brand

1This definition is from: https://www.ama.org/resources/Pages/Dictionary.aspx?dLetter=B.
2A complete list can be found on the company website: http://www.volkswagenag.com/en/

brands-and-models.html.
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awareness and brand image, where brand image reflects brand associations includ-
ing product-related or non-product-related attributes; functional, experiential, or
symbolic benefits; and overall brand attitudes. These associations are differenti-
ated based on their favorability, strength, and uniqueness. Conceptualizing brand
identity from a consumer’s perspective gives marketers a broad and detailed view
of the effects of marketing activities on consumer preference as well as more tra-
ditional outcome measures such as sales. Consistent with Keller (1993), also from
a consumer’s perspective, we summarize the brand identity as a representation of
observable and unobservable (tangible and intangible) product characteristics.3

As a trend of globalization, companies have been producing and distributing
their products in different countries, and hence brand identity has been extended
over the globe. When consumers face similar products under a variety of brand
names, the geographic identity of products also serves branding roles and rec-
ognizes differences across products. One notion of geographic branding arises
when it summarizes common characteristics or qualities of brands originating in
the same country or area. Brand origin, also known as country of origin (COO),
inevitably plays a significant role in consumers’ perception of the product. For
example, German automobile companies have known reputations for design and
manufacturing expertise that may provide a favorable impression of a German
brand, even if the brand is previously unknown to the consumer. Gradually, we
also start to pay more attention to the “Made in" label and infer the potential ben-
efit we could get from a product based on its manufacture location, also known
as country of manufacture (COM). To investigate this intertwined interaction be-
tween the brand identity and geographic identity of a product, we provide a hier-
archical framework shown in Figure 1.

While the previous notion of geographic identifiers such as German automobile
is viewed hierarchically above a traditional brand name, manufacture location
serves hierarchically below brands as a sub-branding element. For instance, Coca-
Cola markets its Mexican Coke in parts of the United States, which signifies a
different taste arising from the unique formula used to produce Coke in Mexico.4

Similarly, in China, automobile companies have Chinese generated variants of
their vehicles that may differ from their foreign produced counterparts concerning

3From consumers’ perspectives, tangible characteristics could be unobservable as well. For ex-
ample, according to Steve Jobs, “A lot of times, people don’t know what they want until you show
it to them."

4Coca-Cola’s Mexican produced soda is marketed separately alongside the US produced Coke.
Coca-Cola claims that Mexican Coke produced in Mexico and exported to the United States is made
with cane sugar instead of high-fructose corn syrup. The classic glass bottled Mexican Coke has
become very popular among consumers in the US.
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Figure 1: The hierarchical interaction between brand identity and geographic identity.

manufacturing ability, parts sourcing, etc., despite identical designs and model
versions. In this study, we seek to understand how geographic identifiers arise as
a sub-branding element and the role they play in driving consumer perceptions
about what may often be nearly identical offerings by the same parent company
brand.

As a matter of fact, research on the top layer of geographic identity, country of
origin, started even earlier than branding. Schooler (1965) first studied the country
of origin effect in the Central American market and showed that the attitude to-
ward the people of a given country is a factor in existing preconceptions regarding
the products of that country. Since then, there has been vibrant literature on the
COO effect. Dinnie (2004) gives a comprehensive survey of this literature. More
recently, Saridakis and Baltas (2016) weighted COO against the product attributes
regarding price premium. COO is gaining more and more leverage over the brand
value, especially in international markets.

Meanwhile, manufacture location, the bottom layer of geographic identity in
Figure 1, has also become an influential factor in brand identity. It seems that
the "Made in" phenomenon emerges with globalization, but manufacture loca-
tion organically taking on a branding role dates back to the Soviet Union, where
manufacturers had no concern about product differentiation or branding. “Pro-
duction mark" (essentially the manufacture location) became mandatory for the
purpose of quality control. Goldman (1960) uses the Soviet Union as an extreme
yet great example to show the importance and benefits of product differentiation.
In the planned Soviet economy, the geographic identity, a "production mark" on
the good or packaging, was probably the only identity of a product, summarizing
and assuring quality.

Today, we no longer need to defend product differentiation as Goldman (1960)
did. Companies are doing everything to differentiate themselves from their com-
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petitors. Intuitively, consumers expect that globalization brings them the same
products previously unavailable. However, most firms are not unifying their prod-
ucts to build their global brand. The more prevailing phenomenon is that differ-
ences in inputs, production processes, and local taste lead to regional variants of
given branded products.

Companies compete in branding and sub-branding across product categories in
different locations. Many studies show that consumers have high willingness-to-
pay for particular brands, even if the alternatives are very similar (Dekimpe et al.,
1997; Ling, Berndt, and Kyle, 2002). Companies extend their brand to produce sim-
ilar or different types of products, with the belief that the quality perceptions can
be transferred across products under the same brand, as investigated in Werner-
felt (1988) and Montgomery and Wernerfelt (1992), and Erdem (1998). Companies
often alter the inputs of products across countries or create differences in quality
depending on where the product is produced or the service is provided. Manufac-
ture location begins to summarize the country-specific attributes in the product
and become a sub-branding factor influencing consumer preference and compa-
nies’ profit.

In the case of Mexican Coke, the factor of manufacture location (Mexico) is com-
pletely correlated with the product attributes (cane sugar and glass bottles). It is
very difficult, if not impossible, to measure the effect of manufacture location in-
dependently. More difficulties, which have been naturally added to the research
of manufacture location effects, are that we don’t often see companies distributing
the same product built in different locations in the same market. In early 2017,
when General Motors were first criticized, they initially denied but admitted later
that "A small number of Mexico-made Chevrolet Cruze sedans were produced
in 2016 for sale in the US."5 General Motors obfuscate the country of manufac-
ture, maybe because they view the vehicles of comparable quality. However, the
consumer backlash it created is telling a different story. Unfortunately, consumers’
preference for production locations of Chevrolet Cruze remains veiled by now.

There is no doubt that consumers care about the geographic identity of a prod-
uct at the manufacture location level. The question is to what extent manufacture
location influences their preference and affects their purchase choices. Remark-
ably but no longer surprisingly, consumers have already demonstrated strong
preference of manufacture locations in the automobile market in China, which
provides us a unique empirical setting to untangle the correlation between man-

5The quote is from CNNMoney (Lordstown, OH) first published on January 19, 2017. http:
//money.cnn.com/2017/01/19/news/economy/donald-trump-chevy-cruze-mexico/

http://money.cnn.com/2017/01/19/news/economy/donald-trump-chevy-cruze-mexico/
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ufacture location and product characteristics. Specifically, we consider the case
of Chinese-produced automobiles and evaluate the branding role of the Chinese-
denoted manufacturing. We seek to understand the extent to which the Chinese
sub-brand of an automobile variant summarizes observable and unobservable dif-
ferences in the tangible and intangible quality of domestic and foreign produced
versions of a vehicle.

Based on the models of hedonic price analysis, we find the “imported” manufac-
ture location effect in terms of the price premium as high as 9.6% with the control
of product characteristics. Consumers regard the manufacture location as a strong
indicator of utility (tangible and intangible) and are willing to pay 9.6% (implicit
price) more. The implicit price differences between domestic and imported model
versions shrink as we account for more observable characteristics of the product.
However, the implicit price differences stop decreasing at a certain point, sug-
gesting consumers still perceive unobservable differences based on the location
of manufacture. We conjecture that the geographic sub-brand summarizes both
observable and unobservable characteristics for consumers, which motivates our
definition of the brand and sub-brand identity as a representation of consumer
observable and unobservable (tangible and intangible) product characteristics.

According to our brand definition and our hierarchical framework of the brand
and geographic identity, we structure a BLP-type random coefficient discrete choice
model. Our model estimates the distribution of consumer taste parameters of dif-
ferent vehicle models and reveals the positive correlations between model versions
that share the same brand identity or geographic identity at the manufacture lo-
cation level. The results of our model further confirm our conjecture of the strong
influence of the geographic sub-branding factor and are consistent with our brand
definition and hierarchical framework.

The automobile market example of our empirical study highlights the geo-
graphic identifier’s ability to differentiate products vertically, but the sub-brand
could also horizontally differentiate products, as in the Mexican Coke case. Fla-
vored beverages and other products with taste components clearly benefit from
sub-branding that characterizes the taste difference, as the list of ingredients is
insufficient to fully describe differences. We would expect that our definition and
structural framework and model will also apply to other empirical settings and
find the same pattern of the geographic brand describing observable and unob-
servable aspects of the product variants.

The rest of the paper proceeds as follows. Section 2 examines the data patterns
and descriptives that motivate modeling decisions. Section 3 presents hedonic
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price analysis to study the consumer willingness to pay for the sub-branding ele-
ment, manufacture locations. Section 4 constructs a BLP-type random coefficient
discrete choice model to study the effects of geographic identity on consumer pref-
erence further. Section 5 concludes by outlining our key findings and discussing
directions for future research.



2
D ATA A N D D E S C R I P T I V E S

In the automobile market in China, it is quite normal that vehicles with the same
brand and model yet different manufacture locations are sold at the same time.
We observe that international automobile companies intentionally apply country-
specific labels for their vehicle produced in different places. Figure 2 compares the
differences between brand logos of vehicles under the same company but manu-
factured in different locations. The slightly different brand logo design serves as
one simple yet efficient way of separate branding based on country of manufac-
ture. The table is not an exhaustive list, but even in the cases where companies
don’t market with a different brand logo, typically there are labels on the body of
a vehicle indicating whether it is made in China. Nevertheless, consumers are well
aware of the existence of the different manufacture locations, and in most cases
can easily separate an imported vehicle from one that is domestically produced in
China.

In the 1980s, China started to open its market to foreign producers. At the time,
domestic automobile production was limited both in technology and capacity, so
the number of imported vehicles increased dramatically despite the fact that the
tariff was as high as 220%.1 Meanwhile, Chinese government supported state-
owned enterprises like Beijing Automobile Works (BAW), Shanghai Automotive
Industry Corporation (SAIC) and First Automobile Works (FAW) to form joint
ventures with foreign auto companies like American Motors Corporation (AMC,
later acquired by Chrysler Corporation) and Volkswagen to absorb the technol-
ogy in order to advance the Chinese automobile industry. The early joint ventures
primarily operated as complete knock-down (CKD) assembly lines of old model
versions of foreign products. In the 1990’s, more international automobile compa-
nies built partnerships with domestic manufacturers. After China entered World
Trade Organization (WTO) in 2001, the tariff for imported automobiles gradually
decreased and reached 25% in 2006. In step with the fast growth of Chinese econ-
omy, the development of the automobile market accelerated in the first ten years
of the 21st century. Facing demanding consumers and intense market competition,
joint ventures start to offer new models from their foreign parent firms. However,

1http://www.chinadaily.com.cn/dfpd/rs10nian/2011-09/23/content_13778708.htm
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Figure 2: Brand logo comparison for vehicles with different manufacture locations.

unlike the international conglomerates’ other subsidiaries, the Chinese joint ven-
tures mainly manufacture vehicles for the Chinese automobile market.

For instance, the BMW Spartanburg Plant was built in South Carolina in the
U.S. in 1994. By 2014, Spartanburg Plant had exported to 140 markets around the
world. BMW has also built three plants in the city of Shenyang in Northeast China
since 2003, but Shenyang plants solely contribute to developing and penetrating
the Chinese market. Four series including BMW 5, BMW 3, BMW 2 Tourer and
BMW X1 have been produced in Shenyang, whose production and inspection are
proclaimed in strict accordance with the unified global standards.2 Meanwhile,
imported BMW 5, BMW 3, and BMW X1 series are observed in our data as well.
About 40% of the BMW buyers purchased the imported vehicle, in spite of the
much higher price (as shown in Table 1).

2.1 data

We use the New Car Buyers Survey (NCBS) data in 2015 provided by Ford-Stanford
Alliance. Initially, the survey is conducted to get responses from new car buyers
on questions related to purchase motivation, vehicle delivery, driving experience,
etc. The survey questions cover a broad range, including new vehicle attributes,

2This information is from the official BMW website in China: http://www.bmw-brilliance.cn/
cn/en/index.html

http://www.bmw-brilliance.cn/cn/en/index.html
http://www.bmw-brilliance.cn/cn/en/index.html
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Table 1: Consumers of 17 brands with both imported and domestically produced models.

2015 Brand Imported Domestic Total

1 Audi 368 4252 4620

2 BMW 924 1363 2287

3 Buick 19 2165 2184

4 Cadillac 153 341 494

5 Citroen 4 2785 2789

6 Ford 81 3082 3164

7 Hyundai 82 2205 2287

8 Infiniti 143 44 187

9 Kia 150 1821 1974

10 Land Rover 824 117 941

11 Mazda 39 1340 1379

12 Mercedes 550 538 1089

13 Mitsubishi 239 576 815

14 Peugeot 13 2554 2567

15 Toyota 78 3515 3593

16 Volvo 298 558 856

17 VW 532 14763 15295

Total 4497 42019 46516

mileage driven per day, satisfaction with new cars and dealers, price, discount, tax,
registration fee, insurance, considered alternatives, previously owned and other
vehicles in the household, consumer personality and demographic information,
etc.

For our research purpose, after taking out business purchases and respondents
failing to provide the price of their new car, we keep 70740 private car owners
in the 2015 survey. Among these 70740 consumers, 63283 of them purchased a
domestically produced car, and 7457 bought an imported car. Their purchases
cover 53 domestically produced brands and 29 imported brands (details are shown
in Table 16 in Appendix). Noticeably, many prominent international automobile
companies provide both domestically produced and imported vehicles and have
gained a massive profit.3

3In 2015, passenger car sales in China exceeded 20 million, and over 1 million vehicles were
imported. By 2016, approximately 163 million privately owned cars were registered in China, and
the number is still growing.
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The 53 domestically produced brands and 29 imported brands overlap on 17

international companies that provide both domestically produced and imported
models in China, as shown in Table 1. For some reason, GM4 and Nissan5 only
show domestically produced models in the data. It is worth mentioning here that
including GM and Nissan, international brands occupy about 70% of the Chinese
automobile market in our data, which is consistent with the nationwide statistics
over the past decade.

Table 2: 27 Shared imported and domestic models of the 17 brands.

2015 Imported Freq. Domestic Freq.

1 Audi A3 (2012 MY) 49 Audi FAW A3 694

2 Audi A4 Allroad (2009 MY) 10 Audi FAW A4L (2008 MY) 877

3 Audi A6 (2011 MY) 3 Audi FAW A6L (2012 MY) 1155

4 Audi Q3 6 Audi FAW Q3 648

5 Audi Q5 20 Audi FAW Q5 878

6 BMW 3 Series (2012 MY) 3 BMW Brilliance 3 Series (2012 MY) 209

7 BMW 3 Series GT 76 BMW Brilliance 3 Series L (2012 MY) 348

8 BMW 5 Series (2011 MY) 46 BMW Brilliance 5 Series L (2010 MY) 509

9 Citroen C4 Aircross 4 Citroen Dongfeng C4L 472

10 Ford Edge (China, UAE & Saudi Arabia Only) 47 Ford Changan Edge (2015 MY) 80

11 Hyundai Grand Santa Fe 38 Hyundai Beijing Santa Fe (2012 MY) 173

12 Hyundai Santa Fe (2012 MY) 5 Hyundai Hengtong Huatai Santa Fe 25

13 Infiniti Q50 58 Infiniti Dongfeng Q50L (2014 MY) 26

14 Range Rover Evoque 160 Land Rover Chery Range Rover Evoque 117

15 Mazda 5 (2011 MY) 39 Mazda Changan CX-5 271

16 Mercedes C Class W/ S/ C204 (2007 MY) 12 Mercedes Beijing C Class V205 (2014 MY) 146

17 Mercedes E Coupe/ Cabrio C/ A207 (2009 MY) 26 Mercedes Beijing C Class W205 (2014 MY) 3

18 Mercedes G Wagen 3 Mercedes Beijing E Class V212 (2009 MY) 168

19 Mercedes GL X166 (2012 MY) 24 Mercedes Beijing GLA X156 39

20 Mercedes GLA X156 40 Mercedes Beijing GLK X204 151

21 Mitsubishi Outlander (2013 MY) 173 Mitsubishi GAC Pajero 47

22 Mitsubishi Pajero/ Shogun/ Montero (2007 MY) 66 Mitsubishi GAC Pajero Sport (2013 MY) 140

23 Volvo S60 (2010 MY) 12 Volvo S60 (2010 MY) 254

24 Volvo XC60 98 Volvo XC60 271

25 VW Golf (7) (2013 MY) 35 VW FAW Golf (7) 1014

26 VW Passat (2011 MY)/ Passat CC (2012 MY) 44 VW SVW Passat (2011 MY) 1144

27 VW Tiguan 82 VW SVW Tiguan 1335

Total 1179 11194

4GM has started producing vehicles in China and exporting to US since 2016. https://nypost.
com/2017/07/02/gm-is-producing-popular-car-in-china-exporting-to-us/.

5In 2017, Nissan sold more than 1.5 million vehicles in China, including imported,
passenger and light commercial vehicles. https://www.automotiveworld.com/news-releases/
nissan-show-three-electric-vehicles-auto-china-2018/

https://nypost.com/2017/07/02/gm-is-producing-popular-car-in-china-exporting-to-us/
https://nypost.com/2017/07/02/gm-is-producing-popular-car-in-china-exporting-to-us/
https://www.automotiveworld.com/news-releases/nissan-show-three-electric-vehicles-auto-china-2018/
https://www.automotiveworld.com/news-releases/nissan-show-three-electric-vehicles-auto-china-2018/
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All the imported and domestically produced model details for the 17 inter-
national automobile companies are listed in Tables 17, 18, and 19 in Appendix.
We can easily see that most of the domestically produced models have the same
model name as imported models, but with a domestic prefix. For example, do-
mestically produced models use the prefix FAW for Audi, Brilliance for BMW,
Changan for Ford, Beijing for Hyundai, etc. These prefixes are symbols for the
local plants in China. To further isolate the effect of manufacture locations, we get
into specific vehicle attributes. Table 2 shows only the overlapped models within
each international brand. Theoretically, the same model domestically produced in
China should have exactly the same characteristics as its imported counterpart,
as claimed by many local manufacturers and their conglomerates. However, in
practice, consumers are willing to pay much higher prices, which indicates that
imported models hold higher perceived tangible and intangible quality for con-
sumers.

Among the 17 brands, 12 of them provide the same models for both imported
and domestically produced categories, but are they really the same, at least on
paper? Do consumers pay extra money only for their beliefs about the manufac-
ture location? Based on the full data set, we build a vehicle dictionary where we
can look up all the available car model versions with different attributes and get
the corresponding prices. We manually compare the five major attributes: Engine
Size, Engine Type, Body Type, Drive Type, Gearbox, of the domestic and imported
same models and demonstrate the results in Table 3. Blanks mean that the domes-
tic and imported models match perfectly, i.e., their available choices of that vehicle
attribute are the same. A “&" means that the match is not perfect, but choices over-
lap; a “+" means that the domestic model offers more choices; a “-" means that the
imported model provides more choices; a “!" means that the available choices are
completely different. Note that for Volvo S60, Engine Size is 1969cc vs. 1984cc,
not matched but very close. Hence, we further exclude three models (Citroen C4,
Mazda 5, and Mercedes C Class) from the final sample set because consumers
probably have to choose their geographic sub-brands with different attributes. Fi-
nally, it is more reasonable to assume that consumers in our considered dataset
face the same product attributes and availability as later in Assumption 3 of the
consumer choice model.
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Table 3: Matching status between imported and domestic same models.

2015 Imported Engine Size Engine Type Body Type Drive Type Gearbox

1 Audi A3 &

2 Audi A4 + ! +

3 Audi A6 + + +

4 Audi Q3 + + +

5 Audi Q5 - +

6 BMW 3 Series & -

7 BMW 5 Series + -

8 Citroen C4 ! + ! ! +

9 Ford Edge & -

10 Hyundai Santa Fe & +

11 Infiniti Q50 - -

12 Range Rover Evoque - -

13 Mazda 5 ! ! +

14 Mercedes C Class ! ! +

15 Mercedes E + ! + +

16 Mercedes G & - +

17 Mitsubishi Outlander/ Pajero & +

18 Volvo S60 !

19 Volvo XC60 &

20 VW Golf (7) & + - - +

21 VW Passat + + ! - +

22 VW Tiguan & + + +

a Blanks mean that the domestic and imported models match perfectly.
b “&" means that the match is not perfect, but choices overlap;
c “+" means that the domestic model offers more choices.
d “-" means that the imported model provides more choices.
e “!" means that the available choices are completely different.

2.2 price pattern

For the dataset containing all private purchases, the distribution and statistics of
the prices for imported and domestically produced vehicles are shown in Table
4. For the dataset including only common models available in both imported and
domestically produced versions, the price range shrinks as shown in Table 5. Both
tables illustrate that prices of imported cars are systematically higher. The medians
of price distribution of all vehicles, imported cars, and domestic cars are 138K,
400K, and 128.8K yuan, respectively. Hence, consumers will have to budget very
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Table 4: Summary of price distributions for imported and domestically produced vehicles
containing all private vehicles.

Statistics Min 1st Quartile Median Mean 3rd Quartile Max

All Vehicles 20000 97000 138000 193400 230000 3000000

Imported 90000 265000 400000 508200 630000 3000000

Domestic 20000 92000 128800 156300 196000 830000

Table 5: Summary of price distributions for imported and domestically produced vehicles
that share common models.

Statistics Min 1st Quartile Median Mean 3rd Quartile Max

Common Models 56800 220000 280000 305200 380000 1700000

Imported 170000 285100 364000 395500 460000 1700000

Domestic 56800 220000 271800 294600 375700 830000

Figure 3: The percentages of domestic and imported vehicle buyers of different income
groups.

differently, as high as twice more on average to purchase an imported vehicle in
China. Figure 3 shows a monotonic increasing trend of the percentage of imported
vehicle buyers, as their incomes increase.6

The next section presents hedonic price analysis models to explore the mystery
of the imported vehicle prices further and captures the higher consumer willing-
ness to pay induced by the geographic sub-branding element, manufacture loca-
tion.

6The per capita disposable annual income of urban households in
China was 31K yuan in 2015. https://www.statista.com/statistics/289186/
china-per-capita-disposable-income-urban-households/

https://www.statista.com/statistics/289186/china-per-capita-disposable-income-urban-households/
https://www.statista.com/statistics/289186/china-per-capita-disposable-income-urban-households/


3
H E D O N I C P R I C E A N A LY S I S

Although Court (1939) first coined the term, “hedonic price analysis" was not pop-
ularized until the early 1960s by Griliches (1961). This method was originally used
to quantify different dimensions of quality change of a product, e.g., horsepower,
weight, or length for automobiles. Hedonic price analysis uses multivariate re-
gression to derive “implicit prices" per unit of the chosen additional characteristic
of the commodity. In the condition of no quality evolution, this procedure could
answer the question of what the price of a “new" combination of qualities of a
particular product would have been in cases where that particular product was
not available, by interpolating or extrapolating the relationship between price and
characteristics of available product varieties.

The hedonic hypothesis here is that goods are valued for their utility-bearing
attributes or characteristics. Hedonic prices are defined as the implicit prices of
product characteristics, which are revealed from observed prices of differentiated
products and the specific amounts of characteristics associated with them. The
original goal of hedonic price analysis is to find what relationship there exists
between the product’s price and its attributes. To estimate the relationship (i.e.,
function) between prices and product characteristics, we need to make assump-
tions about the relevance of different characteristics and the ways (i.e., forms of
the function) in which they relate to the price.

The semilogarithmic specification of the hedonic function is convenient and
becomes popular, as in Eq. (3.1) below. When natural logarithms are used, the
β j coefficient provides an estimate of the percentage increase in price due to a
one-unit change of the corresponding characteristic, holding other characteristics
constant:

log Pi = β0 +
J

∑
j=1

β jxij + ε i, (3.1)

where Pi is the price of the product i, β0 is the standard regression intercept,
β j’s are the regression coefficients (i.e., implicit prices), xij is the characteristic j
of the product i, and ε i is the regression error. Under restrictive conditions, the
semilogarithmic hedonic function can be derived from an underlying utility func-

15
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tion (Rosen, 1974; Diewert, 1961). A microeconomic theoretical interpretation for
the hedonic regression can be provided by relating to the demand and supply
curves.

3.1 brand and sub-brand hedonic price models

We summarize the brand identity as a representation of consumer observable and
unobservable (tangible and intangible) product characteristics. Based on this defi-
nition of brand identity, brand and sub-brand are utility-bearing and naturally fit
into the right-hand side of the hedonic function. Our results in section 3.2 support
our understanding of brand identity.

We apply hedonic price analysis to examine the effect of geographic identity
on manufacture location level and investigate the interaction between a vehicle’s
manufacture location and its actual sales prices. Comparing to the original hedo-
nic model, we include not only the physical attributes of a product but also the
brand and geographic identities, which convey extra information about aspects of
a product that is difficult to quantify, such as reputation, social status representa-
tion, and quality perception. These are particularly true in the car market where a
brand’s origin plays a traditionally important role in purchase decisions, as well as
manufacture locations. For example, car quality is often difficult to evaluate prior
to purchase, and buyers may have to rely on geographic reputations. To investi-
gate the above hypotheses formally, first, the standard hedonic regression model,
Eq. (3.1), is extended to include manufacture location effects. More specifically, we
add a binary variable in the hedonic price model:

log Pi = β0 +
J

∑
j=1

β jxij + αIi + ε i, (3.2)

where Pi is the price of the vehicle purchased by consumer i, β0 is the intercept
for the base case vehicle model, β j’s are the regression coefficients (i.e., implicit
prices), xij is characteristic j of vehicle i, Ii is the binary variable representing
whether the vehicle is imported or domestically produced in China, and ε i is the
regression error. Ii = 1 if a vehicle is imported, otherwise Ii = 0. The attribute set
J includes all major attributes of a vehicle: Fuel Consumption, Horsepower, Drive
Type, Gearbox, Body Type, and Engine Type as control variables.
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Furthermore, we include two forms of brand identity, brands and model ver-
sions, in the following two models:

log Pi = β0 +
J

∑
j=1

β jxij + αIi + γ′Bi + ε i, (3.3)

log Pi = β0 +
J

∑
j=1

β jxij + αIi + θ′Mi + ε i, (3.4)

where Bi represents the brand name of vehicle i, and Mi represents the model
version of vehicle i, which usually contains its brand name. Bi and Mi are vec-
tors with one “1” element indicating which brand or model the vehicle i belongs
to, and other elements “0.” γ and θ are vectors of the corresponding coefficients
regarding different brands and model versions.

The coefficient α in each of the models Eq. (3.2)–(3.4) provides us with the im-
plicit price of the Imported Model attribute, i.e., an estimate of average percentage
increase in prices between imported vehicles and ones that are domestically pro-
duced in China, holding other vehicle characteristics unchanged.

3.2 hedonic model results

We apply hedonic price analysis as one way to measure the value that manufacture
locations contributing to brand equity, in the sense of how much price premium
can be achieved when the variations of manufacture locations are taken into con-
sideration, or how the manufacture locations affect consumer willingness to pay.
The results of our models on both the whole dataset and the filtered common
model dataset have shown that the effect of manufacture location is strongly sig-
nificant. Precisely, even given the brand model and major vehicle attributes (Fuel
Consumption, Horsepower, Drive Type, Gearbox, Body Type, and Engine Type),
on average, consumers are still willing to pay 9.6% higher price for switching
to the same model but an imported vehicle. These results support our conjecture
that manufacture location has become an essential sub-branding factor influencing
consumer preference and marketing strategies.
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3.2.1 Results on All Private Purchases

First, we run the hedonic pricing models on the dataset containing all private
vehicles. The results are given in Table 6. As a single independent variable, the bi-
nary variable (Imported Model, I) initially contributes 115% of the price increase.
As we add a control variable, the brand of a vehicle, the coefficient of manufac-
ture location effect drops to 55.4%, indicating that consumers are willing to pay
55.4% more on average to switch to an imported version of their chosen vehicle
brand. When the major attributes of a vehicle (Fuel Consumption, Horsepower,
Drive Type, Gearbox, Body Type, and Engine Type) sequentially enter as control
variables, the impact of manufacture location on pricing starts to decrease, then
bounces back a little, and finally stops at 10.6%, which shows two vehicles with
the same core attributes yet different manufacture locations are priced very differ-
ently. In the whole market (containing domestic brands in China), the coefficients
of manufacture location are significant in the result of all Hedonic Models (1)–(8)
in Table 6.

This result confirms the impact of manufacture location broadly. Intuitively, if
one product builds its geographic identity in a certain market, the price of sim-
ilar products of other international and domestic brands can be influenced as
well. Generally speaking, the domestic sub-brands of international brands com-

Table 6: Models on the dataset containing All Private Purchases

Hedonic Models (1) (2) (3) (4) (5) (6) (7) (8)

Imported Modela 1.15*** 0.554*** 0.409*** 0.110** 0.105** 0.112** 0.109** 0.106**

Robust SEb 0.120 0.087 0.054 0.041 0.038 0.035 0.033 0.039

Robust P-value < 2e−16 1.93e−10 5.73e−14 0.008 0.005 0.001 0.001 0.007

Brand Name No Yes Yes Yes Yes Yes Yes Yes

Fuel Consumption No No Yes Yes Yes Yes Yes Yes

Horsepower No No No Yes Yes Yes Yes Yes

4-Wheel Drive No No No No Yes Yes Yes Yes

Gearbox No No No No No Yes Yes Yes

Body Type No No No No No No Yes Yes

Engine Type No No No No No No No Yes

Sample Size 70740 70740 70740 70740 70740 70740 70740 70740

R2
0.294 0.706 0.786 0.903 0.903 0.913 0.917 0.920

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
b Robust standard errors clustered at the brand level are reported.
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pete with national brands. More specifically, the new domestic manufacture loca-
tion sub-branding identity might expand or compete with its original counterpart,
which is the focus of the following hedonic models and consumer choice models.

In most of the cases, one vehicle brand has different model versions that are
defined by the core attributes of a vehicle along with other unobserved detailed
designs. If our definition of brand and sub-brand as a summarization of consumer
observed and unobserved (tangible and intangible) attributes of a product is coher-
ent, we should be able to find consistent and more prominent results below on the
refined dataset of common models available in both imported and domestically
produced versions.

3.2.2 Brand Name as a Control Variable

As stated in the Data section, here we only use vehicles with the same model ver-
sion and different manufacture locations. In Table 7, when we use only “Imported
Model" as an independent variable, it reflects 28% price premium, compared to
115% for the whole dataset. Given the brand and core attributes of a vehicle, the
manufacture location impact on price premium becomes 8.3%. One reason for the
drop in coefficients should be that the refined dataset has a higher base-case price

Table 7: Models on the dataset containing only Common Models available in both im-
ported and domestically produced versions: use Brand Name as a control variable

Hedonic Models (1) (2) (3) (4) (5) (6) (7) (8)

Imported Modela 0.280*** 0.208** 0.201*** 0.109* 0.104* 0.104* 0.094** 0.083*

Robust SEb 0.154 0.071 0.054 0.053 0.042 0.041 0.035 0.037

Robust P-value 0.069 0.004 2e−04 0.039 0.013 0.012 0.008 0.024

Brand Name No Yes Yes Yes Yes Yes Yes Yes

Fuel Consumption No No Yes Yes Yes Yes Yes Yes

Horsepower No No No Yes Yes Yes Yes Yes

4-Wheel Drive No No No No Yes Yes Yes Yes

Gearbox No No No No No Yes Yes Yes

Body Type No No No No No No Yes Yes

Engine Type No No No No No No No Yes

Sample Size 10345 10345 10345 10345 10345 10345 10345 10345

R2
0.052 0.516 0.628 0.792 0.800 0.800 0.831 0.838

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
b Robust standard errors clustered at the brand level are reported.
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because it filtered out the cheaper vehicles of national brands. Even though the ra-
tios are lower than previous models, they remain significant both statistically and
economically. Meanwhile, we observe the same pattern as in the whole dataset: the
coefficient of manufacture location gradually decreases as product characteristics
sequentially enter the analysis. This pattern shows us that the geographic sub-
brand is positively correlated with consumer observed tangible attributes, which
supports the first half of our definition of brand and sub-brand. Then, how do
we demonstrate the second half of our definition? If we zoom in on the car at-
tributes even more, should we naturally expect coefficients to drop even more?
Maybe the remarkable impact of manufacture location is purely because we are
missing physical characteristics unobservable for econometricians, but known by
consumers? The results of the following models confirm our definition of brand
identity and the significance of the manufacture location sub-branding effects.

3.2.3 Model Name as a Control Variable

With the purpose of including more vehicle attributes that may not be captured
by the core characteristics of vehicles, we use Model Name as an independent
variable in Table 8, e.g., “Audi A6", “BMW 3 series", “Ford Edge", etc., instead

Table 8: Models on the dataset containing only Common Models available in both im-
ported and domestically produced versions: use Model Name as a control vari-
able

Hedonic Models (1) (2) (3) (4) (5) (6) (7) (8)

Imported Modela 0.280*** 0.211*** 0.208*** 0.152*** 0.144*** 0.142*** 0.104*** 0.096***

Robust SEb 0.125 0.058 0.056 0.032 0.030 0.031 0.029 0.028

Robust P-value 0.026 2.47e−4 1.23e−4 2.35e−6 1.87e−6 4.00e−6 2.92e−4 7.63e−4

Model Name No Yes Yes Yes Yes Yes Yes Yes

Fuel Consumption No No Yes Yes Yes Yes Yes Yes

Horsepower No No No Yes Yes Yes Yes Yes

4-Wheel Drive No No No No Yes Yes Yes Yes

Gearbox No No No No No Yes Yes Yes

Body Type No No No No No No Yes Yes

Engine Type No No No No No No No Yes

Sample Size 10345 10345 10345 10345 10345 10345 10345 10345

R2
0.052 0.817 0.825 0.870 0.878 0.878 0.882 0.883

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
b Robust standard errors clustered at the model level are reported.
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of the general Brand Name. Even though Hedonic Model (2)’s in Table 7 and 8

with two different independent variables, namely Brand Name vs. Model Name,
both initially have the coefficients of manufacture location close to 21%, but the R-
square value is largely increased by switching from Brand Name to Model Name
(0.516 vs. 0.817, R2 in the second columns of Table 7 and 8). These results unsur-
prisingly illustrate that Model Name does have stronger explaining power on the
price premium than Brand Name. Intuitively, Model Name should be more posi-
tively correlated with at least the physical attributes that define the model version
of the product.

With all control variables included, we find the coefficient of manufacture loca-
tion gradually decreases and eventually reaches 9.6%, but did not go below 8.3%
of Hedonic Model (8) in Table 7. If the geographic branding factor that we are
considering here only represented the observable attributes, the coefficient of man-
ufacture location would have continued decreasing further because Model Name
introduces more physical characteristics. Since adding more attributes causes no
further reduction in the coefficient, we should scope the representability of prod-
uct geographic sub-brand identity beyond observable attributes. Part of this ge-
ographic sub-brand identity needs to be explained by unobservable attributes,
which could be tangible or intangible, and challenging to quantify.

Here we use the vertical distance in price premium or consumer willingness to
pay to measure the effect of geographic identity. Manufacture location has become
a sub-branding factor of many products. This broadly motives our definition of
brand identity as a representation of consumer observable and unobservable (tan-
gible and intangible) product characteristics (as shown in Figure 1). This definition
also guides the structure of our consumer choice model and is further confirmed
by estimation results.



4
C O N S U M E R C H O I C E M O D E L I N G

Hedonic Price Analysis illustrates that consumers have high willingness to pay
for “Imported Model," yet at the same time we observe a large amount of "Do-
mestically Produced Model" purchases. The emergence of domestically produced
sub-brands seems to provide consumers "cheaper" options, and on the other hand,
companies collect more market shares from their sub-branding strategy. In this sec-
tion, we investigate how geographic identity as a sub-branding element influences
consumer purchase choices.

4.1 blp-type discrete choice model

Based on our framework of Brand and Geographic Identity illustrated in Figure
1, we construct a consumer discrete choice model similar to BLP, one of the major
methods for estimating demand of differentiated products (Berry, 1994; Berry,
Levinsohn, and Pakes, 1995; Nevo, 2000). Assume we observe t = 1, . . . , T markets
with i = 1, . . . , It consumers choosing from j = 1, . . . , J different products. The
indirect utility of consumer i consuming product j from market t is given by

uijt = β′iBjt + αPjt + ξjt + ε ijt, (4.1)

where Pjt is the price of product j in market t. Bjt is a J-dimensional vector repre-
senting consumer brand choices, with the jth element equal to “1” and other ele-
ments being “0". ξjt captures the factors that are unobserved by econometricians
like systematic shocks to demand. ε ijt is a stochastic term. α represents consumers’
marginal utility of wealth. βi is a J-dimensional vector of individual-specific taste
coefficient of brands.

The setup of Eq. (4.1) has integrated various assumptions that result in different
implications. BLP classically assumes that producers and consumers observe all
product characteristics, but econometricians do not. Because of our definition of
brand identity, we have a different version of this fundamental assumption.

Assumption 1. Consumers make purchase choices according to their perception of ob-
served and unobserved (tangible and intangible attributes), which forms product brand
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identity. In addition, factors beyond brand identity, e.g., directly related here, the pre-
conceptions of country-of-origin of different brands, technology advances, national and
international trade policy reformation, etc., also affect consumer purchases.

This assumption is consistent with our hierarchical structure having brand be-
low country-of-origin but above manufacture location (Figure 1). Since all these
factors above the brand identity level are not explicitly quantified, they will be
captured by the econometric error term ξjt in Eq. (4.1). However, producers are
exposed to these factors and set pricing strategy accordingly. The econometric
problem of endogenous price is still unavoidable, and hence we use a BLP-type
model to tackle price endogeneity.

Assumption 2. The elements captured by ξjt vertically differentiate products in the same
way for all consumers.

In one domestic market, i.e., the automobile market in China in our estimation,
we believe that the vast majority of consumers will share the same perspective
of country-of-origin, technology, policy, etc. Even companies’ temporary promo-
tional activities will still systematically affect all consumers unless promotions
are tailored to target specific individuals. Yet for an automobile purchase, small
promotions should have minor effects on prices or consumer decisions.

Assumption 3. All consumers face the same product attributes, availability, and prices.

If product prices vary among consumers, averaging prices will lead to measure-
ment error bias. It is another way that prices may correlate with the error term,
where the instrumental-variable procedure of BLP shows advantages on price en-
dogeneity. Vehicle characteristics and availability might widely differ. For the re-
search focus in this paper, we therefore select our final samples as described in
Chapter 2.

Assumption 4. The indirect utility in Eq. (4.1) is derived from a quasilinear utility func-
tion. Its specification assumes that wealth and prices linearly affect consumer preference.

For high-cost vehicle purchases, it is not a typical assumption to make. However,
for our selected dataset to support our research focus here, this assumption does
not seem to drift far from reality. We come back to this point later in the result
chapter.

Consumers are assumed to purchase the good that produces the highest utility.
Formally, the group of consumers choosing good j is defined by the set

Ajt(B·t, P·t; ξ·t, α, βi) =
{
(ε i1t, . . . , ε i Jt, βi) | uijt ≥ uilt, ∀l = 1, . . . , J

}
. (4.2)
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Then we can achieve the market share of product j by the integral over the mass
of consumers in region Ajt:

sjt(B·t, P·t; ξ·t, α, βi) =
∫

Ajt

dF(ε ijt, βi)

=
∫

Ajt

dF(ε ijt | βi)dF(βi)

=
∫

Ajt

dF(ε ijt)dF(βi), (4.3)

where F(·) denotes the population distribution. The second and third equality is
according to Bayes’ rule and the independence assumption of the stochastic error
term.

In order to compute the integral in Eq. (4.3), we need to make distributional
assumptions on the individual attribute parameters.

Assumption 5. ε ijt’s are independent and identically distributed according to Type I
extreme value distribution.

Hence, we deduce the market share from Eq. (4.3) to:

sjt(B·t, P·t; ξ·t, α, βi) =
∫

Ajt

exp(β′iBjt + αPjt + ξjt)

∑J
k=1 exp(β′iBkt + αPkt + ξkt)

dF(βi), (4.4)

In addition to the separable additive random shock ε ijt, consumer heterogeneity
enters our model through the individual-specific taste coefficient βi.

Assumption 6. The random taste coefficient βi is parametrically distributed under the
multivariate normal distribution with mean β and variance-covariance matrix Σ:

βi
iid∼ N (β, Σ) . (4.5)

Now instead of ten thousand or more consumer taste coefficients, we only need
to estimate the distribution mean vector β ∈ RJ and variance-covariance matrix
Σ ∈ RJ×J . Let ηi ∈ RJ denote the multivariate standard normal distribution, i.e.,
ηi

iid∼ N (0, I), and Γ denote the upper triangular matrix of the Cholesky decompo-
sition of Σ, i.e., Σ = Γ′Γ. Then we can express βi as

βi = β + Γ′ηi. (4.6)

We can therefore estimate β and Σ by integrating over ηi.
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4.2 estimation procedure

Given previous assumptions, we substitute Eq. (4.6) into Eq. (4.1) and have a new
expression of utility function:

uijt = (β + Γ′ηi)
′Bjt + αPjt + ξjt + ε ijt. (4.7)

Since we have to take the Cholesky decomposition of the symmetric variance-
covariance matrix Σ to get Γ, for Σ alone there are J× (J + 1)/2 parameters to esti-
mate. For the purpose of reducing the problem dimension to ease estimation and
the research focus of this study, we impose a structure on the variance-covariance
matrix Σ:

Σ =


σ1

. . .

σJ





1 ρB ρD 0 ρD . . .

ρB 1 0 ρI 0

ρD 0 1 ρB

0 ρI ρB 1

ρD 0
. . .

... 1




σ1

. . .

σJ

 ≡ SRS, (4.8)

where S is a diagonal matrix with the standard deviations (σ1, . . . , σJ) of the dis-
tribution of βi on the diagonal. R is the correlation matrix of βi with a structure
built by the following rules: (1) if two vehicle models share the same brand, their
correlation is ρB; (2) if two vehicle models are both imported, their correlation is
ρI ; (3) if two vehicle models are both domestically produced, their correlation is
ρD; (4) otherwise, their correlation equals to 0.

Even though the extreme value distribution of ε ijt in Assumption 5 lets us inte-
grate ε ijt’s analytically, we still have to compute the integral defining the market
shares in Eq. (4.4) by simulation. Here we use probably the most common way to
approximate the integral:

sjt(B·t, P·t; ξ·t, α, βi) =
1

NS

NS

∑
ns=1

exp((β + Γ′ηns)′Bjt + αPjt + ξjt)

∑J
k=1 exp((β + Γ′ηns)′Bkt + αPkt + ξkt)

, (4.9)

where ηns, ns = 1, . . . , NS, are J dimension i.i.d. draws from the standard normal
distribution.

Next, we apply the mathematical program with equilibrium constraints (MPEC)
approach to the generalized method of moments (GMM) estimation, and form a
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nonlinear constraint optimization problem (Su and Judd, 2012; Dubé, Fox, and Su,
2012):

min
θ

g(θ)′Wg(θ)

s.t. g(θ)− Z′ξ = 0 (4.10)

sjt(B·t, P·t; θ) = Sjt for all j, t,

where sjt(B·t, P·t; θ)’s are the market shares estimated by Eq. (4.9), and Sjt’s are the
observed market shares. Z = [z1, . . . , zM] ∈ RJ×M is a set of instruments such that
the population moments

E[ξ(θ∗)′zm] = 0, ∀m = 1, . . . , M, (4.11)

where θ∗ denotes the true values of the parameters. Therefore, we choose an esti-
mate such that the sample analog of the population moments, ξ(θ̂)′zm, is as close
to 0 as possible. W is a weight matrix defined by the inverse of the variance-
covariance matrix of the moments, ideally a consistent estimate of E[Z′ξξ′Z]−1.
This way we put less weight on the moments that have a higher variance. Finally,
we form θ = [α; β; σ1, . . . , σJ ; ρB; ρD; ρI ; g; ξ] ∈ R(2J+4+M+J×T) as the unknown-
parameter vector to estimate.

We solve the nonlinear optimization problem (4.10) in Matlab by calling solvers
KNITRO (KNITRO optimization software) and SNOPT (Gill, Murray, and Saunders,
2005a) through Tomlab. Two caveats are worth mentioning here.

First, even though we could easily provide the gradient and Hessian of our
objective function:

∂ f (θ)
∂θ

=


0

2Wg

0

 ,
∂2 f (θ)

∂θ2 =


0

2W

0

 , (4.12)

where f (θ) = g′Wg is the objective function in Eq. (4.10), the Jacobian of the
nonlinear constraints is no longer analytically achievable because of the Cholesky
decomposition of the variance-covariance matrix. Most solvers should be able to
use finite differences to approximate the derivatives. Even though it will slow
down the estimation, it should not prevent us from reaching the optimal.

The second problem is more challenging for the search algorithms of optimiza-
tion solvers. The Cholesky decomposition requires the variance-covariance matrix
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formed by the unknown parameters to be positive definite. There exists no algo-
rithm that can guarantee a positive definite search direction. Instead of MPEC,
the first alternative that comes to our mind is the nested fixed point algorithm
(NFP) from the BLP paper (Berry, Levinsohn, and Pakes, 1995). However, from
the original proof of the contraction mapping in the appendix of BLP, the first
property required is that the function be continuously differentiable. Hence, it is
not straightforward to prove that the NFP approach would circumvent the dif-
ficulty. Therefore, we reformulate optimization problem (4.10) in the following
ways:

1. Move the nonlinear constraints to the objective function to gain more free-
dom to prevent the non-positive definite errors from terminating the algo-
rithm.

2. Add a penalty parameter to drive the additional part to zero and leverage
the two parts of the modified objective function.

3. Define a global parameter to keep a record of the updated objective function
value with the purpose of trying to make the objective function continuous.

4. Every time we encounter a non-positive definite matrix, we set the objective
value back to the previous record.

Eventually, we also move the linear constraints back to the objective function. The
final reformulation is

min
θ

ξ′ZWZ′ξ + λ‖sjt(B·t, P·t; θ)− Sjt‖2, (4.13)

where λ > 0 is the penalty parameter that we use to tune the optimization prob-
lem, and the other variables are the same as in Eq. (4.10). If the estimation becomes
more numerically difficult, we expect the augmented Lagrangian algorithm NCL
(Ma et al., 2018) to be efficient and reliable.

4.3 identification

The crucial identification assumption in our algorithm is Eq. (4.11), which requires
Z, a set of exogenous instrumental variables. Standard demand-side instruments
are the variables that shift cost but are uncorrelated with the demand shock ξ. We
use a set of instrumental variables derived by BLP. Excluding price and other
potentially endogenous variables, we use the observed product characteristics,
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the sums of the values of the characteristics of other products provided by the
same firm, and the sums of the values of the characteristics of products offered by
other firms. To be specific, each model version has its own Horsepower, its same
brand yet different manufacture location counterpart’s Horsepower, and the sum
of Horsepower of the rest of the models, as three different instruments. Similarly,
we could create three instrumental variables with each product characteristic.

How well the instrumental variables work really depends on what the econo-
metric error ξ includes. To put it in another way, what we believe goes into the
error term decides the type of instrumental variables we need. According to our
definition of brand and geographic identity and the structure of our model (es-
pecially Assumption 1), it is intuitive that BLP-type instruments are uncorrelated
with our structural error ξ, and hence satisfy the moment conditions.

4.4 estimation results

Based on our definition of utility in Eq. (4.1) and the simulated market share with
Eq. (4.9), the estimates of the model are computed from the reformulated opti-
mization problem Eq. (4.13). The first part of our new objective function, ξ′ZWZ′ξ,
is the moment condition, which is non-negative by definition. Ideally, we want to
make the moment condition close to zero. The second part of the new objective,
λ‖sjt(B·t, P·t; θ)− Sjt‖2, is a measure of the distance between the estimated market
shares and the observed market shares (the square of the `2-norm), which is also
non-negative by definition and desired to be zero. The larger the penalty parame-
ter λ we set, the greater emphasis the optimization solver puts on the second part,
to ensure it is really small. Since the two parts share the unknown variable ξ, it
is a trade-off the solver has to make. SNOPT (Gill, Murray, and Saunders, 2005a)
is able to make the objective value as small as 2.5814, with λ = 107, i.e., the mo-
ment condition and the share difference are both satisfied very well. We report the
estimation results in Table 9.

In the way described in the previous section, we create three instrumental vari-
ables from each product characteristic including Fuel Consumption, Horsepower,
Drive Type, Gearbox, etc. However, we did not use tens of instrumental variables.
The results in Table 9 are estimated using nine instrumental variables created from
Fuel Consumption, Horsepower, and Drive Type. All variables (including vehicle
prices and characteristics) are normalized in order to avoid unnecessary numerical
difficulties.
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Table 9: Estimated parameters and their standard errors of the random coefficient discrete
choice model with 20 imported and domestically produced shared vehicle mod-
els.

Variables β βse σ σse

1 "AudiDomestically Produced Model" 1.3395 0.2293 2.0721 0.9782

2 "AudiImported Model" 1.3638 0.2345 0.2062 0.0983

3 "BMWDomestically Produced Model" 0.7694 0.4608 2.2161 0.4604

4 "BMWImported Model" 1.8081 0.4627 0.1340 0.1585

5 "FordDomestically Produced Model" -0.8472 0.6194 0.0987 0.3275

6 "FordImported Model" -0.0641 1.3679 0.2983 0.2284

7 "HyundaiDomestically Produced Model" 0.4898 1.0887 1.2260 0.4557

8 "HyundaiImported Model" 0.5163 1.5416 0.2942 0.3133

9 "InfinitiDomestically Produced Model" -0.2799 0.8630 0.9742 0.4050

10 "InfinitiImported Model" -0.1382 0.7083 0.0268 0.4412

11 "Land RoverDomestically Produced Model" 0.0968 1.1398 0.4521 0.1904

12 "Land RoverImported Model" 0.4698 0.9001 0.3327 0.1420

13 "MercedesDomestically Produced Model" 0.7786 0.2790 1.5110 0.6894

14 "MercedesImported Model" 0.7844 0.2593 0.0417 0.4779

15 "MitsubishiDomestically Produced Model" 0.5773 0.6580 1.0779 0.3412

16 "MitsubishiImported Model" 0.7172 0.4496 0.3037 0.1842

17 "VolvoDomestically Produced Model" -0.2620 0.8448 1.4784 0.4961

18 "VolvoImported Model" -0.2433 0.8907 0.2781 0.4361

19 "VWDomestically Produced Model" -0.0012 0.2120 4.9984 0.4974

α αse ρ ρse

Price -0.7465 0.4911

ρD 0.0039 0.1264

ρI 0.8097 0.2465

ρB 0.4358 0.2290

a The base case is VW Imported Model.
b Standard errors are calculated by the bootstrap method.

The taste coefficients, β (i.e., the means of the distribution of marginal utilities)
and their standard errors are presented in the first two columns. As expected,
Audi, BMW, and Mercedes demonstrate higher marginal utilities, which is consis-
tent with their overwhelmingly large market shares despite high prices. Notably,
the positive and negative signs of β’s generally come in pairs, i.e., two sub-brands
sharing similar marginal utilities. That again implies the positive correlation be-
tween consumers’ taste of sub-brands.
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Figure 4: The frequency distribution of price coefficient.

The estimates of standard deviations σ’s and their standard errors are shown in
the third and fourth columns representing the heterogeneity around the mean β’s.
The significant standard deviation estimates confirm the existence of substantial
consumer heterogeneity.

The price coefficient α is −0.7465. The frequency distribution of price coefficient
is shown in Figure 4, illustrating the distribution of the individual price sensitivity.
The price coefficient stays negative and does not spread to positive values, prob-
ably because the imported extremely luxury cars are excluded from the current
dataset because they do not have domestic counterparts.

The estimates of the correlations between consumer taste coefficients and their
standard errors are listed in the bottom part of Table 9. Recalling the structure of
our correlation matrix R in Eq. (4.8), the results give us: (1) if two vehicle models
share the same brand, their correlation is ρB = 0.4358; (2) if two vehicle mod-
els are both imported, their correlation is ρI = 0.8097; (3) if two vehicle models
are both domestically produced, their correlation is ρD = 0.0039. The mystery of
their relatively big standard errors may be caused by our somewhat strict corre-
lation matrix structure to accommodate computational tractability. The estimates
are consistent with the data observation and our intuitive understanding of con-
sumer behavior. The taste coefficients for two models are positively correlated if
they are both imported or share the same international brand. It is basically say-
ing if consumers prefer one model that is imported, they tend to perceive a higher
utility of other cars that are also imported. But the connection is weaker among
consumers’ preference of domestic models. Also intuitively, if consumers like a



4.4 estimation results 31

car under one automobile brand, they will more likely favor the model under the
same brand with a different manufacture location as well.

The estimates of own and cross price elasticities are recorded in Table 10. The
element at row i and column j presents the percentage change in market share
of model i with a one-percent difference in price of model j. The row and col-
umn numbers share the same correspondence with vehicle models in Table 9. The
standard errors and significance level of the own and cross price elasticities are
available in Table 11 and 12.

The own-elasticities are all negative and tend to be larger than the cross-elasticities
in absolute value. In general, the absolute values of all the elasticities are relatively
small. It is worth pointing out that a 0.1% change in market share is a significant
shift in capital if a market is large. On the other hand, consumers’ price sensitiv-
ity may be low when it comes to automobile purchases. Specifically, in the dataset
consumers spend 300K RMB on average to purchase a vehicle. A 1% price increase
(3K RMB) will not easily swing their purchase decisions. It is resonant with the
consumer behavior study conducted by two brilliant researchers, Amos Tversky
and Daniel Kahneman, referred to in Dan Ariely’s book “Predictably Irrational”
(Ariely, 2008). A majority of customers would go to another store 15 minutes away
to save $7 of a $25 pen, but would not take the trip for a $455 suit. Nevertheless,
they are the same pen and suit, and the same $7 and 15-minute trip.

However, if consumers are open to other choices, the geographic sub-branding
alternatives of their originally chosen brands are highly likely to be their second-
best options. For instance, if Infiniti Imported Model increases its price by one
percent (column 10 of Table 10), its market share naturally decreases by 0.7002%
and the market share of Infiniti Domestically Produced Model increases by the
largest percentage, 0.0107%. When one of the two Land Rover sub-brands (column
11 and 12) increases its price, the other one proportionally gains the most. We see
the similar substitution pattern in almost all vehicle models. This strong substitu-
tion pattern demonstrates the positive correlation between geographic sub-brands.
Hence, geographic sub-brands not only provide more varieties to consumers and
harvest more market shares, but also pick up the swing consumers, which, in a
sense, lower the price elasticity of the whole brand.

Because of the positive and relatively big ρI , it is also easy to discover another
substitution pattern in the elasticity table. For example, when Audi Imported
Model increases its price (column 2 in Table 10), all the other imported models
enjoy larger percent of market share increase than their domestic counterparts.
We see this pattern for each imported model (even number) column of the elas-
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ticity table. Since ρD is small, the similar substitution pattern among domestically
produced model is not as clear as the imported models. However, constructing
and estimating a correlation matrix helps us structurally reveal and understand
the substitution pattern in the market.

Now we use regression of β, σ, and ξ to check and confirm the consistency of our
assumptions. We define brand identity as consumers’ perception of observed and
unobserved product attributes (Assumption 1), which is measured by individual-
specific taste coefficients βi with mean β and standard deviation σ. Intuitively,
product characteristics contribute to the mean taste coefficient β, and consumer
idiosyncratic factors like demographic information contribute to the variation σ.

The regression results in Table 13 show that almost all the product character-
istics significantly correlate with β, i.e., product attributes affect the average of
consumers’ taste. Regression of the standard deviation of taste coefficient, σ, on
consumer demographic information in Table 14 shows that consumers’ preference
varies less as their ages increase. Different locations and household incomes only
affect consumers’ taste to some extent. Typically, most of the consumer hetero-
geneity arguments are based on different incomes, especially about price sensitiv-
ity. We do see that more consumers purchase higher priced imported cars as in
Figure 3. However, on average, their annual household income is much less than
the vehicle price. Hence, we think that the consumer taste heterogeneity is more
related to their observed and perceived vehicle attributes than their incomes.1

Assumption 1 also says that factors beyond brand identity also affect consumer
purchases, which are captured in ξ, the econometric error term of our model.
Country of origin related to country reputation is one example of the factors be-
yond the control of one single brand as illustrated in our hierarchical framework
in Figure 1. Therefore, we regress the econometric error ξ on country of origin in
Table 15. If we rank the country reputations in Chinese automobile market by com-
paring their coefficients, we have Germany, Sweden, UK, US, Japan, Korea. This
coefficient ranking is consistent with reality. The “counter-intuitive” flipped order
of US and Japanese cars could be the effect of vehicle-model subsets of brands
and the result of history.2 Overall, the universally significant coefficient estimates
confirm our assumption and hierarchical framework.

1It is one reason that the BLP log(income-price) form is not used in our utility function and that
our price coefficient is homogeneous among consumers.

2According to a study led by Bernstein Research, anti-Japanese sentiment remains an imped-
iment to Japanese car brands in the world’s largest market. Half of Chinese consumers say they
wouldn’t buy a Japanese car. https://blogs.wsj.com/chinarealtime/2014/05/20/half-of-chinese-
consumers-say-they-wouldnt-buy-a-japanese-car/
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C O N C L U S I O N

Manufacture Location, as part of product geographic identity, is becoming a sig-
nificant differential factor among a variety of products and a sub-branding ele-
ment in various markets. The automobile market in China makes it possible to
isolate the manufacture location effect. Hedonic price analysis shows that manu-
facture location significantly influences prices and consumer willingness to pay.
The “imported" manufacture location effect regarding the price premium could
be as high as 9.6% with the control of product characteristics. We define the brand
and sub-brand identity as a representation of consumer observable and unobserv-
able (tangible and intangible) product attributes and structure brand identity and
geographic identity in a hierarchical framework. Accordingly, we build a random
coefficient discrete choice model to approximate the distribution of consumers’
taste. Using the estimates of the consumer taste coefficient, we reveal the under-
lying substitution patterns among brands and geographic sub-brands and under-
stand the consumer and market behavior in the automobile market in China. Our
method can also be helpful for the analysis of branding and sub-branding in other
empirical settings and for modeling markets showing strong correlations among
brands and products.

It might seem puzzling why geographic identity becomes a relevant branding
element when there are many other methods to brand and sub-brand readily avail-
able to companies. However, over the past century, the French appellation system
has been classifying and labeling French wine by geographic areas.1 The labels of
French wine usually deliver the information of vineyard and even chateau of the
wine’s origin, especially for high-quality French wines.2 Now, the United States,
along with many other countries, has adopted a designation or appellation sys-
tem (American Viticultural Area) similar to the appellation d’origine contrôlée
of France. We are not exaggerating to say that in the wine market, geographic
identity runs the show.

1The wine authorities in Champagne of France have filed lawsuits against other regions or
countries naming their sparkling white wine “Champagne".

2In addition, the location where the wine was bottled can also be found on the label, as another
indicator of quality.
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Companies often originate domestically, and therefore by the time they consider
international expansions, their COO part of geographic identity is well formed.
Zhang (2015) studied an interesting situation where a domestic brand pretends
to be a foreign one by picking a foreign sounding name. Our results have clearly
shown that COO is significantly correlated with consumer preference of different
brands. As little as brands have control of their countries of origin, we do not have
much knowledge of the economic magnitude of the interactions between COO
and brand identity. On the contrary, as a result of global distribution of produc-
tion resources, existing companies have more control on geographic identity at
a different level, county of manufacture (COM) or manufacture locations, where
geographic identity serves hierarchically below a traditional brand name as a sub-
branding element, as illustrated in our hierarchical framework.

Driven by cost saving among other incentives like broadening the customer base
and sales, companies extend their branches or plants to developing countries like
China, India, Mexico, etc. Hence, the brand identity of a firm or a product has
been interacting more and more heavily with geographic identity on the level of
manufacture location. The impact of manufacture location steers companies’ tac-
tics on global production and distribution, which include the choices of new plant
locations, new product differentiation, geographic branding, and pricing strategy.
As much as companies want to minimize their cost, it is not simple to measure
how the change of their geographic identity will impact their brand identity. It is
possible that while companies expand their market share, their product loses its
pricing privilege, even though it does not seem to be the case in our data. It is
also possible that General Motors will gain more profit if they brand and price
the Mexican made Chevrolet Cruze differently. Maybe General Motors should em-
brace Mexican made Chevrolet Cruze as a geographic sub-brand. The connection
between brand identity and geographic identity is essential to understand how
global allocation and distribution affect consumer preference and geographically
change market shares.
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6.1 standard errors of own and cross price elasticities
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Table 12: Significance of Own and Cross Price Elasticities.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 * . ** ** * * *** . . * ** ** ** ** ** ** ** ** .

2 ** * * ** * . ** . * . ** *** ** *** *** ** ** ** *

3 * . . * * . * . . . ** ** * ** * * * * .

4 ** . * * * . ** . * . *** *** ** *** *** ** ** ** *

5 * . * ** * . ** . * * ** *** ** *** ** ** ** ** *

6 ** . * ** * * ** . * . ** *** ** *** ** ** ** ** *

7 ** . * * * . * . . . ** *** *** ** ** ** ** * *

8 ** . * ** * . ** * * . *** *** ** ** *** ** ** ** *

9 * . ** ** ** . ** . * . *** *** ** *** ** ** ** ** *

10 ** . * ** ** . ** . . * ** *** ** ** *** ** ** * *

11 * . * ** * . ** . . * * *** ** *** ** ** ** ** .

12 ** . * ** * . ** . * . ** * ** *** *** ** ** ** *

13 * . * ** * . *** . . . ** *** * . ** ** * ** .

14 ** . * ** * . ** . * . ** *** * * ** ** ** ** *

15 ** . * ** * . ** . . . ** *** ** ** * ** * ** *

16 ** . * ** * . ** . * . ** *** ** ** ** * ** ** *

17 ** . . ** * . ** . . . ** ** * ** * * * * *

18 ** . * ** * . ** . * . ** *** ** *** *** ** * * *

19 . . * * . . ** . . . ** *** * *** ** * * * .

20 ** . * ** * . ** . * . ** *** ** *** ** ** ** ** *

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

b The row and column numbers correspond to the vehicle models
in Table 9.
c The element at row i and column j presents the significance level
of the percentage change in market share of model i with a 1 %
change in price of model j.
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6.2 tests of assumptions

Table 13: Regression of the mean of taste coefficient β on product attributes

Coefficients Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.307694 0.134988 2.279 0.022663 *

fc2 -0.316311 0.034053 -9.289 <2e-16 ***

horsepower2 0.088808 0.034882 2.546 0.010914 *

drivetype2Yes 0.351422 0.018303 19.200 < 2e-16 ***

gearbox2Manual -0.103948 0.032208 -3.227 0.001253 **

bodytype2Hatchback 0.007384 0.066386 0.111 0.911435

bodytype2Notchback 0.494258 0.063958 7.728 1.2e-14 ***

bodytype2Off Road/ SUV 0.172974 0.064771 2.671 0.007584 **

bodytype2People Carrier 1.583757 0.093054 17.020 < 2e-16 ***

enginetype2Petrol (With Turbo) 0.101129 0.112725 0.897 0.369673

enginetype2Petrol (Without Turbo) 0.267754 0.113667 2.356 0.018511 *

enginetype2Petrol & Electric -0.821377 0.604721 -1.358 0.174407

enginetype2Petrol & Electric (With turbo) 0.745610 0.218765 3.408 0.000656 ***

enginetype2Petrol & Electric Plug-In (PI) with Turbo 0.185589 0.317621 0.584 0.559024

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

b Residual standard error: 0.5935 on 10331 degrees of freedom
Multiple R-squared: 0.1292, Adjusted R-squared: 0.1281

F-statistic: 117.9 on 13 and 10331 DF, p-value: < 2.2e-16
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Table 14: Regression of the standard deviation of taste coefficient σ on consumer demo-
graphic information

Coefficients Estimate Std. Error t value Pr(> |t|)

(Intercept) 2.991695 0.228182 13.111 < 2e-16 ***

Age -0.006596 0.001873 -3.521 0.000432 ***

SexMale -0.057078 0.038493 -1.483 0.138156

TierTier 2
c

0.171354 0.039338 4.356 1.34e-05 ***

TierTier 3 0.450039 0.061233 7.350 2.14e-13 ***

TierTier 4 0.447555 0.083907 5.334 9.81e-08 ***

TierTier 5 0.323661 0.225885 1.433 0.151929

HouseholdIncomeRMB 10,000 - RMB 11,999 0.181698 0.216631 0.839 0.401633

HouseholdIncomeRMB 12,000 - RMB 19,999 0.025216 0.216610 0.116 0.907329

HouseholdIncomeRMB 20,000 - RMB 29,999 -0.293868 0.216216 -1.359 0.174131

HouseholdIncomeRMB 30,000 - RMB 49,999 -0.746461 0.218937 -3.409 0.000653 ***

HouseholdIncomeRMB 4,000 - RMB 5,999 0.408235 0.224508 1.818 0.069039 .

HouseholdIncomeRMB 50,000 - RMB 69,999 -0.888078 0.227313 -3.907 9.41e-05 ***

HouseholdIncomeRMB 6,000 - RMB 7,999 0.430833 0.223655 1.926 0.054091 .

HouseholdIncomeRMB 70,000 or more -0.993021 0.225681 -4.400 1.09e-05 ***

HouseholdIncomeRMB 8,000 - RMB 9,999 0.319569 0.220329 1.450 0.146973

HouseholdIncomeUnder RMB 3,999 0.393397 0.240806 1.634 0.102359

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

b Residual standard error: 1.638 on 10328 degrees of freedom
Multiple R-squared: 0.07586, Adjusted R-squared: 0.07442

F-statistic: 52.98 on 16 and 10328 DF, p-value: < 2.2e-16

c Tier systems are used to classify Chinese cities basically based on their GDP.

Table 15: Regression of the econometric structure error ξ on country of origin

Coefficients Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.606632 0.007829 205.219 < 2e-16 ***

cooJapan -1.719904 0.033006 -52.108 < 2e-16 ***

cooKorea -2.149643 0.047297 -45.450 < 2e-16 ***

cooSweden -0.081429 0.029783 -2.734 0.00627 **

cooUK -1.156919 0.044207 -26.171 < 2e-16 ***

cooUS -1.344947 0.064730 -20.778 < 2e-16 ***

a Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

b Residual standard error: 0.7241 on 10339 degrees of
freedom
Multiple R-squared: 0.3457, Adjusted R-squared: 0.3453

F-statistic: 1092 on 5 and 10339 DF, p-value: < 2.2e-16

c The base case is Germany.
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6.3 additional data information
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Table 16: Numbers of vehicles purchased for different brands.

2015 Domestically Produced Freq. Imported Freq.

1 Audi 4252 Audi 368

2 BAIC 156 BMW 924

3 BAIC BAW 7 Buick 19

4 Baoding Great Wall 578 Cadillac 153

5 BMW 1363 Chrysler USA 46

6 Brilliance 262 Citroen 4

7 Buick 2165 Dodge 183

8 BYD 961 Ford 81

9 Cadillac 341 Hyundai 82

10 Changan Auto 1180 Infiniti 143

11 Chery 561 Jaguar 263

12 Citroen 2785 Jeep 693

13 Dongfeng 507 Kia 150

14 Dongfeng Yulong 158 Land Rover 824

15 Everus (Linian) 32 Lexus 451

16 FAW Besturn 449 Lincoln 73

17 FAW Dafa 45 Maserati 39

18 FAW Haima 324 Mazda 39

19 FAW Jilin 16 Mercedes 550

20 FAW Tianjin 104 MINI (From 2002 MY) 212

21 Fiat 526 Mitsubishi 239

22 Ford 3082 Peugeot 13

23 GAC 176 Porsche 317

24 Geely 2906 Renault 331

25 GM Daewoo/ GM Chevrolet 2080 smart 55

26 Haval 916 Subaru 297

27 Honda 2747 Toyota 78

28 Huatai 21 Volvo 298

29 Hyundai 2205 VW 532

30 Infiniti 44

31 Jianghuai Auto 197

32 Jiangling (JMC) 120

33 Kia 1821

34 Land Rover 117

35 Lifan 93

36 Maxus 8

37 Mazda 1340

38 Mercedes 538

39 MG China 110

40 Mitsubishi 576

41 Nissan 2249

42 Peugeot 2554

43 Qoros 6

44 Roewe 307

45 SG Automotive 12

46 Skoda 1947

47 Suzuki 525

48 Toyota 3515

49 Volvo 558

50 VW 14763

51 Wuling 908

52 Youngman 50

53 Zotye 20

Total 63283 7457
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Table 17: Comparison between the imported and domestic models of the 17 international
brands.

2015 Imported Freq. Domestic Freq.

1 Audi A1 31 Audi FAW A3 694

2 Audi A3 (2012 MY) 49 Audi FAW A4L (2008 MY) 877

3 Audi A4 Allroad (2009 MY) 10 Audi FAW A6L (2012 MY) 1155

4 Audi A5 49 Audi FAW Q3 648

5 Audi A6 (2011 MY) 3 Audi FAW Q5 878

6 Audi A7 19

7 Audi A8 (2010 MY) 64

8 Audi Q3 6

9 Audi Q5 20

10 Audi Q7 (Pre 2015 MY) 112

11 Audi TT (2007 MY) 5

12 BMW 1 Series (2012 MY) 108 BMW Brilliance 3 Series (2012 MY) 209

13 BMW 2 Series 27 BMW Brilliance 3 Series L (2012 MY) 348

14 BMW 2 Series Active Tourer (2015 MY) 41 BMW Brilliance 5 Series L (2010 MY) 509

15 BMW 2 Series Gran Tourer (2015 MY) 4 BMW Brilliance X1 (2009 MY) 297

16 BMW 3 Series (2012 MY) 3

17 BMW 3 Series GT 76

18 BMW 4 Series 69

19 BMW 5 Series (2011 MY) 46

20 BMW 5 Series GT (2010 MY) 41

21 BMW 6 Series (2011 MY) 9

22 BMW 7 Series (2009 MY) 91

23 BMW X3 (2011 MY) 136

24 BMW X4 78

25 BMW X5 (2007 MY) 10

26 BMW X5 (2014 MY) 136

27 BMW X6 (2015 MY) 22

28 BMW X6 (Pre 2015 MY) 17

29 BMW Z4 (2009 MY) 10

30 Buick Enclave 19 Buick SGM Encore 267

31 Buick SGM Envision (2014 MY) 216

32 Buick SGM Excelle GT (2010 MY) 223

33 Buick SGM Excelle GT (2015 MY) 231

34 Buick SGM Excelle GT (Pre 2010 MY) 344

35 Buick SGM Excelle XT (2010 MY) 119

36 Buick SGM Firstland GL8 (2005 MY) 77

37 Buick SGM GL8 (2011 MY) 91

38 Buick SGM Lacrosse 278

39 Buick SGM Regal 306

40 Buick SGM Verano 13

41 Cadillac CTS (2008 MY) 13 Cadillac SGM ATS (2012 MY) 168

42 Cadillac SRX (2010 MY) 140 Cadillac SGM XTS 173

43 Citroen C4 Aircross 4 Citroen Changan DS5 105

44 Citroen Changan DS5 LS (2014 MY) 210

45 Citroen Changan DS6 (2014 MY) 148

46 Citroen Dongfeng C-Elysee (2013 MY) 702

47 Citroen Dongfeng C-Quatre 518

48 Citroen Dongfeng C3-XR (2015 MY) 401

49 Citroen Dongfeng C4L 472

50 Citroen Dongfeng C5 229
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Table 18

2015 Imported Freq. Domestic Freq.

51 Ford Edge (China, UAE & Saudi Arabia Only) 47 Ford Changan Ecosport 286

52 Ford Explorer 23 Ford Changan Edge (2015 MY) 80

53 Ford Mustang (2015 MY) 11 Ford Changan Escort (2015 MY) 453

54 Ford Changan Fiesta (2008 MY) 259

55 Ford Changan Focus (2012 MY) 802

56 Ford Changan Focus (Pre 2012 MY) 395

57 Ford Changan Kuga 418

58 Ford Changan Mondeo (2007 MY) 64

59 Ford Changan Mondeo (2013 MY) 325

60 Hyundai Genesis (2014 MY) 16 Hyundai Beijing Elantra Langdong 326

61 Hyundai Genesis Coupe (Pre 2014 MY) 3 Hyundai Beijing Elantra Yuedong 198

62 Hyundai Grand Santa Fe 38 Hyundai Beijing ix25 (2014 MY) 203

63 Hyundai Grandeur/ Azera (2010 MY) 2 Hyundai Beijing ix35 229

64 Hyundai Santa Fe (2012 MY) 5 Hyundai Beijing Mistra 261

65 Hyundai Veloster 18 Hyundai Beijing Santa Fe (2012 MY) 173

66 Hyundai Beijing Sonata (2011 MY) 150

67 Hyundai Beijing Sonata LF (2015 MY) 211

68 Hyundai Beijing Tucson (Pre 2015 MY) 85

69 Hyundai Beijing Verna (2011 MY) 344

70 Hyundai Hengtong Huatai Santa Fe 25

71 Infiniti Q50 58 Infiniti Dongfeng Q50L (2014 MY) 26

72 Infiniti Q70 (Was M (2011 MY)) 30 Infiniti Dongfeng QX50L (2015 MY) 18

73 Infiniti QX60 (Was JX) 34

74 Infiniti QX70 (Was FX) 21

75 Kia Carens (2013 MY) 48 Kia Dongfeng Yueda Forte 155

76 Kia Carnival/ Sedona (2006 MY) 5 Kia Dongfeng Yueda K2 320

77 Kia K7 (S Korea & China Only) 5 Kia Dongfeng Yueda K3 449

78 Kia Mohave 2 Kia Dongfeng Yueda K4 (2014 MY) 249

79 Kia Sorento (2014 MY) 90 Kia Dongfeng Yueda K5 156

80 Kia Dongfeng Yueda KX3 (2015 MY) 141

81 Kia Dongfeng Yueda Soul 52

82 Kia Dongfeng Yueda Sportage 96

83 Kia Dongfeng Yueda Sportage R 203

84 Land Rover Discovery 4 (2010 MY) 165 Land Rover Chery Range Rover Evoque 117

85 Land Rover Discovery Sport (2015 MY) 127

86 Land Rover Freelander 2 (2007 MY) 88

87 Range Rover (2013 MY) 134

88 Range Rover Evoque 160

89 Range Rover Sport (2014 MY) 150

90 Mazda 5 (2011 MY) 39 Mazda Changan 3 (2011 MY) 163

91 Mazda Changan 3 (2014 MY) 327

92 Mazda Changan CX-5 271

93 Mazda FAW 6 (2009 MY) 112

94 Mazda FAW 6 (2013 MY) 213

95 Mazda FAW 6 (Pre 2009 MY) 141

96 Mazda FAW 8 4

97 Mazda FAW CX-7 (2010 MY) 73

98 Mercedes A Class W176 (2013 MY) 54 Mercedes Beijing C Class V205 (2014 MY) 146

99 Mercedes B Class W246 (2011 MY) 48 Mercedes Beijing C Class W205 (2014 MY) 3

100 Mercedes C Class W/ S/ C204 (2007 MY) 12 Mercedes Beijing E Class V212 (2009 MY) 168

101 Mercedes CLA C117 (2013 MY) 50 Mercedes Beijing GLA X156 39

102 Mercedes CLS C218/ X218 (2011 MY) 26 Mercedes Beijing GLK X204 151

103 Mercedes E Coupe/ Cabrio C/ A207 (2009 MY) 26 Mercedes Fujian Viano 31

104 Mercedes G Wagen 3

105 Mercedes GL X166 (2012 MY) 24

106 Mercedes GLA X156 40

107 Mercedes M Class W166 (2012 MY) 105

108 Mercedes R Class W251 68

109 Mercedes S Class W/ V222/ C217 (2013 MY) 84

110 Mercedes SLK R172 (2011 MY) 10
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Table 19

2015 Imported Freq. Domestic Freq.

111 Mitsubishi Outlander (2013 MY) 173 Mitsubishi Changfeng Liebao 24

112 Mitsubishi Pajero/ Shogun/ Montero (2007 MY) 66 Mitsubishi GAC ASX 185

113 Mitsubishi GAC Pajero 47

114 Mitsubishi GAC Pajero Sport (2013 MY) 140

115 Mitsubishi Southeast Lancer EX 106

116 Mitsubishi Southeast Lingyue/ V3 74

117 Peugeot 4008 13 Peugeot Dongfeng 2008 443

118 Peugeot Dongfeng 3008 468

119 Peugeot Dongfeng 301 461

120 Peugeot Dongfeng 308 (2014 MY) 60

121 Peugeot Dongfeng 308 (Pre 2014 MY) 472

122 Peugeot Dongfeng 408 (2014 MY) 483

123 Peugeot Dongfeng 508 167

124 Toyota Alphard (Pre 2015 MY) 29 Toyota FAW Corolla (2014 MY) 476

125 Toyota GT86/ 86 26 Toyota FAW Corolla EX 345

126 Toyota Previa (2006 MY) 23 Toyota FAW Crown (2010 MY) 35

127 Toyota FAW Crown (2015 MY) 58

128 Toyota FAW Land Cruiser 200 28

129 Toyota FAW Land Cruiser Prado (2010 MY) 41

130 Toyota FAW Prius 14

131 Toyota FAW RAV4 (2013 MY) 451

132 Toyota FAW Reiz 188

133 Toyota FAW Vios (2013 MY) 377

134 Toyota GAIG Camry (2012 MY) 464

135 Toyota GAIG Camry (Pre 2012 MY) 122

136 Toyota GAIG EZ 64

137 Toyota GAIG Highlander (2015 MY) 129

138 Toyota GAIG Highlander (Pre 2015 MY) 122

139 Toyota GAIG Levin 296

140 Toyota GAIG Yaris L 305

141 Volvo S60 (2010 MY) 12 Volvo Changan S80L 30

142 Volvo V40 (2012 MY) 89 Volvo S60 (2010 MY) 254

143 Volvo V40 Cross Country 14 Volvo XC60 271

144 Volvo V60 (2011 MY) 85 Volvo XC90 (Pre 2015 MY) 3

145 Volvo XC60 98

146 VW Beetle (2012 MY) 99 VW FAW Bora (2008 MY) 1440

147 VW Eos 1 VW FAW CC 294

148 VW Golf (6) (2009 MY) 10 VW FAW Golf (7) 1014

149 VW Golf (7) (2013 MY) 35 VW FAW Jetta (2013 MY) 1609

150 VW Passat (2011 MY)/ Passat CC (2012 MY) 44 VW FAW Magotan (B7) (2011 MY) 1230

151 VW Passat Alltrack (2012 MY) 8 VW FAW Sagitar (2012 MY) 1676

152 VW Phaeton (2010 MY) 22 VW SVW Gran Lavida 635

153 VW Scirocco (2008 MY) 34 VW SVW Lamando (2015 MY) 310

154 VW Sharan (2010 MY) 39 VW SVW Lavida 1652

155 VW T5 Multivan (Caravelle in Britain) (2010 MY) 24 VW SVW Passat (2011 MY) 1144

156 VW Tiguan 82 VW SVW Polo (2012 MY) 942

157 VW Touareg (2010 MY) 120 VW SVW Santana (2012 MY) 1224

158 VW up!/ e-up! 14 VW SVW Tiguan 1335

159 VW SVW Touran (5) GP2 (2010 MY) 258
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I N T R O D U C T I O N

1 Beginning with Mirrlees, the optimal taxation literature has generally focused on
economies where individuals are differentiated only by their productivity. Here
we examine models where individuals are differentiated by up to five characteris-
tics. We examine cases where individuals differ in productivity, elasticity of labor
supply, basic needs, levels of distaste for work, and elasticity of demand for con-
sumption. We find that the extra dimensionality produces substantially different
results. In particular, we find cases of negative marginal tax rates for some high-
productivity taxpayers. In our examples, income becomes a fuzzy signal of who
should receive a subsidy under the planner’s objective, and the planner chooses
less redistribution than in more homogeneous societies. Multidimensional opti-
mal tax problems are difficult nonlinear optimization problems because the linear
independence constraint qualification does not hold at all feasible points and of-
ten fails to hold at the solution. To solve these nonlinear programs robustly, we
initially used SNOPT in elastic mode, which has been shown to be effective for
degenerate nonlinear programs. We found SNOPT was not able to solve larger
examples, and were therefore motivated to develop algorithm NCL of Part III.

The Mirrlees (1971) optimal tax analysis and much of the literature that fol-
lowed assumed that people differ only in their productivity while sharing com-
mon preferences over consumption and leisure. The world is not so simple. It is
not realistic to think people are the same as long as they have the same productiv-
ity. A more realistic model would account for multidimensional heterogeneity. For
example, some high ability people have low income because they prefer leisure,
or the life of a scholar and teacher. In contrast, some low ability people have
higher-than-expected income because circumstances, such as having to care for
many children, motivate them to work hard. Despite the unrealistic aspects of this
one-dimensional analysis, its conclusions have been applied to real tax problems.
For example, Saez (2001) says “optimal income tax schedules have few general
properties: we know that optimal tax rates must lie between 0 and 1 and that they
equal zero at the top and bottom.”

1This essay is co-authored with Kenneth Judd, Michael Saunders, and Che-Lin Su.

47
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The presence of multidimensional heterogeneity is critically important for opti-
mal taxation. In one-dimensional models, there is often a precise connection be-
tween what the government can observe, income, and how much the government
wants to help (or tax) the person. Incentive constraints alter this connection, but
the solution often involves full revelation of each individual’s type. However, this
clean connection between income and “merit” is less precise in the presence of
multidimensional heterogeneity. If an individual has low income because he has
low productivity, then we might want to help him whereas we would not want to
help a high-productivity person choosing the same income because of his prefer-
ence for leisure.

The basic question we ask here is “Does the presence of multidimensional het-
erogeneity reduce the optimal level of redistribution?” The intuition is clear: a
one-dimensional signal like income is a noisy signal of merit, and as the signal to
noise ratio falls, we will rely less on it to implement any policy. Our initial results
support this conjecture.

There have been some attempts to look at multidimensional tax problems with
a continuum of types. For example Mirrlees considers a general formulation, and
Wilson (1993) and Wilson (1995) look at similar problems in the context of non-
linear pricing. However, both assume a first-order approach. This approach is
justified in one-dimensional cases where the single-crossing property holds and
implies that at the solution each type is tempted only by the bundles offered
to one of the two neighboring types. This approach leads to a system of partial
differential equations. Tarkianen and Tuomala (1999) solves one such example nu-
merically, as does Wilson in the nonlinear pricing context. Unfortunately, no one
has found useful assumptions that justify the first-order approach in the multidi-
mensional case. The first-order approach assumes that the only alternatives that
are tempting to a taxpayer are the choices made by others who are very similar
in their characteristics. The single-crossing property in the one-dimensional case
creates a kind of monotonicity that can be exploited to rule out the need to make
global comparisons. However, there is no comparable notion of monotonicity in
higher dimensions because there is no simple complete ordering of points in mul-
tidimensional Euclidean spaces.

The absence of an organizing principle like single-crossing does not alter the
general theory; it only makes it harder. The general problem is still a constrained
optimization problem: maximize social objective subject to incentive and resource
constraints. However, the number of incentive constraints is enormous, and, unlike
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the single-crossing property in the one-dimensional case, there are no plausible
assumptions that allow us to reduce the size of this problem.

There have been several studies that extended the Mirrlees analysis in multidi-
mensional directions. Our initial perusal of that literature indicates that there has
been only limited success. Some papers look at cases with a few (such as four)
types of people, some consider using other instruments, such as commodity taxa-
tion, to sort out types, and some prove theorems of the form “if the solution has
property A, then it also has property B,” leaving us with little idea about how
plausible Property A is.

Because multidimensional models are clearly more realistic than one-dimensional
models, we numerically examine optimal taxation with multidimensional hetero-
geneity. First, we examine a two-dimensional case with both heterogeneous abil-
ity and heterogeneous elasticity of labor supply. This is a particularly useful ex-
ample since it demonstrates how easy it is to get results different from the one-
dimensional case and how any search for simplifying principles like single cross-
ing is probably futile. In particular, we find that the optimal tax rate can be nega-
tive for the highest income earners! This contradicts one of the most basic results
in the optimal tax literature, and the contradiction is due to the failure of binding
incentive constraints to fall into a simple pattern. Second, we look at another two-
dimensional model where people differ in ability and basic needs. In this model,
income is a bad signal of a person’s marginal utility of consumption (which, at the
margin, is what the planner cares about) because high income could indicate high
wages or an individual with moderate ability but large expenditures, such as med-
ical expenses, that consume resources more than they contribute to utility. Third,
we compute the solution to the optimal tax policy for a case of three-dimensional
heterogeneity combining heterogeneous ability, elasticity of labor supply, and ba-
sic needs.

Our computations not only demonstrate the feasibility of our approach, but
they also point towards interesting economic conclusions. When we compare the
results of the 1D, 2D, and 3D models, we find that the optimal level of redistri-
bution is significantly less as we add heterogeneity. One response to the reduced
ability to redistribute income is to add instruments to tax policy (such as taxing
those commodities demanded by those we want to tax) or to gather more facts
about a taxpayer (such as his wage). Of course, the marginal value to a planner of
making the tax system more complex will have to be balanced against the imple-
mentation costs. While it is reasonable to conjecture that we do not want to make
the tax code as complex as the world, the exact balance between complexity costs
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and benefits is not immediately clear. In any case, the approach we take can be
used to address this issue.

In all of these cases, we take a numerical approach. The lack of convexity in the
incentive constraints implies the possible presence of multiple local optima; we
use standard multi-start and other diagnostic techniques to avoid spurious local
maxima. A more serious problem is the frequent result that the solution does not
satisfy LICQ (linear independence constraint qualification). This makes it difficult
for most optimization algorithms to find solutions. We use methods that can deal
with moderate failure of LICQ, but many of our problems lie at the frontier of the
state of the art in numerical optimization. Hence our development of algorithm
NCL.

In this part of the thesis, we examine a small number of examples that highlight
the ideas and present some interesting and suggestive initial results. We take the
discrete-type approach because it makes no extra assumptions about the solution.
The continuous-type approach used in Wilson (1995) and Tarkianen and Tuomala
(1999) allows them to use powerful PDE methods but only after they have made
strong assumptions about the solution. Since we want to avoid unjustified assump-
tions about the solution, we stay with models with finite types. This turns out to
be justified because we find results that violate standard assumptions. In particu-
lar, we find cases where the marginal tax rate on the top income is negative. This
appears to violate previous results. In particular, Corollary 6.1 in Guesnerie and
Seade (1982) finds that marginal tax rates are always nonnegative in their multidi-
mensional model, but they use “Assumption B”, which is essentially a statement
that the single-crossing property holds for some ordering of the distinct utility
functions. Guesnerie and Seade (1982) admit that this assumption will not hold
when there are many types with a multidimensional structure. Indeed, we find
rather small examples that violate Assumption B and produce negative marginal
tax rates.

The examples show that heterogeneity has substantial impact on optimal tax
policy. We also show that computational approaches to optimal tax problems are
possible when one uses high-quality optimization software. Further work will
examine the robustness of these examples, but the efficiency of our algorithms will
allow us to look at a wide variety of specifications for tastes and productivities.
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TA X AT I O N W I T H O N E - D I M E N S I O N A L TA X PAY E R T Y P E S

We begin with examples of the classical Mirrlees problem. Later we compare them
to the optimal tax policies in more hetereogeneous models.

Assume we have N taxpayers (N > 1). There are two types of goods: consump-
tion and labor services. Let ci and li denote taxpayer i’s consumption and labor
supply, with productivity represented by wage rate wi. We index the taxpayers so
that taxpayer i is less productive than taxpayer i + 1:

0 < w1 < · · · < wN . (8.1)

A type i taxpayer has pre-tax income equal to

yi := wili, i = 1, . . . , N. (8.2)

Individuals have common utility function over consumption and labor supply: u :
R+ × R+ → R. We assume that u is a continuously differentiable, strictly increas-
ing, and strictly concave function with uc(0, l) = ∂u

∂c = ∞, and limc→∞ uc(c, l) = 0.
We next define the implied utility function Ui : R+ × R+ → R over income and
consumption:

Ui(ci, yi) := u(ci, yi/wi), i = 1, . . . , N. (8.3)

For many preferences (such as quasilinear utility) over income and consumption,
higher ability individuals have flatter indifference curves, and indifference curves
in income-consumption space of different individuals intersect only once; this de-
fines the single-crossing property.

An allocation is a vector a := (y, c), where y := (y1, . . . , yN) is an income vector
and c := (c1, . . . , cN) is a consumption vector. The social welfare function W : RN

+ ×
RN
+ → R is of the weighted utilitarian form:

W(a) := ∑
i

λiUi(ci, yi). (8.4)

We typically assume that the weights λi are positive and nonincreasing in ability.
The case where λi equals the population frequency of type i is the utilitarian
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social welfare function. We take the utilitarian approach. We assume Output is
proportional to total labor supply, which is the only input. Therefore, technology
imposes the constraint

∑
i

λici ≤∑
i

λiyi. (8.5)

We also assume ci ≥ 0 and yi ≥ 0.
We assume that the government knows the distribution of wages and the com-

mon utility function, that it can measure the pretax income of each taxpayer, but
cannot observe a taxpayer’s labor supply nor his wage rate. This corresponds to
assuming that each taxpayer’s tax payment is a function solely of his labor in-
come. We also assume that all taxpayers face the same tax rules. Therefore, each
taxpayer can choose any (yi, ci) bundle suggested by the government. The gov-
ernment must choose a schedule such that type i taxpayers will choose the (yi, ci)

bundle; therefore, the allocation must satisfy the incentive-compatibility or self-
selection constraint:

Ui(ci, yi) ≥ Ui(cp, yp) for all i, p, (8.6)

which states that each person weakly prefers the consumption and income bundle
meant for his type to those for other types of people. If the tax policy satisfies (8.6),
then it is common knowledge that an individual with wage wi will choose (yi, ci)

from the set {(y1, c1), . . . , (yN , cN)}.
The optimal nonlinear income tax problem is equivalent to the following non-

linear optimization problem, where the government chooses a set of commodity
bundles:

max
ci , yi

∑i λiUi(ci, yi)

s.t. Ui(ci, yi)−Ui(cp, yp) ≥ 0 for all i, p (8.7)

∑i λiyi −∑i λici ≥ 0

ci, yi ≥ 0 for all i.
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8.1 mirrlees cases

We first consider examples of the form

u (c, l) = log c− l1/η0+1

1/η0 + 1
(8.8)

with N = 5, wi ∈ {1, 2, 3, 4, 5}, λi = 1, where different values of η0 correspond to
different examples. The zero tax commodity bundle for type i is the solution to
maxli ui(wili, li), which we denote (c∗i , l∗i , y∗i ). The zero tax solution here is l∗i = 1
and c∗i = wi. We compute the solutions for η0 = 1, 1/2, 1/3, 1/5, 1/8, and report

yi,
yi − ci

yi
(average tax rate), 1− ul

wuc
(marginal tax rate), li/l∗i , ci/c∗i

for i = 1, . . . , N in the tables below.
The pattern of the binding incentive-compatibility constraints is the simple

monotonic chain to the left property as expected in nonlinear optimal tax prob-
lems in one dimension. Note that the results are as expected. Marginal and aver-
age tax rates on the types that pay taxes are moderately high, and increase as the
elasticity of labor supply falls. The subsidy rates to the poor fall as we move from
the high-elasticity world to the low-elasticity world because the high marginal
rates the poor face depress their labor supply much more in the high-elasticity
world; remember, all people in each of these economies have the same elasticity.
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η = 1

i yi
yi−ci

yi
MTRi li/l∗i ci/c∗i

1 0.40 -2.87 0.36 0.40 1.56

2 1.31 -0.45 0.38 0.65 0.95

3 2.56 0.03 0.29 0.85 0.83

4 4.01 0.16 0.16 1.00 0.84

5 5.54 0.19 0.00 1.10 0.90

η = 1/2

i yi
yi−ci

yi
MTRi li/l∗i ci/c∗i

1 0.60 -2.09 0.31 0.60 1.87

2 1.54 -0.39 0.35 0.77 1.08

3 2.69 0.02 0.29 0.89 0.87

4 3.99 0.17 0.17 0.99 0.82

5 5.41 0.21 0.00 1.08 0.85

η = 1/3

i yi
yi−ci

yi
MTRi li/l∗i ci/c∗i

1 0.70 -1.91 0.28 0.70 2.06

2 1.66 -0.38 0.33 0.83 1.15

3 2.77 0.02 0.29 0.92 0.90

4 3.99 0.17 0.18 0.99 0.82

5 5.33 0.23 0.00 1.06 0.82

η = 1/5

i yi
yi−ci

yi
MTRi li/l∗i ci/c∗i

1 0.80 -1.84 0.22 0.80 2.29

2 1.78 -0.39 0.29 0.89 1.24

3 2.85 0.02 0.27 0.95 0.93

4 4.01 0.19 0.18 1.00 0.81

5 5.25 0.26 0.00 1.05 0.77

η = 1/8

i yi
yi−ci

yi
MTRi li/l∗i ci/c∗i

1 0.87 -1.84 0.17 0.87 2.48

2 1.86 -0.41 0.24 0.93 1.31

3 2.91 0.02 0.23 0.97 0.95

4 4.02 0.20 0.16 1.00 0.80

5 5.19 0.28 0.00 1.03 0.73



9
M U LT I D I M E N S I O N A L H E T E R O G E N E I T Y

We next consider models with multidimensional heterogeneity. One kind of mul-
tidimensional heterogeneity is where people differ in both productivity and elas-
ticity of labor supply, η. We examine that and other types of heterogeneity. More
generally, we consider utility functions of the form

u(c, l) =
(c− α)1−1/γ

1− 1/γ
− ψ

l1/η+1

1/η + 1
, (9.1)

where α, γ, ψ, and η are possible taxpayer heterogeneities, in addition to wage w.
Each term has a natural economic interpretation. The parameter α represents basic
needs—a minimal level of consumption. A high α implies a higher marginal utility
of consumption at any c. The parameter γ represents the elasticity of demand for
consumption, whereas ψ represents the level of distaste for work. The parameter
η represents labor supply responsiveness to the wage. This general specification
implies a 5D specification of taxpayer types, and the corresponding 5D nonlinear
optimization problem is

max
ci,j,k,g,h, yi,j,k,g,h

∑
i,j,k,g,h

λi,j,k,g,hUi,j,k,g,h(ci,j,k,g,h, yi,j,k,g,h)

s.t. Ui,j,k,g,h(ci,j,k,g,h, yi,j,k,g,h)−Ui,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) ≥ 0 ∀(i, j, k, g, h), (p, q, r, s, t)

∑
i,j,k,g,h

λi,j,k,g,hyi,j,k,g,h − ∑
i,j,k,g,h

λi,j,k,g,hci,j,k,g,h ≥ 0 (9.2)

ci,j,k,g,h, yi,j,k,g,h ≥ 0 ∀(i, j, k, g, h),

where

i, p = 1 : na (na = number of different wage types)

j, q = 1 : nb (nb = number of different elasticity of labor supply)

k, r = 1 : nc (nc = number of different basic need types)

g, s = 1 : nd (nd = number of different level of distaste for work)

h, t = 1 : ne (ne = number of different elasticity of demand for consumption).
(9.3)

55



multidimensional heterogeneity 56

The following is a fully indexed version of (9.1):

Ui,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) =
(cp,q,r,s,t − αk)

1−1/γh

1− 1/γh
− ψg

(
yp,q,r,s,t

wi
)1/ηj+1

1/ηj + 1
. (9.4)

Hence, if we assume that taxpayers share the same elasticity of demand for con-
sumption, i.e., ne = 1, γh = 1, ∀h, we have a 4D specification of taxpayers’ utility
function:

Ui,j,k,g(cp,q,r,s, yp,q,r,s) = log(cp,q,r,s − αk)− ψg
(

yp,q,r,s
wi

)1/ηj+1

1/ηj + 1
. (9.5)

If we further assume that taxpayers share the same level of distaste for work, i.e.,
nd = 1, ψg = 1, ∀g, we have a 3D specification of taxpayers’ utility function:

Ui,j,k(cp,q,r, yp,q,r) = log(cp,q,r − αk)−
(

yp,q,r
wi

)1/ηj+1

1/ηj + 1
. (9.6)

Furthermore, if we add the assumption that taxpayers share the same basic need,
i.e., nc = 1, αk = 0, ∀k, we have a 2D specification of taxpayers’ utility function:

Ui,j(cp,q, yp,q) = log cp,q −
(

yp,q
wi

)1/ηj+1

1/ηj + 1
. (9.7)

Finally, if we add the assumption that taxpayers share the same elasticity of labor
supply, i.e., nb = 1, ηj = η0, ∀j, we reach the Mirrlees’ case:

Ui(cp, yp) = log cp −
(

yp
wi
)1/η0+1

1/η0 + 1
. (9.8)
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C O M P U TAT I O N A L D I F F I C U LT I E S A N D S O L U T I O N S F O R
N L P S W I T H I N C E N T I V E C O N S T R A I N T S

The 5D general taxation nonlinear program (9.2) is a difficult problem to solve
numerically. The objective is concave, but there are many constraints. The number
of variables is na× nb× nc× nd× ne× 2 := 2|T |, and the number of nonlinear
constraints is |T | ∗ (|T | − 1), the square of the number of variables. This is a
feature of all incentive problems; only in some with simplifying principles like
single-crossing are we able to significantly reduce the number of constraints.

10.1 initialize with a feasible solution

Given the complexity of the taxation optimization problems, it often helps tremen-
dously to provide any optimization solver that you may choose a feasible starting
point. In fact, with the solvers and algorithms that we have tried, from 3D and up,
the convergence depends on the feasible starting point. For ease of understand-
ing and notation, we use a 1D optimization problem to illustrate the method of
finding a feasible point.

To search for a feasible point of any optimization problem, we could solve ex-
actly the same problem with a constant objective function:

max
ci , yi

0

s.t. Ui(ci, yi)−Ui(cp, yp) ≥ 0 for all i, p (10.1)

∑i λiyi −∑i λici ≥ 0

ci, yi ≥ 0 for all i,

which has a zero tax special case for each wage type i:

max
ci , yi

Ui(ci, yi)

s.t. yi − ci = 0 for all i (10.2)

ci, yi ≥ 0 for all i.
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If we define (y0, c0) as the solution of the problem (10.2), then

(y0, c0) =
[

argmaxyi ,ci
Ui(ci, yi) s.t. yi = ci

]
∀i. (10.3)

Since different (yi, ci) do not interact with each other, maximizing each individual
utility is equivalent to maximizing the sum of the individual utilities. Hence, we
can find a feasible point by solving one simpler optimization problem:

(y0, c0) = argmaxyi ,ci ∑
i

Ui(ci, yi) s.t.
[
yi = ci, ∀i

]
. (10.4)

10.2 global extensions of common utility functions

Many utility functions are defined over a bounded domain. For example, neither
log c nor c1−1/γ/(1 − 1/γ) is defined for c < 0. This can create significant nu-
merical computation difficulty in economics. A common opinion is that there is
no difficulty with these functions being undefined for negative consumption. In
fact, economists often exploit the Inada condition (that is, u′[c] = ∞) to prove in-
terior solutions to optimization problems. However, there are computational and
economic reasons to examine utility functions defined over negative consumption.

First, numerical methods will often want to evaluate utility functions at negative
values. Even if one imposes a positivity constraint on consumption, some solvers
will take that to mean that the solution must satisfy that constraint, not that the
objective function is undefined for negative values. Second, economists need to
remember that “consumption” generally refers to consumption of market goods.
Aspects of real life, such as home production, unreported transactions, and charity
imply that people may have zero consumption of market goods but still have well-
defined utility in reality. Barter would imply negative consumption of market
goods: suppose you bring eggs to a grocery store, sell them to the grocer, and use
the proceeds to buy soap. In terms of market goods, you would have negative
consumption of eggs and positive consumption of soap. While such transactions
may be rare today, they were quite common less than a century ago.

A more common problem is that utility may be undefined even for positive
levels of consumption. Examples include utility functions like (c− α)1−1/γ/(1−
1/γ) or log(c− α) for “minimum” consumption level represented by α. There is
no difficulty if c > α, but utility will be undefined if c < α. We put the term
“minimum” in quotations because the α parameter is used to avoid linear Engel
curves, not because of some empirical observation about behavior for c < α. In
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general, unless there is no possibility that the solution involves c ≤ α, the utility
function should be defined over all nonnegative consumption levels. Also, in a
multi-good context, the utility function should allow negative consumption of
individual items.

The need for global extensions of common utility functions may not be ex-
tremely clear until we try solving 4D and 5D optimal taxation problems. Because
of the high dimensionality, even with additional bounds for the consumption c’s,
the cross comparison in the incentive constraints could entail evaluating utility
functions at points where they are not defined.

Hence, we define alternative utility functions that agree with a standard utility
function over most of its domain but are extended to be defined globally. We also
want the extended utility functions to satisfy the usual requirements of utility
functions, such as monotonicity and concavity.

Here we use a quadratic function to extend the utility function to negative con-
sumption. One can also understand it as taking a Taylor expansion of the original
utility function at a point close to 0. For the 3D case, we obtain a piece-wise utility
function:

Ui,j,k(cp,q,r, yp,q,r) =

log(cp,q,r − αk)−
(

yp,q,r
wi

)
1/ηj+1

1/ηj+1 , if cp,q,r > αk

− 1
2ε2 (cp,q,r − αk)

2 + 2
ε (cp,q,r − αk) + log ε− 3

2 −
(

yp,q,r
wi

)
1/ηj+1

1/ηj+1 , o.w.
(10.5)

For a 4D model, the extended utility function is quite similar, with an additional
parameter ψg. For a 5D model, with a little bit more algebra, we obtain

Ui,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) =



(cp,q,r,s,t−αk)
1−1/γh

1−1/γh
− ψg

(
yp,q,r,s,t

wi
)

1/ηj+1

1/ηj+1 , if cp,q,r,s,t > αk

− 1
2γh

ε−1−1/γh(cp,q,r,s,t − αk)
2 + (1 + 1

γh
)ε−1/γh(cp,q,r,s,t − αk)

+( 1
1−1/γh

− 1− 1
2γh

)ε1−1/γh − ψg
(

yp,q,r,s,t
wi

)
1/ηj+1

1/ηj+1 , o.w.

(10.6)

10.3 linear independence constraint qualification (licq)

There is no reason to believe that the constraints are concave. This creates two
problems. First, we cannot ignore the possibility of multiple local optima. We deal
with this in standard ways, so will not discuss further details.
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The second problem is more challenging: the failure of useful constraint quali-
fications. Recall the structure of constrained optimization problems. Consider the
inequality constrained problem

min f (x) s.t. c(x) ≥ 0,

where f : Rn → R and c : Rn → Rm are assumed smooth. There are many
numerical algorithms for solving such problems, but they generally assume that
the solution x∗ satisfies some constraint qualification. Define the set of binding
constraints

A∗ = {i = 1, 2, . . . , m | ci(x∗) = 0}.

The linear independence constraint qualification (LICQ) states that the gradients
∇ci(x∗) of the binding constraints i ∈ A are linearly independent. The Mangasarian-
Fromovitz constraint qualification (MFCQ) assumes that there is a direction d such
that ∇ci(x∗)Td > 0 for all i ∈ A∗.

In 1D models with single-crossing problems, the LICQ will generally hold. How-
ever, multidimensional problems can easily run afoul of the LICQ for one simple
reason: if the number of binding constraints exceeds the number of variables, as
with multidimensional pooling, it is impossible for LICQ to hold because multidi-
mensional problems are not likely to satisfy a simple pattern of binding incentive
constraints. In fact, we found many cases where the LICQ could not hold.

LICQ is a sufficient condition for local convergence of many optimization algo-
rithms, but not a necessary condition. However, the failure of LICQ will at least
slow down convergence. In many cases the number of major iterations needed
was unusually large, sometimes in the order of thousands, even for a 2D problem
with 25 total types. The failure of the LICQ is probably the sole source of difficul-
ties in solving these nonlinear programs. Other issues, such as scaling, e.g., the
range of input parameters w or η, can also cause difficulties. However, we found
LICQ will often fail at solutions of such problems.

Nonlinear programs with constraint qualification failures have been the object
of much research in numerical optimization in the past decade. More generally,
much progress has been made on a new class of problems called mathematical
programs with equilibrium constraints (MPECs); see Luo, Pang, and Ralph (1996)
and Outrata, Kocvara, and Zowe (1998). One well-known property about MPECs
is that the standard CQs fail at every feasible point. Perhaps MPEC methods will
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be able to solve larger and more complex problems. Instead, we present a new
approach in the following section.

10.4 ncl : a robust solution procedure

The optimization problems to be solved are of the form

NCO minimize
x∈<n

φ(x)

subject to c(x) ≥ 0, Ax ≥ b, ` ≤ x ≤ u,

where φ(x) is a smooth nonlinear function, c(x) ∈ <m is a vector of smooth nonlin-
ear functions, and Ax ≥ b is a placeholder for a set of linear inequality or equality
constraints, with x lying between lower and upper bounds ` and u. In our case,
m greatly exceeds n and many of the contraints in c(x) ≥ 0 may be essentially
active at a solution. General-purpose solvers have difficulty converging because
the nonlinear constraints do not satisfy the constraint qualification LICQ.

In Part III, we have derived the NCL (nonlinearly constrained Lagrangian) al-
gorithm for solving problem NCO by solving a sequence of subproblems of the
form

NCk minimize
x∈<n, r∈<m

φ(x) + yT
kr + 1

2 ρk‖r‖2

subject to c(x) + r ≥ 0, Ax ≥ b, ` ≤ x ≤ u,

in which r serves to make the nonlinear constraints independent, yk estimates
the Lagrange multipliers for c(x) ≥ 0, and ρk is a positive penalty parameter.
Problem NCk is solved approximately to give (x∗k , r∗k ). If ‖r∗k‖ is sufficiently small
(‖r∗k‖ ≤ η̃k), the multiplier estimate is updated (yk+1 = yk + ρkr∗k ). Otherwise, the
penalty parameter is increased (ρk+1 > ρk).

Key properties of NCL are that the subproblems can be solved inexactly (with
tightening optimality tolerance ωk ↘ 0), “sufficiently small” becomes more de-
manding (with tightening feasibility tolerance ηk ↘ 0), and ρk increases only
finitely often, as illustrated by the table below for a 4D example with na = 11,
nb = 3, nc = 3, nd = 2, giving m = 39007, n = 396. Problem NCO and algo-
rithm NCL were formulated in the AMPL modeling language (Fourer, Gay, and
Kernighan, 2002). The solvers SNOPT (Gill, Murray, and Saunders, 2005a) and
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IPOPT (Wächter and Biegler, 2006) were unable to solve NCO itself, but algorithm
NCL with IPOPT as solver gave successful results as follows:

k ρk η̃k ‖r∗k‖∞ φ(x∗k ) Itns Time

1 1.0e+02 1.0e-02 3.1e-03 -2.1478532e+01 125 42.8

2 1.0e+02 1.0e-03 1.3e-03 -2.1277587e+01 18 6.5

3 1.0e+03 1.0e-03 6.6e-04 -2.1177152e+01 27 9.1

4 1.0e+03 1.0e-04 5.5e-04 -2.1110210e+01 31 10.8

5 1.0e+04 1.0e-04 2.9e-04 -2.1066664e+01 57 24.3

6 1.0e+05 1.0e-04 6.5e-05 -2.1027152e+01 75 26.8

7 1.0e+05 1.0e-05 5.2e-05 -2.1018896e+01 130 60.9

8 1.0e+06 1.0e-05 9.3e-06 -2.1015295e+01 159 81.8

9 1.0e+06 1.0e-06 2.0e-06 -2.1014808e+01 139 70.0

10 1.0e+07 1.0e-06 2.1e-07 -2.1014800e+01 177 97.6

The optimality tolerance for IPOPT was ωk = 10−6 throughout, and warm starts
were specified for k ≥ 2 (options warm_start_init_point=yes, mu_init=1e-4). Itns
refers to IPOPT’s primal-dual interior point method, and time is seconds on an
Apple iMac with 2.93 GHz Intel Core i7.
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N U M E R I C A L E X A M P L E S

We now examine economies with multiple dimensions of heterogeneity.

11.1 wage-labor supply elasticity heterogeneity

We first consider the case where taxpayers differ in terms of their wage and elas-
ticity of labor supply (w and η). We assume that αk = 0, γh = 1 (log utility), and
ψg = 1. We consider an optimal nonlinear income tax problem with 2D types of
taxpayers:

max
ci,j, yi,j

∑i,j λi,jUi,j(ci,j, yi,j)

s.t. Ui,j(ci,j, yi,j)−Ui,j(cp,q, yp,q) ≥ 0 ∀(i, j), (p, q)

∑i,j λi,jyi,j −∑i,j λi,jci,j ≥ 0 (11.1)

ci,j, yi,j ≥ 0 ∀(i, j),

where Ui,j(ci,j, yi,j) and Ui,j(cp,q, yp,q) are defined in (9.7). We choose the following
parameters: na = nb = 5, wi ∈ {1, 2, 3, 4, 5}, ηj ∈ {1, 1/2, 1/3, 1/5, 1/8}, and
λij = 1.

We use the zero-tax solution (c∗, y∗) from section 10.1 as a starting point for
SNOPT. We report numerical results in Tables 20 and 21. There are several points
to emphasize.

1. All taxpayers with wage type wi = 4 are pooled. Table 21 shows that there
are many more binding constraints than there are variables. This tells us that
our worries about failures of LICQ are well-founded.

2. This example violates the general result in 1D optimal tax theory that marginal
tax rates lie between zero and one. Consider taxpayers with wage rate wi = 5.
In particular, the taxpayers with low labor supply elasticity η tend to work
less and make less income. However, they pay more tax than those taxpayers
with high labor supply elasticity η, who have higher income. We also find
negative marginal tax rate for the high-productivity types with w = 5. These
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results are quite different from the results for 1D-type taxpayers in section
8.1 as well as general conclusions in optimal income taxation literature.

3. All high-productivity types are better off in the heterogeneous world. We
are not surprised that the low-elasticity high-productivity types are better
off, because their low elasticity was exploited in the world where all had
low labor supply elasticity. In a heterogeneous world, the average elasticity
of labor is higher, and so there should be lower taxes on high-productivity
workers. The surprise is that the high-elasticity, high-productivity workers
also gain by hiding in a heterogeneous world. The reason, as seen in Table
21, is that these workers do respond to incentives and find that it is tempting
to join the pool at w = 4. This case is also an example of where the bind-
ing constraints are not local, because the highest income type is tempted to
pretend to be workers with much less income.

4. Heterogeneity reduces redistribution. This is related to point 3 above, and
is highlighted in Figures 5 and 6, where we see that the tax schedule and
the average tax rates are almost uniformly lower in the heterogeneous world
than in any of the individual Mirrlees economies. Hence, redistribution in
the heterogeneous world is not just the average of redistribution in the sim-
pler worlds, but instead is substantially less.
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Figure 5: Income vs. Paid Tax for the 2D heterogeneity example. Thin lines represent taxes
when all have same elasticity of labor supply. The thick line is the 2D heterogene-
ity case.
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Table 20: η = (1, 1/2, 1/3, 1/5, 1/8), w = (1, 2, 3, 4, 5)

(i, j) cij yij ∆TRi,j MTRi,j ATRi,j lij/l∗ij cij/c∗ij Utility

Judd et al. Mirrlees

(1, 1) 1.68 0.42 0.28 -2.92 0.42 1.68 0.4294 .3641

(1, 2) 1.77 0.62 0.51 0.32 -1.86 0.62 1.77 0.4952 .3138

(1, 3) 1.79 0.65 0.54 0.51 -1.75 0.65 1.79 0.5378 .6601

(1, 4) 1.83 0.77 0.66 0.50 -1.37 0.77 1.83 0.5700 .7830

(1, 5) 1.86 0.86 0.62 0.43 -1.16 0.86 1.86 0.5940 .8760

(2, 1) 1.86 0.86 0.60 -1.16 0.43 0.93 0.5308 .3751

(2, 2) 2.03 1.39 0.68 0.50 -0.45 0.69 1.01 0.5973 .6180

(2, 3) 2.07 1.50 0.60 0.56 -0.38 0.75 1.03 0.6512 .7189

(2, 4) 2.16 1.74 0.62 0.46 -0.24 0.87 1.08 0.7006 .8181

(2, 5) 2.20 1.83 0.55 0.46 -0.20 0.91 1.10 0.7413 .9085

(3, 1) 2.20 1.83 0.55 -0.20 0.61 0.73 0.6053 .5496

(3, 2) 2.47 2.49 0.59 0.43 0.00 0.83 0.82 0.7157 .7269

(3, 3) 2.47 2.49 0.53 0.00 0.83 0.82 0.7878 .8158

(3, 4) 2.55 2.68 0.59 0.52 0.04 0.89 0.85 0.8520 .9057

(3, 5) 2.62 2.85 0.54 0.42 0.07 0.95 0.87 0.8965 .9672

(4, 1) 3.36 4.00 0.36 0.16 0.15 1.00 0.84 0.7127 .7090

(4, 2) 3.36 4.00 – 0.16 0.15 1.00 0.84 0.8794 .8664

(4, 3) 3.36 4.00 – 0.15 0.15 1.00 0.84 0.9627 .9402

(4, 4) 3.36 4.00 – 0.15 0.15 1.00 0.84 1.0461 1.0080

(4, 5) 3.36 4.00 0.15 0.15 1.00 0.84 1.1017 1.0476

(5, 5) 4.00 5.14 0.44 0 0.22 1.02 0.80 1.2439 1.1487

(5, 4) 4.11 5.24 -0.10 -0.05 0.21 1.04 0.82 1.1928 1.1331

(5, 3) 4.34 5.43 -0.17 -0.12 0.20 1.08 0.86 1.1188 1.0877

(5, 2) 4.49 5.56 -0.17 -0.11 0.19 1.11 0.89 1.0428 1.0286

(5, 1) 4.87 5.87 -0.22 -0.15 0.17 1.17 0.97 0.8933 .8901
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Table 21: Binding IC[(i, j), (i′, j′)]

(i, j) (p, q)

(1, 2) (1, 1)

(1, 3) (1, 2)

(1, 4) (1, 3)

(1, 5) (1, 4), (2, 1)

(2, 1) (1, 4), (1, 5)

(2, 2) (1, 5), (2, 1)

(2, 3) (2, 2)

(2, 4) (2, 3)

(2, 5) (2, 4), (3, 1)

(3, 1) (2, 3), (2, 5)

(3, 2) (2, 5), (3, 1), (3, 3)

(3, 3) (3, 2)

(3, 4) (3, 2), (3, 3)

(3, 5) (3, 4)

(i, j) (p, q)

(4, 1) (3, 2), (3, 3), (3, 5), (4, 2), (4, 3), (4, 4), (4, 5)

(4, 2) (4, 1), (4, 3), (4, 4), (4, 5)

(4, 3) (4, 1), (4, 2), (4, 4), (4, 5)

(4, 4) (4, 1), (4, 2), (4, 3), (4, 5)

(4, 5) (4, 1), (4, 2), (4, 3), (4, 4)

(5, 1) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)

(5, 2) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1)

(5, 3) (5, 2)

(5, 4) (5, 3)

(5, 5) (5, 4)
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Figure 6: Income vs. Average Tax Rate for the 2D heterogeneity example.

11.2 3d heterogeneity

We next consider a case of heterogeneity in wages, basic needs, and labor supply elasticity:

max
ci,j,k , yi,j,k

∑i,j,k λi,j,kUi,j,k(ci,j,k, yi,j,k)

s.t. Ui,j,k(ci,j,k, yi,j,k)−Ui,j,k(cp,q,r, yp,q,r) ≥ 0 ∀(i, j, k), (p, q, r)

∑i,j,k λi,j,kyi,j,k −∑i,j,k λi,j,kci,j,k ≥ 0 (11.2)

ci,j,k, yi,j,k ≥ 0 ∀(i, j, k),
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Figure 7: Income vs. Paid Tax for the 3D heterogeneity example.
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Figure 8: Income vs. Average Tax Rate for the 3D heterogeneity example.

where Ui,j,k(ci,j,k, yi,j,k) and Ui,j,k(cp,q,r, yp,q,r) are defined in (9.6). We choose param-
eters na = nb = nc = 3, wi ∈ {2, 3, 4}, and λijk = 1/(na × nb × nc). We use
the zero tax solution (c∗, y∗) as a starting point for the NLP solver SNOPT and
compute solutions for ηj ∈ {1/2, 1, 2} and ak ∈ {0, 1, 2}.

Figures 7 and 8 illustrate the solution. The dotted lines are average tax rates if
wage is only heterogeneity. Thin lines represent cases of 2D heterogeneity, both
w− η heterogeneity and w− a heterogeneity. The solid line is one economy with
3D heterogeneity: taxpayers differing in wages, basic needs, and labor supply elas-
ticity. The patterns are clear. The most redistributive economies are those where
wage is the only heterogeneity. As we add heterogeneity in either a or η, redistri-
bution is less. The final case where there is heterogeneity in wages, basic needs,
and elasticity, has the least redistribution.
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C O N C L U S I O N S

Here we examine models of optimal taxation in economies with multiple dimen-
sions of heterogeneities. We analyze cases where individuals differ in productivity,
elasticity of labor supply, basic needs, levels of distaste for work, and elasticity of
demand for consumption. These examples show that many results from the ba-
sic 1D Mirrlees model no longer hold. In particular, we find cases of negative
marginal tax rates for some high-productivity taxpayers. The examples also indi-
cate that redistribution is less in economies with multidimensional heterogeneity,
probably because income is a noisier signal of a taxpayer’s type.

Multidimensional optimal tax problems are difficult nonlinear optimization prob-
lems because the linear independence constraint qualification does not hold at all
feasible points and often fails to hold at the solution, as we have seen in our nu-
merical examples. We found SNOPT was not able to solve larger examples. To
solve these nonlinear programs robustly, we present a new approach, the NCL
algorithm, developed in the next part of this thesis.
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I N T R O D U C T I O N

1 For optimization problems involving many nonlinear inequality constraints, we
extend the bound-constrained (BCL) and linearly constrained (LCL) augmented-
Lagrangian approaches of LANCELOT and MINOS to an algorithm that solves a
sequence of nonlinearly constrained augmented Lagrangian subproblems whose
nonlinear constraints satisfy the LICQ everywhere. The NCL algorithm is imple-
mented in AMPL and tested on large instances of a tax policy model that could
not be solved directly by any of the state-of-the-art solvers that we tested due
to degeneracy. Algorithm NCL with IPOPT as subproblem solver proves to be
effective, with IPOPT achieving warm starts on each subproblem.

We consider constrained optimization problems of the form

NCO minimize
x∈Rn

φ(x)

subject to c(x) ≥ 0, Ax ≥ b, ` ≤ x ≤ u,

where φ(x) is a smooth nonlinear function, c(x) ∈ Rm is a vector of smooth nonlin-
ear functions, and Ax ≥ b is a placeholder for a set of linear inequality or equality
constraints, with x lying between lower and upper bounds ` and u.

In some applications where m � n, there may be more than n constraints that
are essentially active at a solution. The constraints do not satisfy the linear inde-
pendence constraint qualification (LICQ), and general-purpose solvers are likely
to have difficulty converging. Some form of regularization is required. We achieve
this by adapting the augmented Lagrangian algorithm of the general-purpose op-
timization solver LANCELOT (Conn, Gould, and Toint, 1991; Conn, Gould, and
Toint, 1992; LANCELOT optimization software 1991) to derive a sequence of regular-
ized subproblems denoted in the next chapter by NCk.

1This essay is co-authored with Kenneth Judd, Dominique Orban and Michael Saunders, and
published in Numerical Analysis and Optimization (2018).
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B C L , L C L , A N D N C L M E T H O D S

The theory for the large-scale solver LANCELOT is best described in terms of the
general optimization problem

NECB minimize
x∈Rn

φ(x)

subject to c(x) = 0, ` ≤ x ≤ u

with nonlinear equality constraints and bounds. We let x∗ denote a local solution
of NECB and (y∗, z∗) denote associated multipliers. LANCELOT treats NECB by
solving a sequence of bound-constrained subproblems of the form

BCk minimize
x

L(x, yk, ρk) = φ(x)− yT
kc(x) + 1

2 ρk‖c(x)‖2

subject to ` ≤ x ≤ u,

where yk is an estimate of the Lagrange multipliers y∗ for the equality constraints.
This was called a bound-constrained Lagrangian (BCL) method by Friedlander
and Saunders (2005), in contrast to the LCL (linearly constrained Lagrangian)
methods of Robinson (1972) and MINOS (Murtagh and Saunders, 1982), whose
subproblems LCk contain bounds as in BCk and also linearizations of the equality
constraints at the current point xk (including linear constraints).

In order to treat NCO with a sequence of BCk subproblems, we convert the
nonlinear inequality constraints to equalities to obtain

NCO′ minimize
x, s

φ(x)

subject to c(x)− s = 0, Ax ≥ b, ` ≤ x ≤ u, s ≥ 0

with corresponding subproblems (including linear constraints)

BCk
′ minimize

x, s
L(x, yk, ρk) = φ(x)− yT

k(c(x)− s) + 1
2 ρk‖c(x)− s‖2

subject to Ax ≥ b, ` ≤ x ≤ u, s ≥ 0.
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We now introduce variables r = −(c(x) − s) into BCk
′ to obtain the nonlinearly

constrained Lagrangian (NCL) subproblem

NCk minimize
x, r

φ(x) + yT
kr + 1

2 ρk‖r‖2

subject to c(x) + r ≥ 0, Ax ≥ b, ` ≤ x ≤ u,

in which r serves to make the nonlinear constraints independent. Assuming ex-
istence of finite multipliers and feasibility, for ρk > 0 and larger than a certain
finite value, the NCL subproblems should cause yk to approach y∗ and most of
the solution (x∗k , r∗k , y∗k , z∗k ) of NCk to approach (x∗, y∗, z∗), with r∗k approaching
zero.

Problem NCk is analogous to Friedlander and Orban’s formulation for convex
quadratic programs (Friedlander and Orban, 2012, Eq. (3.2)). See also Arreckx and
Orban (2016), where the motivation is the same as here, achieving reliability when
the nonlinear constraints don’t satisfy LICQ.

Note that for general problems NECB, the BCL and LCL subproblems contain
linear constraints (bounds only, or linearized constraints and bounds). Our NCL
formulation retains nonlinear constraints in the NCk subproblems, but simplifies
them by ensuring that they satisfy LICQ. On large problems, the additional vari-
ables r ∈ Rm in NCk may be detrimental to active-set solvers like MINOS or
SNOPT (Gill, Murray, and Saunders, 2005a) because they increase the number of
degrees of freedom (superbasic variables). Fortunately they are easily accommo-
dated by interior methods, as our numerical results show for IPOPT (Wächter and
Biegler, 2006; IPOPT open source NLP solver 2006) and for KNITRO (Byrd, Nocedal,
and Waltz, 2006; KNITRO optimization software 2006).

We also show that the sequence of NCL sub-problems NCk can be efficiently
handled by warm-starting both IPOPT and KNITRO, in spite of the folklore that
interior methods cannot be warm-started.
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T H E B C L A L G O R I T H M

The LANCELOT BCL method is summarized in Algorithm BCL. Each subproblem
BCk is solved with a specified optimality tolerance ωk, generating an iterate x∗k and
the associated Lagrangian gradient z∗k ≡ ∇L(x∗k , yk, ρk). If ‖c(x∗k )‖ is sufficiently
small, the iteration is regarded as “successful” and an update to yk is computed
from x∗k . Otherwise, yk is not altered but ρk is increased.

Key properties are that the subproblems are solved inexactly, the penalty param-
eter is increased only finitely often, and the multiplier estimates yk need not be
assumed bounded. Under certain conditions, all iterations are eventually success-
ful, the ρk’s remain constant, the iterates converge superlinearly, and the algorithm
terminates in a finite number of iterations (Conn, Gould, and Toint, 1991).

Algorithm 1 BCL (Bound-Constrained Lagrangian Method for NECB)
1: procedure BCL(x0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k← 0, converged← false
5: repeat
6: k← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k , z∗k ) that solves BCk to within ωk.
9: if ‖c(x∗k )‖ ≤ max(η∗, ηk) then

10: y∗k ← yk − ρkc(x∗k )
11: xk ← x∗k , yk ← y∗k , zk ← z∗k
12: if (xk, yk, zk) solves NECB to within ω∗, converged← true
13: ρk+1 ← ρk

14: ηk+1 ← ηk/(1 + ρ
β
k+1)

15: else
16: ρk+1 ← τρk
17: ηk+1 ← η0/(1 + ρα

k+1)
18: end if
19: until converged
20: x∗ ← xk, y∗ ← yk, z∗ ← zk
21: end procedure

Note that at step 8 of Algorithm BCL, the inexact minimization would be typ-
ically carried out from the initial guess (x∗k , z∗k ). However, other initial points are
possible. At step 12, we say that (xk, yk, zk) solves NECB to within ω∗ if the largest
dual infeasibility is smaller than ω∗.
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To derive a stabilized algorithm for problem NCO, we modify Algorithm BCL by
introducing r and replacing the subproblems BCk by NCk. The resulting method is
summarized in Algorithm NCL. The update to yk becomes y∗k ← yk − ρk(c(x∗k )−
s∗k ) = yk + ρkr∗k , the value satisfied by an optimal y∗k for subproblem NCk. Step 8

of Algorithm NCL would typically use (x∗k , r∗k , y∗k , z∗k ) as initial guess, and that is
what we use in our implementation below.

Algorithm 2 NCL (Nonlinearly Constrained Lagrangian Method for NCO)
1: procedure NCL(x0, r0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k← 0, converged← false
5: repeat
6: k← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k , r∗k , y∗k , z∗k ) that solves NCk to within ωk.
9: if ‖r∗k‖ ≤ max(η∗, ηk) then

10: y∗k ← yk + ρkr∗k
11: xk ← x∗k , rk ← r∗k , yk ← y∗k , zk ← z∗k
12: if (xk, yk, zk) solves NCO to within ω∗, converged← true
13: ρk+1 ← ρk

14: ηk+1 ← ηk/(1 + ρ
β
k+1)

15: else
16: ρk+1 ← τρk
17: ηk+1 ← η0/(1 + ρα

k+1)
18: end if
19: until converged
20: x∗ ← xk, r∗ ← rk, y∗ ← yk, z∗ ← zk
21: end procedure
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16.1 an application : optimal tax policy

Some challenging test cases arise from the tax policy models described in Judd
et al. (2017). With x = (c, y), they take the form

TAX maximize
c, y

∑i λiUi(ci, yi)

subject to Ui(ci, yi)−Ui(cj, yj) ≥ 0 for all i, j

λT(y− c) ≥ 0

c, y ≥ 0,

where ci and yi are the consumption and income of taxpayer i, and λ is a vector
of positive weights. The utility functions Ui(ci, yi) are each of the form

U(c, y) =
(c− α)1−1/γ

1− 1/γ
− ψ

(y/w)1/η+1

1/η + 1
,

where w is the wage rate and α, γ, ψ and η are taxpayer heterogeneities. More
precisely, the utility functions are of the form

Ui,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) =
(cp,q,r,s,t − αk)

1−1/γh

1− 1/γh
− ψg

(yp,q,r,s,t/wi)
1/ηj+1

1/ηj + 1
,

where (i, j, k, g, h) and (p, q, r, s, t) run over na wage types, nb elasticities of la-
bor supply, nc basic need types, nd levels of distaste for work, and ne elasticities
of demand for consumption, with na, nb, nc, nd, ne determining the size of the
problem, namely m = T(T − 1) nonlinear constraints, n = 2T variables, with
T := na× nb× nc× nd× ne.

16.2 results for ncl/ipopt

Table 22 summarizes results for a 4D example (ne = 1 and γ1 = 1). The first
term of U(c, y) becomes log(c− α), the limit as γ → 1. Problem NCO and Algo-
rithm NCL were formulated in the AMPL modeling language (Fourer, Gay, and
Kernighan, 2002). The solvers SNOPT (Gill, Murray, and Saunders, 2005a) and
IPOPT (Wächter and Biegler, 2006) were unable to solve NCO itself, but Algo-
rithm NCL was successful with IPOPT solving the subproblems NCk. We use a
default configuration of IPOPT with MUMPS (Amestoy et al., 2001) as symmet-
ric indefinite solver to compute search directions. We set the optimality tolerance
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Table 22: NCL results on a 4D example with na, nb, nc, nd = 11, 3, 3, 2, giving m = 39006,
n = 395. Itns refers to IPOPT’s primal-dual interior point method, and Time is
seconds on an Apple iMac with 2.93 GHz Intel Core i7.

k ρk ηk ‖r∗k‖∞ φ(x∗k ) Itns Time

1 102 10−2
3.1e-03 -2.1478532e+01 125 42.8

2 102 10−3
1.3e-03 -2.1277587e+01 18 6.5

3 103 10−3
6.6e-04 -2.1177152e+01 27 9.1

4 103 10−4
5.5e-04 -2.1110210e+01 31 10.8

5 104 10−4
2.9e-04 -2.1066664e+01 57 24.3

6 105 10−4
6.5e-05 -2.1027152e+01 75 26.8

7 105 10−5
5.2e-05 -2.1018896e+01 130 60.9

8 106 10−5
9.3e-06 -2.1015295e+01 159 81.8

9 106 10−6
2.0e-06 -2.1014808e+01 139 70.0

10 107 10−6
2.1e-07 -2.1014800e+01 177 97.6

for IPOPT to ωk = ω∗ = 10−6 throughout, and specified warm starts for k ≥ 2
using options warm_start_init_point=yes and mu_init=1e-4. These options greatly
improved the performance of IPOPT on each subproblem compared to cold starts,
for which mu_init=0.1. It is helpful that only the objective function of NCk changes
with k.

For this example, problem NCO has m = 39007 nonlinear inequality constraints
and one linear constraint in n = 396 variables x = (c, y), and nonnegativity
bounds. Subproblem NCk has 39007 constraints and 39402 variables when r is in-
cluded. Fortunately r does not affect the complexity of each IPOPT iteration, but
greatly improves stability. In contrast, active-set methods like MINOS and SNOPT
are very inefficient on the NCk subproblems because the large number of inequal-
ity constraints leads to thousands of minor iterations, and the presence of r (with
no bounds) leads to thousands of superbasic variables. About 3.2n constraints
were within 10−6 of being active.

Table 23 summarizes results for a 5D example. The NCk subproblems have
m = 32220 nonlinear constraints and n = 360 variables, leading to 32581 vari-
ables including r. Again the options warm_start_init_point=yes and mu_init=1e-4
for k ≥ 2 led to good performance by IPOPT on each subproblem. About 3n
constraints were within 10−6 of being active.

For much larger problems of this type, we found that it was helpful to reduce
mu_init more often, as illustrated in Table 24. The NCk subproblems here have
m = 570780 nonlinear constraints and n = 1512 variables, leading to 572292 vari-
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Table 23: NCL results on a 5D example with na, nb, nc, nd, ne = 5, 3, 3, 2, 2, giving m =
32220, n = 360.

k ρk ηk ‖r∗k‖∞ φ(x∗k ) Itns Time

1 102 10−2
7.0e-03 -4.2038075e+02 95 41.1

2 102 10−3
4.1e-03 -4.2002898e+02 17 7.2

3 103 10−3
1.3e-03 -4.1986069e+02 20 8.1

4 104 10−3
4.4e-04 -4.1972958e+02 48 25.0

5 104 10−4
2.2e-04 -4.1968646e+02 43 20.5

6 105 10−4
9.8e-05 -4.1967560e+02 64 32.9

7 105 10−5
6.6e-05 -4.1967177e+02 57 26.8

8 106 10−5
4.2e-06 -4.1967150e+02 87 46.2

9 106 10−6
9.4e-07 -4.1967138e+02 96 53.6

Table 24: NCL results on a 5D example with na, nb, nc, ne, ne = 21, 3, 3, 2, 2, giving m =
570780, n = 1512.

k ρk ηk ‖r∗k‖∞ φ(x∗k ) mu_init Itns Time

1 102 10−2
5.1e-03 -1.7656816e+03 10−1

825 7763.3

2 102 10−3
2.4e-03 -1.7648480e+03 10−4

66 472.8

3 103 10−3
1.3e-03 -1.7644006e+03 10−4

106 771.3

4 104 10−3
3.8e-04 -1.7639491e+03 10−5

132 1347.0

5 104 10−4
3.2e-04 -1.7637742e+03 10−5

229 2450.9

6 105 10−4
8.6e-05 -1.7636804e+03 10−6

104 1096.9

7 105 10−5
4.9e-05 -1.7636469e+03 10−6

143 1633.4

8 106 10−5
1.5e-05 -1.7636252e+03 10−7

71 786.1

9 107 10−5
2.8e-06 -1.7636196e+03 10−7

67 725.7

10 107 10−6
5.1e-07 -1.7636187e+03 10−8

18 171.0

ables including r. Note that the number of NCL iterations is stable (k ≤ 10), and
IPOPT performs well on each subproblem with decreasing mu_init. This time
about 6.6n constraints were within 10−6 of being active.

Note that the LANCELOT approach allows early subproblems to be solved less
accurately (Conn, Gould, and Toint, 1991). It may save time to set ωk = ηk (say)
rather than ωk = ω∗ throughout.
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16.3 results for knitro and ncl/knitro

Like IPOPT, KNITRO is an interior-point solver for linear and nonlinear optimiza-
tion. Here we investigate the performance of both solvers on problems of increas-
ing size. We applied IPOPT and KNITRO to the original problems and to the se-
quence of subproblems generated by algorithm NCL. As test problems, we used
the tax policy models with increasing values of na but fixed values nb = 3, nc = 3,
nd = 2, ne = 2.

Table 25 shows that IPOPT by itself could solve only the smallest problem. KNI-
TRO was reliable on larger problems, but the solve time increased rather rapidly.
With warm starts for most NCL iterations, NCL/IPOPT performed well. With cold
starts for each NCL iteration, NCL/KNITRO was reliable but extremely slow.

Table 26 shows again that KNITRO was reliable but rather slow on larger prob-
lems, but with warm starts for most NCL iterations, NCL/KNITRO performed
extremely well.

We conclude that, contrary to the folklore of interior methods, IPOPT and KNI-
TRO can be reliably warm-started on a sequence of related problems such as those
arising in algorithm NCL. The computational savings are highly significant.
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Table 25: Comparison of IPOPT, KNITRO, NCL. The problem size increases with na. For
IPOPT, * means the dual variables diverged and the linear solver MUMPS kept
requesting more memory. ! means IPOPT went into a loop. Cold starts were used
everywhere except for NCL/IPOPT, which reduced the initial barrier parameter
µ for NCL iterations 2, 4, 6, 8 as coded in section 18.4.

na = increasing nb = 3 nc = 3 nd = 2 ne = 2

IPOPT KNITRO NCL/IPOPT

na m n itns time itns time itns time

5 32220 360 449 217 168 53 322 146

9 104652 648 > 98* > 360* 928 825 655 1023

11 156420 792 > 87* ∞! 2769 4117 727 1679

17 373933 1224 2598 11447 1021 6347

21 570780 1512 1761 17218

NCL/KNITRO

itns time

2320 8.0mins

9697 1.9hrs

26397 7.0hrs

45039 1.9 days

Warm starts Cold starts

Table 26: NCL/KNITRO with Warm Starts. The same as Table 25 except the last column,
where NCL/KNITRO used warm-start options for NCL iterations 2, 4, 6, 8 as
coded in section 18.5.

na = increasing nb = 3 nc = 3 nd = 2 ne = 2

IPOPT KNITRO NCL/IPOPT

na m n itns time itns time itns time

5 32220 360 449 217 168 53 322 146

9 104652 648 > 98* > 360* 928 825 655 1023

11 156420 792 > 87* ∞! 2769 4117 727 1679

17 373933 1224 2598 11447 1021 6347

21 570780 1512 1761 17218

NCL/KNITRO

itns time

339 63

307 239

383 420

486 1200

712 2880

Warm starts Warm starts
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C O N C L U S I O N S

This work has been illuminating in several ways as we sought to improve our
ability to solve examples of problem TAX.

• Small examples of the tax model solve efficiently with MINOS and SNOPT,
but eventually fail to converge as the problem size increases.

• IPOPT also solves small examples efficiently, but eventually starts requesting
additional memory for the MUMPS sparse linear solver. The solver may
freeze, or the iterations may diverge.

• The NCk subproblems are not suitable for MINOS or SNOPT because of
the large number of variables (x, r) and the resulting number of superbasic
variables (although warm-starts are natural).

• It is often said that interior methods cannot be warm-started. Nevertheless,
IPOPT has several runtime options that have proved to be extremely helpful
for implementing Algorithm NCL. For the results obtained here, it has been
sufficient to say that warm starts are wanted for k > 1, and that the IPOPT
barrier parameter should be initialized at decreasing values for later k (where
only the objective of subproblem NCk changes with k). Analogous runtime
options were determined for KNITRO.

• The numerical examples of section 16.1 had 3n, 3n and 6.6n constraints es-
sentially active at the solution, yet were solved successfully. They suggest
that the NCL approach with an interior method as subproblem solver can
overcome LICQ difficulties on problems that could not be solved directly.

80



18
A P P E N D I X A M P L M O D E L S , D ATA , A N D S C R I P T S

Algorithm NCL has been implemented in the AMPL modeling language (Fourer,
Gay, and Kernighan, 2002) and tested on problem TAX. The following sections list
each relevant file. The files are available from NCL.

18.1 tax model

File pTax5Dncl.mod codes subproblem NCk for problem TAX with five parameters
w, η, α, ψ, γ, using µ := 1/η. Note that for U(c, y) in the objective and constraint
functions, the first term (c− α)1−1/γ/(1− 1/γ) is replaced by a piecewise-smooth
function that is defined for all values of c and α (see Judd et al., 2017).

Primal regularization 1
2 δ‖(c, y)‖2 with δ = 10−8 is added to the objective func-

tion to promote uniqueness of the minimizer. The vector r is called R to avoid a
clash with subscript r.

# pTax5Dncl.mod

# Define parameters for agents (taxpayers)

param na; # number of types in wage

param nb; # number of types in eta

param nc; # number of types in alpha

param nd; # number of types in psi

param ne; # number of types in gamma

set A := 1..na; # set of wages

set B := 1..nb; # set of eta

set C := 1..nc; # set of alpha

set D := 1..nd; # set of psi

set E := 1..ne; # set of gamma

set T = {A,B,C,D,E}; # set of agents

# Define wages for agents (taxpayers)

param wmin; # minimum wage level

param wmax; # maximum wage level

param w {A}; # i, wage vector

param mu{B}; # j, mu = 1/eta# mu vector

param mu1{B}; # mu1[j] = mu[j] + 1

81
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param alpha{C}; # k, ak vector for utility

param psi{D}; # g

param gamma{E}; # h

param lambda{A,B,C,D,E}; # distribution density

param epsilon;

param primreg default 1e-8; # Small primal regularization

var c{(i,j,k,g,h) in T} >= 0.1; # consumption for tax payer (i,j,k,g,h)

var y{(i,j,k,g,h) in T} >= 0.1; # income for tax payer (i,j,k,g,h)

var R{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} >= -1e+20, <= 1e+20;

param kmax default 20; # limit on NCL itns

param rhok default 1e+2; # augmented Lagrangian penalty parameter

param rhofac default 10.0; # increase factor

param rhomax default 1e+8; # biggest rhok

param etak default 1e-2; # opttol for augmented Lagrangian loop

param etafac default 0.1; # reduction factor for opttol

param etamin default 1e-8; # smallest etak

param rmax default 0; # max r (for printing)

param rmin default 0; # min r (for printing)

param rnorm default 0; # ||r||_inf

param rtol default 1e-6; # quit if biggest |r_i| <= rtol

param nT default 1; # nT = na*nb*nc*nd*ne

param m default 1; # nT*(nT-1) = no. of nonlinear constraints

param n default 1; # 2*nT = no. of nonlinear variables

param ck{(i,j,k,g,h) in T} default 0; # current variable c

param yk{(i,j,k,g,h) in T} default 0; # current variable y

param rk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current variable r = - (c(x) - s)

!(i=p and j=q and k=r and g=s and h=t)} default 0;

param dk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current dual variables (y_k)

!(i=p and j=q and k=r and g=s and h=t)} default 0;

minimize f:

sum{(i,j,k,g,h) in T}

(

(if c[i,j,k,g,h] - alpha[k] >= epsilon then

- lambda[i,j,k,g,h] *

((c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])

else

- lambda[i,j,k,g,h] *

(- 0.5/gamma[h] * epsilon^(-1/gamma[h]-1) * (c[i,j,k,g,h] - alpha[k])^2

+ ( 1+1/gamma[h])* epsilon^(-1/gamma[h] ) * (c[i,j,k,g,h] - alpha[k])
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+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h]) * epsilon^(1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])

)

+ 0.5 * primreg * (c[i,j,k,g,h]^2 + y[i,j,k,g,h]^2)

)

+ sum{(i,j,k,g,h) in T, (p,q,r,s,t) in T: !(i=p and j=q and k=r and g=s and h=t)}

(dk[i,j,k,g,h,p,q,r,s,t] * R[i,j,k,g,h,p,q,r,s,t]

+ 0.5 * rhok * R[i,j,k,g,h,p,q,r,s,t]^2);

subject to

Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}:

(if c[i,j,k,g,h] - alpha[k] >= epsilon then

(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

else

- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])^2

+ (1+1/gamma[h])*epsilon^(-1/gamma[h] )*(c[i,j,k,g,h] - alpha[k])

+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

)

- (if c[p,q,r,s,t] - alpha[k] >= epsilon then

(c[p,q,r,s,t] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]

else

- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[p,q,r,s,t] - alpha[k])^2

+ (1+1/gamma[h])*epsilon^(-1/gamma[h] )*(c[p,q,r,s,t] - alpha[k])

+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])

- psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]

)

+ R[i,j,k,g,h,p,q,r,s,t] >= 0;

Technology:

sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;

18.2 tax model data

File pTax5Dncl.dat provides data for a specific problem.

# pTax5Dncl.dat

data;
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let na := 5;

let nb := 3;

let nc := 3;

let nd := 2;

let ne := 2;

# Set up wage dimension intervals

let wmin := 2;

let wmax := 4;

let {i in A} w[i] := wmin + ((wmax-wmin)/(na-1))*(i-1);

data;

param mu :=

1 0.5

2 1

3 2 ;

# Define mu1

let {j in B} mu1[j] := mu[j] + 1;

data;

param alpha :=

1 0

2 1

3 1.5;

param psi :=

1 1

2 1.5;

param gamma :=

1 2

2 3;

# Set up 5 dimensional distribution

let {(i,j,k,g,h) in T} lambda[i,j,k,g,h] := 1;

# Choose a reasonable epsilon

let epsilon := 0.1;
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18.3 initial values

File pTax5Dinitial.run solves a simplified model to compute starting values for
Algorithm NCL. The nonlinear inequality constraints are removed, and y = c
is enforced. This model solves easily with MINOS or SNOPT on all cases tried.
Solution values are output to file p5Dinitial.dat.

# pTax5Dinitial.run

# Define parameters for agents (taxpayers)

param na := 5; # number of types in wage

param nb := 3; # number of types in eta

param nc := 3; # number of types in alpha

param nd := 2; # number of types in psi

param ne := 2; # number of types in gamma

set A := 1..na; # set of wages

set B := 1..nb; # set of eta

set C := 1..nc; # set of alpha

set D := 1..nd; # set of psi

set E := 1..ne; # set of gamma

set T = {A,B,C,D,E}; # set of agents

# Define wages for agents (taxpayers)

param wmin := 2; # minimum wage level

param wmax := 4; # maximum wage level

param w {i in A} := wmin + ((wmax-wmin)/(na-1))*(i-1); # wage vector

# Choose a reasonable epsilon

param epsilon := 0.1;

# mu vector

param mu {B}; # mu = 1/eta

param mu1{B}; # mu1[j] = mu[j] + 1

param alpha {C};

param gamma {E};

param psi {D};

var c {(i,j,k,g,h) in T} >= 0.1;

var y {(i,j,k,g,h) in T} >= 0.1;

maximize f: sum{(i,j,k,g,h) in T}

if c[i,j,k,g,h] - alpha[k] >= epsilon then

(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]
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else

- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])^2

+ (1+1/gamma[h])*epsilon^(-1/gamma[h]) *(c[i,j,k,g,h] - alpha[k])

+ (1/(1-1/gamma[h]) -1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])

- psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j];

subject to

Budget {(i,j,k,g,h) in T}: y[i,j,k,g,h] - c[i,j,k,g,h] = 0;

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := i+1;

let {(i,j,k,g,h) in T} c[i,j,k,g,h] := i+1;

data;

param mu :=

1 0.5

2 1

3 2 ;

# Define mu1

let {j in B} mu1[j] := mu[j] + 1;

data;

param alpha :=

1 0

2 1

3 1.5;

param psi :=

1 1

2 1.5;

param gamma :=

1 2

2 3;

option solver snopt;

option show_stats 1;

option snopt_options ’ \

summary_file=6 \

print_file=9 \

scale=no \

print_level=0 \

major_iterations=2000\
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iterations=50000 \

optimality_tol=1e-7 \

*penalty=100.0 \

superbasics_limit=3000\

solution=yes \

*verify_level=3 \

’;

display na,nb,nc,nd,ne;

solve;

display na,nb,nc,nd,ne;

display y,c >p5Dinitial.dat;

close p5Dinitial.dat;

18.4 ncl implementation with ipopt

File pTax5Dnclipopt.run uses files

pTax5Dinitial.run

pTax5Dncl.mod

pTax5Dncl.dat

pTax5Dinitial.dat

to implement Algorithm NCL. Subproblems NCk are solved in a loop until ‖r∗k‖∞ ≤
rtol = 1e-6, or ηk has been reduced to parameter etamin = 1e-8, or ρk has been
increased to parameter rhomax = 1e+8. The loop variable k is called K to avoid a
clash with subscript k in the model file.

Optimality tolerance ωk = 10−6 is used throughout to ensure that the solution
of the final subproblem NCk will be close to a solution of the original problem if
‖r∗k‖∞ is small enough for the final k (‖r∗k‖∞ ≤ rtol = 1e-6).

IPOPT is used to solve each subproblem NCk, with runtime options set to im-
plement increasingly warm starts.

# pTax5Dnclipopt.run

reset;

model pTax5Dinitial.run;

reset;

model pTax5Dncl.mod;

data pTax5Dncl.dat;

data; var include p5Dinitial.dat;
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model;

option solver ipopt;

option show_stats 1;

option ipopt_options ’\

dual_inf_tol=1e-6 \

max_iter=5000 \

’;

option opt2 $ipopt_options ’ warm_start_init_point=yes’;

# NCL method.

# kmax, rhok, rhofac, rhomax, etak, etafac, etamin, rtol

# are defined in the .mod file.

printf "NCLipopt log for pTax5D\n" > 5DNCLipopt.log;

display na, nb, nc, nd, ne, primreg > 5DNCLipopt.log;

printf " k rhok etak rnorm Obj\n" > 5DNCLipopt.log;

for {K in 1..kmax}

{ display na, nb, nc, nd, ne, primreg, K, kmax, rhok, etak;

if K == 2 then {option ipopt_options $opt2 ’ mu_init=1e-4’};

if K == 4 then {option ipopt_options $opt2 ’ mu_init=1e-5’};

if K == 6 then {option ipopt_options $opt2 ’ mu_init=1e-6’};

if K == 8 then {option ipopt_options $opt2 ’ mu_init=1e-7’};

if K ==10 then {option ipopt_options $opt2 ’ mu_init=1e-8’};

display $ipopt_options;

solve;

let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

display na, nb, nc, nd, ne, primreg, K, rhok, etak, kmax;

display K, kmax, rmax, rmin;

let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf

printf "%4i %9.1e %9.1e %9.1e %15.7e\n", K, rhok, etak, rnorm, f >> 5DNCLipopt.log;

close 5DNCLipopt.log;

if rnorm <= rtol then

{ printf "Stopping: rnorm is small\n"; display K, rnorm; break; }

if rnorm <= etak then # update dual estimate dk; save new solution

{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:
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!(i=p and j=q and k=r and g=s and h=t)}

dk[i,j,k,g,h,p,q,r,s,t] :=

dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];

let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];

let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];

display K, etak;

if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }

let etak := max(etak*etafac, etamin);

display etak;

}

else # keep previous solution; increase rhok

{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];

display K, rhok;

if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }

let rhok := min(rhok*rhofac, rhomax);

display rhok;

}

}

display c,y; display na, nb, nc, nd, ne, primreg, rhok, etak, rnorm;

# Count how many constraint are close to being active.

data;

let nT := na*nb*nc*nd*ne; let m := nT*(nT-1); let n := 2*nT;

let etak := 1.0001e-10;

printf "\n m = %8i\n n = %8i\n", m, n >> 5DNCLipopt.log;

printf "\n Constraints within tol of being active\n\n" >> 5DNCLipopt.log;

printf " tol count count/n\n" >> 5DNCLipopt.log;

for {K in 1..10}

{

let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)

and Incentive[i,j,k,g,h,p,q,r,s,t].slack <= etak};

printf "%9.1e %8i %8.1f\n", etak, kmax, kmax/n >> 5DNCLipopt.log;

let etak := etak*10;

}

printf "Created 5DNCLipopt.log\n";
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18.5 ncl implementation with knitro

Here is an analogous file for solving the NCk subproblems with KNITRO, with
increasingly warm starts every second subproblem.1

# pTax5Dnclknitro5.run

reset;

commands pTax5Dinitial.run;

reset;

model pTax5Dncl.mod;

data pTax5Dncl.dat;

param initialDatFile symbolic := "p5Dinitial_" & sprintf("%i", na) & ".dat";

data; commands (initialDatFile);

model;

option solver knitro;

option show_stats 1;

param logFile symbolic := "5DNCLknitro_" & sprintf("%i", na) & ".log";

param finalMsg symbolic := sprintf("Created %s", logFile);

option knitro_options ’\

algorithm=1 \

bar_directinterval=0 \

bar_initpt=2 \

maxit=90000 \

feastol=1e-6 \

opttol=1e-6 \

outlev=3 \

’;

# cg_maxit=0 \

# algorithm=1 \ # Use the Interior/Direct algorithm

# algorithm=5 \ # Run all algorithms, possibly in parallel

# bar_feasible=1 \ # Stay satisfying inequality constraints

#option opt2 $ipopt_options ’ warm_start_init_point=yes’;

option opt2 $knitro_options ’ bar_murule=1’;

1We thank Richard Waltz for his help in choosing runtime options for KNITRO.
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# NCL method.

# kmax, rhok, rhofac, rhomax, etak, etafac, etamin, rtol

# are defined in the .mod file.

printf "NCLknitro log for pTax5D\n" > (logFile);

display na, nb, nc, nd, ne, primreg > (logFile);

printf " k rhok etak rnorm Obj\n" > (logFile);

for {K in 1..kmax}

{ display na, nb, nc, nd, ne, primreg, K, kmax, rhok, etak;

if K == 2 then {option knitro_options $opt2 ’ bar_initmu=1e-4 bar_slackboundpush=1e-4’};

if K == 4 then {option knitro_options $opt2 ’ bar_initmu=1e-5 bar_slackboundpush=1e-5’};

if K == 6 then {option knitro_options $opt2 ’ bar_initmu=1e-6 bar_slackboundpush=1e-6’};

if K == 8 then {option knitro_options $opt2 ’ bar_initmu=1e-7 bar_slackboundpush=1e-7’};

if K ==10 then {option knitro_options $opt2 ’ bar_initmu=1e-8 bar_slackboundpush=1e-8’};

display $knitro_options;

solve;

let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

display na, nb, nc, nd, ne, primreg, K, rhok, etak, kmax;

display K, kmax, rmax, rmin;

let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf

printf "%4i %9.1e %9.1e %9.1e %15.7e\n", K, rhok, etak, rnorm, f >> (logFile);

close (logFile);

if rnorm <= rtol then

{ printf "Stopping: rnorm is small\n"; display K, rnorm; break; }

if rnorm <= etak then # update dual estimate dk; save new solution

{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}

dk[i,j,k,g,h,p,q,r,s,t] :=

dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];

let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];

let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];

display K, etak;

if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }

let etak := max(etak*etafac, etamin);

display etak;

}

else # keep previous solution; increase rhok
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{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];

display K, rhok;

if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }

let rhok := min(rhok*rhofac, rhomax);

display rhok;

}

}

display c,y; display na, nb, nc, nd, ne, primreg, rhok, etak, rnorm;

# Count how many constraint are close to being active.

data;

let nT := na*nb*nc*nd*ne; let m := nT*(nT-1); let n := 2*nT;

let etak := 1.0001e-10;

printf "\n m = %8i\n n = %8i\n", m, n >> (logFile);

printf "\n Constraints within tol of being active\n\n" >> (logFile);

printf " tol count count/n\n" >> (logFile);

for {K in 1..10}

{

let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)

and Incentive[i,j,k,g,h,p,q,r,s,t].slack <= etak};

printf "%9.1e %8i %8.1f\n", etak, kmax, kmax/n >> (logFile);

let etak := etak*10;

}

printf "total time spent in solver: %f\n", _total_solve_time >> (logFile);

printf "%s\n", finalMsg;



Part IV

R E L I A B L E A N D E F F I C I E N T S O L U T I O N O F
G E N O M E - S C A L E M O D E L S O F M E TA B O L I S M A N D

M A C R O M O L E C U L A R E X P R E S S I O N



19
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1 Constraint-Based Reconstruction and Analysis is currently the only methodology
that permits integrated modeling of Metabolism and macromolecular Expression
(ME) at genome-scale. Linear optimization computes steady-state flux solutions to
ME models, but flux values are spread over many orders of magnitude. Data val-
ues also have greatly varying magnitudes. Standard double-precision solvers may
return inaccurate solutions or report that no solution exists. Exact simplex solvers
based on rational arithmetic require a near-optimal warm start to be practical on
large problems (current ME models have 70,000 constraints and variables and will
grow larger). We have developed a quadruple-precision version of our linear and
nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double
and Quad MINOS that achieves reliability and efficiency for ME models and other
challenging problems tested here. DQQ will enable extensive use of large linear
and nonlinear models in systems biology and other applications involving multi-
scale data.

Constraint-Based Reconstruction and Analysis (COBRA) (Palsson, 2006) has
been applied successfully to predict phenotypes for a range of genome-scale bio-
chemical processes. The popularity of COBRA is partly due to the efficiency
of the underlying optimization algorithms, permitting genome-scale modeling
at a particular timescale using readily available open source software (Schellen-
berger et al., 2011; Ebrahim et al., 2013) and industrial quality optimization al-
gorithms (Gurobi optimization system for linear and integer programming 2014; IBM
ILOG CPLEX optimizer 2014; MOSEK Optimization Software 2014). A widespread
application of COBRA is the modeling of steady states in genome-scale Metabolic
models (M models). COBRA has also been used to model steady states in macro-
molecular Expression networks (E models), which stoichiometrically represent the
transcription, translation, post-translational modification and formation of all pro-
tein complexes required for macromolecular biosynthesis and metabolic reaction
catalysis (Thiele et al., 2009; Thiele et al., 2011). COBRA of metabolic networks or
expression networks depends on numerical optimization algorithms to compute
solutions to certain model equations, or to determine that no solution exists. Our

1This essay is co-authored with Laurence Yang, Ronan Fleming, Ines Thiele, Bernhard Palsson,
and Michael Saunders, and published in Scientific Reports.
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purpose is to discuss available options and to demonstrate an approach that is
reliable and efficient for ever larger networks.

Metabolism and macromolecular Expression (ME) models have opened a whole
new vista for predictive mechanistic modeling of cellular processes, but their
size and multiscale nature pose a challenge to standard linear optimization (LO)
solvers based on 16-digit double-precision floating-point arithmetic. Standard LO
solvers usually apply scaling techniques (Fourer, 1982; Tomlin, 1975) to problems
that are not already well scaled. The scaled problem typically solves more effi-
ciently and accurately, but the solver must then unscale the solution, and this
may generate significant primal or dual infeasibilities in the original problem (the
constraints or optimality conditions may not be accurately satisfied).

A lifting approach (Sun et al., 2013) has been implemented to alleviate this diffi-
culty with multiscale problems. Lifting reduces the largest matrix entries by intro-
ducing auxiliary constraints and variables. This approach has permitted standard
(double-precision) LO solvers to find more accurate solutions, even though the
final objective value is still not satisfactory. Another approach to increasing the
precision is to use an exact solver (Dhiflaoui et al., 2003). An exact simplex solver
QSopt_ex (Applegate et al., 2007; Applegate et al., 2008) has been used for a ME
model of Thermotoga maritima (Lerman et al., 2012) (model TMA_ME) represent-
ing a network with about 18,000 metabolites and reactions. The solution time was
about two weeks, compared to a few minutes for a standard double-precision
solver, but the latter’s final objective value had only one correct digit. QSopt_ex
has since been applied to a collection of 98 metabolic models by Chindelvitch et al.
(Chindelevitch et al., 2014) via their MONGOOSE toolbox. Most of the 98 models
have less than 1000 metabolites and reactions. QSopt_ex required about a day to
solve all models (Chindelevitch et al., 2014), compared to a few seconds in total
for a standard solver.

To advance COBRA for increasingly large biochemical networks, solvers that
perform more efficiently than exact solvers and also perform more reliably than
standard LO solvers are definitely needed. Gleixner et al. (Gleixner, Steffy, and
Wolter, 2012; Gleixner, Steffy, and Wolter, May 2015; Gleixner, 2015; Gleixner,
Steffy, and Wolter, 2016) have addressed this need, and Chapter 4 of Gleixner
(2015) is devoted to multiscale metabolic networks, showing significant improve-
ment relative to CPLEX (IBM ILOG CPLEX optimizer 2014). Our work is comple-
mentary and confirms that the simplex solver in the Gleixner et al. references
should be enhanced to employ quadruple-precision computation, as we have done
here.
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We use Single, Double, and Quad to denote the main options for floating-point
arithmetic (with precision around 7, 16, and 34 digits respectively). For many
years, scientific computation has advanced in two complementary ways: improved
algorithms and improved hardware. Compilers have typically evaluated expressions
using the same arithmetic as the variables’ data type. Most scientific codes apply
Double variables and Double arithmetic throughout (16 significant digits stored
in 64-bit words). The floating-point hardware sometimes has slightly extended preci-
sion (80-bit registers). Kahan (Kahan, 2011) notes that early C compilers generated
Double instructions for all floating-point computation even for program variables
stored in single precision. Thus for a brief period, C programs were serendipitously
more reliable than typical Fortran programs of the time. (For Single variables a and
b, Fortran compilers would use Single arithmetic to evaluate the basic expressions
a ± b, a∗b, a/b, whereas C compilers would transfer a and b to longer registers
and operate on them using Double arithmetic.) Most often, the C compiler’s extra
precision was not needed, but occasionally it did make a critical difference. Kahan
calls this the humane approach to debugging complex numerical software. Unfor-
tunately, Quad hardware remains very rare and for the foreseeable future will be
simulated on most machines by much slower software. Nevertheless, we believe
the time has come to produce Quad versions of key sparse-matrix packages and
large-scale optimization solvers for multiscale problems.

Here, we report the development and biological application of Quad MINOS,
a quadruple-precision version of our general-purpose, industrial-strength linear
and nonlinear optimization solver MINOS (Murtagh and Saunders, 1978; Murtagh
and Saunders, 1982). We also developed a Double-Quad-Quad MINOS procedure
(DQQ) that combines the use of Double and Quad solvers in order to achieve a
balance between efficiency in computation and accuracy of the solution. We exten-
sively tested this DQQ procedure on 83 genome-scale metabolic network models
(M models) obtained from the UCSD Systems Biology repository (UCSD Systems
Biology Research Group, 2015; Multiscale Systems Biology Collaboration 2016) and 78

from the BiGG database (King et al., 2016). We also applied DQQ to ME models
of Thermotoga maritima (Lerman et al., 2012) (about 18,000 metabolites and reac-
tions) and E. coli K12 MG1655 (Thiele et al., 2012) (about 70,000 metabolites and
reactions). For M models, we find that Double MINOS alone is sufficient to obtain
non-zero steady-state solutions that satisfy feasiblility and optimality conditions
with a tolerance of 10−7. For ME models, application of our DQQ procedure re-
sulted in non-zero steady-state solutions that satisfy feasibility and optimality con-
ditions with a tolerance of 10−20. The largest ME model required 4.5 hours, mostly
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in step D of DQQ because of conservative runtime options. Qsopt_ex would not
be practical on such a large model unless warm-started at a near-optimal solution.
The SoPlex80bit solver (Wunderling, 1996; SoPlex: The sequential object-oriented sim-
plex solver 2016) has performed very efficiently on large ME models with the help
of rational arithmetic at a near-optimal solution, but had difficulty on some other
challenging problems that DQQ solved accurately (see Gleixner (2015, Ch. 4), prob-
lematic models below, and Supplementary Information).

Thus, we expect our DQQ procedure to be a robust and efficient tool for the in-
creasingly detailed study of biological processes, such as metabolism and macro-
molecular synthesis, and for challenging optimization problems arising in other
scientific fields.

overview. A preliminary version of this work appeared in Ma and Saunders
(2015). Here we name the approach DQQ and report experiments with an anal-
ogous but cheaper DRR procedure based on conventional iterative refinement of
all linear equations arising in the simplex method (see Methods section and Sup-
plementary Information). We also became aware of the work of Gleixner, Steffy,
and Wolter (2012), Gleixner, Steffy, and Wolter (May 2015), Gleixner (2015), and
Gleixner, Steffy, and Wolter (2016) and their thorough and successful implemen-
tation of iterative refinement in SoPlex80bit. However, we learned that DRR may
lose ground during periodic refactorizations of the simplex basis matrix B, if the
current B is nearly singular and “basis repair” becomes necessary. Our DQQ and
DRR experience points to the need for an optional Quad version of the basic
SoPlex solver to ensure maximum reliability of the refinement approach in the
Gleixner et al. references. Meanwhile, DQQ will be effective on a wide range of
problems as long as step D finishes naturally or is limited to a reasonable number
of iterations before steps Q1 and Q2 take over.
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We discuss Double and Quad implementations of MINOS applied to linear opti-
mization (LO) problems of the form

min
v

cTv s.t. Sv = 0, ` ≤ v ≤ u, (20.1)

where S ∈ Rm×n. To achieve reliability and efficiency on multiscale problems, we
developed the following 3-step procedure.

dqq procedure

Step D Apply the Double solver with scaling and somewhat strict runtime options.
Step Q1 Warm-start the Quad solver with scaling and stricter options.
Step Q2 Warm-start the Quad solver with no scaling but stricter options.

DQQ is described further in Algorithm 3, where loop 1 is the primal simplex
method, P is a permutation matrix, and δ1, δ2 are Feasibility and Optimality tol-
erances. MINOS terminates loop 1 when the (possibly scaled) bounds on v are
satisfied to within δ1, and the sign of zj/(1+ ‖y‖∞) is correct to within δ2. Table 27

shows the default runtime options for Double MINOS and preferred options for
each step of DQQ. Scale specifies whether the problem data should be scaled be-
fore the problem is solved (and unscaled afterward). Tolerances δ1, δ2 specify how
well the primal and dual constraints of the (possibly scaled) problem should be
satisfied. Expand frequency controls the MINOS anti-degeneracy procedure (Gill
et al., 1989). The LU tolerances balance stability and sparsity when LU factors of
B are computed and updated.

Steps D and Q1 are usually sufficient, but Q2 costs little more and ensures that
the tolerances δ1 and δ2 apply to the original (unscaled) problem. For conventional
solvers it is reasonable to set δ1 and δ2 to 10−6 or perhaps as small as 10−9. For
Quad MINOS, we set them to 10−15 to be sure of capturing variables vj as small
as O(10−10).

small m models . Of the 98 metabolic network models in the UCSD Systems
Biology repository (UCSD Systems Biology Research Group, 2015), A. Ebrahim
was able to parse 83 models (Ebrahim, 2015a) and compute solutions with a range

98
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Algorithm 3 DQQ procedure
Data: Linear optimization problem (20.1)
Result: Flux vector v∗, basis partition SP = (B N), one of three states: optimal,
infeasible, or unbounded (possible if infinite `j, uj exist)
Step D: use Double MINOS with scaling
repeat

Find a nonsingular basis matrix B from the columns of S so that SP = (B N)
Find v = P(vB, vN) with Sv ≡ BvB + NvN = 0
Partition c accordingly as c = P(cB, cN)
Solve BTy = cB
Set zN ← cN − NTy; τ ← (1 + ‖y‖∞)δ2

until ∀j ∈ N, zj ≤ τ if vj = `j, and zj ≥ −τ if vj = uj (optimal); or fail to find
`− δ1 ≤ v ≤ u + δ1 (infeasible); or fail to find a new B (unbounded)
Step Q1: use Quad MINOS with scaling Start with the saved B from Step D to run
the loop to find a new B
Step Q2: use Quad MINOS without scaling Start with the saved B from Step Q1
to run the loop to reach a final B

Table 27: Runtime options for MINOS in each step of the DQQ procedure.

Default Step D Step Q1 Step Q2

Precision Double Double Quad Quad

Scale Yes Yes Yes No

Feasibility tol δ1 1e-6 1e-7 1e-15 1e-15

Optimality tol δ2 1e-6 1e-7 1e-15 1e-15

Expand frequency 10000 100000 100000 100000

LU Factor tol 100.0 1.9 10.0 5.0

LU Update tol 10.0 1.9 10.0 5.0

of solvers (Ebrahim, 2015b). We constructed MPS files for the 83 models (Multiscale
Systems Biology Collaboration 2016) and solved them via DQQ. Most models have
less than 1000 metabolites and reactions. Almost all models solved in less than
0.08 seconds, and many in less than 0.01 seconds. The total time was less than
3 seconds. In contrast, Chindelevitch et al. (2014) reports that the exact solver
Qsopt_ex needed a day.

large me models . COBRA can be used to stoichiometrically couple metabolic
and macromolecular expression networks with single nucleotide resolution at
genome-scale (Thiele et al., 2012; Lerman et al., 2012). The corresponding Metabolic
and macromolecular Expression models (ME models) explicitly represent cataly-
sis by macromolecules, and in turn, metabolites are substrates in macromolecular
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synthesis reactions. These reconstructions lead to the first multi-timescale and
genome-scale stoichiometric models, as they account for multiple cellular func-
tions operating on widely different timescales and typically account for about
40 percent of a prokaryote’s open reading frames. A typical M model might be
represented by 1000 reactions generated by hand (Feist et al., 2007). In contrast,
ME models can have more than 50,000 reactions, most of which have been gener-
ated algorithmically from template reactions (defined in the literature) and omics
data (Thiele et al., 2012; Lerman et al., 2012). Typical net metabolic reaction rates
are 6 orders of magnitude faster than macromolecular synthesis reaction rates
(millimole/gDW vs nanomole/gDW, gDW = gram dry weight), and the num-
ber of metabolic moieties in a macromolecule can be many orders of magnitude
larger than in a typical metabolite. The combined effect is that the corresponding
ME models have biochemically significant digits over many orders of magnitude.
When Flux Balance Analysis (FBA) is augmented with coupling constraints (Thiele
et al., 2010) that constrain the ratio between catalytic usage of a molecule and
synthesis of the same molecule, the corresponding linear optimization problem
is multiscale in the sense that both data values and solution values have greatly
varying magnitudes. For a typical ME model, input data values (objective, stoi-
chiometric or coupling coefficients, or bounds) differ by 6 orders of magnitude,
and biochemically meaningful solution values can be as large as 108 or as small as
10−10.

The results of DQQ on three large ME models are shown in Tables 28–29, includ-
ing the model dimensions m and n, the number of nonzeros in S, the norms of
the optimal primal and dual variables (v∗, y∗), the iterations and runtime for each
step, the final objective value, and log10 of the primal and dual infeasibilities (Pinf
and Dinf). The constraints in (20.1) are satisfied to within Pinf, and zj/(1+ ‖y∗‖∞)

has the correct sign to within Dinf, where BTy = cB for the optimal basis B, and
z = c− STy.

TMA_ME developed by Lerman et al. (Lerman et al., 2012) has some large en-
tries |Sij| and many small solution values vj that have meaning to systems biol-
ogists. For example, transcription and translation rates can have values O(10−10)

or less, which is much smaller than metabolic reactions. These small values are
linked to large matrix entries arising from building large macromolecules from
smaller constituents (Thiele et al., 2012). The ME part of the model also contains
small |Sij|. For instance, enzyme levels are estimated in ME models by dividing
certain metabolic fluxes by “effective rate constants.” Because these constants are
typically large (e.g., 234,000 h−1), the matrix entries (the inverse of the rate con-
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Table 28: Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift (Ler-
man et al., 2012; Thiele et al., 2012; Sun et al., 2013). Dimensions of m× n con-
straint matrices S, size of the largest optimal primal and dual variables v∗, y∗,
number of iterations and runtimes in seconds for each step, and the total run-
time of each model.

ME model TMA_ME GlcAerWT GlcAlift

m 18210 68300 69529

n 17535 76664 77893

nnz(S) 336302 926357 928815

max |Sij| 2.1e+04 8.0e+05 2.6e+05

‖v∗‖∞ 5.9e+00 6.3e+07 6.3e+07

‖y∗‖∞ 1.1e+00 2.4e+07 2.4e+07

D itns 21026 47718 93857

D time 350.9 10567.8 15913.7

Q1 itns 597 4287 1631

Q1 time 29.0 1958.9 277.3

Q2 itns 0 4 1

Q2 time 5.4 72.1 44.0

Total time 385 12599 16235

stants) become small. In step D, most iterations were needed to find a feasible
solution, with the objective then having the correct order of magnitude (but only
one correct digit). Step Q1 improved the accuracy, and step Q2 provided confir-
mation. Note that the efficiency advantage of our approach is also evident: 385

seconds solve time for DQQ (Total time in Table 28) compared to 2 weeks using
exact arithmetic (Lerman et al., 2012).

Two slightly different versions of this model provided welcome empirical evi-
dence that the optimal objective and solution values do not change significantly
when the problem data are perturbed by O(10−6) (see Supplementary Informa-
tion).

GlcAerWT is a ME model from the study by Thiele et al. (Thiele et al., 2012)
After 33,000 iterations in step D, MINOS began to report singularities following
updates to the basis factors (71 times during the next 15,000 iterations). After
47,718 iterations (D itns in Table 28), step D terminated with maximum primal
and dual infeasibilities O(10−4) and O(1) (Pinf and Dinf in Table 29). These were
small enough to be classified “Optimal”, but we see that the final objective value
−6.7687e+05 had no correct digits compared to −7.0382e+05 in steps Q1 and Q2.
For large models, step Q1 is important. It required significant work: 4,287 itera-
tions costing 1958.9 seconds (Q1 itns and time in Table 28). Step Q2 soon con-
firmed the final objective value. The total time (12,599 seconds ≈ 3.5 hours) is
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Table 29: Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift (Ler-
man et al., 2012; Thiele et al., 2012; Sun et al., 2013). Optimal objective value of
each step, Pinf and Dinf = final maximum primal and dual infeasibilities (log10
values tabulated, except – means 0). Bold figures show the final (step Q2) Pinf
and Dinf.

ME model Step Objective Pinf Dinf

TMA_ME D 8.3789966820e−07 −06 −05

Q1 8.7036315385e−07 −25 −32

Q2 8.7036315385e−07 – −32

GlcAerWT D −6.7687059922e+05 −04 +00

Q1 −7.0382449681e+05 −07 −26

Q2 −7.0382449681e+05 −21 −22

GlcAlift D −5.3319574961e+05 −03 −01

Q1 −7.0434008750e+05 −08 −22

Q2 −7.0434008750e+05 −18 −23

modest compared to an expected time of months for the exact solver approach
of Chindelevitch et al. (2014).

GlcAlift was generated because of difficulties that TMA_ME and GlcAerWT
presented to Double solvers. The lifting technique of Sun et al. (2013) was ap-
plied to GlcAerWT to reduce some of the large matrix values. The aim of lifting
is to remove the need for scaling (and hence magnified errors from unscaling),
but with DQQ we do activate scaling in step D because steps Q1 and Q2 follow.
Our experience is that lifting improves accuracy for Double solvers but substan-
tially increases the simplex iterations. On GlcAlift, Double MINOS again reported
frequent singularities following basis updates (235 times starting near iteration
40,000). It took 93,857 iterations (D itns in Table 28), twice as many as GlcAerWT,
with only a slight improvement in max{Pinf, Dinf} (Table 29). Double MINOS
with scaling on the lifted model couldn’t reach agreement with the final objective
−7.0434008750e+05 in steps Q1 and Q2, and the total solve time increased (4.5
hours), mostly in step D. The objective for both GlcA models is to maximize v60069.
The fact that there are no correct digits in the step D objectives illustrates the chal-
lenge that these models present, but steps Q1 and Q2 are accurate and efficient.
The Q2 objectives for GlcAerWt and GlcAlift should be the same, but limited pre-
cision in the data files could explain why there is just 3-digit agreement.

The Tomlab interface (TOMLAB optimization environment for Matlab 2015) and
CPLEX were used Thiele et al. (2012) to improve the results for standard Dou-
ble solvers. On the NEOS server (NEOS server for optimization 2016), Gurobi was
unable to solve GlcAerWT with default parameters (numeric error after nearly
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600,000 iterations). It performed considerably better on GlcAlift (about 46,000 iter-
ations) but terminated with a warning of unscaled primal/dual residuals 1.07 and
1.22e−06. As shown above, our DQQ procedure saves researchers’ effort on lifting
the model, and is able to solve the original model faster (3.5 hours vs 4.5 hours).

Further tests of the DQQ procedure on challenging LO problems are reported
in Methods. As for the ME models, the simplex method in Double MINOS usu-
ally gives a good starting point for the same simplex method in Quad MINOS.
Hence, much of the work can be performed efficiently with conventional 16-digit
floating-point hardware to obtain near-optimal solutions. For Quad MINOS, 34-
digit floating-point operations are implemented in the compiler’s Quad math li-
brary via software (on today’s machines). Each simplex iteration is therefore con-
siderably slower than with floating-point hardware, but the reward is high accu-
racy. Of interest is that Quad MINOS usually achieves much more accurate solutions
than requested (see bold figures in Table 29). This is a favorable empirical finding.
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Exact solvers compute exact solutions to LO problems involving rational data.
Although stoichiometric coefficients for chemical reactions are in principle inte-
gers, most genome-scale metabolic models have non-integer coefficients where
the stoichiometry is known to only a few digits, e.g., a coefficient in a biomass
reaction. Such a stoichiometric coefficient should not be considered exact data (to
be converted into a rational number for use with an exact solver). This casts doubt
on any effort to compute an exact solution for a particular FBA problem.

Exact solvers employ rational arithmetic, and have been applied to important
problems (Koch, 2004; Applegate et al., 2007; Applegate et al., 2008; Lerman et al.,
2012; Gleixner, Steffy, and Wolter, 2012; Gleixner, Steffy, and Wolter, May 2015;
Gleixner, 2015; Gleixner, Steffy, and Wolter, 2016). Quad precision and variable-
precision floating-point have also been mentioned (Koch, 2004; Applegate et al.,
2007). Here, we exploit Quad precision more fully on a range of larger problems,
knowing that current genome-scale models will continue to grow even larger.

While today’s commercial solvers, including CPLEX, Gurobi, Mosek, and Xpress
(IBM ILOG CPLEX optimizer 2014; MOSEK Optimization Software 2014; Gurobi opti-
mization system for linear and integer programming 2014; FICO Xpress Optimization
Suite 2015), are effective on a wide range of linear and mixed integer optimiza-
tion models, the work of Thiele et al. (2012) calls for greater reliability in solving
FBA and ME models in systems biology. Our DQQ procedure has demonstrated
that warm starts with Quad solvers are efficient, and that the accuracy achieved
exceeds requirements by a very safe margin. Kahan (Kahan, 2011) has noted that
“carrying somewhat more precision in the arithmetic than twice the precision carried in the
data and available for the result will vastly reduce embarrassment due to roundoff-induced
anomalies” and that “default evaluation in Quad is the humane option,” as opposed to
coding specialized tests for each application. The real(16) datatypes in today’s
Fortran compilers provide a humane method for converting existing Double code
to Quad. The float128 datatype in some C++ compilers makes it possible to switch
from Double to Quad at runtime within a single code, making code maintenance
even more humane.

104
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Warm starts are essential for steps Q1 and Q2 of DQQ. Exact simplex solvers can
also be warm-started, as noted by Gleixner et al. (Gleixner, Steffy, and Wolter, May
2015; Gleixner, 2015). We could envisage a DE procedure: Double solver followed
by Exact solver. However, for the GlcA problems in Table 28 (and for the gen
problems in the Mészáros problematic set below), we see that step Q1 performs
a significant number of iterations. Thus, warm-starting an exact solver on large
models may not be practical when the Double solver is not reliable.

Looking ahead, we note that metabolic reconstructions of the form (20.1) may
need to be processed before they can be treated as stoichiometrically consistent
models. As discussed in (Fleming et al., 2016), certain rows of S may need to be
deleted according to the solution ` of the problem max ‖`‖0 s.t. ST̀ = 0, ` ≥ 0.
This problem can be approximated by the linear problem

max
z, `

1Tz

s.t. ST̀ = 0, z ≤ `, 0 ≤ z ≤ 1α, 0 ≤ ` ≤ 1β,
(21.1)

where scalars α, β are proportional to the smallest molecular mass considered non-
zero and the largest molecular mass allowed (e.g., α = 10−4, β = 104). Note that
problem (21.1) involves ST and is larger than the FBA problem (20.1) itself. We
could not design consistent FBA models in this way unless we were sure of being
able to solve (21.1) effectively. Our work here offers assurance of such capability.

We believe that reliable solutions are now readily available for large, multiscale
applications such as FBA and flux variability analysis (FVA) in systems biology
(Palsson, 2006; Orth, Thiele, and Palsson, 2010; Thiele et al., 2012; Gudmunds-
son and Thiele, 2010; Thiele et al., 2010), and that our DQQ procedure will allow
biologists to build increasingly large models to explore metabolism and macro-
molecular synthesis. Combined use of Double and Quad solvers will help other
areas of computational science involving multiscale optimization problems. We
have also treated nonlinear constraints directly with the nonlinear algorithms in
Quad MINOS (Murtagh and Saunders, 1982; Yang et al., 2016).
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multiscale constraint-based modeling . Consider a network of bio-
chemical reactions, represented by a stoichiometric matrix S ∈ Rm×n with each
row and column corresponding to a molecular species and biochemical reaction,
respectively. Sij respresents the stoichiometry of molecular species i participating as
a substrate (negative) or product (positive) in reaction j. The evolution of molecu-
lar species concentrations with respect to time (t) is given by the ordinary differ-
ential equation

dx(t)
dt

= Sv(x(t)), (22.1)

where x(t) ∈ Rm
≥0 is a vector of time-dependent concentrations and v(x(t)) :

Rm
≥0 → Rn is a nonlinear function of concentrations that depends on the kinetic

mechanism of each reaction.
If one assumes that species concentrations are time-invariant, then the set of all

steady-state reaction rates, satisfying Sv(x) = 0, may be approximated by the lin-
ear steady-state constraint Sv = 0, where v ∈ Rn is a vector of reaction fluxes.
Thermodynamic principles and experimental data can also be used to specify
lower and upper bound constraints on reaction fluxes ` ≤ v ≤ u. Biochemical
relationships between the rates of macromolecular synthesis and utilization can
be approximated by coupling of the corresponding reaction fluxes (Thiele et al.,
2010), e.g., pyruvate kinase reaction flux and the synthesis flux of pyruvate kinase
in a ME model (Thiele et al., 2012). Flux coupling can be represented by bounding
the ratio between two reaction fluxes with two coupling coefficients:

σmin ≤
vi

vj
≤ σmax, (22.2)

where vi and vj are a pair of non-negative fluxes. This nonlinear constraint can be
reformulated into a pair of linear coupling constraints

σminvj ≤ vi, vi ≤ σmaxvj, (22.3)
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Table 30: Three pilot models from Netlib (Netlib collection of LP problems in MPS format 1988)
and eight problematic problems from Mészáros (Mészáros, 2004). Dimensions of
m × n constraint matrices S, size of the largest nonzero in S, and norm of the
optimal primal and dual variables v∗, y∗.

model m n nnz(S) max |Sij| ‖v∗‖∞ ‖y∗‖∞

pilot4 411 1000 5145 2.8e+04 9.6e+04 2.7e+02

pilot 1442 3652 43220 1.5e+02 4.1e+03 2.0e+02

pilot87 2031 4883 73804 1.0e+03 2.4e+04 1.1e+01

de063155 853 1488 5405 8.3e+11 3.1e+13 6.2e+04

de063157 937 1488 5551 2.3e+18 2.3e+17 6.2e+04

de080285 937 1488 5471 9.7e+02 1.1e+02 2.6e+01

gen1 770 2560 64621 1.0e+00 3.0e+00 1.0e+00

gen2 1122 3264 84095 1.0e+00 3.3e+00 1.0e+00

gen4 1538 4297 110174 1.0e+00 3.0e+00 1.0e+00

l30 2702 15380 64790 1.8e+00 1.0e+09 4.2e+00

iprob 3002 3001 12000 9.9e+03 3.1e+02 1.1e+00

or more generally a set of linear inequalities Cv ≤ d. In addition to the afore-
mentioned physicochemical and biochemical contraints, one may hypothesize a
biologically motivated objective. For example, in modeling a growing cell, one
may hypothesize that the objective is to maximize the rate of a biomass synthe-
sis reaction. Typically, a biomass synthesis reaction is created with experimentally
determined stoichiometric coefficients, each of which represents the relative com-
position of a cellular biomass constituent. Optimization of a linear combination
of reaction fluxes cTv leads to linear optimization problems: (20.1). Flux balance
analysis of a ME model with coupling constraints results in an ill-scaled instance
of this problem because the stoichiometric coefficients and coupling coefficients
vary over many orders of magnitude.

minos implementation. MINOS (Murtagh and Saunders, 1978; Murtagh
and Saunders, 1982) is a linear and nonlinear optimization solver implemented in
Fortran 77 to solve problems of the form

min
v

cTv + ϕ(v) s.t. ` ≤


v

Sv

f (v)

 ≤ u, (22.4)

where ϕ(v) is a smooth nonlinear function and f (v) is a vector of smooth nonlin-
ear functions (see Supplementary Information).
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Table 31: Iterations and runtimes in seconds for steps D, Q1, Q2 on the problems of Ta-
ble 30. Pinf and Dinf = final maximum primal and dual infeasibilities (log10 val-
ues tabulated, except – means 0). Problem iprob is infeasible. Bold figures show
Pinf and Dinf at the end of step Q2. Note that Pinf/‖v∗‖∞ and Dinf/‖y∗‖∞ are
O(10−30) or smaller, even though only O(10−15) was requested.

model Itns Times Final objective Pinf Dinf

pilot4 1464 0.1 −2.5811392619e+03 −05 −12

7 0.0 −2.5811392589e+03 −52 −31

0 0.0 −2.5811392589e+03 – −29

pilot 16060 9.0 −5.5739887685e+02 −06 −03

29 0.3 −5.5748972928e+02 – −32

0 0.1 −5.5748972928e+02 – −32

pilot87 19340 22.6 3.0171038489e+02 −08 −06

32 0.9 3.0171034733e+02 – −32

0 0.6 3.0171034733e+02 – −33

de063155 973 0.1 1.8968895791e+10 −14 +03

90 0.1 9.8830944565e+09 – −27

0 0.0 9.8830944565e+09 – −24

de063157 1473 0.1 2.6170359397e+12 – +08

286 0.2 2.1528501109e+07 −29 −12

0 0.0 2.1528501109e+07 – −12

de080285 418 0.0 1.4495817688e+01 −09 −02

132 0.1 1.3924732864e+01 −35 −32

0 0.0 1.3924732864e+01 – −32

gen1 303212 156.9 −8.1861282705e−08 −06 −13

216746 3431.2 1.2939275026e−06 −12 −31

8304 112.5 1.2953925804e−06 −46 −31

gen2 45905 60.0 3.2927907833e+00 −04 −12

2192 359.9 3.2927907840e+00 – −29

0 10.4 3.2927907840e+00 – −32

gen4 38111 151.3 −1.2724113149e−07 −07 −12

58118 6420.2 2.8932557999e−06 −12 −31

50 4.3 2.8933064888e−06 −53 −30

l30 1302602 805.6 9.5266141670e−01 −08 −09

500000 6168.8 −4.5793509329e−26 −25 −00

16292 204.4 −6.6656750251e−26 −25 −31

iprob 1087 0.2 2.6891551285e+03 +02 −11

0 0.0 2.6891551285e+03 +02 −30

0 0.0 2.6891551285e+03 +02 −28

further tests of dqq . We report results from the primal simplex solvers
in Double and Quad MINOS on two sets of challenging LO problems shown in
Table 30. As with the M and ME models, we used an Apple iMac with 2.93 GHz
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quad-core Intel i7 and gfortran compiler with -O flag (GNU Fortran 5.2.0). The
input files were in the MPS format of commercial mathematical programming
systems (Input format for LP data 1960) with 12-character fields for data values.

The pilot problems. These are economic models developed by Professor George
Dantzig in the Systems Optimization Laboratory at Stanford University during
the 1980s. They have been used in other computational studies (e.g., Koch (2004))
and are available from Netlib (Netlib collection of LP problems in MPS format 1988).
We use three examples of increasing size: pilot4, pilot, pilot87. In Table 31, three
lines for each problem show the results of steps D, Q1, Q2 of the DQQ procedure.

For pilot, line 1 shows that step D (cold start and scaling) required 16060 itera-
tions and 9 CPU seconds. The unscaled solution v satisfied the constraints in (20.1)
to within O(10−6) and the dual solution y satisfied the optimality conditions to
within O(10−3). Line 2 shows that step Q1 needed only 29 further Quad iterations
and 0.3 seconds to obtain a very accurate solution. Line 3 shows that the “in-
surance” step Q2 with no scaling gave an equally good solution (with maximum
infeasibilities 0.0 and O(10−32)). The final Double and Quad objective values differ
in the 4th significant digit, as suggested by the O(10−3) dual infeasibility in step
D. For pilot4 and pilot87 the results are analogous.

The Mészáros problematic problems. Our DQQ procedure was initially devel-
oped for this set of LO problems collected by Mészáros (2004), who named them
problematic and noted that “modeling mistakes made these problems “crazy,” but they
are excellent examples to test numerical robustness of a solver.” The first two problems
have large entries in S. The step D objective value for de063155 has only 1 digit
of precision, and none for de063157. Nevertheless, the infeasibilities Pinf and Dinf
for steps Q1 and Q2 are small when the solution norms are taken into account.

The gen problems arise from image reconstruction. There are no large entries
in S, v, y, but the primal solutions v are highly degenerate. For gen1, 60% of the
step D and Q1 iterations made no improvement to the objective, and 30% of the
basic variables in the final solution are on their lower bound. Step Q1 gave an
almost feasible initial solution (253 basic variables outside their bounds by more
than 10−15 with a sum of infeasibilities of O(10−8)), yet over 200,000 iterations
were needed to reach optimality. Evidently Quad precision does not remove the
need for a more rigorous anti-degeneracy procedure (such as Wolfe’s method as
advocated by Fletcher, 2014) or steepest-edge pricing (Forrest and Goldfarb, 1992)
to reduce the total number of iterations. Problems gen1 and gen4 show that step
Q2 is sometimes needed to achieve high accuracy.
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Problem l30 behaved similarly (80% degenerate iterations in steps D and Q1).
Since the objective value is essentially zero, we can’t expect the Q1 and Q2 objec-
tives to agree. The Q1 iterations were inadvertently limited to 500,000, but step Q2

did not have much further to go.
Problem iprob is artificial and intended to be feasible with a very ill-conditioned

optimal basis, but the MPS file contained low-precision data such as 0.604 or
0.0422. The Double and Quad runs determine that the problem is infeasible. This
is an example of Quad removing doubt that would inevitably arise with just Dou-
ble.

Table 31 shows that Quad MINOS usually achieves much greater accuracy than
requested (the primal and dual infeasibilities are almost always much smaller
than 10−15). Thus our procedure for handling the problematic problems has seemed
appropriate for the systems biology M and ME models. Like the gen problems, the
ME models showed many degenerate iterations in step D, but fortunately not so
many total iterations in step Q1 (see Table 28). This is important for FVA and for
ME models with nonlinear constraints, which involve multiple warm starts.

ME models (FBA with coupling constraints). In these models, coupling con-
straints are often functions of the organism’s growth rate µ. Thus, O’Brien et al.
(2013) consider growth-rate optimization nonlinearly, with µ entering as the ob-
jective in (20.1) instead of via a linear biomass objective function. Nonlinear con-
straints of the form

vi ≥ µ ∑j vj/keff
i,j (22.5)

are added to (20.1), where vi, vj, µ are all variables, and keff
i,j is an effective rate

constant. If µ is fixed at a specific value µk, the constraints (22.5) become linear.
O’Brien et al. (2013) implemented a binary search on a discrete set of values within
an interval [µmin, µmax] to find the largest µk ≡ µ∗ that keeps the associated linear
problem feasible. The procedure required reliable solution of a sequence of LO
problems.

Flux Variability Analysis (FVA). After FBA (20.1) returns an optimal objective
value cTv∗ = Z0, FVA examines how much a flux vj can vary within the feasible
region without much change to the optimal objective:

min
v
±vj s.t. Sv = 0, cTv ≥ γZ0, l ≤ v ≤ u, (22.6)

where 0 < γ < 1 and γ ≈ 1. Potentially 2n LO problems (22.6) must be solved
if all reactions are of interest. Warm starts are used when j is increased to j + 1
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(Gudmundsson and Thiele, 2010). For such a sequence of problems it would be
simplest to warm-start each problem in Quad, but warm-starting in Double and
then Quad might be more efficient.

conventional iterative refinement. A Double simplex solver would
be more reliable with the help of iterative refinement (Wilkinson, 1965) on each
linear system involving the basis matrix B or its transpose, but we found this
inadequate for the biology models (see DRR procedure in Chapter 23).

the zoom strategy. A step toward warm-starting interior methods for opti-
mization was proposed in Saunders and Tenenblat (2006) to take advantage of the
fact that a low-accuracy solution (x1, y1) for a general problem

min cTx s.t. Ax = b, ` ≤ x ≤ u (22.7)

can be obtained relatively cheaply when an iterative solver for linear systems is
used to compute each search direction. (The iterative solver must work harder as
the interior method approaches a solution.) If (x1, y1) has at least some correct
digits, the primal residual r1 = b− Ax1 will be somewhat small (‖r1‖ = O(1/σ)

for some σ� 1) and the dual residual d1 = c− ATy1 will be comparably small in
the elements associated with the final B. If we define

b2 = σr1, c2 = σd1,

`2 = σ(`− x1), u2 = σ(u− x1),

x = x1 +
1
σ x2, y = y1 +

1
σ y2,

(22.8)

and note that the problem is equivalent to

min cTx− yT
1 (Ax− b) s.t. Ax = b, ` ≤ x ≤ u (22.9)

with dual variable y− y1, we see that x2 solves

min cT
2x2 s.t. Ax2 = b2, `2 ≤ x2 ≤ u2 (22.10)

with dual variable y2. Importantly, with σ chosen carefully we expect (x2, y2) in
this “zoomed in” problem to be of order 1. Hence we can solve the problem with
the same solver as before (as solvers use absolute tolerances and assume that A
and the solution are of order 1). If the computed (x2, y2) has at least some digits
of accuracy, the correction x1 ← x1 +

1
σ x2, y1 ← y1 +

1
σ y2 will be more accurate
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than before. The process can be repeated. With repeated zooms (named refinement
rounds in Gleixner, Steffy, and Wolter (May 2015) and Gleixner (2015)), the resid-
uals (r1, d1) must be computed with increasingly high precision. Subject to the
expense of using rational arithmetic for this purpose, Gleixner, Steffy, and Wolter
(May 2015) gives extensive results for over 1000 challenging problems and shows
that exceptional accuracy can be obtained in reasonable time: only 3 or 4 refine-
ments to achieve 10−50 precision, and less than 20 refinements to achieve 10−250.
SoPlex80bit (Wunderling, 1996; SoPlex: The sequential object-oriented simplex solver
2016) is used for each refinement round with feasibility and optimality tolerances
set to 10−9. In Gleixner, Steffy, and Wolter (May 2015) the authors recognize that
much depends on the robustness of the simplex solver used for the original prob-
lem and each refinement. The potential difficulties are the same as in each step of
our DRR procedure, where Double MINOS is on the brink of failure on the Glc
problems because B is frequently near-singular when it is refactorized every 100

iterations. A practical answer for Gleixner, Steffy, and Wolter (May 2015) is to use
a more accurate floating-point solver such as Quad MINOS or Quad versions of
SoPlex or SNOPT (Gill, Murray, and Saunders, 2005b) for all refinement rounds.

dqq serves the current purpose . In the context of ME models whose
non-integer data is accurate to only 4 or 5 digits, we don’t need 10−50 precision.
Tables 29 and 31 show that our DQQ procedure achieves more accuracy than
necessary on all tested examples. For models where the Double solver is expected
to encounter difficulty, step D can use a reasonable iteration limit. Step Q1 will
perform more of the total work with greatly improved reliability. Step Q2 provides
a small but important improvement at negligible cost, ensuring small residuals for
the original (unscaled) problem.

the need for quad precision. To summarize why a conventional Double
solver may not be adequate for multiscale problems (even with iterative refine-
ment on systems Bp = a and BTy = cB each iteration), we note that the current
basis matrix B must be factorized at regular intervals. If B appears to be nearly
singular, a “basis repair” procedure replaces some columns of B by appropriate
unit vectors (thus making certain slack variables basic). The new B is better con-
ditioned, but the solution obtained after recomputing the basic variables from
BvB + NvN = 0 may have an objective value cTv that is unpredictably less opti-
mal than before. The preceding iterations would make progress, but basis repair



methods 113

allows loss of ground. Basis repair is unlikely to happen if Quad precision is used
for all storage and computation, as it is in steps Q1 and Q2 of DQQ.

data and software availability. Double and Quad Fortran 77 imple-
mentations of MINOS are included within the Cobra toolbox (Schellenberger et
al., 2011; Heirendt et al., 2018). MPS or JSON files for all models discussed are
available from Multiscale Systems Biology Collaboration (2016). Python code for run-
ning Double and Quad MINOS on the BiGG JSON files is also available from
Multiscale Systems Biology Collaboration (2016).
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S U P P L E M E N TA RY I N F O R M AT I O N

23.1 introduction

Figure 9 summarizes our DQQ procedure for achieving reliability and efficiency
for multiscale optimization problems.

Figure 9: Flowchart for the 3-step DQQ procedure.

The previous chapters report application of DQQ to three large ME models
(TMA_ME, GlcAerWT, GlcAlift) and to some other challenging linear optimiza-
tion problems (the pilot economic models and the Mészáros problematic set). Below
we provide the following supplementary information:

• Solution of 78 Metabolic models by Double and Quad MINOS, verifying that
the Double solver gives reliable results.

• Solution of two slightly different forms of the TMA_ME model, showing
robustness of solution values with respect to O(10−6) relative perturbations
of the data.

• Some details of the Double and Quad MINOS implementations.

• Experiments with conventional iterative refinement (DRR procedure).

• Results with Gurobi on the ME models.

• Results with SoPlex80bit on the ME and problematic models.

114
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23.2 metabolic models with quad solvers admit biomass synthesis

COBRA models of metabolic networks assume the existence of at least one steady-
state flux vector that satisfies the imposed constraints and admits a non-zero op-
timal objective. Where the objective is to maximize a biomass synthesis reaction,
the corresponding FBA problem should admit a nonzero biomass synthesis rate.
It is established practice to solve monoscale metabolic FBA problems with Double
solvers, so one may ask: do biomass synthesis predictions from metabolic mod-
els hold when higher precision solvers are applied to the same FBA problem?
We tested 78 M models derived from the BiGG database (King et al., 2016) us-
ing Double and Quad MINOS. We downloaded these models in the JSON format
and parsed them using the JSON reader in cobrapy (Ebrahim et al., 2013). The
models were not modified after loading, so all constraints, bounds, and objective
coefficients were used as in the original files. All models were feasible using both
Double and Quad, and all but five models had an optimal objective value greater
than zero. Of these five models, four simply had all-zero objective coefficients,
while the remaining (RECON1) model maximized a single reaction (S6T14g) but
its optimal value was zero. The maximum difference in objective value between
Double and Quad was 2.6× 10−12. The additional precision provided by Quad
MINOS enabled us to conclude efficiently and effectively that the 78 metabolic
models could be solved reliably using a Double solver. This conclusion is consis-
tent with previous findings by Ebrahim2015

23.3 robustness of solution values for tma_me

TMA_ME (Lerman et al., 2012) was the first ME model that we used for Quad
experiments. The data S, c, `, u came as a Matlab structure with cj = 0, `j = 0,
uj = 1000 for most j, except four variables had smaller upper bounds, the last
variable had moderate positive bounds, and 64 variables were fixed at zero. The
objective was to maximize flux v17533. We output the data to a plain text file. Most
entries of S were integers (represented exactly), but about 5000 Sij values were
of the form 8.037943687315e−01 or 3.488862338191e−06 with 13 significant digits.
The text data was read into Double and Quad versions of a prototype Fortran 90

implementation of SQOPT (Gill, Murray, and Saunders, 2005b).
For the present work, we used the same Matlab data to generate an MPS file

for input into MINOS. Since this is limited to 6 significant digits, the values in the
preceding paragraph were rounded to 8.03794e−01 and 3.48886e−06 and in total
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Table 32: TMA_ME model. Robustness of objective values computed by four high-
accuracy solvers for two slightly different versions of the problem with 13-digit
and 6-digit data (from Matlab and MPS data respectively).

Optimal objective

SoPlex80bit 8.703671403e−07 Matlab data
QSopt_ex 8.703646169e−07 Matlab data
Quad SQOPT 8.703646169e−07 Matlab data
Quad MINOS 8.703631539e−07 MPS data

Table 33: TMA_ME model. Robustness of small solution values vj and wj computed by
Quad MINOS for two slightly different versions (Matlab and MPS data respec-
tively).

j 107 201 302

vj 2.336815e−06 8.703646e−07 1.454536e−11

wj 2.336823e−06 8.703632e−07 1.454540e−11

about 5000 Sij values had O(10−6) relative perturbations of this kind. This was a
fortuitous limitation for the ME models. We have been concerned that such data
perturbations could alter the FBA solution greatly because the final basis matrices
could have condition number as large as 106 or even 1012 (as estimated by LUSOL
(LUSOL) each time SQOPT or MINOS factorizes the current basis B). However, in
comparing Quad SQOPT and Quad MINOS with SoPlex (Wunderling, 1996; So-
Plex: The sequential object-oriented simplex solver 2016) and the exact simplex solver
QSopt_ex (Applegate et al., 2008), we observe in Table 32 that the final objec-
tive values for TMA_ME in Matlab data reported by QSopt_ex and Quad SQOPT
match in every digit. Moreover, the objective value achieved by Quad MINOS on
the perturbed data in MPS format agrees to 5 digits of the results from the exact
solver QSopt_ex on the “accurate" data. These results show the robustness of the
TMA_ME model and our 34-digit Quad solvers.

More importantly, for the most part even small solution values are perturbed in
only the 5th or 6th significant digit. Let v and w be the solutions obtained on
slightly different data. Some example values are given in Table 33. Among all j
for which max(vj, wj) > δ1 = 10−15 (the feasibility tolerance), the largest relative
difference |vj − wj|/ max(vj, wj) was less than 10−5 for all but 31 variables. For 22

of these pairs, either vj or wj was primal or dual degenerate (meaning one of them
was zero and there are alternative solutions with the same objective value). The
remaining 9 variables had vj, wj values shown in Table 34.
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Table 34: TMA_ME model. The values of 9 fluxes vj, wj computed by Quad MINOS for two
slightly different versions of the problem, revealing robustness of all 9 solution
pairs. These values have 1 digit of agreement. Almost all 17535 pairs of values
agree to 5 or more digits.

j vj wj Relative difference

16383 6.07e−07 2.04e−06 0.70

16459 1.71e−06 2.18e−06 0.22

16483 2.47e−06 5.99e−07 0.76

16730 1.44e−06 7.87e−07 0.46

17461 1.71e−06 2.18e−06 0.22

17462 2.47e−06 5.99e−07 0.76

17478 6.07e−07 2.04e−06 0.70

17507 1.44e−06 7.87e−07 0.46

17517 8.70e−07 2.97e−06 0.71

We see that the values are small (the same magnitude as the data perturbation)
but for each of the nine pairs there is about 1 digit of agreement. We could expect
thousands of small solution pairs to differ more, yet for almost all 17535 pairs at
least 5 digits agree.

Although these observations do not prove robustness of FBA models in general
(because we analyzed only one perturbation to one model), they are welcome
empirical evidence that the solutions are not extremely unstable. Quad solvers
can help evaluate the robustness of future (increasingly large) models of metabolic
networks by enabling similar comparison of high-accuracy solutions for slightly
different problems.

23.4 minos implementation

MINOS (Murtagh and Saunders, 1978; Murtagh and Saunders, 1982) is a linear
and nonlinear optimization solver implemented in Fortran 77 to solve problems
of the form

min
v

cTv + ϕ(v) s.t. ` ≤


v

Sv

f (v)

 ≤ u, (23.1)

where ϕ(v) is a smooth nonlinear function and f (v) is a vector of smooth nonlin-
ear functions. The matrix S and the Jacobian of f (v) are assumed to be sparse.
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Let Single/Double/Quad denote the floating-point formats defined in the 2008

IEEE 754 standard (IEEE754) with about 7/16/34 digits of precision, respectively.
Single is not useful in the present context, and Double may not ensure adequate
accuracy for multiscale problems. This is the reason for our work. Since release 4.6
of the GCC C and Fortran compilers (GCC), Quad has been available via the long

double and real(16) data types. Thus, we have made a Quad version of Double
MINOS using the GNU gfortran compiler (GNU Fortran 5.2.0).

On today’s machines, Double is implemented in hardware, while Quad (if avail-
able) is typically implemented in a software library, in this case GCC libquadmath
(GCC-libquadmath).

For Double MINOS, floating-point variables are declared real(8) (≈ 16 digits).
For Quad MINOS, they are real(16) (≈ 34 digits) with the data S, c, `, u stored in
Quad even though they are not known to that precision. This allows operations
such as Sv and STy to be carried out directly on the elements of S and the Quad
vectors v, y. If S were stored in Double, such products would require each entry
Sij to be converted from Double to Quad at runtime (many times).

The primal simplex solver in MINOS includes geometric mean scaling (Fourer,
1982), the EXPAND anti-degeneracy procedure (Gill et al., 1989), and partial pric-
ing (but no steepest-edge pricing, which would generally reduce total iterations
and time). Basis LU factorizations and updates are handled by LUSOL (LUSOL).
Cold starts use a Crash procedure to find a triangular initial basis matrix. Basis
files are used to preserve solutions between runs and to enable warm starts.

Scaling is commonly applied to linear programs to make the scaled data and
solution values closer to 1. Feasibility and optimality tolerances can be chosen
more easily for the scaled problem, and LU factors of the basis matrix are more
likely to be sparse. For geometric mean scaling, several passes are made through
the columns and rows of S to compute a scale factor for each column and row. A
difficulty is that the scaled problem may solve to within specified feasibility and
optimality tolerances, but when the solution is unscaled it may lie significantly
outside the original (unscaled) bounds.

EXPAND tries to accommodate consecutive “degenerate” simplex iterations that
make no improvement to the objective function. The problem bounds are effec-
tively expanded a tiny amount each iteration to permit nonzero improvement.
Convergence is usually achieved but is not theoretically guaranteed (HallMcKinnon2004).
Progress sometimes stalls for long sequences of iterations.

LUSOL bounds the subdiagonals of L when the current basis matrix B is factor-
ized as P1BP2 = LU with some permutations P1, P2. It also bounds off-diagonal
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elements of elementary triangular factors Lj that update L in product form each
simplex iteration. (The diagonals of L and each Lj are implicitly 1.) Maximum
numerical stability would be achieved by setting the LU Factor and Update toler-
ances to be near 1.0, but larger values are typically chosen to balance stability with
sparsity. For safety, we specify 1.9 in step D of DQQ. This value guards against
unstable factorization of the deceptive matrix tridiag(−1 2 1), and improves the
reliability of Double MINOS in the present context.

23.5 conventional iterative refinement

For the biology models, our aim is to satisfy Feasibility and Optimality tolerances
of 10−15 (close to Double precision). It is reasonable to suppose that this could
be achieved within a Double simplex solver by implementing iterative refinement
(Wilkinson, 1965) for every linear system involving the basis matrix B or BT. This
is a more sparing use of Quad precision than our DQQ procedure. For example,
each time the current B is factorized directly (typically a new sparse LU factoriza-
tion every 100 iterations), the constraints Sv = 0 can be satisfied more accurately
by computing the primal residual r = 0− Sv from the current solution v, solving
B∆vB = r, and updating vB ← vB + ∆vB. In general, the new v will not be signifi-
cantly more accurate unless r is computed in Quad. (If B is nearly singular, more
than one refinement may be needed.) Similarly for solving BTy = cB after refactor-
ization, and for two systems of the form Bp = a and BTy = cB each iteration of the
simplex method.

By analogy with DQQ, we implemented the following procedure within a test
version of Double MINOS. Note that “iterative refinement” in steps R1, R2 means
a single refinement for each B or BT system, with residuals −Sv, a− Bp, cB − BTy
computed in Quad as just described.

drr procedure

Step D Apply Double MINOS with scaling and moderately strict runtime options.
Step R1 Warm-start Double MINOS with scaling, stricter options, and iterative
refinement.
Step R2 Warm-start Double MINOS without scaling but with stricter options and
iterative refinement.

Step D is the same as for DQQ (with no refinement). The runtime options for
each step are the same as for DQQ, except in steps R1, R2 the tolerances 1e−15

were relaxed to 1e−9.
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Table 35: DRR procedure on three ME models. Iterations and runtimes in seconds for
step D (Double MINOS with scaling) and steps R1, R2 (Double MINOS with
iterative refinement, with and without scaling). Pinf and Dinf = final maximum
primal and dual infeasibilities (log10 values tabulated). Bold figures show Pinf
and Dinf at the end of step R2. The fourth line for each model shows the correct
objective value (from step Q2 of DQQ).

model Itns Times Final objective Pinf Dinf

TMA_ME 21026 350.9 8.3789966820e−07 −06 −05

422 25.4 8.6990918717e−07 −08 −07

71 0.0 8.7035701805e−07 −10 −10

8.7036315385e−07

GlcAerWT 47718 10567.8 −6.7687059922e+05 −04 +00

907 1442.7 −7.0344344753e+05 −04 −04

157 151.2 −7.0344342883e+05 −10 −02

−7.0382449681e+05

GlcAlift 19340 15913.7 −5.3319574961e+05 −03 −01

447 198.8 −7.0331052509e+05 −03 −03

460 0.6 −7.0330602383e+05 −06 −10

−7.0434008750e+05

In Table 35 we see that this simplified (cheap) form of iterative refinement is
only partially successful, with step R2 achieving only 4, 3, and 2 correct dig-
its in the final objective. For GlcAerWT, steps R1 and R2 encountered frequent
near-singularities in the LU factors of B (requiring excessive refactorizations and
alteration of B), and in step R2, the single refinement could not always achieve
full Double precision accuracy for each system. Additional refinements would im-
prove the final Pinf and Dinf, but would not reduce the excessive factorizations.
We conclude that on the bigger ME problems, a Double solver is on the brink of
failure even with the aid of conventional (Wilkinson-type) iterative refinement of
each system involving B and BT. We conclude that our DQQ procedure is a more
expensive but vitally more robust approach.

23.6 results with neos/gurobi

For large linear models, commercial solvers have reached a high peak of efficiency.
It would be ideal to make use of them to the extent possible. For example, their
Presolve capability allows most of the optimization to be performed on a greatly
reduced form of any typical model.
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Table 36: Performance of Gurobi with default options on three ME models. Note that
“switch to quad” means switch to 80-bit floating-point (not to IEEE Quad preci-
sion). This did not help GLcAerWT. For GlcAlift2, the options were NumericFo-
cus 3, no Presolve, and no scaling.

TMA_ME Presolve 18209× 17535→ 2386× 2925

Optimal Iterations 1703

0.5 secs Objective 9.6318438361e-07

True obj 8.7036315385e-07

GlcAerWT Presolve 68299× 76664→ 18065× 26157

Warning switch to quad (itns ≈ 14000)

Numeric error Iterations 593819

3715 secs Objective 3.2926249e+07

True obj -7.0382449681e+05

GlcAlift Presolve 69528× 77893→ 18063× 26155

Warning switch to quad (itns ≈ 10000)

Optimal Iterations 45947

109 secs Objective -7.043390954e+05

True obj -7.0434008750e+05

Warning unscaled primal/dual residuals:

1.07, 1.22e-06

GlcAlift2

Optimal Iterations 128596

844 secs Objective -7.043415774e+05

True obj -7.0434008750e+05

Warning unscaled primal residual:

1.05e-05
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Table 36 summarizes the performance of Gurobi (Gurobi optimization system for
linear and integer programming 2014) on three large ME models via the NEOS server
(NEOS server for optimization 2016). The first three results used Gurobi’s default
runtime options, including Presolve, Dual simplex, and Scaling (with default Fea-
sibilityTol = OptimalityTol = 1e−6). TMA_ME seemed to solve successfully, but
from the Quad MINOS solution we know that Gurobi’s final objective value has
no correct digits. GlcAerWT failed with “Numeric error” after many expensive it-
erations using 80-bit floating-point. GlcAlift also switched to 80-bit floating-point.
The scaled problem seemed to solve successfully, but unscaling damaged the pri-
mal residual and this casts significant doubt on the final solution. (This is the
reason for our research.)

For GlcAlift2 we specified NumericFocus 3 with no Presolve and no scaling.
These options are appropriate for lifted models (Sun et al., 2013). Gurobi did not
switch to 80-bit arithmetic, yet achieved 5 correct digits in the objective. This helps
confirm the value of the lifting strategy of Sun et al. (2013), and would provide a
good starting point for steps Q1 and Q2 of DQQ. However, DQQ permits us to
solve the original model GlcAerWT directly (without the lifting transformation).

23.7 results with neos/soplex80bit

Table 37 summarizes the performance of SoPlex80bit (SoPlex: The sequential object-
oriented simplex solver 2016) on the three large ME models via NEOS with default
options, except the simplifier and lifting options were turned off to ensure that
SoPlex80bit was iterating on the same problems as MINOS.

SoPlex80bit performed extremely well on all ME models (Table 37). The first
floating-point solves achieved maximum primal and dual feasibilities of order
1e−7 or less, with no sign of scaling or potentially troublesome unscaling, and
three rounds of iterative refinement reduced the infeasibilities to order 1e−44(!).
The optimal objective values agreed to the 11 digits printed by Quad MINOS.
Analogous excellent performance by SoPlex80bit on large ME models is described
by Gleixner (2015, Ch. 4).

On the problematic set (Table 38), SoPlex80bit solved most problems solved ac-
curately, but with some anomalies. On de063157, the first floating-point solve
achieved 5 significant digits in the objective function but with primal and dual
infeasibilities of 4e+2 and 1e+4. The first refinement reduced the latter to 2e+1 and
3e−12, and the second refinement achieved 4e−15 and 3e−12. This should have
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Table 37: Performance of SoPlex80bit on three large ME models (default options except no
simplifier or lifting).

TMA_ME 18209× 17535

Optimal Iterations 19563 (3 refinements)

90.9 secs Objective 8.7036315385e-07

True obj 8.7036315385e-07

GlcAerWT 68299× 76664

Optimal Iterations 86366 (3 refinements)

1059 secs Objective -7.0382449681e+05

True obj -7.0382449681e+05

GlcAlift 69528× 77893

Optimal Iterations 83941 (3 refinements)

889 secs Objective -7.0434008750e+05

True obj -7.0434008750e+05

been acceptable, but a further 100 refinements were conducted (at negligible cost)
before the run was terminated with no final solution available.

On gen2 and gen4, the first floating-point solves were very efficient and accurate
(41 and 82 seconds respectively). Three refinements achieved primal and dual
infeasibilities of order 1e−11 or less. A final rational factorization proved expensive
and accounted for 99% of the total times (6016 and 7132 seconds respectively), but
confirmed optimality.

On l30, the first floating-point solve performed many iterations but achieved
primal and dual infeasibilities of 4e−9 and 1e−10 with objective value −2.5e−11,
which should have been acceptable. The first refinement reported numerical trou-
bles after 2702 iterations. It continued to about 154000 iterations and computed
an unbounded ray. Nearly 4000 refinements followed (each doing no iterations)
before numerical trouble was reported. One final solve performed 3000 iterations
before increasing the Markowitz threshold and terminating with no solution.

Details of this nature will change, but some of them hint at the need for higher
precision in the floating-point solver to facilitate SoPlex’s iterative refinement.

23.8 looking ahead

The large-scale optimizer SNOPT (Gill, Murray, and Saunders, 2005b) is main-
tained as a Fortran 77 solver snopt7 (UCSDsoftware) suitable for step D of the
DQQ procedure. An accompanying Fortran 2003 version snopt9 has also been
developed, for which Double and Quad libraries can be built with only one line



23.8 looking ahead 124

Table 38: Performance of SoPlex80bit on the problematic models (default options except no
simplifier or lifting).

de063155 852× 1488

Optimal Iterations 1766 (3 refinements)

0.3 secs Objective 9.8830944565e+09

True obj 9.8830944565e+09

de063157 936× 1488

Optimal Iterations 3828 before refinement

0.1 secs Objective 2.15277062e+07

True obj 2.1528501109e+07

de080285 936× 1488

Iterations 804 (2 refinements)

0.1 secs Objective 1.3924732864e+01

True obj 1.3924732864e+01

gen1 769× 2560

Iterations 12850 (3 refinements)

186.5 secs Objective 1.2953925804e-06

True obj 1.2953925804e-06

gen2 1121× 3264

Optimal Iterations 12079 (2 refinements)

6016 secs Objective 3.2927907840e+00

True obj 3.2927907840e+00

gen4 1537× 4297

Optimal Iterations 14358 (3 refinements)

7132 secs Objective 2.8933064888e-06

True obj 2.8933064888e-06

l30 2701× 15380

Iterations 3400093 before refinement

11552 secs Objective -2.54658516e-11

True obj -6.6.......e-26

iprob 3001× 3001

Infeasible Iterations 3001 (2 refinements)

0.6 secs Objective 1.0e+100

of source code changed. They are ideal for applying DQQ to future multiscale
linear and nonlinear optimization models, as long as step D can be terminated
early enough when numerical difficulties arise. Quad enhancements to the SoPlex
floating-point solver also promise reliability and extreme accuracy for future chal-
lenging models.
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