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Dedicated to my parents



A B S T R A C T

As the ability to generate datasets with billions of records in relatively automated ways
continues to grow, new challenges are posed to modern large-scale data analysis from
several points of view such as scalability, feasibility, and interpretability. Thus, improved
algorithms on large-scale data platforms are of interest. Recent years have seen great
interest in Randomized Linear Algebra (RLA) algorithms. RLA is an interdisciplinary re-
search area that exploits randomization as a computational resource for the development
of improved algorithms for common matrix problems such as least-squares approxima-
tion, low-rank matrix approximation, and Laplacian-based linear equation solvers. In this
thesis, our focus is on the underlying theory and practical implementation of RLA algo-
rithms. In particular:

chapter 3 describes a novel sampling algorithm for large-scale over-determined quan-
tile regression problems whose running time is roughly proportional to the number
of non-zero elements in the matrix plus a term that depends on the low dimension
only.

chapter 4 describes a hybrid algorithm named pwSGD — precondition weighted stochas-
tic gradient descent that combines RLA and SGD. We prove that pwSGD inherits
faster convergence rates that only depend on the lower dimension of the linear sys-
tem, while maintaining low computational complexity.

chapter 5 describes a class of randomized Newton-type algorithms that exploit non-
uniform sub-sampling as well as inexact updates for a class of constrained opti-
mization problems. We show that our methods are more robust to ill-conditioned
problems than other similar previous approaches.

chapter 6 presents results of implementing RLA algorithms for least-squares problems,
quantile regression, and CX decomposition problems in parallel and distributed en-
vironments using Apache Spark, and discuss various tradeoffs in the implementa-
tions. In particular, we demonstrate that least-squares problems with up to terabyte-
sized data can be solved to low, medium, or high precision on existing distributed
systems.

chapter 7 demonstrates that applying CX/CUR decomposition to large-scale Mass Spec-
trometry Imaging (MSI) datasets returns interpretable results as it successfully iden-
tifies important ions and locations in complex biological samples.

All in all, we show that RLA is a powerful tool for deriving scalable algorithms for large-
scale regression and optimization problems, and we demonstrate that RLA algorithms are
amenable to distributed computing platforms and are useful in scientific applications.
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1I N T R O D U C T I O N

Matrix algorithms lie at the heart of modern data analysis. The essential reason is that
matrices provide a convenient mathematical structure with which to model data arising
in a broad range of applications: an n× d real-valued matrix A provides a natural structure
for encoding information about n objects, each of which is described by d features. For
example, in many internet applications, term-document matrices can be constructed with
Aij indicating the frequency of the j-th term in the i-th document. In genetics, DNA SNP
(Single Nucleotide Polymorphism) or DNA microarray expression data can be represented
in such a framework, with Aij representing the expression level of the i-th gene or SNP in
the j-th experimental condition or individual.

With this handy structure, many data applications can be formulated as matrix prob-
lems. One prototypical example is the least-squares problem. That is, given A ∈ Rn×d and
b ∈ Rn, solve

min
x∈Rd

‖Ax− b‖2.

The solution is the best fit in the least-squares sense: it minimizes the sum of squared
residuals. It can be used to depict the relationship between the response variable, i.e.,
vector b and the observed covariates, i.e., columns of A. Another fundamental matrix
problem is low-rank matrix factorization. Given an m× n data matrix A,1 find two smaller
matrices whose product is a good approximation to A. That is, they aim to find matrices
Y and Z such that

A
m×n
≈ Y

m×k
× Z

k×n

is a rank-k approximation to the original matrix A (k ≤ min(m, n)). Low-rank factor-
izations are often useful in data compression, as smaller matrices can be stored more effi-
ciently. Also, as it is difficult to visualize data sets containing a massive number of rows or
columns, low-rank approximation methods express every data point in a low-dimensional
space defined by only a few features.

However, as the ability to generate datasets with billions of records in relatively au-
tomated ways continues to grow, new challenges are posed to modern large-scale data
analysis. There are three main reasons. First, many traditional matrix algorithms don’t
scale well with the size of the dataset. For example, as a direct solver requires O(nd2)
time to solve the above least-squares problem, it might take three days to solve a large-
scale least-squares problem, e.g., n = 109 and d = 103. Second, with large datasets, it is
often the case that the data cannot fit into the memory on a single machine, then secondary
storage will be necessary, which incurs enormous I/O costs during each pass. However,
most traditional matrix algorithms are designed to run on a single machine and are not
amenable to parallel and distributed computing environments, which are easily accessi-
ble nowadays. Third, as the size of the datasets grows, practitioners are often interested
in matrix decomposition methods that use a few actual columns/rows to reconstruct the
matrix. It is then much easier to interpret the results for domain experts. Thus, improved
algorithms on large-scale data platforms are of interest.

1 Here when talking about matrix factorization, we assume A is an m× n matrix rather than n× d.
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introduction 2

Recent years have seen great interest in Randomized Linear Algebra (RLA) algorithms.
RLA is an interdisciplinary research area that exploits randomization as a computational
resource for the development of improved algorithms for common matrix problems such
as least-squares approximation, low-rank matrix approximation, and Laplacian-based lin-
ear equation solvers.

In this work, our main focus is on the underlying theory and practical implementa-
tion of RLA algorithms for various matrix problems such as `p regression and CX/CUR
decomposition. The contributions can be summarized as follows. In terms of the theory,

chapter 3 describes a novel sampling algorithm for large-scale overdetermined quan-
tile regression problems that runs in time that is nearly linear in the number of
nonzeros in the input data. Quantile regression is a method to estimate the quan-
tiles of the conditional distribution of a response variable, expressed as functions
of observed covariates, which permits a much more accurate portrayal of the rela-
tionship between the response variable and observed covariates. The core of our
algorithm is constructing a subspace-preserving embedding for the loss function of
quantile regression using RLA. The material in this chapter appears in Yang, Meng,
and Mahoney [YMM13; YMM14].

chapter 4 describes a hybrid algorithm named pwSGD — precondition weighted stochas-
tic gradient descent that uses RLA techniques to construct a randomized precondi-
tioner and an importance sampling distribution, and then performs an SGD-like
iterative process with weighted sampling on the preconditioned system for `p re-
gression. Here the randomized preconditioner is constructed using subspace em-
beddings in RLA. We prove that pwSGD inherits faster convergence rates that only
depend on the lower dimension of the linear system, while maintaining low com-
putational complexity. The material in this chapter appears in Yang et al. [Yan+16a;
Yan+16b].

chapter 5 describes a class of randomized Newton-type algorithms that exploit non-
uniform sub-sampling as well as inexact updates to reduce the computational com-
plexity for optimization problems where the objective can be written as F(w) =

∑n
i=1 fi(w) + R(w). Two RLA based data-aware non-uniform sampling techniques,

namely leverage scores sampling and row norm squares sampling, are considered.
We show that these techniques drastically drive down the complexity of Newton’s
algorithm while maintaining a fast convergence rate. We also demonstrate that they
are more robust to the ill-conditioning of the problem both theoretically and empir-
ically. The material in this chapter appears in Xu et al. [Xu+16].

As for the practical side,

chapter 6 presents results of implementing RLA algorithms for overdetermined least-
squares problems, overdetermined quantile regression, and CX/CUR decomposi-
tion problems in parallel and distributed environments using Apache Spark. These
problems are ubiquitous in many fields to which machine learning and data analysis
methods are routinely applied, such as geophysical applications and high-frequency
trading. We show that these algorithms are amenable to distributed computing. In
particular, we demonstrate that least squares problems with up to terabyte-sized
data can be solved to low, medium, or high precision on existing distributed sys-
tems. For CX/CUR decomposition, in order to assess the relative performance on
various hardware, we consider three contemporary platforms. We report results on
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these platforms and their implications on the hardware and software issues arising
in supporting data-centric workloads. The material in this chapter appears in Yang,
Meng, and Mahoney [YMM16; YMM14] and Gittens et al. [Git+16a]

chapter 7 demonstrates that applying CX/CUR decomposition to large-scale Mass Spec-
trometry Imaging (MSI) datasets returns interpretable results as it successfully iden-
tifies biologically important ions and locations in complex biological samples. This
demonstrates the usefulness of RLA algorithms in large-scale scientific applications.
The material in this chapter appears in Yang et al. [Yan+15].

In addition, we present two novel works regarding large-scale kernel learning, which is a
useful tool for exploiting nonlinear patterns in the dataset.

chapter 8 describes Quasi-Monte Carlo feature maps for shift-invariant kernels to accel-
erate training and testing speed of kernel methods on large datasets. This uses Quasi-
Monte Carlo techniques to approximate integral representations of shift-invariant
kernel functions. We derive a new discrepancy measure called box discrepancy based
on theoretical characterizations of the integration error with respect to a given
sequence. Our theoretical analyses are complemented with empirical results that
demonstrate the effectiveness of classical and adaptive QMC techniques for this
problem. The material in this chapter appears in Yang et al. [Yan+14a] and Avron
et al. [Avr+16].

chapter 9 develops a new randomized technique called random Laplace features to
approximate a family of kernel functions adapted to the semigroup structure of
Rd

+. This is the natural algebraic structure on the set of histograms and other non-
negative data representations and thus it finds applications in computer vision. We
provide theoretical results on the uniform convergence of random Laplace features.
Empirical analyses on image classification and surveillance event detection tasks
demonstrate the attractiveness of using random Laplace features. The material in
this chapter appears in Yang et al. [Yan+14b].

The rest of this thesis is organized as follows. In Chapter 2 we provide background and
preliminaries in RLA that are frequently used in the thesis. Following that are the corre-
sponding chapters that contain details of works mentioned above. For better presentation,
we defer all proofs to the appendices.
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In this chapter, we first define the notation used. In section 2.2 we introduce two important
notions in RLA—conditioning and leveraging scores. Three core technical tools, namely
ellipsoidal rounding, low-distortion subspace embedding, and preconditioning, are de-
scribed in Section 2.3. Finally, in Section 2.4 we discuss the application of RLA to two
classical problems—`p regression and low-rank factorization. Overviews of the general
RLA area have been provided in [Mah11; DM16].

2.1 notation

• Uppercase letters denote matrices and constants: e.g., A, R, C, etc.

• Lowercase letters denote vectors and scalars: e.g., x, b, p, m, n, etc.

• For any matrix A, A(i), A(j), and Aij denote the i-th row, the j-th column of A, and
the (i, j)-th element of A; and A denotes the column space of A.

• As long as it is clear in the text, we use xi to denote either the i-th coordinate of x or
the i-th vector in a sequence of vectors {xi}n

i=1.

• We use ‖ · ‖p to denote the `p norm of a vector, ‖ · ‖2 the spectral norm of a matrix,
‖ · ‖F the Frobenius norm of a matrix, and | · |p the element-wise `p norm of a matrix.

• We use [n] to denote the set {1, 2, . . . , n}.

• We use nnz(A) to denote the number of nonzero elements in A.

• We use poly(d) to denote a polynomial in d of low degree, e.g., 7.

• We use A† to denote the Moore-Penrose pseudoinverse of A.

2.2 conditioning and leverage scores

Leveraging and conditioning refer to two types of problem-specific complexity measures,
i.e., quantities that can be computed for any problem instance that characterize how diffi-
cult the problem instance is for a particular class of algorithms. Understanding these, as
well as different uses of randomization in algorithm design, is important for designing
RLA algorithms, in theory and in practice.

2.2.1 Leverage scores

If we let H = A(AT A)† AT be the projection matrix onto the column span of A, then
leverage scores of A are defined as the diagonal elements of H. Formally, we have the
following definition.

5



2.2 conditioning and leverage scores 6

Definition 2.1 (Leverage scores). Given A ∈ Rn×d, then for i = 1, . . . , n, the i-th statistical
leverage score of A is defined as

`i = AT
(i)(AT A)† A(i).

Since H can alternatively be expressed as H = UUT , where U is any orthogonal basis
for the column space of A, e.g., the Q matrix from a QR decomposition or the matrix of
left singular vectors from the thin SVD, the leverage of the i-th observation can also be
expressed as

hii =
n

∑
j=1

U2
ij = ‖U(i)‖2. (2.1)

Leverage scores provide a notion of “coherence” or “outlierness,” in that they measure
how well-correlated the singular vectors are with the canonical basis [MD09; Dri+12;
CR12] as well as which rows/constraints have largest “influence” on the least-squares
fit [HW78; CH86; VW81; CH88]. Computing the leverage scores {hii}n

i=1 exactly is gener-
ally as hard as solving the original LS problem, but 1± ε approximations to them can be
computed more quickly, for arbitrary input matrices [Dri+12].

Leverage scores are important from an algorithm design perspective because they de-
fine the key non-uniformity structure needed to control the complexity of high-quality
random sampling algorithms. In particular, naïve uniform random sampling algorithms
perform poorly when the leverage scores are very non-uniform, while randomly sampling
in a manner that depends on the leverage scores leads to high-quality solutions. Thus, in
designing RLA algorithms, whether in RAM or in parallel-distributed environments, one
must either quickly compute approximations to the leverage scores or quickly prepro-
cess the input matrix so they are nearly uniformized—in which case uniform random
sampling on the preprocessed matrix performs well.

Informally, the leverage scores characterize where in the high-dimensional Euclidean
space the (singular value) information in A is being sent, i.e., how the quadratic well
(with aspect ratio κ(A) that is implicitly defined by the matrix A) “sits” with respect to the
canonical axes of the high-dimensional Euclidean space. If one is interested in obtaining
low-precision solutions for least-squares problems, e.g., ε = 10−1, that can be obtained by
an algorithm that provides 1± ε relative-error approximations for a fixed value of ε but
whose ε dependence is polynomial in 1/ε, then the key quantities that must be dealt with
are statistical leverage scores of the input data.

2.2.2 `p-norm condition number

If we let σmax(A) and σmin(A) denote the largest and smallest nonzero singular values
of A, respectively, then κ(A) = σmax(A)/σ+

min(A) is the `2-norm condition number of
A which is formally defined in Definition 2.2. Computing κ(A) exactly is generally as
hard as solving a least-square problem. The condition number κ(A) is important from
an algorithm design perspective because κ(A) defines the key non-uniformity structure
needed to control the complexity of high-precision iterative algorithms, i.e., it bounds
the number of iterations needed for iterative methods to converge. In particular, for ill-
conditioned problems, e.g., if κ(A) ≈ 106 � 1, then the convergence speed of iterative
methods is very slow, while if κ & 1 then iterative algorithms converge very quickly.
Informally, κ(A) defines the aspect ratio of the quadratic well implicitly defined by A
in the high-dimensional Euclidean space. If one is interested in obtaining high-precision
solutions for least-squares problems, e.g., ε = 10−10, that can be obtained by iterating
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a low-precision solution to high precision with an iterative algorithm that converges as
log(1/ε), then the key quantity that must be dealt with is the condition number of the
input data.

For linear systems and least-squares problems, the `2-norm condition number is already
a well-established term.

Definition 2.2 (`2-norm condition number). Given a matrix A ∈ Rn×d with full column rank,
let σmax

2 (A) be the largest singular value and σmin
2 (A) be the smallest singular value of A. The

`2-norm condition number of A is defined as κ2(A) = σmax
2 (A)/σmin

2 (A). For simplicity, we
use κ2 (or κ), σmin

2 , and σmax
2 when the underlying matrix is clear from context.

For general `p norm and general `p regression problems, here we state two related notions
of condition number and then a lemma that characterizes the relationship between them.

Definition 2.3 (`p-norm condition number [Cla+13]). Given a matrix A ∈ Rn×d and p ∈
[1, ∞], let

σmax
p (A) = max

‖x‖2=1
‖Ax‖p and σmin

p (A) = min
‖x‖2=1

‖Ax‖p.

Then, we denote by κp(A) the `p-norm condition number of A, defined to be

κp(A) = σmax
p (A)/σmin

p (A).

For simplicity, we use κp, σmin
p , and σmax

p when the underlying matrix is clear.

Definition 2.4 ((α, β, p)-conditioning [Das+09]). Given a matrix A ∈ Rn×d and p ∈ [1, ∞],
let ‖ · ‖q be the dual norm of ‖ · ‖p. Then A is (α, β, p)-conditioned if (1) |A|p ≤ α, and (2) for
all z ∈ Rn, ‖z‖q ≤ β‖Az‖p. Define κ̄p(A), the (α, β, p)-condition number of A, as the minimum
value of αβ such that A is (α, β, p)-conditioned. We use κ̄p for simplicity if the underlying matrix
is clear.

Lemma 2.5 (Equivalence of κp and κ̄p [Cla+13]). Given a matrix A ∈ Rn×d and p ∈ [1, ∞],
we always have

d−|1/2−1/p|κp(A) ≤ κ̄p(A) ≤ dmax{1/2,1/p}κp(A).

That is, by Lemma 2.5, if n � d, then the notions of condition number provided by
Definition 2.3 and Definition 2.4 are equivalent, up to low-dimensional factors. These low-
dimensional factors typically do not matter in theoretical formulations of the problem, but
they can matter in practical implementations.

The `p-norm condition number of a matrix can be arbitrarily large. Given the equiva-
lence established by Lemma 2.5, we say that a matrix A is well-conditioned in the `p norm
if κp or κ̄p = O(poly(d)), independent of the high dimension n. We see in the follow-
ing sections that the condition number plays a very important part in the design of RLA
algorithms.

2.3 rounding , embedding and preconditioning

Ellipsoidal rounding, low-distortion subspace embedding and preconditioning are three
core technical tools underlying RLA algorithms. In this section, we describe in detail how
these methods are used. For p = 2, a preconditioner R can be computed in O(nd2) time as
the “R” matrix from a QR decomposition, although it is of interest to compute other such
preconditioners R that are nearly as good more quickly; and for p = 1 and other values of
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p, it is of interest to compute a preconditioner R in time that is linear in n and low-degree
polynomial in d. In this section, we discuss these and related issues. The algorithms fall
into two general families: ellipsoidal rounding (Section 2.3.1) and subspace embedding
(Section 2.3.2). We discuss practical tradeoffs in Section 6.1.

Throughout the rest of this section, we assume n ≥ d. Many algorithms are only mean-
ingful when n ≥ poly(d). Here, the degree of poly(d) depends on the underlying algo-
rithm, and may range from O(d) to O(d7).

2.3.1 Ellipsoidal rounding and fast ellipsoid rounding

In this subsection, we describe ellipsoidal rounding methods. In particular, we are interested
in the ellipsoidal rounding of a centrally symmetric convex set and its application to `p-
norm preconditioning. We start with a definition.

Definition 2.6 (Ellipsoidal rounding). Let C ⊆ Rd be a convex set that is full-dimensional,
closed, bounded, and centrally symmetric with respect to the origin. An ellipsoid E(0, E) = {x ∈
Rd | ‖Ex‖2 ≤ 1} is a κ-rounding of C if it satisfies E/κ ⊆ C ⊆ E , for some κ ≥ 1, where E/κ
means shrinking E by a factor of 1/κ.

The `p-norm condition number κp naturally connects to ellipsoidal rounding. To see
this, let C = {x ∈ Rd | ‖Ax‖p ≤ 1} and assume that we have a κ-rounding of C: E =
{x | ‖Rx‖2 ≤ 1}. This implies

‖Rx‖2 ≤ ‖Ax‖p ≤ κ‖Rx‖2, ∀x ∈ Rd.

If we let y = Rx, then we get

‖y‖2 ≤ ‖AR−1y‖p ≤ κ‖y‖2, ∀y ∈ Rd.

Therefore, we have κp(AR−1) ≤ κ. So a κ-rounding of C leads to a κ-preconditioning of
A.

Recall the well-known result due to John [Joh48] that for a centrally symmetric convex
set C there exists a d1/2-rounding. It is known that this result is sharp and that such round-
ing is given by the Löwner-John (LJ) ellipsoid of C, i.e., the minimal-volume ellipsoid con-
taining C. Unfortunately, finding a d1/2-rounding is a hard problem. No constant-factor
approximation in polynomial time is known for general centrally symmetric convex sets,
and hardness results have been shown [Lov86].

To state algorithmic results, suppose that C is described by a separation oracle and that
we are provided an ellipsoid E0 that gives an L-rounding for some L ≥ 1. In this case,
we can find a (d(d + 1))1/2-rounding in polynomial time, in particular, in O(d4 log L)
calls to the oracle; see Lovasz [Lov86, Theorem 2.4.1]. This algorithmic result was used
by Clarkson [Cla05] and then by Dasgupta et al. [Das+09] for `p regression. Note that,
in the works mentioned above, only O(d)-rounding is actually needed, instead of (d(d +
1))1/2-rounding.

Recent work has focused on constructing ellipsoidal rounding methods that are much
faster than these more classical techniques but that lead to only slight degradation in
preconditioning quality. See Table 1 for a summary of these results. In particular, Clarkson
et al. [Cla+13] followed the same construction as in the proof of Lovasz [Lov86] but show
that it is much faster (O(d2 log L) calls to the oracle) to find a (slightly worse) 2d-rounding
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Table 1: Summary of several ellipsoidal rounding for `p conditioning. Above, the ∗ superscript de-
notes that the oracles are described and called through a smaller matrix with size n/d by
d.

κ time # passes # calls to oracle

ER [Cla05; Das+09] (d(d + 1))1/2 O(nd5 log n) d3 log n O(d4 log n)

Fast ER [Cla+13] 2d O(nd3 log n) d log n O(d2 log n)

Single-pass ER [MM13b] 2d|2/p−1|+1 O(nd2 log n) 1 O(d2 log n)∗

of a centrally symmetric convex set in Rd that is described by a separation oracle. When
it is applied to `p conditioning, the result as summarized below.

Lemma 2.7 (Fast ellipsoidal rounding [Cla+13]). Given a matrix A ∈ Rn×d with full column
rank, it takes at most O(nd3 log n) time to find a matrix R ∈ Rd×d such that κp(AR−1) ≤ 2d.

Unfortunately, even this improvement for computing a 2d-conditioning is not imme-
diately applicable to very large matrices. The reason is that such matrices are usually
distributively stored on secondary storage and each call to the oracle requires a pass
through the data. We could group d calls together within a single pass, but this would
still need O(d log n) passes. Instead, Meng and Mahoney [MM13b] presented a determin-
istic single-pass conditioning algorithm that balances the cost-performance trade-off to
provide a 2d|2/p−1|+1-conditioning of A [MM13b]. This algorithm essentially invokes the
fast ellipsoidal rounding method (Lemma 2.7) on a smaller problem that is constructed
via a single-pass on the original dataset. Their main algorithm is stated in Algorithm 1,
and the main result for Algorithm 1 is the following.

Lemma 2.8 (One-pass conditioning [MM13b]). Algorithm 1 is a 2d|2/p−1|+1-conditioning
algorithm, and it runs in O((nd2 + d4) log n) time. It needs to compute a 2d-rounding on a
problem of size n/d by d, which needs O(d2 log n) calls to the separation oracle on the smaller
problem.

2.3.2 Low-distortion subspace embedding and subspace-preserving embedding

In this subsection, we describe in detail subspace embedding methods. Subspace embedding
methods were first used in RLA by Drineas, Mahoney, and Muthukrishnan [DMM06]
in their relative-error approximation algorithm for `2 regression; they were first used in
a data-oblivious manner in RLA by Sarlós [Sar06]; and an overview of data-oblivious
subspace embedding methods as used in RLA has been provided by Woodruff [Woo14].
Before getting into the details of these methods, we first provide some background and
definitions.

Let us denote by A ⊂ Rn the subspace spanned by the columns of A. A subspace
embedding of A into Rs with s > 0 is a structure-preserving mapping φ : A ↪→ Rs,
where the meaning of “structure-preserving” varies depending on the application. Here,
we are interested in low-distortion linear embeddings of the normed vector space Ap =
(A, ‖ · ‖p), the subspace A paired with the `p norm ‖ · ‖p. We start with the following
definition.
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Algorithm 1 Single-pass conditioning algorithm

1: Input: A ∈ Rn×d with full column rank and p ∈ [1, ∞].
2: Output: A nonsingular matrix E ∈ Rd×d such that

‖y‖2 ≤ ‖AEy‖p ≤ 2d|2/p−1|+1‖y‖2, ∀y ∈ Rd.

3: Partition A along its rows into sub-matrices of size d2 × d, denoted by A1, . . . , AM.
4: For each Ai, compute its economy-sized SVD: Ai = UiΣiVT

i .
5: Let Ãi = ΣiVT

i for i = 1, . . . , M,

C̃ =

x ∈ Rd

∣∣∣∣∣∣
(

M

∑
i=1
‖Ãix‖

p
2

)1/p

≤ 1

 , and Ã =


Ã1
...

ÃM

 .

6: Compute the SVD Ã = ŨΣ̃ṼT .
7: Let E0 = E(0, E0), where E0 = dmax{1/p−1/2,0}ṼΣ̃−1.
8: Compute an ellipsoid E = E(0, E) that gives a 2d-rounding of C̃ starting from E0 that

gives an (Md2)|1/p−1/2|-rounding of C̃.
9: Return dmin{1/p−1/2,0}E.

Definition 2.9 (Low-distortion `p subspace embedding). Given a matrix A ∈ Rn×d and
p ∈ [1, ∞], Φ ∈ Rs×n is an embedding of Ap if s = O(poly(d)), independent of n, and there
exist σΦ > 0 and κΦ > 0 such that

σΦ · ‖y‖p ≤ ‖Φy‖p ≤ κΦσΦ · ‖y‖p, ∀y ∈ Ap. (2.2)

We call Φ a low-distortion subspace embedding of Ap if the distortion of the embedding κΦ =
O(poly(d)), independent of n.

Given a low-distortion embedding matrix Φ of Ap with distortion κΦ, let R be the “R”
matrix from the QR decomposition of ΦA. Then, the matrix AR−1 is well-conditioned in
the `p norm. To see this, note that

‖AR−1x‖p ≤ ‖ΦAR−1x‖p/σΦ ≤ smax{0,1/p−1/2} · ‖ΦAR−1‖2 · ‖x‖2/σΦ

= smax{0,1/p−1/2} · ‖x‖2/σΦ, ∀x ∈ Rd,

where the first inequality is due to low distortion and the second inequality is due to the
equivalence of vector norms. By similar arguments, we can show that

‖AR−1x‖p ≥ ‖ΦAR−1‖p/(σΦκΦ) ≥ smin{0,1/p−1/2} · ‖ΦAR−1x‖2/(σΦκΦ)

= σΦsmin{0,1/p−1/2} · ‖x‖2/(σΦκΦ), ∀x ∈ Rd.

By combining these results, we have

κp(AR−1) ≤ κΦs|1/p−1/2| = O(poly(d)), (2.3)
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Table 2: Summary of `1 and `2 norm conditioning methods. QR and ER refer to methods based
on the QR factorization and Ellipsoid Rounding, as discussed in the text. QR_small and
ER_small denote the running time for applying QR factorization and Ellipsoid Rounding,
respectively, on a small matrix with size independent of n.
norm name κp running time type reference

`1

Ellipsoidal Rounding (d(d + 1))1/2 O(nd5 log n) ER [Cla05]

Fast ER 2d O(nd3 log n) ER [Cla+13]

Single-pass ER 2d2 O(nd2 log n) ER [MM13b]

Dense Cauchy O(d3/2 log3/2 d) O(nd2 log d + d3 log d) QR [SW11]

Fast Cauchy O(d9/2 log9/2 d) O(nd log d + d3 log d) QR [Cla+13]

Sparse Cauchy O(d11/2 log11/2 d) O(nnz(A) + d7 log5 d) QR [MM13b]

SPCT2 6d O(nnz(A) log n + d7 log5 d) + ER_small QR+ER [MM13b]

SPCT3 O(d15/4 log11/4 d) O(nnz(A) log n + d7 log5 d) + QR_small QR+QR [YMM14]

Reciprocal exponential O(d5/2 log5/2 d) O(nnz(A) + d3 log d) QR [WZ13]

Lewis weights O(d
1
2 log

1
2 d) O(nnz(A) · log n + d3 log d) QR [CP15]

`2

Gaussian O(1) O(nd2) QR [DS01]

SRHT O(1) O(nd log n + d3 log n log d) QR [Tro11]

Sparse embedding O(1) O(nnz(A) + d4) QR [CW13a]

Improved sparse embedding O(1) O(nnz(A) log d + d3 log d) QR [Coh16]

Refinement sampling O(1) O(nnz(A) log(n/d) log d + d3 log(n/d) log d) QR [Coh+15]

i.e., the matrix AR−1 is well-conditioned in the `p norm. We call a conditioning method that
is obtained via the QR factorization of a low-distortion embedding a QR-type method; and we call
a conditioning method that is obtained via an ellipsoid rounding of a low-distortion embedding an
ER-type method.

Furthermore, one can construct a well-conditioned basis by combining QR-like and ER-
like methods. To see this, let R be the matrix obtained by applying the fast ellipsoidal
rounding method (Lemma 2.7) to ΦA. We have

‖AR−1x‖p ≤ ‖ΦAR−1x‖p/σΦ ≤ 2d|x‖2/σΦ, ∀x ∈ Rd,

where the second inequality is due to the ellipsoidal rounding result, and

‖AR−1x‖p ≥ ‖ΦAR−1x‖p/(σΦκΦ) ≥ ‖x‖2/(σΦκΦ), ∀x ∈ Rd.

Hence
κp(AR−1) ≤ 2dκΦ = O(poly(d))

and AR−1 is well-conditioned. Following our previous conventions, we call this combined type
of conditioning method a QR+ER-type method.

In Table 2, we summarize several different types of conditioning methods for `1 and `2
conditioning. Comparing the QR-type approach and the ER-type approach to obtaining
the preconditioner matrix R, we see there are trade-offs between running times and con-
ditioning quality. Performing the QR decomposition takes O(sd2) time [GVL96], which
is faster than fast ellipsoidal rounding, which takes O(sd3 log s) time. However, the lat-
ter approach might provide a better conditioning quality when 2d < s|1/p−1/2|. We note
that those trade-offs are not important in most theoretical formulations, as long as both
take O(poly(d)) time and provide O(poly(d)) conditioning, independent of n, but they
certainly do affect the performance in practice.

A special family of low-distortion subspace embedding that has very low distortion
factor is called subspace-preserving embedding.
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Definition 2.10 (Subspace-preserving embedding). Given a matrix A ∈ Rn×d, p ∈ [1, ∞]
and ε ∈ (0, 1), Φ ∈ Rs×n is a subspace-preserving embedding of Ap if s = O(poly(d)), indepen-
dent of n, and

(1− ε) · ‖y‖p ≤ ‖Φy‖p ≤ (1 + ε) · ‖y‖p, ∀y ∈ Ap.

Based on the properties of the subspace embedding methods, we present them in the
following four categories; namely, data-oblivious subspace embedding methods for `2 and
`1 norms, respectively; and data-aware subspace embedding methods for `2 and `1 norms,
respectively.

2.3.2.1 Data-oblivious low-distortion `2 subspace embeddings

An `2 subspace embedding is distinct from but closely related to the Johnson-Lindenstrauss
transform (JLT) provided by the following lemma.

Lemma 2.11 (Johnson-Lindenstrauss lemma [JL84]). Given ε ∈ (0, 1), a point set X of N
points in Rd, there is a linear map φ : Rd ↪→ Rs with s = C log N/ε2, where C > 0 is a global
constant, such that

(1− ε)‖x− y‖2 ≤ ‖φ(x)− φ(y)‖2 ≤ (1 + ε)‖x− y‖2, ∀x, y ∈ X .

We say a mapping has the J-L property if it satisfies the above condition with a constant probability.

Indyk and Motwani [IM98] showed that a matrix whose entries are independent random
variables drawn from the standard normal distribution scaled by s−1/2 also satisfies the
J-L property. Later, Achlioptas [Ach01] showed that the random normal variables can be
replaced by random signs, and moreover, we can zero out approximately 2/3 of the entries
with proper scaling, while still maintaining the J-L property. The latter approach allows
faster construction and projection with less storage, although still at the same order as
the random normal projection. By using an ε-net argument and triangle inequality, Sarlós
[Sar06] showed that a J-L transform can also aafvectors in Rn, with embedding dimension
O(d log(d/ε)/ε2).

It is important to note, however, that for some J-L transforms we are able to obtain
more refined results. In particular, these can be obtained by bounding the spectral norm
of (ΦU)T(ΦU)− I, where U is an orthonormal basis of A2. If ‖(ΦU)T(ΦU)− I‖ ≤ ε, for
any x ∈ A2, we have

|‖Φx‖2
2 − ‖x‖2

2| = |zT((ΦU)T(ΦU)− I)z| ≤ ε‖z‖2
2 = ε‖x‖2

2,

where z = Ux with ‖z‖2 = ‖x‖2.
We show some results following this approach. First consider the a random normal

matrix. Using concentration result on its extreme singular values by Davidson and Szarek
[DS01], we have the following result.

Lemma 2.12. Given a d-dimensional subspace A2 ⊂ Rn and ε, δ ∈ (0, 1), let G ∈ Rs×n be
a random matrix whose entries are independently drawn from the standard normal distribution.
There exist s = O((

√
d + log(1/δ))2/ε2) such that, with probability at least 1− δ, we have

(1− ε)‖x‖2 ≤ ‖s−1/2Gx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A2.

Dense J-L transforms, e.g., a random normal projection and its variants, are “slow” in
the sense that they use a matrix-vector multiplication for the embedding. Given a matrix
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A ∈ Rn×d, computing Ã = ΦA takes O(nnz(A) · s) time when Φ is a dense matrix of size
s× n and nnz(A) is the number of non-zero elements in A. There is also a line of research
work on “fast” J-L transforms (FJLT) that started with [AC06; AC09]. These approaches
use FFT-like algorithms for the embedding, and thus they lead to O(n log n) time for
each projection. Hence, computing Ã = ΦA takes O(nd log n) time when Φ is a fast J-L
transform. Their construction was further simplified by Ailon and Liberty [AL09; AL11].

A subsequently-refined FJLT was analyzed by Tropp [Tro11], and it is named the sub-
sampled randomized Hadamard transform (SRHT). An SRHT is a product of three ma-
trices Φ =

√
n/sRHD ∈ Rs×n, where D ∈ Rn×n is a diagonal matrix whose entries are

independent random signs; H ∈ Rn×n is a Walsh-Hadamard matrix scaled by n−1/2; and
R ∈ Rs×n restricts an n-dimensional vector to s coordinates, chosen uniformly at random.
As with other FJLT methods, the SRHT preserves the geometry of an entire `2 subspace
of vectors by using a matrix Chernoff inequality to bound ‖(ΦU)T(ΦU)− I‖2. Below we
present the main results for SRHT from [Dri+12] because it has a better characterization
of the subspace-preserving properties. We note that its proof is essentially a combination
of the results in [Tro11; Dri+11].

Lemma 2.13 (Subsampled randomized Hadamard transform (SRHT) [Tro11; Dri+11]).
Given an d-dimensional subspace A2 ⊂ Rn and ε, δ ∈ (0, 1), let Φ ∈ Rs×n be a random SRHT

with embedding dimension s ≥ 142d ln(40nd)
ε2 ln

(
302d ln(40nd)

ε2

)
. Then, with probability at least 0.9,

we have
(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A2.

An important point to keep in mind (in particular, for parallel and distributed applica-
tions) is that, although called “fast,” a fast transform might be slower than a dense trans-
form: when nnz(A) = O(n) (since machines are optimized for matrix-vector multiplies);
when A’s columns are distributively stored (since this slows down FFT-like algorithms,
due to communication issues); or for other machine-related issues.

More recently, Clarkson and Woodruff [CW13a] developed an algorithm for the `2 sub-
space embedding that runs in so-called input-sparsity time, i.e., in O(nnz(A)) time, plus
lower-order terms that depend polynomially on the low dimension of the input. Their
construction is exactly the CountSketch matrix in the data stream literature [CCFC02],
which is an extremely simple and sparse matrix. It can be written as the product of two
matrices Φ = SD ∈ Rs×n, where S ∈ Rs×n has each column chosen independently and
uniformly from the s standard basis vectors of Rs and D ∈ Rn×n is a diagonal matrix
with diagonal entries chosen independently and uniformly from ±1. Improved bounds
and simpler proofs (that have much more linear algebraic flavor) were subsequently pro-
vided by Meng and Mahoney [MM13a] and Nelson and Nguyen [NN13]. Moreover, Co-
hen [Coh16] considered a more general class of embedding by controlling the sparsity of
the embedding matrix and obtained better distortion quality. Below, we present the main
results from [CW13a; MM13a; NN13].

Lemma 2.14 (Sparse embedding for `2 [CW13a; MM13a; NN13]). Given an d-dimensional
subspace A2 ⊂ Rn and any δ ∈ (0, 1), let s = (d2 + d)/(ε2δ). Then, with probability at least
1− δ,

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A2,

where Φ ∈ Rs×n is the CountSketch matrix described above.
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To summarize, in Table 3 we provide a summary of the basic properties of several data-
oblivious `2 subspace embeddings discussed here (as well as of several data-aware `2
subspace-preserving embeddings discussed below).

Table 3: Summary of data-oblivious and data-aware `2 embeddings. Above, s denotes the embed-
ding dimension. By running time, we mean the time needed to compute ΦA. For each
method, we set the failure rate to be a constant. Moreover, “Exact lev. scores sampling”
means sampling algorithm based on using the exact leverage scores (as importance sam-
pling probabilities); and “Appr. lev. scores sampling” is the sampling algorithm based on
approximate leverage scores estimated by using sparse embedding (using the algorithm
of [Dri+12]) as the underlying random projection.

name running time s κΦ reference

Gaussian O(nds) O(d/ε2) 1 + ε [DS01]

SRHT O(nd log s) O(d log(nd) log(d/ε2)/ε2) 1 + ε [Tro11]

Sparse embedding O(nnz(A)) (d2 + d)/ε2 1 + ε [CW13a]

Improved sparse embedding O(nnz(A) log d) O(d log d/ε2) 1 + ε [Coh16]

Exact lev. scores sampling O(nd2) O(d log d/ε2) 1 + ε [DMM06]

Appr. lev. scores sampling O(nnz(A) log n + d4) O(d log d/ε2) 1 + ε [CW13a; Dri+12]

Refinement sampling O(nnz(A) log(n/d) log d + d3 log(n/d) log d) O(d log d) O(1) [Coh+15]

2.3.2.2 Data-oblivious low-distortion `1 subspace embeddings

General `p subspace embedding and even `1 subspace embedding is quite different from
`2 subspace embedding. Here, we briefly introduce some existing results on `1 subspace
embedding; for more general `p subspace embedding, see Meng and Mahoney [MM13a]
and Clarkson and Woodruff [CW13b].

Table 4: Summary of data-oblivious and data-aware `1 embeddings. Above, s denotes the embed-
ding dimension. By running time, we mean the time needed to compute ΦA. For each
method, we set the failure rate to be a constant. Moreover, “Lev. scores sampling” denotes
the `1 sampling algorithms obtained by using reciprocal exponential transform as the un-
derlying preconditioning method.

name running time s κΦ reference

Cauchy O(nd2 log d) O(d log d) O(d log d) [SW11]

Fast Cauchy O(nd log d) O(d log d) O(d4 log4 d) [Cla+13]

Sparse Cauchy nnz(A) O(d5 log5 d) O(d3 log3 d) [MM13a]

Reciprocal exponential nnz(A) O(d log d) O(d2 log2 d) [WZ13]

Lev. scores sampling O(nnz(A) log n + d3 log d) O(d9/2 log5/2 d log(1/ε)/ε2) 1 + ε [WZ13; Das+09]

Lewis weights O(nnz(A) log n) O(d log d/ε2) 1 + ε [CP15]

For `1, Sohler and Woodruff [SW11] gave the first linear oblivious embedding of a

d-dimensional subspace of `n
1 into `

O(d log d)
1 with distortion O(d log d), where both the

embedding dimension and the distortion are independent of n. In particular, they prove
the following quality bounds.

Lemma 2.15 (Cauchy transform (CT) [SW11]). Let A1 be an arbitrary d-dimensional linear
subspace of Rn. Then there is an s0 = s0(n) = O(d log d) and a sufficiently large constant
C0 > 0, such that for any s with s0 ≤ s ≤ dO(1), and any constant C ≥ C0, if Φ ∈ Rs×n is a
random matrix whose entries are chosen independently from the standard Cauchy distribution and
are scaled by C/s, then with probability at least 0.99,

‖x‖1 ≤ ‖Φx‖1 ≤ O(d log d) · ‖x‖1, ∀x ∈ A1.
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As CT is the `1 counterpart of the dense Gaussian transform, the Fast Cauchy Trans-
form (FCT) proposed by Clarkson et al. [Cla+13] is the `1 counterpart of FJLT. This FCT
construction first preprocesses by a deterministic low-coherence matrix, then rescales by
Cauchy random variables, and finally samples linear combinations of the rows. Indeed,
there are several parameters associated with the construction. Below, we present the theo-
retical result of FCT by choosing the specific values for those parameters that best balance
the computation time and embedding quality.

Lemma 2.16 (Fast Cauchy transform (FCT) [Cla+13]). There is a distribution over matrices
Φ ∈ Rs×n, with s = O(d log d), such that for an arbitrary (but fixed) A ∈ Rn×d, the inequality

‖x‖1 ≤ ‖Φx‖1 ≤ O(d4 log4 d) · ‖x‖1, ∀x ∈ A1

holds with high probability. Further, for any y ∈ Rn, the product Φy can be computed inO(n log s)
time.

That is, while faster in terms of FLOPS than the CT, the FCT leads to worse embed-
ding/preconditioning quality. Importantly, this result is different from how FJLT com-
pares to dense Gaussian transform: FJLT is faster than the dense Gaussian transform,
while both provide the same order of distortion; but FCT becomes faster than the dense
Cauchy transform as d grows, at the cost of somewhat worse distortion quality.

Similar to [CW13a; MM13a; NN13] for computing an `2 subspace embedding, Meng
and Mahoney [MM13a] developed an algorithm for computing an `1 subspace embed-
ding matrix in input-sparsity time, i.e., in O(nnz(A)) time. They used a CountSketch-like
matrix which can be written as the product of two matrices Φ = SC ∈ Rs×n, where
S ∈ Rs×n has each column chosen independently and uniformly from the s standard
basis vectors of Rs and C ∈ Rn×n is a diagonal matrix with diagonal entries chosen in-
dependently from the standard Cauchy distribution. We summarize the main theoretical
results in the following lemma.

Lemma 2.17 (Sparse Cauchy transform (SPCT) [MM13a]). Given an d-dimensional subspace
A1 ⊂ Rn and ε ∈ (0, 1), there is s = O(d5 log5 d) such that with a constant probability,

1/O(d2 log2 d)‖x‖1 ≤ ‖Φx‖1 ≤ O(d log d)‖x‖1, ∀x ∈ A1,

where Φ is the sparse Cauchy transform described above.

More recently, Woodruff and Zhang [WZ13] proposed another algorithm that computes
an `1 subspace embedding matrix in input-sparsity time. Its construction is similar to
that of sparse Cauchy transform. That is, Φ = SD where D is a diagonal matrix with
diagonal entries 1/u1, 1/u2, . . . , 1/un, where ui are exponential variables. Compared to
sparse Cauchy transform, the embedding dimension and embedding quality have been
improved. We summarize the main results in the following lemma.

Lemma 2.18 (Reciprocal exponential transform (RET) [WZ13]). Given an d-dimensional sub-
space A1 ⊂ Rn and ε ∈ (0, 1), there is s = O(d log d) such that with a constant probability,

1/O(d log d)‖x‖1 ≤ ‖Φx‖1 ≤ O(d log d)‖x‖1, ∀x ∈ A1,

where Φ is the sparse transform using reciprocal exponential variables described above.

To summarize, in Table 4 we provide a summary of the basic properties of several data-
oblivious `1 subspace embeddings discussed here (as well as of several data-aware `1
subspace-preserving embeddings that will be discussed below).
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2.3.2.3 Data-aware low-distortion `2 subspace embeddings

All of the linear subspace embedding algorithms mentioned in previous subsections are
oblivious, i.e., independent of the input subspace. That has obvious algorithmic advan-
tages, e.g., one can construct the embedding matrix without even looking at the data. One
might wonder if data-aware embeddings could yield better conditioning performance.
The answer was given by Drineas, Mahoney, and Muthukrishnan [DMM06] in which
they developed a sampling algorithm for solving `2 regression by constructing a (1± ε)-
distortion `2 subspace-preserving sampling matrix. The underlying sampling distribution
is defined based on the statistical leverage scores (Definition 2.1) of the design matrix,
which can be viewed as the “influence” of that row on the least-squares fit. That is, the
sampling distribution is a distribution {pi}n

i=1 satisfying

pi ≥ β · `i

∑j `j
, i = 1, . . . , n, (2.4)

where {`i}n
i=1 are the leverage scores of A and β ∈ (0, 1]. When β = 1 and β < 1, (2.4) im-

plies we define {pi}m
i=1 according to the exact and estimated leverage scores, respectively.

More importantly, theoretical results indicate that, given a target desired accuracy, the
required sampling complexity is independent of the higher dimension of the matrix.
Similar construction of the sampling matrix appeared in several subsequent works, e.g.,
[DMM06; Dri+11; Dri+12], with improved analysis of the sampling complexity. For com-
pleteness, we include the main theoretical result regarding the subspace-preserving qual-
ity below, stated here for `2.

Theorem 2.19 (`2 subspace-preserving sampling [DMM06; Dri+11; Dri+12]). Given a d-
dimensional subspace A2 ⊂ Rn represented by a matrix A ∈ Rn×d and ε ∈ (0, 1), choose
s = O(d log d log(1/δ)/βε2) and construct a sampling matrix S ∈ Rn×n with diagonals

sii =

1/
√

qi with probability qi,

0 otherwise,
i = 1, . . . , n,

where
qi ≥ min {1, s · pi} , i = 1, . . . , n,

and {pi}n
i=1 satisfies (2.4). Then, with probability at least 0.7,

(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1 + ε)‖y‖2, ∀y ∈ A2.

An obvious (but surmountable) challenge to applying this result is that computing the
leverage scores exactly involves forming an orthonormal basis for A first. Normally, this
step will take O(nd2) time, which is undesirable for large-scale applications.

On the other hand, the algorithm of [Dri+12], computes the leverage scores approximately
in essentially the time it takes to perform a random projection. In particular, Drineas et al.
[Dri+12] suggested that one can estimate the leverage scores by replacing A with a “sim-
ilar” matrix in the computation of the pseudo-inverse (which is the main computational
bottleneck in the exact computation of the leverage scores). To be more specific, by notic-
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ing that the leverage scores can be expressed as the row norms of AA†, we can use `2
subspace embeddings to estimate them. The high-level idea is,

`i = ‖eT
i AA†‖2 ≈ ‖eT

i A(Φ1 A)†‖2 ≈ ‖eT
i A(Φ1 A)†Φ2‖2 = ¯̀ i,

where ei is a vector with zeros but 1 in the i-th coordinate, Φ1 ∈ Rr1×n is a FJLT, and
Φ2 ∈ Rd×r2 is a JLT that preserves the `2 norms of certain set of points. If the estimation
of the leverage scores ˜̀ i satisfies

(1− γ)`i ≤ ˜̀ i ≤ (1 + γ)`i, i = 1, . . . , n,

it is not hard to show that a sampling distribution {pi}n
i=1 defined according to pi =

˜̀ i
∑j

˜̀ j

satisfies (2.4) with β = 1−γ
1+γ . When γ is constant, say 0.5, from Theorem 2.19 the required

sampling complexity will only need to be increased by a constant factor 1/β = 3. This is
less expensive, compared to the gain in the computation cost.

Suppose, we now use sparse embedding (Lemma 2.14) method as the underlying FJLT,
i.e., Φ1, and use Gaussian transform as the underlying JLT, i.e., Φ2 in the approximation of
the leverage scores. Then, combining the theory suggested in [Dri+12] and Theorem 2.19,
we have the following lemma.

Lemma 2.20 (Fast `2 subspace-preserving sampling [Dri+12; CW13a]). Given a d-dimensional
subspace A2 ⊂ Rn represented by a matrix A ∈ Rn×d and ε ∈ (0, 1), it takes O(nnz(A) · log n)
time to compute a sampling matrix S ∈ Rs′×n (with only one nonzero element per row) with
s′ = O(d log d/ε2) such that with constant probability

(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1 + ε)‖y‖2, ∀y ∈ A2.

More recently, Cohen et al. [Coh+15] considered approximating leverage scores in an
iterative manner. Given A, starting with a uniform sampling distribution as an initial
estimation, the algorithm iteratively refine the estimation based on A′, an approximation
of A obtained by sampling rows according to the current leverage scores estimation. The
result is summarized below.

Lemma 2.21 (Refinement sampling [Coh+15]). Given a d-dimensional subspace A2 ⊂ Rn

represented by a matrix A ∈ Rn×d, it takes O(nnz(A) log(n/d) log d + d3 log(n/d) log d) time
to compute a sampling matrix S ∈ Rs′×n (with only one nonzero element per row) with s′ =
O(d log d) such that with constant probability

‖y‖2 ≤ ‖Sy‖2 ≤ 2‖y‖2, ∀y ∈ A2.

Finally, recall that a summary of both data-oblivious and data-aware subspace embed-
ding for `2 norm can be found in Table 3.

2.3.2.4 Data-aware low-distortion `1 subspace embeddings

In the same way as we can use data-aware embeddings for `2 regression, we can use data-
aware embeddings for `1 regression. Indeed, the idea of using data-aware sampling to
obtain (1± ε)-distortion subspace embeddings for `1 regression was first used in [Cla05],
where it was shown that an `1 subspace embedding can be done by weighted sampling af-
ter preprocessing the matrix, including preconditioning, using ellipsoidal rounding. Sam-
pling probabilities depend on the `1 norms of the rows of the preconditioned matrix.
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Moreover, the resulting sample has each coordinate weighted by the reciprocal of its sam-
pling probability.

Recall that the `2 leverage scores used in the `2 sampling algorithm described in The-
orem 2.19 are the squared row norms of an orthonormal basis of A2 that can be viewed
as a “nice” basis for the subspace of interest. Dasgupta et al. [Das+09] generalized this
method to the general `p case; in particular, they proposed to sample rows according to
the `p row norms of AR−1, where AR−1 is a well-conditioned basis for Ap (in the `p sense
of well-conditioning). Different from `1 sampling algorithm [Cla05] described above, com-
puting such a matrix R is usually sufficient, meaning it is not necessary to preprocess A
and form the basis AR−1 explicitly.

Theorem 2.22 (`p subspace-preserving sampling [Das+09]). Given a d-dimensional subspace
Ap ⊂ Rn represented by a matrix A ∈ Rn×d and a matrix R ∈ Rd×d such that AR−1 is
well-conditioned, p ∈ [1, ∞), ε ∈ (0, 1/7), and δ ∈ (0, 1), choose

s ≥ 16(2p + 2)κ̄p
p(AR−1)(d log(12/ε) + log(2/δ))/(p2ε2)

and construct a sampling matrix S ∈ Rn×n with diagonals

sii =

1/p1/p
i with probability pi,

0 otherwise,
i = 1, . . . , n,

where
pi ≥ min

{
1, s · ‖A(i)R

−1‖p
p/|AR−1|pp

}
, i = 1, . . . , n.

Then, with probability at least 1− δ,

(1− ε)‖y‖p ≤ ‖Sy‖p ≤ (1 + ε)‖y‖p, ∀y ∈ Ap.

In fact, Theorem 2.22 holds for any choice of R. When R = I, it implies sampling
according to the `p row norms of A and the sampling complexity relies on κ̄

p
p(A). How-

ever, it is worth mentioning that a large condition number for A will lead to a large
sampling size, which in turn affects the running time of the subsequent operations. There-
fore, preconditioning is typically necessary. One must find a matrix R ∈ Rd×d such that
κ̄p(AR−1) = O(poly(d)), which could be done by the preconditioning algorithms intro-
duced in the previous sections.

Given R such that AR−1 is well-conditioned, computing the row norms of AR−1 takes
O(nnz(A) · d) time. Clarkson et al. [Cla+13] improve this running time by estimating
the row norms of AR−1 instead of computing them exactly. The central idea is to post-
multiply a random projection matrix Φ2 ∈ Rn×r with r = O(log n), which takes only
O(nnz(A) · log n) time.

If one uses the reciprocal exponential transform (Lemma 2.18) to compute a matrix
R such that AR−1 is well-conditioned and then uses the above idea to estimate quickly
the `1 row norms of AR−1 to define the sampling distribution, then by combining with
Theorem 2.22, we have the following result.

Lemma 2.23 (Fast `1 subspace-preserving sampling [WZ13; Das+09]). Given an d-dimensional
subspace A1 ⊂ Rn represented by a matrix A ∈ Rn×d and ε ∈ (0, 1), it takes O(nnz(A) log n +
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d3 log d) time to compute a sampling matrix S ∈ Rs′×n (with only one nonzero element per row)
with s′ = O(d 9

2 log
5
2 d log(1/ε)/ε2) such that with a constant probability,

(1− ε)‖x‖1 ≤ ‖Sx‖1 ≤ (1 + ε)‖x‖1, ∀x ∈ A1.

More recently, Cohen and Peng [CP15] provided an iterative algorithm for approximat-
ing the“Lewis weights”, based on which sampling O(d log d/ε2) rows from A yields an `1
subspace-preserving embedding with high probability. This algorithm requiresO(log log n)
calls to computing approximate leverage scores of matrices of the form WA where W is a
non-negative diagonal matrix. Result of [CP15] can be found in Table 4.

Finally, recall that a summary of both data-oblivious and data-aware subspace embed-
dings for `1 norm can be found in Table 4.

2.4 application of rla to matrix problems

In this section, we discuss the application of randomized linear algebra to several matrix
problems. Specifically, in Section 2.4.1 we discuss how a low-precision or a high-precision
solution of `p regression problems can be obtained using RLA. Next in Section 2.4.2 we
show how RLA can be used to derive improved algorithms for matrix factorization prob-
lems.

2.4.1 `p regression

A parameterized family of linear regression problems that is often of interest is `p regres-
sion problem, defined as follows.

Definition 2.24 (`p regression). Given a matrix A ∈ Rn×d, a vector b ∈ Rn, and p ≥ 1, the
`p regression problem specified by A, b, and p is the following optimization problem:

minimizex∈Rd ‖Ax− b‖p. (2.5)

We call the problem strongly overdetermined if n� d.

Important special cases include the `2 regression problem, also known as least-squares
(LS), and the `1 regression problem, also known as least absolute deviations (LAD) or least
absolute errors (LAE). The former is ubiquitous; and the latter is of particular interest as a
robust regression technique, in that it is less sensitive to the presence of outliers than the
former.

For general p ∈ [1, ∞), denote by X ∗ the set of optimal solutions to (2.5). Let x∗ ∈ X ∗ be
an arbitrary optimal solution, and let f ∗ = ‖Ax∗ − b‖p be the optimal objective value. We
are particularly interested in finding a relative-error approximation, in terms of the objective
value, to the general `p regression problem (2.5).

Definition 2.25 (Relative-error approximation). Given an error parameter ε > 0, x̂ ∈ Rd is a
(1 + ε)-approximate solution to the `p regression problem (2.5) if and only if

f̂ = ‖Ax̂− b‖p ≤ (1 + ε) f ∗.
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In order to make our theory and our algorithms for general `p regression simpler and
more concise, we can use an equivalent formulation of (2.5) in our discussion:

minimizex∈Rd ‖Āx‖p

subject to cTx = 1
(2.6)

where Ā =
(

A −b
)

and c is the last column of In+1. This formulation of `p regression,
which consists of a homogeneous objective and an affine constraint, is equivalent to the
formulation of (2.5).

In the following we describe how the ellipsoidal rounding and subspace embedding
methods described in the previous subsections can be applied to solve `2 and `1 regression
problems. We elaborate on how we can use the methods described previously to construct
low-precision solvers and high-precision solvers for solving `p regression problems. As a
reference, see Table 5 and Table 6 for a summary of several representative RLA algorithms
for solving `2 and `1 regression problems, respectively.

Table 5: Summary of RLA-based `2 regression solvers; PC stands for preconditioning.
type precision example reference

embedding + solving subproblem low CW + (FJLT+SVD) [CW13a]

appr. lev. samp. (SRHT) + SVD [Dri+12]

direct solver high SVD or QR [GVL96]

PC + direct solver high PC (Gaussian) + normal equation [CRT11]

PC + iterative alg. high PC (FJLT) + LSQR [AMT10; RT08]

Table 6: Summary of RLA-based `1 regression solvers; PC stands for preconditioning.
type precision example reference

(PC + sampling) + solving subproblem low (ER/fast ER + sampling) + IPM [Cla05; Das+09]

(SCT/FCT + sampling) + IPM [SW11; Cla+13]

second-order high IPM [NN94]

PC + first-order high ER + accelerated gradient descent [Nes08]

2.4.1.1 Low-precision solvers

The most straightforward use of these methods (and the one for which most of the theory
has been developed) is to construct a subspace-preserving embedding matrix and then
solve the resulting reduced-sized problem exactly, thereby obtaining an approximate solu-
tion to the original problem. In somewhat more detail, this algorithmic approach performs
the following two steps.

1. Construct a subspace-preserving embedding matrix Φ with distortion 1± ε
4 .

2. Using a black-box solver, solve the reduced-sized problem exactly:

x̂ = min
x∈Rd

‖ΦAx−Φb‖p.

(We refer to this approach as low-precision because the running time complexity with re-
spect to the error parameter ε is poly(1/ε). Thus, while the approach can be analyzed for
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a fixed ε, this dependence means that as a practical matter the approach cannot achieve
high-precision solutions.)

To see why this approach gives us a (1 + ε)-approximate solution to the original prob-
lem, recall that a subspace-preserving embedding matrix Φ with distortion factor (1± ε

4 )
satisfies

(1− ε/4) · ‖Āx‖p ≤ ‖ΦĀx‖p ≤ (1 + ε/4) · ‖Āx‖p, ∀x ∈ Rd.

Therefore, the following simple reasoning shows that x̂ is indeed a (1 + ε)-approximation
solution:

‖Āx̂‖p ≤
1

1− ε/4
‖ΦĀx̂‖p ≤

1
1− ε/4

‖ΦĀx∗‖p ≤
1 + ε/4
1− ε/4

‖Āx∗‖p < (1 + ε)‖Āx∗‖p.

The following lemma states this result more precisely.

Lemma 2.26. Given an `p regression problem specified by A ∈ Rn×d, b ∈ Rn and p ∈ [1, ∞)
using the constrained formulation (2.6), let Φ be a (1± ε/4)-distortion embedding of Āp, and
x̂ be an optimal solution to the reduced-sized problem mincT x=1 ‖ΦAx‖p. Then x̂ is a (1 + ε)-
approximate solution to the original problem.

A great deal of work has followed this general approach; see, e.g., [Mah11] and ref-
erences therein. Here we simply cite several of the most immediately relevant for our
subsequent discussion.

• Sampling for `2 regression. One could use the original algorithm of [DMM06; DMM08],
which performs a data-aware random sampling and solves the subproblem inO(nd2)
time to obtain an approximate solution. With the algorithm of [Dri+12], the running
time of this method was improved to roughly O(nd log(d)) time, and by combining
the algorithm of [Dri+12] with the algorithm of [CW13a], the running time was still
further improved to input-sparsity time.

• Projections for `2 regression. Alternatively, one could use the algorithm of [Sar06;
Dri+11], which performs a data-oblivious Hadamard-based random projection (SRHT)
and solves the subproblem in roughly O(nd log(d)) time, or one could use the algo-
rithm of [CW13a], which runs in input-sparsity time. We remark with an improved
analysis, Drineas et al. [Dri+11] showed that the required embedding dimension
needed for SRHT to obtain a low-precision solution for least-squares problems de-
pends on O(1/ε) only as opposed to O(1/ε2) in obtaining a subspace-preserving
embedding (Lemma 2.13).

• Sampling and projections for `1 and `p regression: see [Cla05; SW11; Cla+13] and
also [Das+09; MM13a; CW13b] and references therein for both data-oblivious and
data-aware methods.

To summarize these and other results, depending on whether the idealization that n � d
holds, either the Hadamard-based projections for `2 regression (e.g., the projection algo-
rithm of [Dri+11] or the sampling algorithm of [DMM06] combined with the algorithm
of [Dri+12]) and `1 regression (e.g., the algorithm of [Cla+13]) or the input-sparsity time
algorithms for `1 regression (e.g., the algorithms of [CW13b] and [MM13a]) lead to the
best worst-case asymptotic performance. There are, however, practical tradeoffs, both in
RAM and in parallel-distributed environments, and the most appropriate method to use
in any particular situation is still a matter of ongoing research.
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2.4.1.2 High-precision solvers

A more refined use of these methods (and the one that has been used most in implemen-
tations) is to construct a subspace-preserving embedding matrix and use that to construct
a preconditioner for the original `p regression problem, thereby obtaining an approximate
solution to the original problem. In somewhat more detail, this algorithmic approach per-
forms the following two steps:

1. Construct a randomized preconditioner for A, called N.

2. Invoke an iterative algorithm whose convergence rate depends on the condition
number of the problem being solved (a linear system for `2 regression, and a linear
or convex program for `1 regression) on the preconditioned system AN.

(We refer to this approach as high-precision because the running time complexity with
respect to the error parameter ε is log(1/ε). Among other things, this means that, given a
moderately good solution—e.g., the one obtained from the embedding that could be used
in a low-precision solver—one can easily obtain a very high precision solution.)

Most of the work for high-precision RLA solvers for `p regression has been for `2 re-
gression (although we mention a few solvers for `1 regression for completeness and com-
parison).

`2 regression Recall that theoretical (and empirical) results suggest that the required
number of iterations in many iterative solvers such as LSQR [PS82] depends strongly
on the condition number of the system. Thus, a natural idea is first to compute a
randomized preconditioner and then to apply one of these iterative solvers on the
preconditioned system. For example, if we use SRHT (Lemma 2.13) to create a pre-
conditioned system with condition number bounded by a small constant and then
use LSQR to solve the preconditioned problem iteratively, the total running time
would be O (nd log(n/ε) + d3 log d), where O (nd log(n)) comes from SRHT,
O (d3 log d) from computing the preconditioner matrix, and O (nd log(1/ε)) from
LSQR iterations. Avron, Maymounkov, and Toledo [AMT10] and Rokhlin and Tygert
[RT08] developed algorithms that use FJLT for preconditioning and LSQR as an it-
erative solver. In [MSM14], the authors developed a randomized solver LSRN for
`2 regression using Gaussian transform and LSQR or the Chebyshev semi-iterative
method.

As with the low-precision solvers, note that if we use the input-sparsity time algo-
rithm of [CW13a] for embedding and then an (SRHT + LSQR) approach above to
solve the reduced-sized problem, then under the assumption that n ≥ poly(d) and
ε is fixed, this particular combination would become the best approach proposed.
However, there are various trade-offs among those approaches. For instance, there
are trade-offs between running time and preconditioning quality for computing the
subspace-preserving sampling matrix, and there are trade-offs between embedding
dimension/sample size and failure rate in embedding/sampling. Some of the prac-
tical trade-offs on different problem types and computing platforms are discussed
in Section 6.1 below.

`1 regression While most of the work in RLA for high-precision solvers has been for
`2 regression, we should point out related work for `1 regression. In particular,
Nesterov [Nes08] proposed an algorithm that employs a combination of ellipsoid
rounding and accelerated gradient descent; and second-order methods from [NN94]
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use interior point techniques more generally; Meng and Mahoney [MM13b] coupled
these ideas with RLA ideas to develop an iterative medium-precision algorithm for
`1 regression. More recently, Yang et al. [Yan+16a] proposed a weighted stochastic
gradient descent algorithm for `1 regression with randomized preconditioning; see
Chapter 4 for more details.

2.4.2 Low-rank matrix decompositions

Given an m× n data matrix A,1 low-rank matrix factorization methods aim to find two
smaller matrices whose product is a good approximation to A. That is, they aim to find
matrices Y and Z such that

A
m×n
≈ Y

m×k
× Z

k×n
(2.7)

is a rank-k approximation to the original matrix A. Low-rank matrix factorization is an
important topic in linear algebra and numerical analysis, and it finds use in a variety of
scientific fields and scientific computing including machine learning and data analysis
applications such as pattern recognition and personalized recommendation.

Depending on the application, various low-rank factorization techniques are of inter-
est. Popular choices include the singular value decomposition [GVL96], principal compo-
nent analysis [Jol86], rank-revealing QR factorization [GE96], nonnegative matrix factor-
ization [LS01], and CUR/CX decompositions [MD09]. Here, we are interested in using the
SVD and CX decompositions for scalable and interpretable data analysis. In the remainder
of this section, we briefly describe these decompositions and discuss the usage of RLA in
improving these algorithms.

2.4.2.1 SVD and PCA

The singular value decomposition (SVD) is the factorization of A ∈ Rm×n into the product
of three matrices UΣVT where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns,
Σ ∈ Rr×r is a diagonal matrix with positive real entries, and r = rank(A) ≤ min{m, n}.
The columns of U and V are called left and right singular vectors and the diagonal entries
of Σ are called singular values. For notation convenience, we assume the singular values
are sorted such that σ1 ≥ · · · ≥ σr > 0, and this means that the columns of U and V are
sorted by the order given by the singular values.

The SVD is of central interest because it provides the best low-rank matrix approxima-
tion with respect to any unitarily invariant matrix norm. In particular, for any target rank
k ≤ r, the SVD provides the minimizer of the optimization problem

min
rank(Ã)=k

‖A− Ã‖F, (2.8)

where the Frobenius norm ‖ · ‖F is defined as ‖X‖2
F = ∑m

i=1 ∑n
j=1 X2

ij. Specifically, the

solution to (2.8) is given by the truncated SVD, i.e., Ak = UkΣkVT
k , where the columns of

Uk and Vk are the top k singular vectors, i.e., the first k columns of U and V, and Σk is a
diagonal matrix containing the top-k singular values.

Principal component analysis (PCA) and SVD are closely related. PCA aims to convert
the original features into a set of orthogonal directions called principal components that cap-
ture most of the variance in the data points. The PCA decomposition of A is given by the

1 Here when talking about matrix factorization, we assume A is m× n rather than n× d.
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Algorithm 2 RandomizedSVD

1: Input: A ∈ Rm×n, number of iterations q ≥ 1, target rank k > 0, slack ` ≥ 0, and let
r = k + `.

2: Output: UΣVT ≈ ThinSVD(A, r).
3: Initialize B ∈ Rn×r by sampling Bij ∼ N (0, 1).
4: for q times do
5: B← MultiplyGramian(A, B)
6: (B, _)← ThinQR(B)
7: end for
8: Let Q be the first k columns of B.
9: Let C = AQ.

10: Compute (U, Σ, ṼT) = ThinSVD(C).
11: Let V = QṼ.
12: Return U, Σ, V.

SVD of the matrix formed by centering each column of A (i.e., removing the mean of each
column). When low-rank methods are appropriate, the number of principal components
needed to preserve most of the information in A is far less than the number of original
features, and thus the goal of dimension reduction is achieved.

However, the computation of the SVD (and thus of PCA for a data matrix A) is ex-
pensive [GVL96]. For example, to compute the truncated SVD with rank k using tradi-
tional deterministic methods, the running time complexity is O(mnk), and O(k) passes
over the dataset are needed. This becomes prohibitively expensive with datasets of even
moderately-large size, e.g., m = 106, n = 104, and k = 20. To address these and related
issues, recent work in RLA has focused on using randomized approximation to perform
scalable linear algebra computations for large-scale data problems. For a review of RLA
methods for low-rank matrix approximation, see [HMT11; Mar16].

Here, we describe an algorithm introduced in [MRT11] that uses a random Gaussian
projection to construct a rank-k approximation to A that approximates A nearly as well
as Ak does. Importantly, the algorithm runs in O(mn log k) time, and the algorithm needs
only a constant number of passes over the data matrix. These properties becomes ex-
tremely desirable in many large-scale data analytics. This algorithm, which we refer to as
RandomizedSVD, is summarized in Algorithm 2. (Algorithm 2 calls MultiplyGramian,
which is summarized in Algorithm 3, as well as two algorithms, ThinQR and ThinSVD,
which are standard in numerical linear algebra [GVL96].) The running-time cost for Ran-
domizedSVD is dominated by the matrix-matrix multiplication in Step 5 and Step 9 of
Algorithm 2, which involves passing over the entire data matrix. These steps can be par-
allelized, and hence RandomizedSVD is amenable to distributed computing. We refer to
[HMT11; Mar16] for more details including theoretical guarantees. It is worth mention-
ing that a variant of this algorithm that based on sub-Gaussian random matrices is also
available [AA16].

2.4.2.2 CX/CUR decompositions

In addition to developing improved algorithms for PCA/SVD and related problems, work
in RLA has focused on so-called CX/CUR decompositions [DMM08; MD09]. As a moti-
vation, observe that singular vectors are eigenvectors of the Gram matrix AT A, and thus
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Algorithm 3 MultiplyGramian

1: Input: A ∈ Rm×n, B ∈ Rn×k.
2: Output: X = AT AB.
3: Initialize X = 0.
4: for each row a in A do
5: X ← X + aaT B.
6: end for
7: Return X.

they are linear combinations of up to all of the original features. A natural question arises:
can we reconstruct the matrix using a small number of actual columns of A?

CX/CUR decompositions affirmatively answer this question. That is, these are low-
rank matrix decompositions that are expressed in terms of a small number of actual
columns/rows. As such, they have found applicability in scientific applications where
coupling analytical techniques with domain knowledge is at a premium, including genet-
ics [Pas+07], astronomy [Yip+14], and mass spectrometry imaging [Yan+15].

In more detail, CX decomposition factorizes an m× n matrix A into two matrices C and
X, where C is an m × c matrix that consists of c actual columns of A, and X is a c × n
matrix such that A ≈ CX. (CUR decompositions further choose X = UR, where R is a
small number of actual rows of A [DMM08; MD09].) For CX, using the same optimality
criterion defined in (2.8), we seek matrices C and X such that the residual error ‖A−CX‖F
is small.

The algorithm of [DMM08] computes a 1± ε relative-error low-rank CX matrix approx-
imation and consists of three basic steps:

• Compute (exactly or approximately) the statistical leverage scores of the columns of A
associated with rank k;

• Use those scores as a sampling distribution to select c columns from A and form C;

• Compute the optimal matrix X with rank-k that minimizes ‖A−CX‖F; see [DMM08]
for detailed construction.

Below, we give more details regarding the motivation of choosing such an importance
sampling distribution {pi}n

i=1 based on statistical leverage scores. We shall point out that
the statistical leverage scores used here are defined based on a low-dimensional subspace,
different from the ones define in Definition 2.1.

Let A = UΣVT be the SVD of A. Given a target rank parameter k, for i = 1, . . . , n, the
i-th leverage score is defined as

`i =
k

∑
j=1

V2
ij . (2.9)

These scores quantify the amount of “leverage” each column of A exerts on the best rank-k
approximation to A. For each column of A, we have

A(i) =
r

∑
j=1

(σjU(j))Vij ≈
k

∑
j=1

(σjU(j))Vij.
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Algorithm 4 CXdecomposition

1: Input: A ∈ Rm×n, rank parameter k ≤ rank(A), number of power iterations q.
2: Output: C.
3: Compute an approximation of the top-k right singular vectors of A denoted by Ṽk,

using RandomizedSVD with q power iterations.
4: Let `i = ∑k

j=1 Ṽ2
ij , where Ṽ2

ij is the (i, j)-th element of Ṽk, for i = 1, . . . , n.
5: Define pi = `i/ ∑n

j=1 `j for i = 1, . . . , n.
6: Randomly sample c columns from A in i.i.d. trials, using the importance sampling

distribution {pi}n
i=1, to form C.

7: Compute the optimal matrix X with rank-k that minimizes ‖A− CX‖F; see [DMM08]
for detailed construction.

8: Return C and X.

That is, the i-th column of A can be expressed as a linear combination of the basis of the
dominant k-dimensional left singular space with vij as the coefficients. For i = 1, . . . , n, we
define the normalized leverage scores as

pi =
`i

∑n
j=1 `j

, (2.10)

where `i is defined in (2.9), and choose columns from A according to those normalized
leverage scores. It has been shown by Drineas, Mahoney, and Muthukrishnan [DMM08]
that the selected columns are able to reconstruct the matrix A nearly as well as Ak does.
To be more specific, if sampling size c = O(k log k/ε2), then with probability at least 0.99,
the matrices C and X will satisfy

‖A− CX‖F ≤ (1 + ε)‖A− Ak‖F, (2.11)

where Ak is the best rank-k approximation to A.
As can be seen above, the running time for CXdecomposition is determined by the

computation of the importance sampling distribution. To compute the leverage scores
based on (2.9), one needs to compute the top k right-singular vectors Vk. This can be pro-
hibitive on large matrices. However, we can use RandomizedSVD to compute approximate
leverage scores. This approach, originally proposed by Drineas et al. [Dri+12], runs in
“random projection time,” so requires fewer FLOPS and fewer passes over the data matrix
than deterministic algorithms that compute the leverage scores exactly. In Algorithm 4, we
summarize the steps of the algorithm described above, which is a variant of the algorithm
of [DMM08] that uses approximate leverage scores provided by RandomizedSVD.

Finally, results of implementing randomizedSVD and CXdecomposition on terabyte-
sized real datasets on clusters with up to 1600 nodes are presented in Section 6.3. Results
of applying CX decompositions to bioimaging for more interpretable analysis are pre-
sented in Chapter 7.



3FA S T A L G O R I T H M S F O R L A R G E - S C A L E Q U A N T I L E R E G R E S S I O N

Quantile regression is a method to estimate the quantiles of the conditional distribution
of a response variable, expressed as functions of observed covariates [KB78], in a manner
analogous to the way in which least-squares regression estimates the conditional mean.
The least absolute deviations regression (i.e., `1 regression) is a special case of quantile
regression that involves computing the median of the conditional distribution. In contrast
with `1 regression and the more popular `2 or least-squares regression, quantile regres-
sion involves minimizing asymmetrically-weighted absolute residuals. Doing so, however,
permits a much more accurate portrayal of the relationship between the response vari-
able and observed covariates, and it is more appropriate in certain non-Gaussian settings.
For these reasons, quantile regression has found applications in many areas, e.g., survival
analysis and economics [Buc94; KH01; Buh05]. As with `1 regression, the quantile regres-
sion problem can be formulated as a linear programming problem, and thus simplex or
interior-point methods can be applied [KD93; PK97; Por97]. Most of these methods are
efficient only for problems of small to moderate size, and thus to solve very large-scale
quantile regression problems more reliably and efficiently, we need new computational
techniques.

In this chapter, we provide a fast algorithm to compute a (1 + ε) relative-error approxi-
mate solution to the over-constrained quantile regression problem using randomized lin-
ear algebra. Our algorithm constructs a subspace-preserving embedding in terms of the
loss of quantile regression, and runs in time that is nearly linear in the number of nonzeros
in the input data. In Section 3.1 we provide background on quantile regression. The main
algorithm and theoretical results are presented in Section 3.2. Finally, empirical results on
medium-scale and large-scale quantile regression problems are provided in Section 3.3
and Section 6.2, respectively. The material in this chapter appears in Yang, Meng, and
Mahoney [YMM13; YMM14].

3.1 background on quantile regression

Recall that a quantile regression problem can be specified by a (design) matrix A ∈ Rn×d, a
(response) vector b ∈ Rn, and a parameter τ ∈ (0, 1), in which case the quantile regression
problem can be solved via the optimization problem

minimizex∈Rd ρτ(b− Ax), (3.1)

where ρτ(y) = ∑d
i=1 ρτ(yi), for y ∈ Rd, where

ρτ(z) =

τz, z ≥ 0;

(τ − 1)z, z < 0,
(3.2)

for z ∈ R, is the corresponding loss function. In the remainder of this paper, we will
use A to denote the augmented matrix

(
b −A

)
, and we will consider A ∈ Rn×d. With

27
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Algorithm 5 SPCT2: QR + ER type method with sparse Cauchy transform

1: Input: A ∈ Rn×d with full column rank.
2: Output: R ∈ Rd×d such that AR−1 is a well-conditioned basis with κ̄1 ≤ 6d2.
3: Construct a low-distortion embedding matrix Π1 ∈ Rr1×n of (A, ‖ · ‖1) via SPCT

(Lemma 2.17).
4: Construct R̃ ∈ Rd×d such that AR̃−1 is a well-conditioned basis for A via QR factor-

ization of Π1 A.
5: Compute a (1 ± 1/2)-distortion sampling matrix S̃ ∈ Rpoly(d)×n of (A, ‖ · ‖1) via

Theorem 2.22.
6: Compute R ∈ Rd×d by ellipsoid rounding for S̃A via Lemma 2.7.
7: Return R.

this notation, the quantile regression problem of (3.1) can equivalently be expressed as a
constrained optimization problem with a single linear constraint,

minimizex∈C ρτ(Ax), (3.3)

where C = {x ∈ Rd | cTx = 1} and c is a unit vector with the first coordinate set to be 1.
We will focus on very over-constrained problems with size n� d.

For simplicity, we assume A has full column rank; and we always assume that τ ≥ 1
2 .

All the results hold for τ < 1
2 by simply switching the positions of τ and 1− τ.

3.2 main algorithm and theoretical results

In this section, we first give an overview of nearly input-sparsity time `1 conditioning
methods in which we propose a new hybrid scheme and then we present our main theo-
retical results on (1± ε)-distortion subspace-preserving embeddings and our fast random-
ized algorithm for quantile regression. Throughout the rest of this chapter, we assume that
n ≥ poly(d), where the degree of poly(d) depends on the terms in d in the running time
computation of SPCT, SPCT2, and SPCT3 (see below). Proofs of all the results can be
found in Appendix A.

3.2.1 Nearly input-sparsity time `1 conditioning methods

Recall that Section 2.3 provides a summary of `1 conditioning methods. In this chapter
we will make use of the conditioning methods based on the sparse Cauchy transform
(SPCT) [MM13a] described in Lemma 2.17. We name them as SPCT, SPC2 and SPC3 where
SPCT, SPCT2 are proposed in [MM13a] and SPCT3 is new. According to the discussion in
Section 2.3.2, SPCT is a QR method, SPCT2 is a QR+ER method and SPCT3 is a QR+QR
method, which is presented in Algorithm 6. The main result for Algorithm 6 is given in
Lemma 3.2. For completeness, we present SPCT2 in Algorithm 5 and state its main result
in Lemma 3.1.

Lemma 3.1 ([MM13a]). Given A ∈ Rn×d with full rank, Algorithm 5 takes O(nnz(A) · log n)
time to compute a matrix R ∈ Rd×d such that with a constant probability, AR−1 is a well-
conditioned basis for A with κ̄1 ≤ 6d2.
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Algorithm 6 SPCT3: QR + QR type method with sparse Cauchy transform

1: Input: A ∈ Rn×d with full column rank.
2: Output: R ∈ Rd×d such that AR−1 is a well-conditioned basis with κ̄1 ≤
O(d 19

4 log
11
4 d).

3: Construct a low-distortion embedding matrix Π1 ∈ Rr1×n of (A, ‖ · ‖1) via SPCT
(Lemma 2.17).

4: Construct R̃ ∈ Rd×d such that AR̃−1 is a well-conditioned basis for A via QR factor-
ization of Π1 A.

5: Compute a (1 ± 1/2)-distortion sampling matrix S̃ ∈ Rpoly(d)×n of (A, ‖ · ‖1) via
Theorem 2.22.

6: Compute R ∈ Rd×d via the QR factorization of S̃A.
7: Return R.

Lemma 3.2. Given A ∈ Rn×d with full rank, Algorithm 6 takes O(nnz(A) · log n) time to
compute a matrix R ∈ Rd×d such that with a constant probability, AR−1 is a well-conditioned
basis for A with κ̄1 ≤ O(d

19
4 log

11
4 d).

Both SPCT2 and SPCT3 have additional steps (Steps 3 & 4), when compared with SPCT,
and this leads to some improvements, at the cost of additional computation time. For
example, in Algorithm 6 (SPCT3), we obtain a well-conditioned basis with smaller κ when
comparing to SPCT. As for the running time, it will be still O(nnz(A) · log n), since the
additional time is for constructing sampling matrix and solving a QR factorization of
a matrix whose dimensions are determined by d. Note that when we summarize these
results in Table 7, we explicitly list the additional running time for SPCT2 and SPCT3, in
order to show the tradeoff between these SPCT-derived methods.

Table 7: Summary of running time, condition number, and type of three sparse Cauchy transform
based conditioning methods. QR and ER refer, respectively, to methods based on the QR fac-
torization and methods based on Ellipsoid Rounding, as discussed in the text. QR_small and
ER_small denote the running time for applying QR factorization and Ellipsoid Rounding,
respectively, on a small matrix with size independent of n.

name running time κ̄1 type

SPCT [MM13a] O(nnz(A)) O(d 13
2 log

11
2 d) QR

SPCT2 [MM13a] O(nnz(A) · log n) + ER_small 6d2 QR+ER

SPCT3 (proposed in this work) O(nnz(A) · log n) + QR_small O(d 19
4 log

11
4 d) QR+QR

Although our new algorithm, SPCT3, is not uniformly better than either of the two
previous algorithms with respect to either condition number or the running time, it is only
slightly worse than the better of the two previous algorithms with respect to each of those
two measures. Because of the trade-offs involved in implementing quantile regression
algorithms in practical settings, our empirical results (Section 3.3) show that by using a
conditioning algorithm that is only slightly worse than the best previous conditioning
algorithms for each of these two criteria, our new conditioning algorithm can lead to
better results than either of the previous algorithms that was superior by only one of
those criteria.
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3.2.2 Main technical ingredients

In this subsection, we present the main technical ingredients underlying our main algo-
rithm for quantile regression. We start with a result which says that if we sample suf-
ficiently many (but still only poly(d)) rows according to an appropriately-defined non-
uniform importance sampling distribution (of the form given in (3.4) below), then we
obtain a (1± ε)-distortion embedding matrix with respect to the loss function of quantile
regression. Note that the form of this lemma is based on ideas from [Das+09; Cla+13].

Lemma 3.3 (Subspace-preserving sampling lemma). Given A ∈ Rn×d, let U ∈ Rn×d be a
well-conditioned basis for A with `1 condition number κ̄1. For s > 0, define

p̂i ≥ min{1, s · ‖U(i)‖1/|U|1}, (3.4)

and let S ∈ Rn×n be a random diagonal matrix with Sii = 1/ p̂i with probability p̂i, and 0
otherwise. Then when ε < 1/2 and

s ≥ τ

1− τ

27κ̄1

ε2

(
d log

(
τ

1− τ

18
ε

)
+ log

(
4
δ

))
,

with probability at least 1− δ, for every x ∈ Rd,

(1− ε)ρτ(Ax) ≤ ρτ(SAx) ≤ (1 + ε)ρτ(Ax). (3.5)

Remark 1. It is not hard to see that for any matrix S satisfying (3.5), the rank of A is preserved.

In order to apply Lemma 3.3 to quantile regression, we need to compute the sampling
probabilities in (3.4). This requires two steps: first, find a well-conditioned basis U; and
second, compute the `1 row norms of U. For the first step, we can apply any method
described in the previous subsection. Other methods are possible, but SPCT, SPCT2 and
SPCT3 are of particular interest due to their nearly input-sparsity running time. We will
now present an algorithm that will perform the second step of approximating the `1 row
norms of U in the allotted O(nnz(A) · log n) time.

Suppose we have obtained R such that AR−1 is a well-conditioned basis. Consider, next,
computing p̂i from U (or from A and R−1), and note that forming U explicitly is expensive
both when A is dense and when A is sparse. In practice, however, we will not need to
form U explicitly, and we will not need to compute the exact value of the `1-norm of each
row of U. Indeed, it suffices to get estimates of ‖U(i)‖1, in which case we can adjust the
sampling complexity s to maintain a small approximation factor. Algorithm 7 provides
a way to compute the estimates of the `1 norm of each row of U fast and construct the
sampling matrix. The same algorithm was used in [Cla+13] except for the choice of desired
sampling complexity s and we present the entire algorithm for completeness. Our main
result for Algorithm 7 is presented in Lemma 3.4.

Lemma 3.4 (Fast construction of (1± ε)-distortion sampling matrix). Given a matrix A ∈
Rn×d, and a matrix R ∈ Rd×d such that AR−1 is a well-conditioned basis for A with condition
number κ, Algorithm 7 takes O(nnz(A) · log n) time to compute a sampling matrix S ∈ Rŝ×n

(with only one nonzero per row), such that with probability at least 0.9, S is a (1± ε)-distortion
sampling matrix. That is for all x ∈ Rd,

(1− ε)ρτ(Ax) ≤ ρτ(SAx) ≤ (1 + ε)ρτ(Ax). (3.6)
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Algorithm 7 Fast construction of (1± ε)-distortion sampling matrix of (A, ρτ(·))

1: Input: A ∈ Rn×d, R ∈ Rd×d such that AR−1 is well-conditioned with condition num-
ber κ, ε ∈ (0, 1/2), τ ∈ [1/2, 1).

2: Output: Sampling matrix S ∈ Rn×n.
3: Let Π2 ∈ Rd×r2 be a matrix of independent Cauchys with r2 = 15 log(40n).
4: Compute R−1Π2 and construct Λ = AR−1Π2 ∈ Rn×r2 .
5: For i ∈ [n], compute λi = medianj∈[r2]

|Λij|.
6: For s = τ

1−τ
81κ
ε2

(
d log

(
τ

1−τ
18
ε

)
+ log 80

)
and i ∈ [n], compute probabilities

p̂i = min

{
1, s · λi

∑i∈[n] λi

}
.

7: Let S ∈ Rn×n be diagonal with independent entries

Sii =

 1
p̂i

, with probability p̂i;

0, with probability 1− p̂i.

8: Return S.

Further, with probability at least 1− o(1), ŝ = O
(
µκ̄1d log (µ/ε) /ε2), where µ = τ

1−τ .

Remark 2. Such technique can also be used to fast approximate the `2 row norms of a well-
conditioned basis by post-multiplying a matrix consisting of Gaussian variables; see [Dri+12].

Remark 3. In the text before Lemma 3.4, s denotes an input parameter for defining the importance
sampling probabilities. However, the actual sample size might be less than that. Since Lemma 3.4 is
about the construction of the sampling matrix S, we let ŝ denote the actual number of row selected.
Also, as stated, the output of Algorithm 7 is an n× n matrix; but if we delete the all-zero rows,
then the actual size of S is indeed ŝ by d as described in Lemma 3.4. Throughout the following text,
by sampling size s, we mean the desired sampling size, which is the parameter in the algorithm.

3.2.3 Main algorithm

In this subsection, we state our main algorithm for computing an approximate solution
to the quantile regression problem. Recall that, to compute a relative-error approximate
solution, it suffices to compute a (1 ± ε)-distortion sampling matrix S. To construct S,
we first compute a well-conditioned basis U with SPCT, SPCT2 (Algorithm 5), or SPCT3

(Algorithm 6), and then we apply Algorithm 7 to approximate the `1 norm of each row of
U. These procedures are summarized in Algorithm 8. The main quality-of-approximation
result for this algorithm by using Algorithm 8 is stated in Theorem 3.5.

Theorem 3.5 (Fast quantile regression). Given A ∈ Rn×d and ε ∈ (0, 1/2), if Algorithm 5 is
used in Step 1, Algorithm 8 returns a vector x̂ that, with probability at least 0.8, satisfies

ρτ(Ax̂) ≤
(

1 + ε

1− ε

)
ρτ(Ax∗),
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Algorithm 8 Fast randomized algorithm for quantile regression

1: Input: A ∈ Rn×d with full column rank, ε ∈ (0, 1/2), τ ∈ [1/2, 1).
2: Output: An approximated solution x̂ ∈ Rd to problem minimizex∈C ρτ(Ax).
3: Compute R ∈ Rd×d such that AR−1 is a well-conditioned basis for A via SPCT, SPCT2

(Algorithm 5) or SPCT3 (Algorithm 6).
4: Compute a (1± ε)-distortion embedding S ∈ Rn×n of (A, ρτ(·)) via Algorithm 7.
5: Compute x̂ ∈ Rd that minimizes ρτ(SAx) with respect to x ∈ C.
6: Return x̂.

where x∗ is an optimal solution to the original problem. In addition, the algorithm to construct x̂
runs in time

O(nnz(A) · log n) + φ
(
O(µd3 log(µ/ε)/ε2), d

)
,

where µ = τ
1−τ and φ(s, d) is the time to solve a quantile regression problem of size s× d.

Remark 4. As stated, Theorem 3.5 uses Algorithm 5 in Step 3; we did this because it leads to
the best known running-time results in worst-case analysis, but our empirical results will indicate
that due to various trade-offs the situation is more complex in practice.

Remark 5. Our theory provides a bound on the solution quality, as measured by the objective func-
tion of the quantile regression problem, and it does not provide bounds for the difference between the
exact solution vector and the solution vector returned by our algorithm. We will, however, compute
this latter quantity in our empirical evaluation.

3.3 empirical evaluation

In this section and the next section, we present our main empirical results. We have eval-
uated an implementation of Algorithm 8 using several different conditioning methods in
Step 1. We have considered both simulated data and real data, and we have considered
both medium-sized data as well as terabyte-scale data. In this section, we will summarize
our results for medium-sized data. The results on terabyte-scale data can be found in
Chapter 6.

simulated skewed data For the synthetic data, in order to increase the difficulty
for sampling, we will add imbalanced measurements to each coordinates of the solution
vector. A similar construction for the test data was appeared in [Cla+13]. Due to the
skewed structure of the data, we will call this data set “skewed data” in the following
discussion. This data set is generated in the following way.

1. Each row of the design matrix A is a canonical vector. Suppose the number of
measurements on the j-th column are cj, where cj = qcj−1, for j = 2, . . . , d. Here
1 < q ≤ 2. A is a n× d matrix.

2. The true vector x∗ with length d is a vector with independent Gaussian entries. Let
b∗ = Ax∗.
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3. The noise vector ε is generated with independent Laplacian entries. We scale ε such
that ‖ε‖/‖b∗‖ = 0.2. The response vector is given by

bi =

500εi with probability 0.001;

b∗i + εi otherwise.

When making the experiments, we require c1 ≥ 161. This implies that if we choose s/n ≥
0.01, and perform the uniform sampling, with probability at least 0.8, at least one row
in the first block (associated with the first coordinate) will be selected, due to 1− (1−
0.01)161 ≥ 0.8. Hence, if we choose s ≥ 0.01n, we may expect uniform sampling produce
acceptable estimation.

real census data For the real data, we consider a data set consisting of a 5% sample
of the U.S. 2000 Census data1, consisting of annual salary and related features on people
who reported that they worked 40 or more weeks in the previous year and worked 35 or
more hours per week. The size of the design matrix is 5× 106 by 11.

The remainder of this section will consist of six subsections, the first five of which will
show the results of experiments on the skewed data, and then 3.3.6, which will show
the results on census data. In more detail, 3.3.1, 3.3.2, 3.3.3, and 3.3.4 will summarize the
performance of the methods in terms of solution quality as the parameters s, n, d, and τ,
respectively, are varied; and 3.3.5 will show how the running time changes as s, n, and d
change.

3.3.1 Quality of approximation when the sampling size s changes

As discussed in Section 3.2.1, we can use one of several methods for the conditioning
step, i.e., for finding the well-conditioned basis U = AR−1 in the Step 1 of Algorithm 8.
Here, we will consider the empirical performance of six methods for doing this condi-
tioning step, namely: SC, SPC1, SPC2, SPC3, NOCO, and UNIF. SC is the (slow) Cauchy
transform (Lemma 2.15). SPC1, SPC2, SPC3 are the three nearly input-sparsity time condi-
tioning methods, i.e., SPCT1, SPCT2 and SPCT3, described in 3.2.1; NOCO stands for “no
conditioning,” meaning the matrix R in the conditioning step is taken to be identity; and,
UNIF stands for the uniform sampling method, which we include here for completeness.
Note that, for all the methods, we compute the row norms of the well-conditioned basis
exactly instead of estimating them with Algorithm 7. The reason is that this permits a
cleaner evaluation of the quantile regression algorithm, as this may reduce the error due
to the estimating step. We have, however, observed similar results if we approximate the
row norms well.

Rather than determining the sample size from a given tolerance ε, we let the sample size
s vary in a range as an input to the algorithm. Also, for a fixed data set, we will show the
results when τ = 0.5, 0.75, 0.95. In our figure, we will plot the first and the third quartiles
of the relative errors of the objective value and solution measured in three different norms
from 50 independent trials. We restrict the y axis in the plots to the range of [0, 100] to
show more details. We start with a test on skewed data with size 1e6× 50. (Recall that, by
1e6× 50, we mean that n = 1× 106 and d = 50.) The resulting plots are shown in Figure 1.

1 U.S. Census, http://www.census.gov/census2000/PUMS5.html

http://www.census.gov/census2000/PUMS5.html
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(b) τ = 0.75, | f − f ∗|/| f ∗|
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(c) τ = 0.95, | f − f ∗|/| f ∗|

10
2

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

10
2

sample size

||
x
−

x
* ||

2
/|
|x

* ||
2

τ = 0.5

 

 

SC
SPC1
SPC2
SPC3
NOCO
UNIF

(d) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x− x∗‖2/‖x∗‖2
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(g) τ = 0.5, ‖x− x∗‖1/‖x∗‖1
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(h) τ = 0.75, ‖x− x∗‖1/‖x∗‖1
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(i) τ = 0.95, ‖x− x∗‖1/‖x∗‖1
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(j) τ = 0.5, ‖x− x∗‖∞/‖x∗‖∞
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(k) τ = 0.75, ‖x− x∗‖∞/‖x∗‖∞
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(l) τ = 0.5, ‖x− x∗‖∞/‖x∗‖∞

Figure 1: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the
objective value (namely, | f − f ∗|/| f ∗|) and solution vector (measured in three different
norms, namely, the `2, `1 and `∞ norms), by using 6 different methods, among 50 inde-
pendent trials. The test is on skewed data with size 1e6 by 50. The three different columns
correspond to τ = 0.5, 0.75, 0.95, respectively.
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From these plots, if we look at the sampling size required for generating at least 1-digit
accuracy, then SPC2 needs the fewest samples, followed by SPC3, and then SPC1. This is
consistent with the order of the condition numbers of these methods. For SC, although in
theory it has good condition number properties, in practice it performs worse than other
methods. Not surprisingly, NOCO and UNIF are not reliable when s is very small, e.g.,
less than 1e4.

When the sampling size s is large enough, the accuracy of each conditioning method is
close to the others in terms of the objective value. Among these, SPC3 performs slightly
better than others. When estimating the actual solution vectors, the conditioning-based
methods behave substantially better than the two naive methods. SPC2 and SPC3 are the
most reliable methods since they can yield the least relative error for every sample size
s. NOCO is likely to sample the outliers, and UNIF cannot get accurate answer until the
sampling size s ≥ 1e4. This accords with our expectations. For example, when s is less
than 1e4, as we pointed out in the remark below the description of the skewed data, it is
very likely that none of the rows in the first block corresponding to the first coordinate will
be selected. Thus, poor estimation will be generated due to the imbalanced measurements
in the design matrix. Note that from the plots we can see that if a method fails with some
sampling complexity s, then for that value of s the relative errors will be huge e.g., larger
than 100, which is clearly a trivial result). Note also that all the methods can generate at
least 1-digit accuracy if s is large enough.

It is worth mentioning the performance difference among SPC1, SPC2 and SPC3. From
Table 7, we show the trade-offs between running time and condition number for the three
methods. As we pointed out, SPC2 always needs the least sampling complexity to generate
2-digit accuracy, followed by SPC3 and then SPC1. When s is large enough, SPC2 and
SPC3 perform substantially better than SPC1. As for the running time, SPC1 is the fastest,
followed by SPC3, and then SPC2. Again, all of these follow the theory about our SPCT2

methods. We will present a more detailed discussion for the running time in Section 3.3.5.
Although our theory doesn’t say anything about the quality of the solution vector itself

(as opposed to the value of the objective function), we evaluate this here. To measure the
approximation to the solution vectors, we use three norms (the `1, `2, and `∞ norms).
From Figure 1, we see that the performance among these method is qualitatively similar
for each of the three norms, but the relative error is higher when measured in the `∞ norm.
Not surprisingly, NOCO and UNIF are not among the reliable methods when s is small
(and they get worse when s is even smaller). Note that the relative error for each method
doesn’t change substantially when τ takes different values.

(We note also that, for subsequent figures in subsequent subsections, we obtained sim-
ilar qualitative trends for the errors in the approximate solution vectors when the errors
were measured in different norms. Thus, due to this similarity and to save space, in sub-
sequent figures, we will only show errors for `2 norm.)

3.3.2 Quality of approximation when the higher dimension n changes

Next, we describe how the performance of our algorithm varies when higher dimension
n changes. Figure 2 shows the change of relative error on the objective value and solution
vector by using SPC3 and letting n vary from 1e4 to 1e6 and d = 50 fixed. Recall, from
Theorem 3.5, that for given a tolerance ε, the required sampling complexity s depends
only on d. That is, if we fix the sampling size s and d, then the relative error should not
vary much, as a function of n. If we inspect Figure 2, we see that the relative errors are
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almost constant as a function of increasing n, provided that n is much larger than s. When
s is very close to n, since we are sampling roughly the same number of rows as in the full
data, we should expect lower errors. Also, we can see that by using SPC3, relative errors
remain roughly the same in magnitude.
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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Figure 2: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the objec-
tive value (namely, | f − f ∗|/| f ∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), when n
varying from 1e4 to 1e6 and d = 50 by using SPC3, among 50 independent trials. The test is
on skewed data. The three different columns correspond to τ = 0.5, 0.75, 0.95, respectively.

3.3.3 Quality of approximation when the lower dimension d changes

Next, we describe how the overall performance changes when the lower dimension d
changes. In Figure 3, we let d take more values in the range of [10, 100], and we show the
relative errors by using SPC3 for different sampling sizes s and τ values. As can be seen
in Figure 3, as d gets larger, the performance of the two naive methods do not vary a lot.
However, this increases the difficulty for conditioning methods to yield 2-digit accuracy.
When d is quite small, most methods can yield 2-digit accuracy even when s is not large.
When d becomes large, SPC2 and SPC3 provide good estimation, even when s < 1000. The
relative performance among these methods remains unchanged. For Figure 3, the relative
errors are monotonically increasing for each sampling size. This is consistent with our
theory that, to yield high accuracy, the required sampling size is a low-degree polynomial
of d.
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(c) τ = 0.95, | f − f ∗|/| f ∗|
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(d) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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Figure 3: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the objec-
tive value (namely, | f − f ∗|/| f ∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), when d
varying from 10 to 100 and n = 1e6 by using SPC3, among 50 independent trials The test is
on skewed data. The three different columns correspond to τ = 0.5, 0.75, 0.95, respectively.

3.3.4 Quality of approximation when the quantile parameter τ changes

Next, we will let τ change, for a fixed data set and fixed conditioning method, and we
will investigate how the resulting errors behave as a function of τ. We will consider τ in
the range of [0.5, 0.9], equally spaced by 0.05, as well as several extreme quantiles such as
0.975 and 0.98. We consider skewed data with size 1e6× 50; and our plots are shown in
Figure 4.

The plots in Figure 4 demonstrate that, given the same method and sampling size s,
the relative errors are monotonically increasing but only very gradually, i.e., they do not
change very substantially in the range of [0.5, 0.95]. On the other hand, all the methods
generate high relative errors when τ takes extreme values very near 1 (or 0). Overall, SPC2

and SPC3 performs better than SPC1. Although for some quantiles SPC3 can yield slightly
lower errors than SPC2, it too yields worst results when τ takes on extreme values.

3.3.5 Evaluation on running time performance

In this subsection, we will describe running time issues, with an emphasis on how the
running time behaves as a function of s, d and n.

when the sampling size s changes

To start, Figure 5 shows the running time for computing three subproblems associated
with three different τ values by using six methods (namely, SC, SPC1, SPC2, SPC3, NOCO,
UNIF) when the sampling size s changes. (This is simply the running time comparison
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(b) SPC2, | f − f ∗|/| f ∗|
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(c) SPC3, | f − f ∗|/| f ∗|
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(d) SPC1, ‖x− x∗‖2/‖x∗‖2
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(e) SPC2, ‖x− x∗‖2/‖x∗‖2
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Figure 4: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the
objective value, (namely | f − f ∗|/| f ∗|) and solution vector (namely, ‖x − x∗‖2/‖x∗‖2),
when τ varying from 0.5 to 0.999 by using SPC1, SCP2, SPC3, among 50 independent
trials. The test is on skewed data with size 1e6 by 50. Within each plot, three sampling
sizes are considered, namely, 1e4, 1e4, 1e5.

for all the six methods used to generate Figure 1.) As expected, the two naive methods
(NOCO and UNIF) run faster than other methods in most cases—since they don’t perform
the additional step of conditioning. For s < 104 , among the conditioning-based methods,
SPC1 runs fastest, followed by SPC3 and then SPC2. As s increases, however, the faster
methods, including NOCO and UNIF, become relatively more expensive; and when s ≈
5e5, all of the curves, except for SPC1, reach almost the same point.

To understand what is happening here, recall that we accept the sampling size s as
an input in our algorithm; and we then construct our sampling probabilities by p̂i =
min{1, s · λi/ ∑ λi}, where λi is the estimation of the `1 norm of the i-th row of a well-
conditioned basis. (See Step 4 in Algorithm 7.) Hence, the s is not the exact sampling size.
Indeed, upon examination, in this regime when s is large, the actual sampling size is often
much less than the input s. As a result, almost all the conditioning-based algorithms are
solving a subproblem with size, say, s/2× d, while the two naive methods are are solving
subproblem with size about s × d. The difference of running time for solving problems
with these sizes can be quite large when s is large. For conditioning-based algorithms, the
running time mainly comes from the time for conditioning and solving the subproblem.
Thus, since SPC1 needs the least time for conditioning, it should be clear why SPC1 needs
much less time when s is very large.

when the higher dimension n changes

Next, we compare the running time of our method with some competing methods when
data size increases. The competing methods are the primal-dual method, referred to as
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Figure 5: The running time for solving the three problems associated with three different τ values
by using six methods, namely, SC, SPC1, SPC2, SPC3, NOCO, UNIF, when the sampling
size s changes.

ipm, and that with preprocessing, referred to as prqfn; see [PK97] for more details on these
two methods.

We let the large dimension n increase from 1e5 to 1e8, and we fix s = 5e4. For com-
pleteness, in addition to the skewed data, we will consider two additional data sets. First,
we also consider a design matrix with entries generated from i.i.d. Gaussian distribution,
where the response vector is generated in the same manner as the skewed data. Also, we
will replicate the census data 20 times to obtain a data set with size 1e8 by 11. For each
n, we extract the leading n× d submatrix of the replicated matrix, and we record the cor-
responding running time. The results of running time on all three data sets are shown in
Figure 6.

From the plots in Figure 6 we see, SPC1 runs faster than any other methods across all the
data sets, in some cases significantly so. SPC2, SPC3 and prqfn perform similarly in most
cases, and they appear to have a linear rate of increase. Also, the relative performance
between each method does not vary a lot as the data type changes.

Notice that for the skewed data, when d = 50, SPC2 runs much slower than when
d = 10. The reason for this is that, for conditioning-based methods, the running time is
composed of two parts, namely, the time for conditioning and the time for solving the
subproblem. For SPC2, an ellipsoid rounding needs to be applied on a smaller data set
whose larger dimension is a polynomial of d. When the sampling size s is small, i.e., the
size of the subproblem is not too large, the dominant running time for SPC2 will be the
time for ellipsoid rounding, and as d increase (by, say, a factor of 5) we expect a worse
running time. Notice also that, for all the methods, the running time does not vary a
lot when τ changes. Finally, notice that all the conditioning-based methods run faster on
skewed data, especially when d is small. The reason is that the running time for these
three methods is of the order of input-sparsity time, and the skewed data are very sparse.
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(c) τ = 0.95

Skewed data with d = 11
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Skewed data with d = 50
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Replicated census data with d = 11

Figure 6: The running time for five methods (ipm, prqfn, SPC1, SPC2 and SPC3) on the same data set,
with d fixed and n changing. The sampling size s = 5e4, and the three columns correspond
to τ = 0.5, 0.75, 0.95, respectively.
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when the lower dimension d changes

Finally, we will describe the scaling of the running time as the lower dimension d changes.
To do so, we fixed n = 1e6 and the sampling size s = 1e4. We let all five methods run on
the data set with d varying from 5 up to 180. When d ≈ 200, the scaling was such that
all the methods except for SPC1 and SPC3 became too expensive. Thus, we let only SPC1

and SPC3 run on additional data sets with d up to 270. The plots are shown in Figure 7.
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Figure 7: The running time for five methods (ipm, prqfn, SPC1, SPC2, and SPC3) for solving skewed
data, with n = 1e6, s = 1e4, when d varies. SPC1 and SPC3 show better scaling than other
methods when d < 180. For this reason, we keep running the experiments for SPC1 and
SPC3 until d = 270. When d < 100, the three conditioning-based methods can yield 2-digit
accuracy. When for d ∈ [100, 180], they can yield 1-digit accuracy.

From the plots in Figure 7, we can see that when d < 180, SPC1 runs significantly faster
than any other method, followed by SPC3 and prqfn. The performance of prqfn is quite
variable. The reason for this is that there is a step in prqfn that involves uniform sampling,
and the number of subproblems to be solved in each time might vary a lot. The scalings
of SPC2 and ipm are similar, and when d gets much larger, say d > 200, they may not be
favorable due to the running time. When d < 180, all the conditioning methods can yield
at least 1-digit accuracy. Although one can only get an approximation to the true solution
by using SPC1 and SPC3, they will be a good choice when d gets even larger, say up to
several hundred, as we shown in Figure 7. We note that we could let d get even larger
for SPC1 and SPC3, demonstrating that SPC1 and SPC3 is able to run with a much larger
lower dimension than the other methods.

Remark 6. One may notice a slight but sudden change in the running time for SPC1 and SPC3 at
d ≈ 130. After we traced down the reason, we found out that the difference come from the time in
the conditioning step (since the subproblems they are solving have similar size), especially the time
for performing the QR factorization. At this size, it will be normal to take more time to factorize
a slightly smaller matrix due to the structure of cache line, and it is for this reason that we see
that minor decrease in running time with increasing d. We point out that the running time of our
conditioning-based algorithm is mainly affected by the time for the conditioning step. That is also
the reason why it does not vary a lot when τ changes.

3.3.6 Evaluation on solution of Census data

Here, we will describe more about the accuracy on the census data when SPC3 is applied
to it. The size of the census data is roughly 5e6× 11.
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We will generate plots that are similar to those appeared in [KH01]. For each coefficient,
we will compute a few quantities of it, as a function of τ, when τ varies from 0.05 to
0.95. We compute a point-wise 90 percent confidence interval for each τ by bootstrapping.
These are shown as the shaded area in each subfigure. Also, we compute the quartiles
of the approximated solutions by using SPC3 from 200 independent trials with sampling
size s = 5e4 to show how close we can get to the confidence interval. In addition, we
also show the solution to Least Square regression (LS) and Least Absolute Deviations
regression (LAD) on the same problem. The plots are shown in Figure 8.

From these plots we can see that, although the two quartiles are not inside the confi-
dence interval, they are quite close, even for this value of s. The sampling size in each trial
is only 5e4 which is about 1 percent of the original data; while for bootstrapping, we are
resampling the same number of rows as in the original matrix with replacement. In addi-
tion, the median of these 50 solutions is in the shaded area and close to the true solution.
Indeed, for most of the coefficients, SPC3 can generate 2-digit accuracy. Note that we also
compute the exact values of the quartiles; we don’t present them here since they are very
similar to those in Table 21 in Section 6.2 (where empirical results of large-scale quantile
regression problems are shown) in terms of accuracy. All in all, SPC3 performs quite well
on this real data.
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Figure 8: Each subfigure is associated with a coefficient in the census data. The shaded area shows
a point-wise 90% confidence interval. The black curve inside is the true solution when τ
changes from 0.05 to 0.95. The blue and green lines correspond to the `2 and `1 solution,
respectively. The two magenta curves show the first and third quartiles of solutions ob-
tained by using SPC3, among 200 independent trials with sampling size s = 5e4 (about 1%
of the original data).
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Among many novel algorithms for large-scale data analysis and machine learning prob-
lems that have emerged in recent years, stochastic gradient descent (SGD) methods and
randomized linear algebra (RLA) algorithms have received much attention—both for their
strong performance in practical applications and for their interesting theoretical proper-
ties [Bot10; Mah11]. Consider the ubiquitous ` p regression problems. For these regression
problems, SGD algorithms are widely used in practice because of their scalability and effi-
ciency. In contrast, RLA algorithms have better theoretical guarantees but (thus far) have
been less flexible, e.g., in the presence of constraints.

In this chapter, we describe a novel RLA-SGD algorithm called pwSGD (preconditioned
weighted SGD) for ` p regression. Our new algorithm combines the advantages of both
RLA and SGD methods for solving constrained overdetermined ` p regression problems.
We prove that PWSGD inherits fast convergence rates that only depend on the lower
dimension of the linear system, while maintaining low computational complexity. In Sec-
tion 4.1 we provide an overview of our algorithm and its connection to related algorithms.
Main algorithm and theoretical results are presented in Section 4.2. Empirical evaluation
of pwSGD is provided in Section 4.3. Finally, we discuss the connection between RLA al-
gorithms and coreset methods for ` p regression problems in Section 4.4. The material in
this chapter appears in Yang et al. [Yan+16a; Yan+16b].

4.1 overview and connection to related algorithms

Consider the overdetermined ` p regression problem, which is previously defined in Def-
inition 2.24,

m i n
x∈Z

f ( x ) = ‖ A x − b ‖ p , (4.1)

where p ∈ [ 1 , ∞ ) , A ∈ R n× d , b ∈ R n and n � d . When Z = R d , i.e., the solution
space is unconstrained, the cases p ∈ { 1 , 2 } are respectively known as the least absolute
deviations (LAD or ` 1 ) and least-squares (LS or ` 2 ) regression problems.

As a point of potentially-independent interest, a connection between `p regression and
stochastic optimization will allow us to unify our main algorithm pwSGD and some ex-
isting `p regression solvers under the same framework. In Figure 28, we present the basic
structure of this framework, which provides a view of pwSGD from another perspective.
To be more specific, we reformulate a (deterministic) overdetermined `p regression prob-
lem of the form (4.1) into a stochastic optimization problem of the form (4.2).

Lemma 4.1. Let U ∈ Rn×d be a basis of the range space of A in the form of U = AF, where
F ∈ Rd×d. The constrained overdetermined `p regression problem (4.1) is equivalent to

min
y∈Y
‖Uy− b‖p

p = min
y∈Y

Eξ∼P [H(y, ξ)] , (4.2)

44
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`p regression
minx ‖Ax− b‖p

p

stochastic optimization
miny Eξ∼P

[
|U(ξ)y− bξ |p/pξ

]

SA

SA

SAA

onlin
e

online

batch

(C1): How to sample?

uniform P
U = A

non-uniform P
well-conditioned U

non-uniform P
well-conditioned U

naive

using RLA

using RLA

(C2): Which U and P to use?

gradient descent

gradient descent

exact solution
of subproblem

fast

fast

slow

(C3): How to solve?

vanilla SGD

pwSGD
(this work)

vanilla RLA with
algorithmic leveraging

resulting solver

Figure 9: An overview of our framework for solving `p regression via stochastic optimization. To
construct a solver, three choices have to be made. For (C1), the answer can be either SAA
(Sampling Average Approximation, i.e., sample a batch of points and deal with the sub-
problem) or SA (Stochastic Approximation, i.e., sample a mini-batch in an online fashion
and update the weight vector after extracting useful information). In (C2), the answer is
determined by P, which denotes the underlying sampling distribution (uniform or non-
uniform) and U, which denotes the basis with which to work (original or preconditioned
system). Finally, for (C3), the answer determines how we solve the subproblem (in SAA)
or what information we extract and how we update the weight (in SA).

where ξ is a random variable over {1, . . . , n} with distribution P = {pi}n
i=1, y is the decision

variable in Y , and H(y, ξ) = |U(ξ)y− bξ |p/pξ . The constraint set of y is given by Y = {y ∈
Rd | y = F−1x, x ∈ Z}.

As suggested in Figure 28, to solve this stochastic optimization problem, typically one
needs to answer the following three questions:

(C1) How to sample: SAA (Sampling Average Approximation, i.e., draw samples in a
batch mode and deal with the subproblem) or SA (Stochastic Approximation, i.e.,
draw a mini-batch of samples in an online fashion and update the weight after
extracting useful information)?

(C2) Which probability distribution P (uniform distribution or not) and which basis U
(preconditioning or not) to use?

(C3) Which solver to use (e.g., how to solve the subproblem in SAA or how to update
the weight in SA)?

Some combinations of these choices may lead to existing solvers; see Figure 28 for more
details. In the following, we briefly outline several connections. Using the SAA approach
with a naive choice of U = A and uniform distribution P leads to the vanilla subsam-
pling algorithm. Importantly, such a simple algorithm might fail (ungracefully) for worst-
case input. On the other hand, RLA methods (in particular, those that exploit algorithmic
averaging discussed in Section 2.3.2.3 and Section 2.3.2.4) inherit strong theoretical guar-
antees because the underlying sampling distribution P captures most of the important
information of the original system; moreover, such a carefully constructed leverage-based
distribution is defined based on a well-conditioned basis U , e.g., an orthogonal matrix for
p = 2 (Theorem 2.19).

A natural question arises: can we leverage the algorithmic benefits of RLA precondi-
tioning to improve the performance of SGD-type algorithms? One immediate idea is to
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develop an SGD-like algorithm that uses the same choice of U and P as in RLA methods.
Indeed, this simple idea leads to our main algorithm pwSGD, which is an online algorithm
(C1) that uses a non-uniform sampling distribution (C2) and performs a gradient descent
update (C3) on a preconditioned system (C2), as Figure 28 suggests.

Indeed, for least-squares problems (unconstrained `2 regression), pwSGD is highly re-
lated to the weighted randomized Kaczmarz (RK) algorithm [SV09; NWS14] in the way
that both algorithms perform SGD updates with non-uniform sampling distribution P. An
important difference is that pwSGD runs on a well-conditioned basis U while randomized
RK doesn’t involve preconditioning. In Section 4.2.6 we show that this preconditioning
step dramatically reduces the number of iteration required for pwSGD to converge to a
(fixed) desired accuracy.

4.2 main algorithm and theoretical results

4.2.1 Our main algorithm: pwSGD

Here, we state our main algorithm pwSGD (Algorithm 9) for solving the constrained overde-
termined `1 and `2 regression problems. We summarize the main steps of our main algo-
rithm as follows.

First, we compute a well-conditioned basis U for the range space of A implicitly via
a conditioning method; see Table 2 for possible randomized preconditioning methods.
We refer this as the “implicit” method, i.e., it focuses on computing R ∈ Rd×d such that
U = AR−1.

Second, we either exactly compute or quickly approximate the `p leverage scores de-
fined as {‖U(i)‖

p
p}n

i=1, as {λi}n
i=1. To compute leverage scores exactly, we have to form

the matrix U explicitly, which takes time O(nd2). Alternatively, we can estimate the row
norms of U without computing the product between A and R−1, in order to reduce the
running time as discussed in Section 2.3.2.3 and Section 2.3.2.4. We assume that {λi}n

i=1
satisfy

(1− γ)‖U(i)‖
p
p ≤ λi ≤ (1 + γ)‖U(i)‖

p
p, (4.3)

where γ is the approximation factor of estimation. When the leverage scores are exact,
the approximation factor γ = 0. From that, we can define a distribution P over {1, . . . , n}
based on {λi}n

i=1 as follows:

pi =
λi

∑n
j=1 λj

. (4.4)

Third, in each iteration a new sample corresponding to a row of A is drawn according
to distribution P and we apply an SGD process to solve the following equivalent problem
with a specific choice of F ∈ Rd×d:

min
y∈Y

h(y) = ‖AFy− b‖p
p = Eξ∼P

[
|A(ξ)Fy− bξ |p/pξ

]
. (4.5)

Here the matrix F is called the preconditioner for the linear system being solved; see
Section 4.2.3 for several choices of F. Below, we show that with a suitable choice of F, the
convergence rate of the SGD phase can be improved significantly. Indeed, we can perform
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Algorithm 9 pwSGD— preconditioned weighted SGD for overdetermined `1 and `2 re-
gression

1: Input: A ∈ Rn×d, b ∈ Rn with rank(A) = d, x0 ∈ Z , η and T.
2: Output: An approximate solution vector to problem minx∈Z ‖Ax− b‖p

p for p = 1 or
2.

3: Compute R ∈ Rd×d such that U = AR−1 is a well-conditioned basis U; see Table 2 for
possible options.

4: Compute or estimate ‖U(i)‖
p
p with leverage scores λi, for i ∈ [n], that satisfies (4.3).

5: Let pi =
λi

∑n
j=1 λj

, for i ∈ [n].

6: Construct the preconditioner F ∈ Rd×d based on R; see Section 4.2.3 for details.
7: for t = 0, . . . , T do
8: Pick ξt from [n] based on distribution {pi}n

i=1.
9:

ct =

sgn
(

A(ξt)xt − bξt

)
/pξt if p = 1;

2
(

A(ξt)xt − bξt

)
/pξt if p = 2.

10: Update x by

xt+1 =


xt − ηctH−1 A(ξt) if Z = Rd;

arg min
x∈Z

ηct A(ξt)x + 1
2‖xt − x‖2

H otherwise.
(4.8)

where H =
(

FFT)−1.
11: end for
12: Return x̄ for p = 1 or xT for p = 2.

the update rule in the original domain (with solution vector x instead of y), i.e., (4.8).
Notice that if Z = Rd and F = I, then the update rule can be simplified as

xt+1 = xt − ηct A(ξt). (4.6)

If Z = Rd and F = R−1, then the update rule becomes

xt+1 = xt − ηctH−1 A(ξt), (4.7)

where H = (RT R)−1. In the presence of constraints, (4.8) only needs to solve an op-
timization problem with a quadratic objective over the same constraints, whose size is
independent of n.

Finally, the output is the averaged value over all iterates, i.e., x̄ = 1
T ∑T

t=1 xt, for `1
regression, or the last iterate, i.e., xT , for `2 regression.

4.2.2 Main results for `1 and `2 regression problems

The quality-of-approximation of Algorithm 9 is presented in Theorem 4.2 and Theorem 4.3
for `1 and `2 regression, respectively, in which we give the expected number of iterations
that pwSGD needs for convergence within small tolerance. We show that pwSGD inherits a
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convergence rate ofO
(

1/
√

T
)

for `1 regression andO (log T/T) for `2 regression and the

constant term only depends on the lower dimension d when F = R−1. Worth mentioning
is that for `2 regression, our bound on the solution vector is measured in prediction norm,
i.e., ‖Ax‖2. All the proofs can be found in Appendix B.

In the following results, R is the matrix computed in step 3 in Algorithm 9, {λi}i∈[n], are
the leverage scores computed in step 4, F is the preconditioner chosen in step 6 in Algo-
rithm 9 and H =

(
FFT)−1. Denote by κ̄p(U) the condition number of the well-conditioned

basis U = AR−1 and γ the approximation factor of the leverage scores λi, i ∈ [n], that
satisfies (4.3). For any vector x ∈ Rd, denote by ‖x‖2

H = xT Hx the ellipsoidal norm of x in-
duced by matrix H = HT � 0. For any nonsingular matrix A, denote κ(A) = ‖A‖2‖A−1‖2
and κ̂(A) = |A|1|A−1|1 where | · |1 is the element-wise `1 norm. The exact form of the step-
sizes used can be found in the proofs.

Theorem 4.2. For A ∈ Rn×d and b ∈ Rn, define f (x) = ‖Ax − b‖1 and suppose f (x∗) > 0.
Then there exists a step-size η such that after

T = dκ̄2
1(U)κ̂2(RF)

c2
1c2c2

3
ε2

iterations, Algorithm 9 with p = 1 returns a solution vector estimate x̄ that satisfies the expected
relative error bound

E [ f (x̄)]− f (x∗)
f (x∗)

≤ ε.

Here, the expectation is taken over all the samples ξ1, . . . , ξT and x∗ is the optimal solution to

the problem minx∈Z f (x). The constants in T are given by c1 = 1+γ
1−γ , c2 =

‖x∗−x0‖2
H

‖x∗‖2
H

and

c3 = ‖Ax∗‖1/ f (x∗).

Theorem 4.3. For A ∈ Rn×d and b ∈ Rn, define f (x) = ‖Ax − b‖2 and suppose f (x∗) > 0.
Then there exists a step-size η such that after

T = c1κ̄2
2(U)κ2(RF) · log

(
2c2κ2(U)κ2(RF)

ε

)
·
(

1 +
κ2(U)κ2(RF)

c3ε

)
iterations, Algorithm 9 with p = 2 returns a solution vector estimate xT that satisfies the expected
relative error bound

E
[
‖A(xT − x∗)‖2

2
]

‖Ax∗‖2
2

≤ ε.

Furthermore, when Z = Rd and F = R−1, there exists a step-size η such that after

T = c1κ̄2
2(U) · log

(
c2κ2(U)

ε

)
·
(

1 +
2κ2(U)

ε

)
iterations, Algorithm 9 with p = 2 returns a solution vector estimate xT that satisfies the expected
relative error bound

E [ f (xT)]− f (x∗)
f (x∗)

≤ ε.
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Here, the expectation is taken over all the samples ξ1, . . . , ξT , and x∗ is the optimal solution to

the problem minx∈Z f (x). The constants in T are given by c1 = 1+γ
1−γ , c2 =

‖x∗−x0‖2
H

‖x∗‖2
H

, c3 =

‖Ax∗‖2
2/ f (x∗)2.

The above results indicate two important properties of pwSGD. First recall that the
condition number κ̄p(U) of the well-conditioned basis U is a polynomial of d that is
independent of n (Section 2.3). Thus with a preconditioner F = R−1 and an appropriate
step-size in pwSGD, the number of iterations T required to achieve an arbitrarily low
relative error only depends on the low dimension d of the input matrix A. Second, pwSGD
is robust to leverage score approximations, i.e., the expected convergence rate will only be
affected by a small distortion factor even when the approximation has low accuracy, such
as γ = 0.5.

Remark 7. For constrained `2 regression, the bound is on the solution vector measured in predic-
tion norm. By the triangular inequality, this directly implies (E [ f (xT)]− f (x∗))/ f (x∗) ≤ √c3ε.

4.2.3 The choice of the preconditioner F

As we can see, the preconditioner F plays an important role in our algorithm. It converts
the original regression problem in (4.1) to the stochastic optimization problem in (4.5).
From Theorem 4.2 and Theorem 4.3, clearly, different choices of F lead to different con-
vergence rates in the SGD phase (reflected in κ(RF)1) and additional computational costs
(reflected in H in (4.8) ).

When F = R−1, the effect of κ(RF) or κ̂(RF) on T vanishes. In this case, H is also a
good approximation to the Hessian AT A. This is because usually R is the R-factor in the
QR decomposition of SA, where SA is a “sketch” of A satisfying (2.2) that shares similar
properties with A. Together we have H = RT R = (SA)T(SA) ≈ AT A. This implies (4.7)
is close to the Newton-type update. However, as a tradeoff, since H−1 is a d × d dense
matrix, an additional O(d2) cost per iteration is required to perform SGD update (4.8).

On the other hand, when F = I, no matrix-vector multiplication is needed in updating
x. However, based on the discussion above, one should expect κ(R) = κ(SA) to be close to
κ(A). Then the term κ(RF) = κ(R) can be large if A is poorly conditioned, which might
lead to undesirable performance in the SGD phase.

Besides the obvious choices of F such as R−1 and I, one can choose F to be a diagonal
preconditioner D that scales R to have unit column norms. According to van der Sluis
[van69], the condition number after preconditioning κ(RD) is always upper bounded by
the original condition number κ(R), while the additional cost per iteration to perform
SGD updates with diagonal preconditioner is only O(d). In Section 4.3 we illustrate the
tradeoffs among these three choices of preconditioners empirically.

4.2.4 Complexities

Here, we discuss the complexity of pwSGD with F = R−1. The running time of Algo-
rithm 9 consists of three parts. First, for computing a matrix R such that U = AR−1 is
well-conditioned; see Table 2 for the running time time(R) and preconditioning quality

1 It is also reflected in κ̂(RF); however, it depends on κ(RF) because one can show m1κ(RF) ≤ κ̂(RF) ≤ m2κ(RF),
where m1, m2 are constants derived using matrix norm equivalences.
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κ̄p(U) of various methods.2 Second, to estimate the leverage scores, i.e., the row norms
of AR−1, Drineas et al. [Dri+12] and Clarkson et al. [Cla+13] proposed several algorithms
for approximating the `1 and `2 leverage scores without forming matrix U. For a target
constant approximation quality, e.g., γ = 0.5 and c1 = 1+γ

1−γ = 3, the running time of
these algorithms is O(log n · nnz(A)). Third, Theorem 4.2 and Theorem 4.3 provide upper
bounds for the expected algorithmic complexity of our proposed SGD algorithm when a
target accuracy is fixed. Combining these, we have the following results.

Theorem 4.4. Suppose the preconditioner in step 3 of Algorithm 9, is chosen from Table 2, with
constant probability, one of the following events holds for pwSGD with F = R−1. To return a
solution x̃ with relative error ε on the objective,

• It runs in time(R) +O(log n · nnz(A) + d3κ̄1(U)/ε2) for unconstrained `1 regression.
• It runs in time(R) +O(log n · nnz(A) + timeupdate · dκ̄1(U)/ε2) for constrained `1 regres-

sion.
• It runs in time(R) +O(log n · nnz(A) + d3 log(1/ε)/ε) for unconstrained `2 regression.
• It runs in time(R) + O(log n · nnz(A) + timeupdate · d log(1/ε)/ε2) for constrained `2

regression.
In the above, time(R) denotes the time for computing the matrix R and timeupdate denotes the time
for solving the optimization problem in (4.8).

Notice that, since timeupdate only depends on d, an immediate conclusion is that by us-
ing sparse preconditioning methods, to find an ε-approximate solution, pwSGD runs in
O(log n · nnz(A) + poly(d)/ε2) time for `1 regression and in
O(log n · nnz(A) + poly(d) log(1/ε)/ε) time for `2 regression (in terms of solution vector
in prediction norm for constrained problems or objective value for unconstrained prob-
lems).

Also, as can be seen in Theorem 4.4, for the complexity for `1 regression, the tradeoffs
in choosing preconditioners from Table 2 are reflected here. On the other hand, for `2
regression, as all the preconditioning methods in Table 2 provide similar preconditioning
quality, i.e., κ(U) = κ2(U) = O(1), time(R) becomes the key factor for choosing a pre-
conditioning method. In Table 8, we summarize the complexity of pwSGD using various
underlying preconditioning methods for solving unconstrained `1 and `2 regression prob-
lems. We remark that, with decaying step-sizes, it is possible to improve the dependence
on ε from log(1/ε)/ε to 1/ε [RSS12].

To provide a quick overview of how pwSGD compares to existing algorithms, in Ta-
bles 9 and 10, we summarize the complexity required to compute a solution x̂ with relative
error ( f (x̂)− f (x∗))/ f (x∗) = ε, of several solvers for unconstrained `1 and `2 regression.
In Table 9, RLA with algorithmic leveraging (RLA for short) [Cla+13; YMM14] is a popu-
lar method for obtaining a low-precision solution and randomized IPCPM is an iterative
method for finding a higher-precision solution [MM13b] for unconstrained `1 regression.
Clearly, pwSGD has a uniformly better complexity than that of RLA methods in terms of
both d and ε, no matter which underlying preconditioning method is used. This makes
pwSGD a more suitable candidate for getting a medium-precision, e.g., ε = 10−3, solution.

In Table 10, all the methods require constructing a sketch first. Among them, “low-
precision” solvers refer to “sketching + direct solver” type algorithms; see [Dri+11; CW13a]
for projection-based examples and [CW13a; Dri+12] for sampling-based examples. “High-
precision” solvers refer to “sketching + preconditioning + iterative solver” type algo-
rithms; see [AMT10; MSM14] for examples. One can show that, when d ≥ 1/ε and

2 In Table 2, only values of κp are presented. However, using Lemma 2.5, one can compute the values of κ̄p
correspondingly.
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Table 8: Summary of complexity of pwSGD with different underlying preconditioning methods
when solving unconstrained `1 and `2 regression problems. The target is to return a so-
lution x̃ with relative error ε on the objective. Here, the complexity of each algorithm is
calculated by setting the failure probability to be a constant.

type preconditioner complexity reference

`1

Cauchy O(nd2 log n + d3 log d + d
11
2 log

3
2 d/ε2) [SW11]

Fast Cauchy O(nd log n + d3 log5 d + d
17
2 log

9
2 d/ε2) [Cla+13]

Sparse Cauchy O(nnz(A) log n + d7 log5 d + d
19
2 log

11
2 d/ε2) [MM13a]

Reciprocal exponential O(nnz(A) log n + d3 log d + d
13
2 log

5
2 d/ε2) [WZ13]

Lewis weights O(nnz(A) log n + d3 log d + d
9
2 log

1
2 d/ε2) [CP15]

`2

Gaussian O(nd2 + d3 log(1/ε)/ε) [DS01]

SRHT O(nd log n + d3 log n log d + d3 log(1/ε)/ε) [Tro11]

Sparse `2 embedding O(nnz(A) log n + d3 log d + d3 log(1/ε)/ε) [Coh16]

Refinement sampling O(nnz(A) log(n/d) log d + d3 log(n/d) log d + d3 log(1/ε)/ε) [Coh+15]

n ≥ d2/ε, pwSGD is asymptotically better than all the solvers shown in Table 10. More-
over, although high-precision solvers are more efficient when a high-precision solution
is desired, usually they are designed for unconstrained problems, whereas pwSGD also
works for constrained problems.

We remark that, compared to general SGD algorithms, our RLA-SGD hybrid algorithm pwSGD
works for problems in a narrower range, i.e., `p regression, but inherits the strong theoretical guar-
antees of RLA. When solving `2 regression, for which traditional RLA methods are well designed,
pwSGD has a comparable complexity. On the other hand, when solving `1 regression, due to the
efficiency of SGD update, pwSGD has a strong advantage over traditional RLA methods.

Table 9: Summary of complexity of several unconstrained `1 solvers that use randomized linear
algebra. The target is to find a solution x̂ with accuracy ( f (x̂)− f (x∗))/ f (x∗) ≤ ε, where
f (x) = ‖Ax − b‖1. In the above, time(R) denotes the time needed to compute a matrix R
such that AR−1 is well-conditioned with condition number κ̄1 (Definition 2.4). The general
complexity bound and the one using sparse reciprocal exponential transform (Lemma 2.18)
as the underlying preconditioning method are presented. Here, we assume n� d such that
n > d3 log d and the underlying `1 regression solver in RLA with algorithmic leveraging
algorithm takes O(n 5

4 d3) time to return a solution [PK97]. The complexity of each algorithm
is computed by setting the failure probability to be a constant.

solver complexity (general) complexity (sparse)

RLA with algorithmic leveraging time(R) +O(nnz(A) log n + κ̄
5
4

1 d
17
4 /ε

5
2 ) O(nnz(A) log n + d

69
8 log

25
8 d/ε

5
2 )

randomized IPCPM time(R) + nd2 +O((nd + poly(d)) log(κ̄1d/ε)) nd2 +O((nd + poly(d)) log(d/ε))

pwSGD time(R) +O(nnz(A) log n + d3 κ̄1/ε2) O(nnz(A) log n + d
13
2 log

5
2 d/ε2)

Table 10: Summary of complexity of several unconstrained `2 solvers that use randomized linear
algebra. The target is to find a solution x̂ with accuracy ( f (x̂)− f (x∗))/ f (x∗) ≤ ε, where
f (x) = ‖Ax − b‖2. Two sketching methods, namely, SRHT [Dri+11; Tro11] and sparse
embedding [CW13a] are considered. Here, we assume d ≤ n ≤ ed. The complexity of each
algorithm is computed by setting the failure probability to be a constant.

solver complexity (SRHT) complexity (sparse)

low-precision solvers (projection) O
(
nd log(d/ε) + d3 log n(log d + 1/ε)

)
O
(
nnz(A) + d4/ε2

)
low-precision solvers (sampling) O

(
nd log n + d3 log n log d + d3 log d/ε

)
O
(
nnz(A) log n + d4 + d3 log d/ε

)
high-precision solvers O

(
nd log n + d3 log n log d + nd log(1/ε)

)
O
(
nnz(A) + d4 + nd log(1/ε)

)
pwSGD O

(
nd log n + d3 log n log d + d3 log(1/ε)/ε

)
O
(
nnz(A) log n + d4 + d3 log(1/ε)/ε

)
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4.2.5 Complexity comparison between pwSGD and RLA

As we pointed out in Section 4.1, pwSGD and RLA methods with algorithmic leverag-
ing (RLA for short) are closely related as they can be viewed as methods using SA and
SAA to solve the stochastic optimization problem (4.2). Omitting the time for computing
basis U and sampling distribution P, the comparison of complexity boils down to compar-
ing timesub(s, d) (for RLA) and timeupdate · T (for pwSGD) where timesub(s, d) is the time
needed to solve the same constrained regression problem with size s by d and timeupdate
denotes the time needed for to solve the optimization problem in (4.8). According to
the theory, for the same target accuracy, the required s (sampling size) and T (number
of iterations) are the same asymptotically, up to logarithmic factors; see Theorem 2.22

for expression of s. When the problem is unconstrained, due to the efficiency of SGD,
timeupdate = O(d2) as indicated in (4.8). For `2 regression, due to the efficiency of the
direct solver, timesub(s, d) = O(sd2). This explains why pwSGD and RLA (low-precision
solvers (sampling)) have similar complexities as shown in Table 10. On the other hand, for
unconstrained `1 regression, a typical `1 regression solver requires time timesub(s, d) > sd2.
For example, if an interior point method is used [PK97], timesub(s, d) is not even linear in s.
This explains the advantage pwSGD has over RLA as shown in Table 9. We also note that
in the presence of constraints, pwSGD may still be more efficient for solving `1 regression
because roughly speaking, timesub(s, d)/s > timeupdate.

4.2.6 Connection to weighted randomized Kaczmarz algorithm

As mentioned in Section 4.1, our algorithm pwSGD for least-squares regression is related
to the weighted randomized Kaczmarz (RK) algorithm [SV09; NWS14]. To be more spe-
cific, weighted RK algorithm can be viewed as an SGD algorithm with constant step-size
that exploits a sampling distribution based on row norms of A, i.e., pi = ‖A(i)‖2

2/‖A‖2
F.

In pwSGD, if the preconditioner F = R−1 is used and the leverage scores are computed
exactly, the resulting algorithm is equivalent to applying the weighted randomized Karcz-
marz algorithm on a well-conditioned basis U = AR−1 since leverage scores are defined
as the row norms of U.

Since the matrix A itself can be a basis for its range space, setting U = A and F = R = I
in Theorem 4.3 indicates that weighted RK algorithm inherits a convergence rate that
depends on condition number κ(A) times the scaled condition number κ̄2(A). Notice that
in pwSGD, the preconditioning step implicitly computes a basis U such that both κ(U) and
κ̄(U) are low. One should expect the SGD phase in pwSGD inherits a faster convergence
rate, as verified numerically in Section 4.3.

4.3 empirical evaluation

In this section, we provide empirical evaluations of our main algorithm pwSGD. We eval-
uate its convergence rate and overall running time on both synthetic and real datasets.
For pwSGD, we implement it with three different choices of the preconditioner F. Herein,
throughout the experiments, by pwSGD-full, pwSGD-diag, pwSGD-noco, we respectively
mean pwSGD with preconditioner F = R−1, D, I; see Section 4.2.3 for details. Note that,
for pwSGD, we use the methods from Clarkson and Woodruff [CW13a] for precondition-
ing. Also, we exactly compute the row norms of AR−1 and use them as the leverage scores.
In each experiment, the initial solution vector estimate is set as zero. The above algorithms
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are then run in the following manner. Each epoch contains dn/10e iterations. At the begin-
ning of each epoch, we sample dn/10e indices according to the underlying distribution
without replacement and update the weight using the dn/10e row samples from the data
matrix. Finally, the plots are generated by averaging the results over 20 independent trials.

4.3.1 Experiments on synthetic datasets

Theoretically the major advantage of pwSGD is the fast convergence rate. To evaluate its
performance, we compare the convergence rate of relative error, i.e., | f̂ − f ∗|/ f ∗, with
other competing algorithms including vanilla SGD and fully weighted randomized Kacz-
marz (weighted-RK) algorithm ([NWS14; SV09]) for solving least-squares problem (un-
constrained `2 regression). For each of these methods, given a target relative error ε = 0.1
on the objective, i.e., ( f̂ − f ∗)/ f ∗ = 0.1, we use the optimal step-size suggested in the
theory. In particular, for pwSGD, we are showing the convergence rate of the SGD phase
after preconditioning. We stop the algorithm when the relative error reaches ε. In this task,
we use synthetic datasets for better control over the properties on input matrices A and b.
Each dataset has size 1000 by 10. The design matrix A is of the form A = UΣVT where
U ∈ R1000×10 and V ∈ R10×10 are random orthonormal matrices and Σ ∈ R10×10 is a di-
agonal matrix that controls κ(A). The true solution x∗ is a standard Gaussian vector and
the response vector b is set to be Ax∗ corrupted by some Gaussian noise with standard
deviation 0.1.

We investigate the relation between the condition number of A and convergence rate. By
Theorem 4.3, for weighted SGD algorithm, the number of iterations required to solve an `2
regression problem is proportional to κ̄2

2(A)κ2(A) = ‖(AT A)−1‖2
2‖A‖2

2‖A‖2
F ≤ κ̄4

2(A). To
verify this hypothesis, we generate a sequence of A matrices using Synthetic 2 dataset
with increasing κ̄4

2(A) values such that U and V in the sequence are constants.3 This
construction ensures that all other properties such as leverage scores and coherence (the
largest leverage score) remain unchanged. We present the experimental results (number
of iterations required for different methods versus κ̄4

2(A)) for the synthetic dataset in
Figure 10.

As shown in Figure 10, the required number of iterations of all the methods except
for pwSGD-full scales linearly in κ̄4

2(A). This phenomenon matches the result predicted
in theory. A significant advantage of pwSGD-full over other methods is its robust conver-
gence rate against variations in κ̄4

2(A). This is mainly because its SGD phase operates on
a well-conditioned basis after preconditioning and the preconditioning quality of pwSGD-
full depends only on the low-dimension of A; thus increasing κ̄4

2(A) has little effect on
changing its convergence rate. Also, while the diagonal preconditioner in pwSGD-diag
reduces the condition number, i.e., κ(RD) ≤ κ(R), its convergence rate still suffers from
the increase of κ̄4

2(A).

4.3.2 Time-accuracy tradeoffs

We present the time-accuracy tradeoffs among these methods on the following two datasets.

Here we test the performance of various methods in solving unconstrained `1 and `2
regression problems. Although there are no theoretical results to support the solution

3 In Synthetic 2, U and V are fixed. Σ is of the form diag(σ1, . . . , σd) where σi = 1 + (i− 1)q for i ∈ [d]. We solve
for q such that ∑d

i=1 σ2
i = κ̄2

2(U) for any desired value κ̄2
2(U).
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Figure 10: Convergence rate comparison of several SGD-type algorithms including pwSGD with
three different choices of preconditioners for solving `2 regression on Synthetic 2
datasets with increasing condition number. For each method, the optimal step-size is
set according to the theory with target accuracy | f (x̂)− f (x∗)|/ f (x∗) = 0.1. The y-axis is
showing the minimum number of iterations for each method to find a solution with the
target accuracy.

Table 11: Summary of datasets.

name #rows # columns κ(A)

Year4 5× 105 90 2× 103

Buzz5 5× 105 77 108

vector convergence on `1 regression problems with pwSGD, we still evaluate relative error
in the solution vector. To further examine the performance of pwSGD methods, we also
include AdaGrad [DHS11] and RLA methods with algorithmic leveraging (RLA for short)
described in Section 2.3.2.3 and Section 2.3.2.4 for comparisons. For AdaGrad, we use
diagonal scaling and mirror descent update rule. As for implementation details, in all
SGD-like algorithms, step-size tuning is done by grid-searching where at each trial the
algorithm is run with a candidate step-size for enough iterations. Then the step-size that
yields the lowest error within 25 seconds is used. The time/accuracy pair at every 2000
iterations is recorded. For RLA, we choose s from a wide range of values and record
the corresponding time/accuracy pairs. The results on the two datasets are presented in
Figure 11 and Figure 12, respectively.

As we can see in Figure 11 and Figure 12, in our algorithm pwSGD, a faster conver-
gence comes with the additional cost of preconditioning. For example, the preconditioning
phase of pwSGD takes approximately 3 seconds. Nevertheless, with a faster convergence
rate in a well-conditioned basis, pwSGD-full still outperforms other methods in converg-
ing to a higher-precision solution at a given time span. As pwSGD-diag balances con-
vergence rate and computational cost, it outperforms pwSGD-full at the early stage and
yields comparable results to AdaGrad. As expected, due to the poor conditioning, SGD,
weighted-RK and pwSGD suffer from slow convergence rates. As for RLA methods, they
have the same first step as in pwSGD, i.e., preconditioning and constructing the sampling
distribution. For `1 regression, to obtain a fairly high-precision solution, the sampling size
has to be fairly large, which might drastically increase the computation time for solving
the sampled subproblem. This explains the advantage of pwSGD-full over RLA methods
in Figure 11. It is worth mentioning that, although for `2 regression our theory provides
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relative error bound on the solution vector measured in the prediction norm, here we also
see that pwSGD-full and pwSGD-diag display promising performance in approximating
the solution vector measured in `2 norm.

We also notice that on Buzz (Figure 12) , all the methods except for pwSGD-full and
pwSGD-diag have a hard time converging to a solution with low solution error. This is
due to the fact that Buzz has a high condition number. The advantage of applying a
preconditioner is manifested.

Finally, notice that RLA uses a high performance direct solver to solve the medium-
size subsampled problem for `2 regression. In this case pwSGD methods do not show
significant advantages over RLA in terms of speed. For this reason we have not included
RLA results in Figure 11a and Figure 11b. Nevertheless, pwSGD methods may still be
favorable over RLA in terms of speed and feasibility when the size of the dataset becomes
increasingly larger, e.g., 107 by 500.
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Figure 11: Time-accuracy tradeoffs of several algorithms including pwSGD with three different
choices of preconditioners on year dataset. Both `1 and `2 regressions are tested and
the relative error on both the objective value, i.e., | f (x̂)− f (x∗)|/ f (x∗), and the solution
vector, i.e., ‖x̂− x∗‖2

2/‖x∗‖2
2, are measured.
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Figure 12: Time-accuracy tradeoffs of several algorithms including pwSGD with three different
choices of preconditioners on buzz dataset. Both `1 and `2 regressions are tested and
the relative error on both the objective value, i.e., | f (x̂)− f (x∗)|/ f (x∗), and the solution
vector, i.e., ‖x̂− x∗‖2

2/‖x∗‖2
2, are measured.

4.3.3 Experiments with sparse `2 regression

Finally, we evaluate our algorithm on a constrained problem—sparse `2 regression, which
is a special case of (4.1). The problem formulation is as follows. Given a matrix A ∈ Rn×d

and a vector b ∈ Rn, we want to solve the constrained problem

min
‖x‖1≤R

‖Ax− b‖2, (4.9)

where R controls the size of the `1-ball constraint.
When using pwSGD, according to (4.8) in Algorithm 9, at each iteration, a sparse `2

regression problem with size d by d needs to be solved. Here, to use the samples more
efficiently, we use a mini-batch version of pwSGD. That is, in Step 8-10 of Algorithm 9,
rather than picking only one row from A to compute the noisy gradient, we select m rows
and average the scaled version of them. Doing this allows us to reduce the variance of the
noisy gradient. In our experiments, we set m = 200.

In this task, the observation model is generated in the following manner. b = Ax∗ + r
where A ∈ Rn×d has independent standard normal entries, x∗ has s nonzero entries
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and noise vector r ∈ Rn has independent standard normal entries. We evaluate both the
optimization error ‖x̂ − xLS‖2 and statistical error ‖x̂ − x∗‖2 of pwSGD-full with several
choices of stepsize η where xLS the optimal solution of problem (4.9). By [HTW15], the
least-squares error of xLS is ‖xLS − x∗‖2 ≈

√
s log(ed/s)/n. The statistical error can be

bounded using triangle inequality as shown below,

‖x̂− x∗‖2 ≤ ‖x̂− xLS‖2 + ‖xLS − x∗‖2.

Therefore, the statistical error ‖x̂ − x∗‖2 is dominated by the least-squares error ‖xLS −
x∗‖2 when the optimization error ‖x̂− xLS‖2 is small.

In Figure 13, we show the results on a data instance with n = 1e4, d = 400 and s = 30.
Here R is set to be R = ‖x∗‖1 for the experimental purpose. First, we briefly describe
the effect of stepsize η. When a constant stepsize is used, typically, a smaller η allows
the algorithm to converge to a more accurate solution with a slower convergence rate.
This is verified by Figure 13a in which the performance of pwSGD-full with larger η’s
saturates earlier at a coarser level while η = 0.001 allows the algorithm to achieve a finer
solution. Nevertheless, as discussed above, the statical error is typically dominated by the
least-squares error. For our choice of (n, d, s), one can show that the least-squares error
‖xLS − x∗‖2

2 ≈ 0.01. Therefore, the statistical error shown in Figure 13b is around 0.01
when the optimization error is small enough.
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Figure 13: Performance of pwSGD-full on a synthetic sparse `2 regression problem with difference
choices of stepsize η. Both optimization error and statistical error are shown.

4.4 connection with coreset methods

After viewing RLA and SGD from the stochastic optimization perspective and using that
to develop our main algorithm, a natural question arises: can we do this for other types
of problems? To do so, we need to define “leverage scores” for them, since they play a
crucial role in this stochastic framework. Here, we first describe the coreset framework of
Feldman and Langberg [FL11]. Then we show that—on `p regression problems—two key
notions (leverage scores from RLA and sensitivities from coresets) correspond. Finally we
will show what amounts to a negative result (i.e., a lower bound) for other problems. Note
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here, in this section, we work on constrained `p regression (4.1) with p ∈ [1, ∞) and we

use Ā to denote the augmented linear system
(

A b
)

.

4.4.1 Short summary of coreset methods

In [FL11], the authors propose a framework for computing a coreset of F to a given
optimization problem of the form

cost(F , x) = min
x∈X ∑

f∈F
f (x),

where F is a set of functions from a set X to [0, ∞). By Lemma 4.1, it is not hard to see,
the `p regression problem (4.1) can be written as

min
x∈C

n

∑
i=1

fi(x),

where fi(x) = |Ā(i)x|p and C = {x ∈ Rd+1|xd+1 = −1}, in which case one can define a
set of functions F = { fi}n

i=1.
Central to the coreset method of [FL11] is the following notion of sensitivity, which is

used to construct importance sampling probabilities, as shown in Algorithm 10, and the
dimension of the given class of function, which is based as Definition 6.1 in [FL11]. They
are defined below.

Definition 4.5. Given a set of function F = { fi}n
i=1, the sensitivity m( f ) of each function

is defined as m( f ) = bsupx∈X n · f (x)
cost(F ,x) c + 1, and the total sensitivity M(F ) of the set of

functions is defined as M(F ) = ∑ f∈F m( f ).

Definition 4.6. The dimension of F is defined as the smallest integer d such that for any G ⊂ F ,

|{Range(G, x, r) | x ∈ X , r ≥ 0}| ≤ |G|d,

where Range(G, x, r) = {g ∈ G | g(x) ≤ r}.

The algorithm proposed in [FL11] is summarized in Algorithm 10 below, and the corre-
sponding result of quality of approximation is presented in Theorem 4.7.

Theorem 4.7. Given a set of functions F from X to [0, ∞], if s ≥ cM(F )
ε2 (dim(F ′) + log

(
1
δ

)
),

then with probability at least 1− δ, Algorithm 10 returns an ε-coreset for F . That is,

(1− ε) ∑
f∈F

f (x) ≤ ∑
f∈D

f (x) ≤ (1 + ε) ∑
f∈F

f (x),

where F ′ = { f /s( f ) | f ∈ F} is a rescaled version of F .

4.4.2 Connections between RLA and coreset methods

In the following, we present two results on the connection between RLA with algorithmic
leveraging, i.e., with sampling based on exact or approximate leverage scores, and coreset
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Algorithm 10 Compute ε-coreset

1: Input: A class of functions F , sampling size s.
2: Output: An ε-coreset to F .
3: Initialize D as an empty set.
4: Compute the sensitivity m( f ) for each function f ∈ F .
5: M(F )← ∑ f∈F m( f ).
6: for f ∈ F do
7: Compute probabilities p( f ) = m( f )

M(F ) .
8: end for
9: for i = 1, . . . , s do

10: Pick f from F with probability p( f ).
11: Add f /(s · p( f )) to D.
12: end for
13: Return D.

methods. These results originally appeared in [VX12]. We include them here and give
different proofs.

The first result shows that the sensitivities are upper bounded by a constant factor times
the `p leverage scores. With this connection between leverage scores and sensitivities, it is
not hard to see that applying Algorithm 10 to `p regression is exactly the same as applying
RLA sampling algorithm described in Theorem 2.22 and Section 2.4.1.1.

Proposition 4.8. Given Ā ∈ Rn×(d+1), let fi(x) = |Ā(i)x|p, for i ∈ [n]. Let λi be the i-th
leverage score of Ā. Then, the i-th sensitivity satisfies

m( fi) ≤ nβpλi + 1

for i ∈ [n], and the total sensitivity satisfies

M(F ) ≤ n((αβ)p + 1).

The second result is that, for the `p regression problem, the dimension of the class of
functions dim(F ′) is the same as the dimension of the subspace being considered, which is
O(d). To be more specific, since all the f ∈ F ′ here are of the form f (x) = |aTx|p for some
vector a ∈ Rd, we consider a broader class of functions, namely A = {|aTx|p | a ∈ Rd},
and compute its dimension.

Proposition 4.9. Let A = {|aTx|p | a ∈ Rd}. We have

dim(A) ≤ d + 1.

With these results, in combine with Theorem 4.7, we can see that to compute a coreset
D, which leads to a

(
1+ε
1−ε

)
-approximate solution the `p regression using coreset method

of [FL11], the required sampling complexity is the same (up to constants) as that of RLA
sampling algorithm, as indicated by Theorem 2.22.
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4.4.3 Limitation of our approach

From the above, we see that for `p regression, a small coreset exists whose size only de-
pends on d, and by solving it we can get a (1 + ε)-approximation solution. This results in
the same sampling algorithm as in RLA. Also, the sensitivities defined in the framework
can be used as a distribution when one converts a deterministic problem into a stochastic
optimization problem. We want to see whether we can extend this scheme to other prob-
lems. Indeed, beyond `p regression, the coreset methods work for any kind of convex loss
function [FL11]. However, since it depends on the total sensitivity, the size of the coreset
is not necessarily small. For RLA, this translates into requiring a very large sample size to
construct a good subproblem. For example, for hinge loss, we have the following example
showing that the size of the coreset has an exponential dependency on d.

Proposition 4.10. Define fi(x) = f (x, ai) = (xTai)
+, where x, ai ∈ Rd for i ∈ [n]. There exists

a set of vectors {ai}d
i=1 such that the total sensitivity of F = { fi}n

i=1 is approximately 2d.

This result indicates that new ideas will be needed to extend RLA preconditioning ideas
to weighted SGD algorithms for other types of convex optimization problems. This should
not be surprising, because RLA methods have been developed for randomized linear alge-
bra problems, but it suggests several directions for follow-up work.
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Consider the optimization problem

min
w∈C

F(w) :=
n

∑
i=1

fi(w) + R(w), (5.1)

where fi(w), R(w) are smooth functions and C ⊆ Rd is a convex constraint set. Many
machine learning and scientific computing problems involve finding an approximation
of the minimizer of (5.1) to high precision. For example, consider any machine learning
application where each fi is a loss function corresponding to the i-th data point and F is
the empirical risk. The goal of solving (5.1) is to obtain a solution with small generalization
error, i.e., high predictive accuracy on “unseen” data. One can show that the generaliza-
tion error of the empirical risk minimizer is to within O(1/

√
n) additive error of that

of the true population risk minimizer; e.g., see [BE02; CBCG04]. The generalization error
then depends on the sum of the optimization error of the empirical risk minimization
problem and O(1/

√
n). As a result, in the large-scale regime that we consider where

there are many data points available, i.e., n � 1, obtaining a solution to (5.1) to high
precision would indeed guarantee a low generalization error. A second example is that
in many problems in which the optimization variable w contains specific meanings, a
high-precision solution to (5.1) is necessary for interpreting the results. Examples of such
settings arise frequently in machine learning such as sparse least-squares [Tib96], general-
ized linear models (GLMs) [FHT01], and metric learning problems [Kul13] among many
more modern large-scale problems.

In this chapter, we describe a class of randomized Newton-type algorithms that exploit
non-uniform sub-sampling of {∇2 fi(w)}n

i=1 as well as inexact updates to reduce the com-
putational complexity. We show that these techniques drastically drive down the complex-
ity of Newton’s method while maintaining a fast convergence rate. We also demonstrate
that these algorithms are more robust to the ill-conditioning of the problem both theoret-
ically and empirically. In Section 5.1, we provide background on Newton’s method. We
formally state our main algorithm in Section 5.2. The convergence rate results are pre-
sented in Section 5.3 and empirical results are shown in Section 5.4. The material in this
chapter appears in Xu et al. [Xu+16].

5.1 background on newton’s method

There is a plethora of first-order optimization algorithms [Bub14; NW06] for solving (5.1).
However, for ill-conditioned problems, it is often the case that first-order methods return
a solution far from the minimizer, w∗, albeit a low objective value. (See Figure 15 in
Section 5.4 for example.) On the other hand, most second-order algorithms prove to be
more robust to such ill conditioning. This is because, using the curvature information,
second-order methods properly rescale the gradient such that it is a more appropriate
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direction to follow. For example, take the canonical second-order method, i.e., Newton’s
method, which in the unconstrained case has updates of the form

wt+1 = wt − [H(wt)]
−1g(wt), (5.2)

where g(wt) and H(wt) denote the gradient and Hessian of F at wt, respectively. Classical
results indicate that under certain assumptions, Newton’s method can achieve a locally
superlinear convergence rate, which can be shown to be problem independent! Nevertheless,
the cost of forming and inverting the Hessian is a major drawback in using Newton’s
method in practice.

In this regard, there has been a long line of work that tries to provide sufficient second-
order information with feasible computations. For example, among the class of quasi-
Newton methods, the BFGS algorithm [NW06] and its limited memory version [LN89]
are the most celebrated. However, the convergence guarantee of these methods can be
much weaker than Newton’s methods. More recently, authors in [PW15; EM15; RKM16a]
considered using sketching and sampling techniques to construct an approximate Hessian
matrix and using it in the update rule (5.2). They showed that such algorithms inherit a
local linear-quadratic convergence rate with a substantial computational gain.

Here, we propose novel, robust and highly efficient non-uniformly sub-sampled New-
ton methods (SSN) for a large sub-class of problem (5.1), where the Hessian of F(w) in (5.1)
can be written as

H(w) =
n

∑
i=1

AT
i (w)Ai(w) + Q(w), (5.3)

where Ai(w) ∈ Rki×d, i = 1, 2, . . . , n, are readily available and Q(w) is some positive
semidefinite matrix. This situation arises very frequently in applications such as machine
learning. For example, take any problem where fi(w) = `(xT

i w), `(·) is any convex loss
function and xi’s are data points, and R(w) = λ

2 ‖w‖2. In such situations, Ai(w) is simply√
`′′(xT

i w)xT
i and Q(w) = λI.

First, we choose a sampling scheme S that constructs an appropriate non-uniform sam-
pling distribution {pi}n

i=1 over {Ai(w)}n
i=1 and samples s terms from {Ai(w)}n

i=1. The
approximate Hessian constructed as H̃(wt) = ∑i∈I AT

i (wt)Ai(wt)/pi + Q(wt), where I
denotes the set of sub-sampled indices, is then used to update the current iterate as

wt+1 = wt − [H̃(wt)]
−1g(wt). (5.4)

Second, when the dimension of the problem, i.e., d, is so large that solving the above
linear system, i.e., (5.4), becomes infeasible, we consider solving (5.4) inexactly by using
an iterative solver A, e.g., Conjugate Gradient or Stochastic Gradient Descent, with a few
iterations such that a high-quality approximate solution can be produced with a lower
complexity. Such inexact updates used in many second-order optimization algorithms
have been well studied in [Byr+11; DES82].

5.2 main algorithm

5.2.1 Notation and assumptions

Given a function F, the gradient, the exact Hessian and the approximate Hessian are
denoted by g, H, and H̃, respectively. Iteration counter is denoted by subscript, e.g., wt.
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By a matrix A having n blocks, we mean that A has a block structure and can be viewed

as A =
(

AT
1 · · · AT

n

)T
, for appropriate size blocks Ai.

Definition 5.1 (Tangent cone). Let K be the tangent cone of constraints C at the optimum w∗,
i.e., K = {∆ | w∗ + t∆ ∈ C for some t > 0}.

Definition 5.2 (K-restricted maximum and minimum eigenvalues). Given a symmetric ma-
trix A and a cone K, we define the K-restricted maximum and minimum eigenvalues as

λKmin(A) = min
x∈K\{0}

xT Ax
xTx

, λKmax(A) = max
x∈K\{0}

xT Ax
xTx

.

Definition 5.3 (Stable rank). Given a matrix A ∈ RN×d, the stable rank of A is defined as

sr(A) =
‖A‖2

F
‖A‖2

2
.

Throughout this chapter, we use the following assumptions regarding the properties of
the problem.

Assumption 1 (Lipschitz continuity). F(w) is convex and twice differentiable. The Hessian is
L-Lipschitz continuous, i.e.

‖∇2F(u)−∇2F(v)‖ ≤ L‖u− v‖, ∀u, v ∈ C.

Assumption 2 (Local regularity). F(x) is locally strongly convex and smooth, i.e.,

µ = λKmin(∇2F(w∗)) > 0, ν = λKmax(∇2F(w∗)) < ∞.

Here we define the local condition number of the problem as κ := ν/µ.

Assumption 3 (Hessian decomposition). For each fi(w) in (5.1), define∇2 fi(w) := Hi(w) :=
AT

i (w)Ai(w). For simplicity, we assume k1 = · · · = kn = k and k is independent of d. Further-
more, we assume that given w, computing Ai(w), Hi(w), and g(w) takes O(d), O(d2), and

O(nnz(A)) time, respectively. We call the matrix A(w) =
(

AT
1 , . . . , AT

n

)T
∈ Rnk×d the aug-

mented matrix of {Ai(w)}. Note that H(w) = A(w)T A(w) + Q(w).

Finally, for simplicity, we also assume that n ≥ d3 log d.

5.2.2 Algorithm description

Our proposed SSN method with non-uniform sampling is given in Algorithm 11. The
core of our algorithm is based on a sampling scheme S that, at every iteration, con-
structs a non-uniform sampling distribution {pi}n

i=1 over {Ai(wt)}n
i=1 and then sam-

ples from {Ai(wt)}n
i=1 to form the approximate Hessian, H̃(wt). The sampling sizes s

needed for different sampling distributions are discussed in Sections 5.3.2 and 5.3.3. Since
H(w) = ∑n

i=1 AT
i (w)Ai(w) + Q(w), the Hessian approximation boils down to a matrix ap-

proximation problem. Here, we generalize the two popular non-uniform sampling strate-
gies, i.e., leverage score sampling and block norm squares sampling, which are commonly
used in the field of randomized linear algebra, particularly for matrix approximation
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problems [HI15; Mah11]. With an approximate Hessian constructed via non-uniform sam-
pling, we may choose an appropriate solver A to solve the subproblem in Step 11 of
Algorithm 11. Below we elaborate on the construction of the two non-uniform sampling
schemes. Indeed, the sampling distribution is defined based on the matrix representation
of {Hi(wt)}n

i=1 — its augmented matrix defined as follows.

Definition 5.4 (Augmented matrix). Define the augmented matrix of {Hi(wt)}n
i=1 as

A(w) =
(

AT
1 · · · AT

n

)T
∈ Rkn×d.

For the ease of presentation, throughout the rest of this section and next section, we use
A and Q to denote A(w) and Q(w), respectively, as long as it is clear in the text.

Algorithm 11 Sub-sampled Newton method(SSN) with non-uniform sampling

1: Input: Initialization point w0, number of iteration T, sampling scheme S and solver
A.

2: Output: wT
3: for t = 0, . . . , T − 1 do
4: Construct the non-uniform sampling distribution {pi}n

i=1 as described in Sec-
tion 5.2.2.

5: for i = 1, . . . , n do
6: qi = min{s · pi, 1}, where s is the sampling size.

7: Ãi(wt) =

Ai(wt)/
√

qi, with probability qi,

0, with probability 1− qi.
8: end for
9: H̃(wt) = ∑n

i=1 ÃT
i (wt)Ãi(wt) + Q(wt).

10: Compute g(wt)
11: Use solver A to solve inexactly the subproblem

wt+1 ≈ arg min
w∈C
{1

2
〈(w− wt), H̃(wt)(w− wt)〉+ 〈g(wt), w− wt〉}. (5.5)

12: end for
13: Return wT .

block norm squares sampling The first option is to construct a sampling distri-
bution based on the magnitude of Ai. That is, define

pi =
‖Ai‖2

F
‖A‖2

F
, i = 1, . . . , n. (5.6)

This is an extension to the row norm squares sampling in which the intuition is to capture
the importance of the blocks based on the “magnitudes” of the sub-Hessians.

block partial leverage scores sampling The second option is to construct a
sampling distribution based on leverage scores (Definition 2.1). Compared to the tradi-
tional matrix approximation problem, this problem has two major difficulties. First, here
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blocks are being sampled, not single rows. Second, the matrix being approximated in-
volves not only A but also Q.

To address the first difficulty, we follow the work by Carli Silva, Harvey, and Sato
[CSHS11] in which a sparse sum of semidefinite matrices is found by sampling based
on the trace of each semidefinite matrix after a proper transformation. By expressing
AT A = ∑n

i=1 AT
i Ai, one can show that their approach is essentially sampling based on the

sum of leverage scores that correspond to each block. For the second difficulty, inspired by
the recently proposed ridge leverage scores [EAM15; CMM15], we consider the leverage
scores of a matrix that concatenates A and Q

1
2 . Combining these motivates us to define a

new notion of leverage scores, block partial leverage scores, which is defined formally as
follows.

Definition 5.5 (Block partial leverage scores). Given a matrix A ∈ Rkn×d with n blocks and

a matrix Q ∈ Rd×d satisfying Q � 0, let {τi}kn+d
i=1 be the leverage scores of the matrix

(
A

Q
1
2

)
.

Define the block partial leverage score for the i-th block as

τQ
i (A) =

ki

∑
j=k(i−1)+1

τj.

Then the sampling distribution is defined as

pi =
τQ

i (A)

∑n
j=1 τQ

j (A)
, i = 1, . . . , n. (5.7)

Remark. When each block of A has only one row and Q = 0, the partial block leverage
scores are equivalent to the ordinary leverage scores.

5.3 theoretical results

In this section we provide detailed theoretical analysis to describe the complexity of our
algorithm.1 Different choices of sampling scheme S and the subproblem solver A lead
to different complexities in SSN. More precisely, total complexity is characterized by the
following four factors: (i) total number of iterations T determined by the convergence rate,
which is affected by the choice of S and A; (ii) the time tgrad it takes to compute the full
gradient g(wt) (Step 10 in Algorithm 11); (iii) the time tconst to construct the sampling
distribution {pi}n

i=1 and sample s terms at each iteration (Steps 4-8 in Algorithm 11),
which is determined by S ; and (iv) the time tsolve needed to (implicitly) form H̃ and
(inexactly) solve the subproblem at each iteration (Steps 9 and 11 in Algorithm 11), which
is affected by the choice of both S (manifested in the sampling size s) and A. With these,
the total complexity can be expressed as

T · (tgrad + tconst + tsolve). (5.8)

1 We only focus on local convergence guarantees for Algorithm 11. To ensure global convergence, one can incor-
porate an existing globally convergent method, e.g. [RKM16b], as initial phase and switch to Algorithm 11 once
the iterate is “close enough” to the optimum; see Lemma 5.6.
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Below we study these contributing factors. Lemma 5.6 in Section 5.3.1 gives a general
structural lemma that characterizes the convergence rates which determines T. In Sec-
tions 5.3.2 and 5.3.3, Lemmas 5.7 and 5.9 discuss tconst for the two sampling schemes
respectively, while Lemmas 5.8 and 5.10 give the required sampling size s for the two
sampling schemes respectively, which directly affects tsolve. Furthermore, tsolve is affected
by the choice of solver, as discussed in Section 5.3.4. Finally, the complexity results are
summarized in Section 5.3.5 and a comparison with other methods is provided in Sec-
tion 5.3.6. The proofs of all the results can be found in Appendix C.

5.3.1 Sufficient conditions for local linear-quadratic convergence

Before diving into details of the complexity analysis, we state a structural lemma that char-
acterizes the local convergence rate of our main algorithm, i.e., Algorithm 11. As discussed
earlier, there are two layers of approximation in Algorithm 11: approximation of the Hes-
sian by sub-sampling, and inexactness of solving (5.5). For the first layer, we require the
approximate Hessian to satisfy one of the following two conditions (in Sections 5.3.2 and
5.3.3 we shall see our construction of approximate Hessian via non-uniform sampling can
achieve these conditions with a sampling size independent of n):

‖H̃(wt)− H(wt)‖ ≤ ε · ‖H(wt)‖, (C1)

or
|xT(H̃(wt)− H(wt))y| ≤ ε ·

√
xT H(wt)x ·

√
yT H(wt)y, ∀x, y ∈ K. (C2)

Note that (C1) and (C2) are two commonly seen guarantees for matrix approximation
problems. In particular, (C2) is stronger in the sense that the spectrum of the approximated
matrix H(wt) is well preserved. Below in Lemma 5.6, we see such a stronger condition
ensures a better dependence on the condition number in terms of the convergence rate.
For the second layer of approximation, we require the solver to produce an ε0-approximate
solution wt+1 satisfying

‖wt+1 − w∗t+1‖ ≤ ε0 · ‖wt − w∗t+1‖, (5.9)

where w∗t+1 is the exact optimal solution to (5.5). Note that (5.9) implies an ε0-relative
error approximation to the exact update direction, i.e., ‖v − v∗‖ ≤ ε0‖v∗‖, where v =
wt+1 − wt, v∗ = w∗t+1 − wt.

Remark 8. When the problem is unconstrained, i.e., C = Rd, solving the subproblem (5.5) is
equivalent to solving

H̃tv = −∇F(wt).

Then requirement (5.9) is equivalent to finding an approximation solution v such that

‖v− v∗‖ ≤ ε0‖v∗‖.

Lemma 5.6 (Structural result). Let {wt}T
i=1 be the sequence generated based on update rule (5.5)

with initial point w0 satisfying ‖w0 − w∗‖ ≤ µ
4L . Under Assumptions 1 and 2, if condition (C1)

or (C2) is met, we have the following results.
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• If the subproblem is solved exactly, then the solution error satisfies the recursion

‖wt+1 − w∗‖ ≤ Cq · ‖wt − w∗‖2 + Cl · ‖wt − w∗‖, (5.10)

where Cq and Cl are specified in (5.12) or (5.13) below.

• If the subproblem is solved approximately and wt+1 satisfies (5.9), then the solution error
satisfies the recursion

‖wt+1 − w∗‖ ≤ (1 + ε0)Cq · ‖wt − w∗‖2 + (ε0 + (1 + ε0)Cl) · ‖wt − w∗‖, (5.11)

where Cq and Cl are specified in (5.12) or (5.13) below.

Specifically, given any ε ∈ (0, 1/2),

• If the approximate Hessian H̃t satisfies (C1), then in (5.10) and (5.11),

Cq =
2L

(1− 2εκ)µ
, Cl =

4εκ

1− 2εκ
. (5.12)

• If the approximate Hessian H̃t satisfies (C2), then in (5.10) and (5.11),

Cq =
2L

(1− ε)µ
, Cl =

3ε

1− ε

√
κ. (5.13)

We remark that Lemma 5.6 is applicable to F(wt) and H̃t of any form. In our case,
specifically, since ∇2F(wt) = AT A + Q and H̃t = ATSTSA + Q, where S is the resulting
sampling matrix, (C1) is equivalent to

‖(ATSTSA + Q)− (AT A + Q)‖ ≤ ε‖AT A + Q‖, (5.14)

and due to Lemma C.2 in Appendix C, (C2) is equivalent to

− ε(AT A + Q) � (ATSTSA + Q)− (AT A + Q) � ε(AT A + Q). (5.15)

From this it is not hard to see that (C2) is strictly stronger than (C1). Also, in this case the
Hessian approximation problem boils down to a matrix approximation problem. That is,
given A and Q, we want to construct a sampling matrix S efficiently such that the matrix
AT A + Q is well preserved. As we mentioned, leverage scores sampling and block norm
squares sampling are two popular ways for this task. In the next two subsections we focus
on the theoretical properties of these two schemes.

5.3.2 Results for block partial leverage scores sampling

5.3.2.1 Construction

Since the block partial leverage scores are defined as the standard leverage scores of some
matrix, we can make use of the fast approximation algorithm for standard leverage scores
introduced in Section 2.3.2.3. Specifically, apply a variant of the algorithm in [Dri+12]
by using the sparse subspace embedding [CW13a; Coh16] as the underlying sketching
method to further speed up the computation.



5.3 theoretical results 68

Theorem 5.7. Given w, under Assumption 3, with high probability, it takes tconst = O(nnz(A) log n)
time to construct a set of approximate leverage scores {τ̂Q

i (A)}n
i=1 that satisfy τQ

i (A) ≤ τ̂Q
i (A) ≤

β · τQ
i (A) where {τi}n

i=1 are the block partial leverage scores of H(w) = ∑n
i=1 Hi(w) + Q(w),

where A is the augmented matrix of {Hi(w)}n
i=1, and β is a constant.

5.3.2.2 Sampling size

The following theorem indicates that if we sample the blocks of A based on block partial
leverage scores with large enough sampling size, (5.15) holds with high probability.

Theorem 5.8. Given A with n blocks, Q � 0 and ε ∈ (0, 1), let {τQ
i (A)}n

i=1 be its block partial
leverage scores and {τ̂Q

i (A)}n
i=1 be their overestimates, i.e., τ̂Q

i (A) ≥ τQ
i (A), i = 1, · · · , n. Let

pi =
τ̂Q

i (A)

∑n
j=1 τ̂Q

j (A)
. Construct SA by sampling the i-th block of A with probability qi = min{s · pi, 1}

and rescaling it by 1/
√

qi. Then if

s ≥ 4

(
n

∑
i=1

τ̂Q
i (A)

)
· log

4d
δ
· 1

ε2 , (5.16)

with probability at least 1− δ, (5.15) holds, and thus (C2) holds.

Remark 9. When {τQ
i (A)}n

i=1 are the exact scores, since ∑n
i=1 τQ

i (A) ≤ ∑N+d
i=1 τi(Ā) = d with

Ā =

(
A

Q
1
2

)
, the above theorem indicates that less than O(d log d/ε2) blocks are needed for (5.15)

to hold.

5.3.3 Results for block norm squares sampling

5.3.3.1 Construction

To sample based on block norm squares, one must first compute the Frobenius norm of
every block in the augmented matrix A. This requires O(nnz(A)) time.

Theorem 5.9. Given w, under Assumption 3, it takes tconst = O(nnz(A)) time to construct
a block norm squares sampling distribution for H(w) = ∑n

i=1 Hi(w) + Q(w), where A is the
augmented matrix of {Hi(w)}n

i=1.

5.3.3.2 Sampling size

The following theorem [HI15] show the approximation error bound for the Gram matrix.
Here we extend it to our augmented matrix setting as follows.

Theorem 5.10 ([HI15]). Given A with n blocks, Q � 0 and ε ∈ (0, 1), for i = 1, . . . , n, let
ri = ‖Ai‖2

F. Let pi = ri
∑n

j=1 rj
. Construct SA by sampling the i-th block of A with probability

qi = min{s · pi, 1} and rescaling it by 1/
√

qi. Then if

s ≥ 4sr(A) · log
min{4sr(A), d}

δ
· 1

ε2 , (5.17)

with probability at least 1− δ, (5.14) holds, and thus (C1).
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Table 12: Comparison of different solvers for the subproblem. Here κ̃t = λKmax(H̃t)/λKmin(H̃t).

solver A T (A, Rd, s, d) ε0 reference

direct O(sd2) 0 [GVL96]

CG O(sd
√

κ̃t log(1/ε))
√

κ̃tε [GVL96]

GD O(sdκ̃t log(1/ε)) ε [Nes13, Theorem 2.1.15]

ACDM O(ssr(SA)
√

κ̃t log(1/ε))
√

κ̃tε [LS13]

5.3.4 The choice of solver

Here we discuss the effect of the choice of the solver A in Algorithm 11. Specifically, after
an approximate Hessian H̃t is constructed in Algorithm 11, we look at how various solvers
affect tsolve in (5.8). Since the approximate Hessian H̃t is of the form ATSTSA + Q with
SA ∈ Rs×d, the complexity for solving the subproblem (5.5) essentially depends on s and
d. Given SA and Q, for ease of notation, we use

tsolve = T (A, C, s, d)

to denote the time it needs to solve the subproblem (5.5) using solver A.
For example, when the problem is unconstrained, i.e., C = Rd, subproblem (5.5) re-

duces to a linear regression problem with size s by d and direct solver costs O(sd2). Al-
ternatively, one can use an iterative solver such as Conjugate Gradient (CG) to obtain an
approximate solution. In this case, the complexity for solving the subproblem becomes
O(sd

√
κ̃t(log 1

ε0
+ log κ̃t)) to produce an ε0 solution to (5.5), where κ̃t is the condition

number of the problem. We see that CG is advantageous when the low dimension d is
large and the linear system is fairly well-conditioned.

There are also many solvers that are suitable. In Table 12, we give a few examples
for the unconstrained case (C = Rd) by summarizing the complexity and the resulting
approximation quality ε0 in (5.9).

5.3.5 Complexities

Again, recall that in (5.8) the complexity of the sub-sampled Newton methods can be
expressed as T · (tconst + tgrad + tsolve). Combining the results from the previous few sub-
sections, we have the following lemma characterizing the total complexity.

Theorem 5.11. For Algorithm 11 with sampling scheme S and solver A, the total complexity is

T · (tconst + T (A, C, s, d)),

and the solution error is specified in Lemma 5.6. In the above, tconst is specified in Theorem 5.7
and Theorem 5.9 and s is specified in Theorem 5.8 and Theorem 5.10 depending on the choice of S ;
T (A, C, s, d) is discussed in Section 5.3.4.

Indeed, Lemma 5.6 implies that the sub-sampled Newton method inherits a local con-
stant linear convergence rate. This can be shown by choosing specific values for ε and ε0
in Lemma 5.6. The results are presented in the following corollary.

Corollary 5.12. Suppose C = Rd. In Algorithm 11, assume that CG is used to solve subprob-
lem (5.5). Then under Assumption 3,
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• if block partial leverage scores sampling is used, the complexity per iteration in the local
phase is

Õ(nnz(A) log n + d2κ3/2); (5.18)

• if block norm squares sampling is used, the complexity per iteration in the local phase is

Õ(nnz(A) + sr(A)dκ5/2) (5.19)

and the solution error satisfies

‖wt+1 − w∗‖ ≤ ρ · ‖wt − w∗‖, (5.20)

where ρ ∈ (0, 1) is a constant.2

5.3.6 Comparisons

5.3.6.1 Comparison between different sampling schemes

As discussed above, the sampling scheme S plays a crucial role in sub-sampled Newton
methods. Here, we compare the two proposed non-uniform sampling schemes, namely,
block partial leverage scores sampling and block norm squares sampling, with uniform
sampling. SSN with uniform sampling was discussed in [RKM16a]. For completeness, we
state the sampling size bound for uniform sampling. Note that this upper bound for s is
tighter than in the original analysis [RKM16a].

Theorem 5.13. Given A with n blocks, Q � 0 and ε ∈ (0, 1), construct SA by uniform sampling
s blocks from A and rescaling it by

√
n/s. Then if

s ≥ 4n · maxi ‖Ai‖2

‖A‖2 · log
d
δ
· 1

ε2 , (5.21)

with probability at least 1− δ, (5.14) holds, and thus (C1) holds.

This result allows us to compare the three sampling schemes in terms of the three main
complexities, i.e., tconst, tsolve and T (manifested in Cq and Cl), as shown in Table 13. Note
here, to evaluate the effect of the sampling scheme S only, we assume a direct solver is
used for subproblem (5.5) because in this case tsolve is directly controlled by the sampling
size s, independent of the solver A. Also, for simplicity, we assume that C = Rd. The
analysis is similar for general cases. In Table 13, Cq and Cl are defined based on two
problem properties κ and κ̃:

κ̃ = L/µ, κ = ν/µ, (5.22)

where constants L, µ, ν are defined in Assumptions 1 and 2. Also, throughout this subsec-
tion, for randomized algorithms we choose parameters such that the failure probability is
a constant.

As can be seen in Table 13, the greatest advantage of uniform sampling scheme comes
from its simplicity of construction. On the other hand, as discussed in Sections 5.3.2.1 and
5.3.3.1, it takes nearly input-sparsity time to construct the leverage scores sampling distri-
bution or the block norm squares sampling distribution. When it comes to the sampling
size s for achieving (5.14) or (5.15), as suggested in (5.21), the one for uniform sampling

2 Here, Õ(·) hides logarithmic factors of d, κ and 1/δ.
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Table 13: Comparison between standard Newton’s method and sub-sampled Newton methods
(SSN) with different sampling schemes. In the above, Cq and Cl are the constants achieved
in (5.10); κ and κ̃ are defined in (5.22); A ∈ RO(n)×d is the augmented matrix in the current
iteration (Definition 5.4) that satisfies AT A = ∑n

i=1 Hi(wt); sr(A) is the stable rank of A
satisfying sr(A) ≤ d; nnz(A) denote the number of non-zero elements in A. Note here, to
remove the effect of solver A, we assume the subproblem (5.4) is solved exactly. Also, we
assume the problem is unconstrained (C = Rd) so that tsolve = sd2.

name tconst tsolve = sd2 Cq Cl

Newton’s method 0 O(nd2) κ̃ 0

SSN (leverage scores) O(nnz(A) log n) Õ((∑i τQ
i (A))d2/ε2) κ̃

1−ε
ε
√

κ
1−ε

SSN (block norm squares) O(nnz(A)) Õ(sr(A)d2/ε2) κ̃
1−εκ

εκ
1−εκ

SSN (uniform) O(1) Õ
(

nd2 maxi ‖Ai‖2

‖A‖2 /ε2
)

κ̃
1−εκ

εκ
1−εκ

can become Ω(n) when A is very non-uniform, i.e., maxi ‖Ai‖ u ‖A‖. It can be shown
that for a given ε, block norm squares sampling requires the smallest sampling size, which
leads to the smallest value of tsolve in Table 13.

It is worth pointing that, although either (5.14) or (5.15) is sufficient to yield a local
linear-quadratic convergence rate, as (5.15) is essentially a stronger condition, it has better
constants, i.e., Cq and Cl . This fact is reflected in Table 13. The constants Cq and Cl for
leverage scores sampling have a better dependence on the local condition number κ than
the other two schemes because leverage scores sampling yields a sampling matrix that
satisfies the spectral approximation guarantee (5.15). In fact, this difference can dramati-
cally affect the performance of the algorithm on ill-conditioned problems. This is verified
by numerical experiments; see Figure 14 in Section 5.4 for details.

5.3.6.2 Comparison between various methods

Next, we compare our main algorithm with other stochastic second-order methods includ-
ing [RKM16a; ABH16]. Since these essentially imply a constant linear convergence rate,
i.e.,

‖wt+1 − w∗‖ ≤ ρ · ‖wt − w∗‖, 0 < ρ < 1, (5.23)

we compare the complexity per iteration needed in each algorithm when such a rate (5.23)
is desired. Note here, for ease of comparison, we assume that C = Rd, R(w) = 0, and CG
is used for solving subproblems in SSN so that the complexities can be easily expressed.
This is the same setting as in [ABH16].3 Analysis for general cases is similar.

Note that the results in the related works are stated in terms of condition numbers
that are defined differently from the local condition number (Assumption 2) used. To be
precise, besides the standard definition, i.e., κ, for any w ∈ Rd, define

κ(w) =
λmax(∑n

i=1 Hi(w))

λmin(∑n
i=1 Hi(w))

, (5.24a)

κ̂(w) = n · maxi λmax(Hi(w))

λmin(∑n
i=1 Hi(w))

, (5.24b)

κ̄(w) =
maxi λmax(Hi(w))

mini λmin(Hi(w))
. (5.24c)

3 In [ABH16], the authors also considered the ridge penalty term but they absorb the penalty term into the
summation, which still makes the objective in the form of an average/sum of functions.
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An immediate relationship between the three condition numbers is κ(w) ≤ κ̂(w) ≤
κ̄(w). The connections between these condition numbers depend on the properties of
Hi(w). Roughly speaking, when all Hi(w)’s are “close” to each other, then
λKmax(∑

n
i=1 Hi(w)) ≈ ∑n

i=1 λKmax(Hi(w)) ≈ n ·maxi λKmax(Hi(w)), and thus κ ≈ κ̂. And
similarly, κ ≈ κ̄. While in many cases, some Hi(w)’s can be very different from the rest.
For example, in linear regression, the Hessian is H(w) = AT A, where A is the data matrix
with each row as a data point. When the rows are not very uniform, it can be the case that
κ is smaller than κ̂ and κ̄ by a factor of n.

Table 14: Complexity per iteration of different methods to obtain a problem independent local lin-
ear convergence rate. The quantities κ, κ̂, and κ̄ are the local condition numbers, defined
in (5.24) at the optimum w∗, satisfying κ ≤ κ̂ ≤ κ̄; A ∈ RO(n)×d is the augmented matrix
in the current iteration (Definition 5.4) that satisfies AT A = ∑n

i=1 Hi(wt); sr(A) is the sta-
ble rank of A satisfying sr(A) ≤ d; nnz(A) denote the number of non-zero elements in
A. Note here, for ease of comparison, we assume C = Rd, R(w) = 0, and CG is used for
solving subproblems in SSN so that the complexities can be easily expressed.

name complexity per iteration reference

Newton-CG method Õ(nnz(A)
√

κ) [NW06]

SSN (leverage scores) Õ(nnz(A) log n + d2κ3/2) This work

SSN (block norm squares) Õ(nnz(A) + sr(A)dκ5/2) This work

Newton Sketch (SRHT) Õ(nd(log n)4 + d2(log n)4κ3/2) [PW15]

SSN (uniform) Õ(nnz(A) + dκ̂κ3/2) [RKM16b]

LiSSA Õ(nnz(A) + dκ̂κ̄2) [ABH16]

Given the notation we defined, we summarize the complexities of different algorithms
in Table 14 including Newton methods with CG solving the subproblem. One immediate
conclusion we can draw is that compared to Newton’s methods, these stochastic second-
order methods trade the coefficient of the leading term O(nd) with some lower order
terms that only depend on d and condition numbers (assuming nnz(A) ≈ nd). Therefore,
one should expect these algorithm to perform well when n� d and the problem is fairly
well-conditioned.

Although SSN with non-uniform sampling has a quadratic dependence on d, its depen-
dence on the condition number is better than the other methods. There are two main rea-
sons. First, the total power of the condition number is lower, regardless the versions of the
condition number needed. Second, SSN (leverage scores) and SSN (block norm squares)
only depend on κ, which can be significantly lower than the other two definitions of con-
dition number according to the discussion above. Overall, SSN (leverage scores) is more
robust on ill-conditioned problems.

5.4 empirical evaluation

We consider an estimation problem in GLMs with Gaussian prior. Assume x ∈ Rn×d, y ∈
Yn are the data matrix and response vector. The problem of minimizing the negative
log-likelihood with ridge penalty can be written as

min
w∈Rd

n

∑
i=1

ψ(xT
i w, yi) + λ‖w‖2

2,
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Table 15: Datasets used in ridge logistic regression, where κ and κ̂ are the local condition numbers
of ridge logistic regression problem with λ = 0.01 as defined in (5.24).

dataset CT slices Forest Adult Buzz

n 53500 581012 32561 59535

d 385 55 123 78

κ 368 221 182 37

κ̂ 47078 322370 69359 384580

where ψ : R× Y → R is a convex cumulant generating function and λ ≥ 0 is the ridge
penalty parameter. In this case, the Hessian is H(w) = ∑n

i=1 ψ′′(xT
i w, yi)xixT

i + λI :=
xT D2(w)x + λI, where xi is i-th column of xT and D(w) is a diagonal matrix with the

diagonal [D(w)]ii =
√

ψ
′′(xT

i w, yi). The augmented matrix of {Ai(w)} can be written as

A(w) = D(w)x ∈ Rn×d, where Ai(w) = [D(w)]iixT
i .

For our numerical simulations, we consider a very popular instance of GLMs, namely,
logistic regression, where ψ(u, y) = log(1 + exp(−uy)) and Y = {±1}. Table 15 summa-
rizes the datasets used in our experiments.

We compare the performance of the following five algorithms: (i) Newton: the standard
Newton’s method, (ii) Uniform: SSN with uniform sampling, (iii) PLevSS: SSN with partial
leverage scores sampling, (iv) RNormSS: SSN with block (row) norm squares sampling,
and (v) LBFGS-k: standard L-BFGS method [LN89] with history size k, (vi) GD: Gradient
Descent, (vii) AGD: Accelerated Gradient Descent (AGD) [Nes13]. Note that, despite all
of our effort, we could not compare with methods introduced in [ABH16; EM15] as they
seem to diverge in our experiments. All algorithms are initialized with a zero vector.4 We
also use CG to solve the subproblem approximately to within 10−6 relative residue error.
In order to compute the relative error ‖wt − w∗‖/‖w∗‖, an estimate of w∗ is obtained
by running the standard Newton’s method for sufficiently long time. Note here, in SSN
with partial leverage score sampling, we recompute the leverage scores every 10 iterations.
Roughly speaking, these “stale” leverage scores can be viewed as approximate leverage
scores for the current iteration with approximation quality that can be upper bounded
by the change of the Hessian and such quantity is often small in practice. Reusing the
leverage scores allows us to further drive down the running time.

We first investigate the effect of the condition number, controlled by varying λ, on the
performance of different methods, and the results are depicted in Figure 14. It can be
seen that in well-conditioned cases, all sampling schemes work equally well. However,
as the condition number gets larger, the performance of uniform sampling deteriorates,
while non-uniform sampling, in particular leverage score sampling, shows a great degree
of robustness to such ill-conditioning effect. The experiments shown in Figure 14 are
consistent with the theoretical results of Table 13.

Next, we compare the performance of various methods as measured by relative-error
of the solution vs. running time. First, we provide a set of empirical comparison between
first-order and second-order methods in Figure 15.5 This is on dataset CT Slice with two
different λ’s. As can be seen clearly in Figure 15, SSN with non-uniform sampling not

4 Theoretically, the suitable initial point for all the algorithms is the one with which the standard Newton’s method
converges with a unit stepsize. Here, w0 = 0 happens to be one such good starting point.

5 For each sub-sampled Newton method, the sampling size is determined by choosing the best value from
{10d, 20d, 30d, . . . , 100d, 200d, 300d, . . . , 1000d} in the sense that the objective value drops to 1/3 of the initial
function value first.
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Figure 14: Ridge logistic regression on Adult with different λ’s: (a) local condition number κ, (b)
sample size for different SSN methods giving the best overall running time, (c) running
time for different methods to achieve 10−8 relative error.

only drives down the loss function F(w) to an arbitrary precision much more quickly, but
also recovers the minimizer w∗ to high precision while first-order methods such as Gradi-
ent Descent converge very slowly. More importantly, unlike SSN with uniform sampling
and LBFGS, non-uniform SSN exhibits a better robustness to condition number as its per-
formance doesn’t deteriorate much when the problem becomes more ill-conditioned (by
setting the regularization λ smaller in Figures 15c and Figure 15d). This robustness to
condition number allows our approach to excel for a wider range of models.

A more comprehensive comparison among various second-order methods on the four
datasets is presented in Figure 16. It can be seen that, in most cases, SSN with non-uniform
sampling schemes, i.e., PLevSS and RNormSS, outperform the other algorithms, especially
Newton’s method. In particular, they can be as twice fast as Newton’s method. This is
because on datasets with large n, the computational gain of our sub-sampled Newton
methods in forming the (approximate) Hessian is significant while their convergence rate
is only slightly worse than Newton’s method (not shown here). Moreover, recall that in
Section 5.3.6 we discussed that the convergence rate of SSN with uniform sampling relies
on κ̄. When the problem exhibits a high non-uniformity among data points, i.e., κ̄ is much
higher than κ as shown in Table 15, uniform sampling scheme performs poorly, e.g., in
Figure 16b.
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Figure 15: Iterate relative error vs. time(s) for a ridge logistic regression problem with two choices
of regularization parameter λ on a real dataset CT Slice. Various second-order meth-
ods including standard Newton, LBFGS, SSN with uniform sampling (Uniform), par-
tial leverage scores sampling (PLevSS) and row norm squares sampling (RNormSS), as
well as gradient descent (GD) and its accelerated version (AGD) as representatives of
first-order methods are implemented. Here, when λ = 10−2, κ = 386; when λ = 10−4,
κ = 1.387× 104.
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Figure 16: Iterate relative solution error vs. time(s) for various second-order methods on four
datasets with ridge penalty parameter λ = 0.01. The values in brackets denote the sample
size used for each method.
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As pointed out earlier, one of the greatest advantages of RLA algorithms is that they are
amenable to distributed computing platforms. This property is extremely valuable in the
case where the dataset is too large to fit into the memory of a single machine. In this chap-
ter, we present detailed empirical evaluations of RLA algorithms for large-scale overde-
termined regression and matrix decomposition problems in parallel and distributed en-
vironments with terabyte-sized datasets. These problems are ubiquitous in many fields
to which machine learning and data analysis methods are routinely applied, such as geo-
physical applications and high-frequency trading. We show that these algorithms are well
suited to distributed computing platforms. In particular, we demonstrate that least squares
problems with up to terabyte-sized data can be solved to low, medium, or high precision
on existing distributed systems. For matrix decomposition, in order to assess the relative
performance on various hardware, we consider three contemporary platforms. We report
results on these platforms and their implications on the hardware and software issues
arising in supporting data-centric workloads.

In Sections 6.1 – Section 6.3, we present computational results for `2 regression, quantile
regression, and CX decomposition with terabyte-sized dataset, respectively. The material
in this chapter appears in Yang, Meng, and Mahoney [YMM16; YMM14] and Gittens et al.
[Git+16a].

6.1 computational results for `2 regression

First, we focus on very overdetermined very large-scale `2 regression problems. Recall
that the subspace embedding that is a crucial part of RLA algorithms can be data-aware
(i.e., a sampling algorithm) or data-oblivious (i.e., a projection algorithm). Recall also that,
as discussed in Section 2.4.1, after obtaining a subspace embedding matrix, one can obtain
a low-precision solution by solving the resulting subproblem, or one can obtain a high-
precision solution by invoking an iterative solver, e.g., LSQR [PS82] for `2 regression,
with a preconditioner constructed by the embedding. Thus, in this empirical evaluation,
we consider both random sampling and random projection algorithms, and we consider
solving the problem to low-precision, medium-precision, and high-precision on a suite
or data sets chosen to be challenging for different classes of algorithms. We consider a
range of matrices designed to “stress test” all of the variants of the basic algorithms that
we have been describing, and we consider matrices of size ranging up to just over the
terabyte scale.

6.1.1 Experimental setup

In order to illustrate a range of uniformity and non-uniformity properties for both the
leverage scores and the condition number, we considered the following four types of
dataset.

• UG (matrices with uniform leverage scores and good condition number);

78
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Table 16: Commands (presented in MATLAB format) used to generate matrices with uniform lever-
age scores, i.e., the UG and UB matrices. Here, kappa is a parameter used to determine the
condition number of the generated matrix.

U = orth(randn(m,n));
S = diag(linspace(1,1/kappa,n));
V = orth(randn(n,n));
A = U*S*V’;
x = randn(n,1);
b = A*x;
err = randn(m,1);
b = b+0.25*norm(b)*err/norm(err); �

• UB (matrices with uniform leverage scores and bad condition number);

• NG (matrices with non-uniform leverage scores and good condition number);

• NB (matrices with non-uniform leverage scores and bad condition number).

These matrices are generated in the following manner. For matrices with uniform leverage
scores, we used the commands in Table 16. For matrices with non-uniform leverage scores,
we considered matrices with the following structure:

A =

(
αB R

0 I

)
,

where B ∈ R(n−d/2)×(d/2) is a random matrix with each element sampled from N (0, 1),
I ∈ R(d/2)×(d/2) is the identity matrix, and R ∈ R(n−d/2)×(d/2) is a random matrix gener-
ated using 1e-8 * rand(n-d/2,d/2). In this case, the condition number of A is controlled
by α. It is worth mentioning that the last d/2 rows of the above matrix have leverage
scores exactly 1 and the rest are approximately d/2/(n − d/2). Also, for matrices with
bad condition number, the condition number is approximately 1e6 (meaning 106); while
for matrices with good condition number, the condition number is approximately 5.

To generate a large-scale matrix that is beyond the capacity of RAM, and to evaluate the
quality of the solution for these larger inputs, we used two methods. First, we replicate
the matrix (and the right-hand side vector, when it is needed to solve regression prob-
lems) REPNUM times, and we “stack” them together vertically. We call this naïve way of
stacking matrices as STACK1. Alternatively, for NB or NG matrices, we can stack them in
the following manner:

Ã =


αB R

· · ·
αB R

0 I

 .

We call this stacking method STACK2. The two different stacking methods lead to different
properties for the linear system being solved—we summarize these in Table 17—and,
while they yielded results that were usually similar, as we mention below, the results were
different in certain extreme cases. With either method of stacking matrices, the optimal
solution remains the same, so that we can evaluate the approximate solutions of the new
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large least-squares problems. We considered these and other possibilities, but in the results
reported below, unless otherwise specified we choose the following: for large-scale UG
and UB matrices, we use STACK1 to generate the data; and for large-scale NG and NB
matrices, we use STACK2 to generate the data.

Table 17: Summary of methods for stacking matrices, to generate matrices too large to fit into RAM;
here, REPNUM denotes the number of replications and coherence is defined as the largest
leverage score of the matrix.

name condition number leverage scores coherence

STACK1 unchanged divided by REPNUM divided by REPNUM

STACK2

(for NB and NG only)
increased unknown always 1

Recall that Table 3 provides several methods for computing an `2 subspace embed-
ding matrix. Since a certain type of random projection either can be used to obtain an
embedding directly or can be used (with the algorithm of [Dri+12]) to approximate the
leverage scores for use in sampling, we consider both data-aware and data-oblivious meth-
ods. Throughout our evaluation, we use the following notation to denote various ways of
computing the subspace embedding.

• PROJ CW — Random projection with the sparse `2 embedding (Lemma 2.14)

• PROJ GAUSSIAN — Random projection with Gaussian transform (Lemma 2.12)

• PROJ RADEMACHER — Random projection with Rademacher transform (similar to PROJ

GAUSSIAN)

• PROJ SRDHT — Random projection with subsampled randomized discrete Hartley
transform [Bra83] (Similar to SRHT in Lemma 2.13)

• SAMP APPR — Random sampling based on approximate leverage scores (general ver-
sion of Lemma 2.20)

• SAMP UNIF — Random sampling with uniform distribution (for completeness)

Note that, instead of using a vanilla SRHT, we perform our evaluation with a SRDHT
(i.e., a subsampled randomized discrete Hartley transform). (An SRDHT is a related FFT-
based transform that has similar properties to a SRHT in terms of speed and accuracy
but doesn’t have the restriction on the dimension to be a power of 2.) Also note that,
instead of using a distributed FFT-based transform to implement SRDHT, we treat the
transform as a dense matrix-matrix multiplication; hence we should not expect SRDHT to
have computational advantage over other transforms.

Throughout this section, by embedding dimension (or sketch size in the figures), we
mean the projection size for projection based methods and the sampling size for sampling
based methods. Also, it is worth mentioning that for a sampling algorithm with approx-
imate leverage scores, we fix the underlying embedding method to be PROJ CW and the
projection size c to be d2/4. In our experiments, we found that—when they were approx-
imated sufficiently well—the precise quality of the approximate leverage scores does not
have a strong influence on the quality of the solution obtained by the sampling algorithm.
We elaborate this more in Section 6.1.3.
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The computations for Table 18, Figure 18, and Table 19 below (i.e., for the smaller-sized
problems) were performed on a shared-memory machine with 12 Intel Xeon CPU cores
at clock rate 2GHz with 128GB RAM. In these cases, the algorithms are implemented in
MATLAB. All of the other computations (i.e., for the larger problems) were performed
on a cluster with 16 nodes (1 master and 15 slaves), each of which has 8 CPU cores at
clock rate 2.5GHz with 25GB RAM. For all these cases, the algorithms are implemented
in Apache Spark1 via a Python API.

Spark provides a high-level programming model and execution engine for fault-tolerant
parallel and distributed computing, based on a core abstraction called resilient distributed
dataset (RDD). RDDs are immutable lazily materialized distributed collections supporting
functional programming operations such as map, filter, and reduce, each of which re-
turns a new RDD. RDDs may be loaded from a distributed file system, computed from
other RDDs, or created by parallelizing a collection created within the user’s application.
RDDs of key-value pairs may also be treated as associative arrays, supporting operations
such as reduceByKey, join, and cogroup. Spark employs a lazy evaluation strategy for ef-
ficiency. Another major benefit of Spark over MapReduce is the use of in-memory caching
and storage so that data structures can be reused.

6.1.2 Overall performance of low-precision solvers

Here, we evaluate the performance of the 6 kinds of embedding methods described above
(with different embedding dimension) on the 4 different types of dataset described above
(with size 1e7 by 1000). For dense transforms, e.g., PROJ GAUSSIAN, due to the memory
capacity, the largest embedding dimension we can handle is 5e4. For each dataset and
each kind of the embedding, we compute the following three quantities: relative error of
the objective | f − f ∗|/ f ∗; relative error of the solution certificate ‖x − x∗‖2/‖x∗‖2; and
the total running time to compute the approximate solution. The results are presented in
Figure 17.

As we can see, when the matrices have uniform leverage scores, all the methods includ-
ing SAMP UNIF behave similarly. As expected, SAMP UNIF runs fastest, followed by PROJ CW.
On the other hand, when the leverages scores are non-uniform, SAMP UNIF breaks down
even with large sampling size. Among the projection based methods, the dense trans-
forms, i.e., PROJ GAUSSIAN, PROJ RADEMACHER and PROJ SRDHT, behave similarly. Although
PROJ CW runs much faster, it yields very poor results until the embedding dimension is
large enough, i.e., c = 3e5. Meanwhile, the sampling algorithm with approximate lever-
age scores, i.e., SAMP APPR, tends to give very reliable solutions. (This breaks down if the
embedding dimension in the approximate leverage score algorithm is chosen too small.)
In particular, the relative error is much lower throughout all choices of the embedding di-
mension. This can be understood in terms of the theory; see [DMM06; Dri+11] for details.
In addition, its running time becomes more favorable when the embedding dimension
is larger.

As a more minor point, theoretical results also indicate that the upper bound on the
relative error of the solution vector depends on the condition number of the system as
well as the amount of mass of b that lies in the range space of A, denote by γ [Dri+12].
Across the four datasets, γ is roughly the same. This is why we see that the relative error
of the certificate, i.e., the vector achieving the minimum solution, tends to be larger when
the condition number of the matrix becomes higher.

1 Apache Spark, http://spark.apache.org/

http://spark.apache.org/
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Figure 17: Evaluation of all 6 of the algorithms on the 4 different types of matrices of size 1e7
by 1000. For each method, the following three quantities are computed: relative error
of the objective | f − f ∗|/ f ∗; relative error of the certificate ‖x − x∗‖2/‖x∗‖2; and the
running time to compute the approximate solution. Each subplot shows one of the above
quantities versus the embedding dimension, respectively. For each setting, 3 independent
trials are performed and the median is reported.
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6.1.3 Quality of the approximate leverage scores

Here, we evaluate the quality of the fast approximate leverage score algorithm of [Dri+12],
and we investigate the quality of the approximate leverage scores with several underlying
embeddings. (The algorithm of [Dri+12] considered only Hadamard-based projections,
but other projection methods could be used, leading to similar approximation quality
but different running times.) We consider only an NB matrix since leverage scores with
non-uniform distributions are harder to approximate. In addition, the size of the matrix
we considered is only rather small, 1e6 by 500, due to the need to compute the exact
leverage scores for comparison. Our implementation follows closely the main algorithm
of [Dri+12], except that we consider other random projection matrices. In particular, we
used the following four ways to compute the underlying embedding: namely, PROJ CW,
PROJ GAUSSIAN, PROJ RADEMACHER, and PROJ SRDHT. For each kind of embedding and em-
bedding dimension, we compute a series of quantities which characterize the statistical
properties of the approximate leverage scores. The results are summarized in Table 18.

As we can see, when the projection size is large enough, all the projection-based meth-
ods to compute approximations to the leverage scores produce highly accurate leverage
scores. Among these projection methods, PROJ CW is typically faster but also requires a
much larger projection size in order to yield reliable approximate leverage scores. The
other three random projections perform similarly. In general, the algorithms approximate
the large leverage scores (those that equal or are close to 1) better than the small leverage
scores, since αL and βL are closer to 1. This is crucial when calling SAMP APPR since the im-
portant rows shall not be missed, and it is a sufficient condition for the theory underlying
the algorithm of [Dri+12] to apply.

Next, we invoke the sampling algorithm for the `2 regression problem, with sampling
size s = 1e4 by using these approximate leverage scores. We evaluate the relative error on
both the solution vector and objective and the total running time. For completeness and in
order to evaluate the quality of the approximate leverage score algorithm, we also include
the results by using the exact leverage scores. The results are presented in Figure 18.
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Figure 18: Performance of sampling algorithms with approximate leverage scores, as computed by
several different underlying projections. The test was performed on an NB matrix of size
1e6 by 500 and the sampling size was 1e4. Each subplot shows one of the following three
quantities versus the projection size used in the underlying random projection phase: rel-
ative error of the objective | f − f ∗|/ f ∗; relative error of the certificate ‖x − x∗‖2/‖x∗‖2;
and the running time. For each setting, 5 independent trials are performed and the me-
dian is reported.

These results suggest that the precise quality of the approximate leverage scores does
not substantially affect the downstream error, i.e., sampling-based algorithms are robust
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Table 18: Quality of the approximate leverage scores. The test was performed on an NB matrix with
size 1e6 by 500. In above, p̂ denotes the distribution by normalizing the approximate
leverage scores and p∗ denotes the exact leverage score distribution. DK L ( p | |q) is the
KL divergence [KL51] of q from p defined as ∑ i p i ln p i

q i
. Let L = { i | p∗i = 1} and

S = { i | p∗i < 1}. In this case, p̂ L denotes the corresponding slice of p̂, and the quantities
p̂S , p∗ ,L , p∗ .S are defined similarly.

c PROJ CW PROJ GAUSSIAN PROJ RADEMACHER PROJ SRDH

‖ p̂− p∗‖2/‖p∗‖2

5e2 0.9205 0.7738 0.7510 0.5008

1e3 0.9082 0.0617 0.0447 0.0716

5e3 0.9825 0.0204 0.0072 0.0117

1e4 0.9883 0.0143 0.0031 0.0075

5e4 0.9962 0.0061 0.0006 0.0030

1e5 0.0016 0.0046 0.0003 0.0023

DKL(p∗|| p̂)
5e2 18.5241 0.0710 0.6372 0.1852

1e3 19.7773 0.0020 0.0015 0.0029

5e3 20.3450 0.0002 0.0001 0.0001

1e4 20.0017 0.0001 0.0001 0.0001

5e4 19.2417 1.9e-5 1.0e-5 1.0e-5

1e5 0.0001 1.0e-5 5e-6 5e-6

αL = maxi{ p̂L
i /p∗,Li }

5e2 28.6930 7.0267 7.3124 4.0005

1e3 11.4425 1.1596 1.1468 1.2201

5e3 50.3311 1.0584 1.0189 1.0379

1e4 82.6574 1.0449 1.0099 1.0199

5e4 218.9658 1.0192 1.0018 1.0094

1e5 1.0016 1.0108 1.0009 1.0060

αS = maxi{ p̂S
i /p∗,Si }

5e2 0 24.4511 16.8698 4.5227

1e3 0 1.3923 1.3718 1.3006

5e3 0 1.1078 1.1040 1.1077

1e4 0 1.0743 1.0691 1.0698

5e4 0 1.0332 1.0317 1.0310

1e5 1.0236 1.0220 1.0218 1.0198

βL = mini{ p̂L
i /p∗,Li }

5e2 0 0.0216 0.0448 0.4094

1e3 0 0.8473 0.8827 0.8906

5e3 0 0.9456 0.9825 0.9702

1e4 0 0.9539 0.9916 0.9827

5e4 0 0.9851 0.9982 0.9922

1e5 0.9969 0.9878 0.9993 0.9934

βS = mini{ p̂S
i /p∗,Si }

5e2 0 0.0077 0.0141 0.1884

1e3 0 0.7503 0.7551 0.7172

5e3 0 0.9037 0.9065 0.9065

1e4 0 0.9328 0.9306 0.9356

5e4 0 0.9704 0.9691 0.9710

1e5 0.9800 0.9787 0.9789 0.9803
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to imperfectly-approximated leverage scores, as long as the largest scores are not too
poorly approximated. (Clearly, however, we could have chosen parameters such that some
of the larger scores were very poorly approximated, e.g., by choosing the embedding
dimension to be too small, in which case the quality would matter. In our experience,
the quality matters less since these approximate leverage scores are sufficient to solve `2
regression problems.) Finally, and importantly, note that the solution quality obtained by
using approximate leverage scores is as good as that of using exact leverage scores, while
the running time can be much less.

6.1.4 Performance of low-precision solvers when n changes

Here, we explore the scalability of the low-precision solvers by evaluating the performance
of all the embeddings on NB matrices with varying n. We fix d = 1000 and let n take values
from 2.5e5 to 1e8. These matrices are generated by stacking an NB matrix with size 2.5e5
by 1000 REPNUM times, with REPNUM varying from 1 to 400 using STACK1. For conciseness,
we fix the embedding dimension of each method to be either 5e3 or 5e4. The relative error
on certificate and objective and running time are evaluated. The results are presented in
Figure 19.

106 107 108

n

10-4
10-3
10-2
10-1
100
101
102
103

(a) ‖x− x∗‖2/‖x∗‖2

106 107 108

n

10-3

10-2

10-1

100

101

(b) | f − f ∗|/| f ∗|

106 107 108

n

101

102

103

104

(c) Running time(sec)

s = 5e3

106 107 108

n

10-4
10-3
10-2
10-1
100
101
102
103

(d) ‖x− x∗‖2/‖x∗‖2

106 107 108

n

10-3

10-2

10-1

100

101

PROJ CW

PROJ GAUSSIAN

PROJ RADEMACHER

PROJ SRDHT

SAMP APPR

(e) | f − f ∗|/| f ∗|

106 107 108

n

101

102

103

104

(f) Running time(sec)

s = 5e4

Figure 19: Performance of all the algorithms on NB matrices with varying n from 2.5e5 to 1e8 and
fixed d = 1000. The matrix is generated using STACK1. For each method, the embedding
dimension is fixed to be 5e3 or 5e4. The following three quantities are computed: relative
error of the objective | f − f ∗|/ f ∗; relative error of the certificate ‖x − x∗‖2/‖x∗‖2; and
the running time to compute the approximate solution. For each setting, 3 independent
trials are performed and the median is reported.

Especially worthy mentioning is that when using STACK1, by increasing REPNUM, as we
pointed out, the coherence of the matrix, i.e., the maximum leverage score, is decreasing,
as the size is increased. We can clearly see that, when n = 2.5e5, i.e., the coherence is
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1, PROJ CW fails. Once the coherence gets smaller, i.e., n gets larger, the projection-based
methods behave similarly and the relative error remains roughly the same as we increased
n. This is because STACK1 doesn’t alter the condition number and the amount of mass
of the right hand side vector that lies in the range space of the design matrix and the
lower dimension d remains the same. However, SAMP APPR tends to yield larger error
on approximating the certificate as we increase REPNUM, i.e., the coherence gets smaller.
Moreover, it breaks down when the embedding dimension is very small.

6.1.5 Performance of low-precision solvers when d changes

Here, we evaluate the performance of the low-precision solvers by evaluating the perfor-
mance of all the embeddings on NB matrices with changing d. We fix n = 1e7 and let d
take values from 10 to 2000. For each d, the matrix is generated by stacking an NB matrix
with size 2.5e5 by d 40 times using STACK1, so that the coherence of the matrix is 1/40.
For conciseness, we fix the embedding of each method to be 2e3 or 5e4. The relative er-
ror on certificate and objective and running time are evaluated. The results are shown in
Figure 20.
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Figure 20: Performance of all the algorithms on NB matrices with varying d from 10 to 2000 and
fixed n = 1e7. The matrix is generated using STACK1. For each method, the embedding
dimension is fixed to be 2e3 or 5e4. The following three quantities are computed: relative
error of the objective | f − f ∗|/ f ∗; relative error of the certificate ‖x − x∗‖2/‖x∗‖2; and
the running time to compute the approximate solution. For each setting, 3 independent
trials are performed and the median is reported.

As can be seen, overall, all the projection-based methods behave similarly. As expected,
the relative error goes up as d gets larger. Meanwhile, SAMP APPR yields lower error as d
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increases. However, it seems to have a stronger dependence on the lower dimension of the
matrix, as it breaks down when d is 100 for small sampling size, i.e., s = 2e3.

6.1.6 Performance of high precision solvers

Here, we evaluate the use of these methods as preconditioners for high-precision iterative
solvers. Since the embedding can be used to compute a preconditioner for the original lin-
ear system, one can invoke iterative algorithms such as LSQR [PS82] to solve the precondi-
tioned least-squares problem. Here, we will use LSQR. We first evaluate the conditioning
quality, i.e., κ(AR−1), on an NB matrix with size 1e6 by 500 using several different ways
for computing the embedding. The results are presented in Table 19. Then we test the
performance of LSQR with these preconditioners on an NB matrix with size 1e8 by 1000
and an NG matrix with size 1e7 by 1000. For simplicity, for each method of computing
the embedding, we try a small embedding dimension where some of the methods fail,
and a large embedding dimension where most of the methods succeed. See Figure 21 and
Figure 22 for details.

Table 19: Quality of preconditioning on an NB matrix with size 1e6 by 500 using several kinds
of embeddings. For each setting, 5 independent trials are performed and the median is
reported.

c PROJ CW PROJ GAUSSIAN PROJ RADEMACHER PROJ SRDHT SAMP APPR

5e2 1.08e8 2.17e3 1.42e3 1.19e2 1.21e2

1e3 1.1e6 5.7366 5.6006 7.1958 75.0290

5e3 5.5e5 1.9059 1.9017 1.9857 25.8725

1e4 5.1e5 1.5733 1.5656 1.6167 17.0679

5e4 1.8e5 1.2214 1.2197 1.2293 6.9109

1e5 1.1376 1.1505 1.1502 1.1502 4.7573

The convergence rate of the LSQR phase depends on the preconditioning quality, i.e.,
κ(AR−1) where R is obtained by the QR decomposition of the embedding of A, ΦA. See
Section 2.3 for more details. Table 19 implies that all the projection-based methods tend
to yield preconditioners with similar condition numbers once the embedding dimension
is large enough. Among them, PROJ CW needs a much larger embedding dimension to be
reliable (clearly consistent with its use in low-precision solvers). In addition, overall, the
conditioning quality of the sampling-based embedding method, i.e., SAMP APPR tends to
be worse than that of projection-based methods.

As for the downstream performance, from Figure 21 we can clearly see that, when a
small embedding dimension is used, i.e., s = 5e3, PROJ GAUSSIAN yields the best precon-
ditioner, as its better preconditioning quality translates immediately into fewer iterations
for LSQR to converge. This is followed by SAMP APPR. This relative order is also suggested
by Table 19. As the embedding dimension is increased, i.e., using large embedding dimen-
sion, all the method yield significant improvements and produce much more accurate so-
lutions compared to that of NOCO (LSQR without preconditioning), among which PROJ CW

with embedding dimension 3e5 converges to a nearly machine-precision solution within
only 5 iterations. As for the running time, since each iteration of LSQR only involves with
two matrix-vector multiplications (costs less than 2 minutes in our experiments), the over-
all running time is dominated by the time for computing the preconditioner. As expected,
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Figure 21: Evaluation of LSQR with randomized preconditioner on an NB matrix with size 1e8 by
1000 and condition number 1e6. Here, several ways for computing the embedding are im-
plemented. In SAMP APPR, the underlying random projection is PROJ CW with projection
dimension 3e5. For completeness, LSQR without preconditioner is evaluated, denoted
by NOCO. In above, by small embedding dimension, we mean 5e3 for all the methods. By
large embedding dimension, we mean 3e5 for PROJ CW, 1e4 for PROJ GAUSSIAN and 5e4 for
SAMP APPR. For each method and embedding dimension, the following three quantities
are computed: relative error of the objective | f − f ∗|/ f ∗; relative error of the certificate
‖x− x∗‖2/‖x∗‖2; and the running time to compute the approximate solution. Each sub-
plot shows one of the above quantities versus number of iteration, respectively. For each
setting, only one trial is performed.
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Figure 22: Evaluation of LSQR with randomized preconditioner on an NB matrix with size 1e7
by 1000 and condition number 5. Here, several ways for computing the embedding are
implemented. In SAMP APPR, the underlying random projection is PROJ CW with projection
dimension 3e5. For completeness, LSQR without preconditioner is evaluated, denoted by
NOCO. In above, by small embedding dimension, we mean 5e3 for all the methods. By
large embedding dimension, we mean 3e5 for PROJ CW and 5e4 for the rest. For each
method and embedding dimension, the following three quantities are computed: relative
error of the objective | f − f ∗|/ f ∗; relative error of the certificate ‖x − x∗‖2/‖x∗‖2; and
the running time to compute the approximate solution. Each subplot shows one of the
above quantities versus number of iteration, respectively. For each setting, 3 independent
trials are performed and the median is reported.
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PROJ CW runs the fastest and the running time of PROJ GAUSSIAN scales linearly in the em-
bedding dimension. In SAMP APPR, the sampling process needs to make 1-2 passes over
the dataset but the running time is relatively stable regardless of the sampling size, as
reflected in Figure 21c and Figure 21f. Finally, note that the reason that the error does not
drop monotonically in the solution vector is the following. With the preconditioners, we
work on a transformed system, and the theory only guarantees monotonicity in the de-
creasing of the relative error of the certificate of the transformed system, not the original
one.

Finally, a minor but potentially important point should be mentioned as a word of
caution. As expected, when the condition number of the linear system is large, vanilla
LSQR does not converge at all. On the other hand, when the condition number is very
small, from Figure 22, there is no need to precondition. If, in this latter case, a random-
ized preconditioning method is used, then the embedding dimension must be chosen to
be sufficiently large: unless the embedding dimension is large enough such that the con-
ditioning quality is sufficiently good, then preconditioned LSQR yields larger errors than
even vanilla LSQR.

6.2 computational results for quantile regression

Next, recall that in Chapter 3 we present a fast RLA algorithm for solving large-scale quan-
tile regression. In this section, we continue our empirical evaluation with an evaluation
of our main algorithm applied to terabyte-scale problems. As the algorithms for `2 regres-
sion, our sampling algorithms for quantile regression only needs several passes through
the data and it is embarrassingly parallel, we evaluate them (Algorithm 8 with different
conditioning methods) in Apache Hadoop.2 Hadoop is an open source implementation of
MapReduce computational framework which is the de facto standard parallel environment
for large data analysis. In this section, we continue to use the notation used in Section 3.3.

6.2.1 Quality of approximation when the sampling size s changes

In order to show the evaluations similar to Figure 1, we still implement SC, SPC1, SPC2,
SPC3, NOCO and UNIF. Here, the datasets are generated by “stacking” the medium-scale
data a few thousand times. Although this leads to “redundant” data, which may favor
sampling methods, this has the advantage that it leads terabyte-sized problems whose
optimal solution at different quantiles are known. For a skewed data with size 1e6× 50,
we stack it vertically 2500 times. This leads to a data with size 2.5e9× 50.

Figure 23 shows the relative errors on the replicated skewed data set by using the six
methods. We only show the results for τ = 0.5 and 0.75 since the conditioning methods
tend to generate abnormal results when τ = 0.95. These plots correspond with and should
be compared to the four subfigures in the first two rows and columns of Figure 1.

As can be seen, the method preserves the same structure as when the method is ap-
plied to the medium-scale data. Still, SPC2 and SPC3 performs slightly better than other
methods when s is large enough. In this case, as before, NOCO and UNIF are not re-
liable when s < 1e4. When s > 1e4, NOCO and UNIF perform sufficiently closely to
the conditioning-based methods on approximating the objective value. However, the gap
between the performance on approximating the solution vector is significant.

2 Apache Hadoop, http://hadoop.apache.org/

http://hadoop.apache.org/
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(c) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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Figure 23: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the
objective value (namely, | f − f ∗|/| f ∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), by
using 6 different methods, among 30 independent trials, as a function of the sample size
s. The test is on replicated skewed data with size 2.5e9 by 50. The three different columns
correspond to τ = 0.5, 0.75, respectively.
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In order to show more detail on the quartiles of the relative errors, in Table 20 records
the quartiles of relative errors on vectors, measured in `1, `2, and `∞ norms by using the
six methods when the sampling size s = 5e4 and τ = 0.75. Conditioning-based methods
can yield 2-digit accuracy when s = 5e4 while NOCO and UNIF cannot. Also, the relative
error is somewhat higher when measured in `∞ norm.

Table 20: The first and the third quartiles of relative errors of the solution vector, measured in `1, `2,
and `∞ norms. The test is on replicated synthetic data with size 2.5e9 by 50, the sampling
size s = 5e4, and τ = 0.75.

‖x− x∗‖2/‖x∗‖2 ‖x− x∗‖1/‖x∗‖1 ‖x− x∗‖∞/‖x∗‖∞

SC [0.0084, 0.0109] [0.0075, 0.0086] [0.0112, 0.0159]

SPC1 [0.0071, 0.0086] [0.0066, 0.0079] [0.0080, 0.0105]

SPC2 [0.0054, 0.0063] [0.0053, 0.0061] [0.0050, 0.0064]

SPC3 [0.0055, 0.0062] [0.0054, 0.0064] [0.0050, 0.0067]

NOCO [0.0207, 0.0262] [0.0163, 0.0193] [0.0288, 0.0397]

UNIF [0.0206, 0.0293] [0.0175, 0.0200] [0.0242, 0.0474]

6.2.2 Quality of approximation when the sampling size d changes

Next, we explore how the accuracy may change as the lower dimension d varies, and
the capacity of our large-scale version algorithm. In this experiment, we fix the higher
dimension of the replicated skewed data to be 1e9, and let d take values in 10, 50, 100, 150.
We will only use SPC2 as it has the relative best condition number. Figure 24 shows the
results of the experiment described above.

From Figure 24, except for some obvious fact such as the accuracies become lower as d
increases when the sampling size is unchanged, we should also notice that, the lower d
is, the higher the minimum sampling size required to yield acceptable relative errors will
be. For example, when d = 150, we need to sample at least 1e4 rows in order to obtain at
least one digit accuracy.

Notice also that, there are some missing points in the plot. That means we cannot solve
the subproblem at that sampling size with certain d. For example, solving a subproblem
with size 1e6 by 100 is unrealistic on a single machine. Therefore, the corresponding point
is missing. Another difficulty we encounter is the capability of conditioning on a single
machine. Recall that, in Algorithm 5 or Algorithm 6, we need to perform QR factorization
or ellipsoid rounding on a matrix, say SA, whose size is determined by d. In our large-
scale version algorithm, since these two procedures are not parallelizable, we have to
perform these locally. When d = 150, the higher dimension of SA will be over 1e7. Such
size has reached the limit of RAM for performing QR factorization or ellipsoid rounding.
Hence, it prevents us from increasing the lower dimension d.

6.2.3 Evaluation on solution of Census data

For the census data, we stack it vertically 2000 times to construct a realistic data set whose
size is roughly 1e10× 11. In Table 21, we present the solution computed by our random-
ized algorithm with a sample size 1e5 at different quantiles, along with the corresponding
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(c) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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(d) τ = 0.75, ‖x− x∗‖2/‖x∗‖2

Figure 24: The first (solid lines) and the third (dashed lines) quartiles of the relative errors of the
objective value (namely, | f − f ∗|/| f ∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), by
using SPC2, among 30 independent trials, as a function of the sample size s. The test is on
replicated skewed data with n = 1e9 and d = 10, 50, 100, 150. The two different columns
correspond to τ = 0.5, 0.75, respectively. The missing points mean that the subproblem
on such sampling size with corresponding d is unsolvable in RAM.
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optimal solution. As can be seen, for most coefficients, our algorithm provides at least 2-
digit accuracy. Moreover, in applications such as this, the quantile regression result reveals
some interesting facts about these data. For example, for these data, marriage may entail
a higher salary in lower quantiles; Education2, whose value ranged from 0 to 256, has a
strong impact on the total income, especially in the higher quantiles; and the difference
in age doesn’t affect the total income much in lower quantiles, but becomes a significant
factor in higher quantiles.

Table 21: Quantile regression results for the U.S. Census 2000 data. The response is the total annual
income. Except for the intercept and the terms involved with education, all the covariates
are {0, 1} binary indicators.
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To summarize our large-scale evaluation, our main algorithm (Algorithm 8) can handle
terabyte-sized quantile regression problems easily, obtaining, e.g., 2 digits of accuracy by
sampling about 1e5 rows on a problem of size 1e10× 11. In addition, its running time is
competitive with the best existing random sampling algorithms, and it can be applied in
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parallel and distributed environments. However, its capability is restricted by the size of
RAM since some steps of the algorithms are needed to be performed locally.

6.3 computational results for cx decomposition

Recall that in Section 2.4.2, we describe CX decompositions. CX decompositions are low-
rank matrix decompositions that are expressed in terms of a small number of actual
columns/rows. As such, they have found applicability in various scientific applications.
Here in this section, we present computational results of implementation of CX decompo-
sition (Algorithm 4) in parallel and distributed environments using Spark with 1TB-sized
mass spectrometry imaging data sets.

6.3.1 Implementation of CX decompositions in Spark

The main consideration when implementing CX decompositions are efficient implementa-
tions of operations involving the data matrix A. All access of A by the CX occurs through
the RandomizedSVD routine (Algorithm 2). RandomizedSVD in turn accesses A only
through the MultiplyGramian routine, with repeated invocations of MultiplyGramian

accounting for the majority of the execution time.
The matrix A is stored as an RDD containing one IndexedRow per row of the input

matrix, where each IndexedRow consists of the row’s index and corresponding data vector.
This is a natural storage format for many datasets stored on a distributed or shared file
system, where each row of the matrix is formed from one record of the input dataset,
thereby preserving locality by not requiring data shuffling during construction of A.

We then express MultiplyGramian in a form amenable to efficient distributed imple-
mentation by exploiting the fact that the matrix product AT AB can be written as a sum
of outer products, as shown in Algorithm 3. This allows for full parallelism across the
rows of the matrix with each row’s contribution computed independently, followed by a
summation step to accumulate the result. This approach may be implemented in Spark as
a map to form the outer products followed by a reduce to accumulate the results:

def multiplyGramian(A: RowMatrix, B: LocalMatrix) =

A.rows.map(row => row * row.t * B).reduce(_ + _)

However, this approach forms 2m unnecessary temporary matrices of same dimension as
the output matrix n × k, with one per row as the result of the map expression, and the
reduce is not done in-place so it too allocates a new matrix per row. This results in high
Garbage Collection (GC) pressure and makes poor use of the CPU cache, so we instead
remedy this by accumulating the results in-place by replacing the map and reduce with
a single treeAggregate. The treeAggregate operation is equivalent to a map-reduce that
executes in-place to accumulate the contribution of a single worker node, followed by
a tree-structured reduction that efficiently aggregates the results from each worker. The
reduction is performed in multiple stages using a tree topology to avoid creating a single
bottleneck at the driver node to accumulate the results from each worker node. Each
worker emits a relatively large result with dimension n× k, so the communication latency
savings of having multiple reducer tasks is significant.

def multiplyGramian(A: RowMatrix, B: LocalMatrix) = {

A.rows.treeAggregate(LocalMatrix.zeros(n, k))(
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Table 22: Specifications of the three hardware platforms used in these performance experiments.

platform total cores core frequency interconnect DRAM SSDs

Amazon EC2 r3.8xlarge 960 (32 per-node) 2.5 GHz 10 Gigabit Ethernet 244 GiB 2 x 320 GB

Cray XC40 960 (32 per-node) 2.3 GHz Cray Aries [Alv+12; Faa+12] 252 GiB None

Experimental Cray cluster 960 (24 per-node) 2.5 GHz Cray Aries [Alv+12; Faa+12] 126 GiB 1 x 800 GB

seqOp = (X, row) => X += row * row.t * B,

combOp = (X, Y) => X += Y

)

}

6.3.2 Experimental setup

6.3.2.1 MSI Datasets

We experiment with mass spectrometry imaging (MSI) datasets. Mass spectrometry mea-
sures ions that are derived from the molecules present in a complex biological sample.
These spectra can be acquired at each location (pixel) of a heterogeneous sample, allow-
ing for collection of spatially resolved mass spectra. This mode of analysis is known as
mass spectrometry imaging (MSI). The addition of ion-mobility separation (IMS) to MSI adds
another dimension, drift time The combination of IMS with MSI is finding increasing
applications in the study of disease diagnostics, plant engineering, and microbial interac-
tions. See Chapter 7 for more details about mass spectrometry imaging.

Unfortunately, the scale of MSI data and complexity of analysis presents a significant
challenge to scientists: a single 2D-image may be many gigabytes and comparison of
multiple images is beyond the capabilities available to many scientists. The addition of
IMS exacerbates these problems. Dimensionality reduction techniques can help reduce
MSI datasets to more amenable sizes. Typical approaches for dimensionality reduction
include PCA and NMF, but interpretation of the results is difficult because the components
extracted via these methods are typically combinations of many hundreds or thousands of
features in the original data. CX decompositions circumvent this problem by identifying
small numbers of columns in the original data that reliably explain a large portion of the
variation in the data. This facilitates rapidly pinpointing important ions and locations in
MSI applications.

Here, we analyze one of the largest (1TB-sized) mass-spec imaging datasets in the field.
The sheer size of this dataset has previously made complex analytics intractable. Here we
mainly present the computational results. Science results can be found in Chapter 7.

6.3.2.2 Platforms

In order to assess the relative performance of CX matrix factorization on various hardware,
we choose the following contemporary platforms:

• a Cray® XC40
™ system [Alv+12; Faa+12],

• an experimental Cray cluster, and

• an Amazon EC2 r3.8xlarge cluster.
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For all platforms, we size the Spark job to use 960 executor cores (except as otherwise
noted). Table 22 shows the full specifications of the three platforms. Note that these are
state-of-the-art configurations in data centers and high performance computing centers.

6.3.2.3 CX Spark Phases

Our implementations of CX decompositions execute RandomizedSVD subroutine, which
accounts for the bulk of the runtime and all of the distributed computations. The execution
of RandomizedSVD proceeds in four distributed phases listed below, along with a small
amount of additional local computation.

1. Load Matrix Metadata The dimensions of the matrix are read from the distributed
filesystem to the driver.

2. Load Matrix A distributed read is performed to load the matrix entries into an
in-memory cached RDD containing one entry per row of the matrix.

3. Power Iterations The MultiplyGramian loop of RandomizedSVD is run to com-
pute an approximate Q of the dominant right singular subspace.

4. Finalization (Post-Processing) Right multiplication by Q of RandomizedSVD to
compute C.

6.3.3 Strong scaling test

Figure 25 shows how the distributed Spark portion of our code scales. We consider 240,
480, and 960 cores. An additional doubling (to 1920 cores) would be ineffective as there
are only 1654 partitions, so many cores would remain unused. When we go from 240 to
480 cores, we achieve a speedup of 1.6x: 233 seconds versus 146 seconds. However, as the
number of partitions per core drops below two, and the amount of computation-per-core
relative to communication overhead drops, the scaling slows down (as expected). This
results in a lower speedup of 1.4x (146 seconds versus 102 seconds) from 480 to 960 cores.

6.3.4 CX Performance across multiple platforms

Table 23 shows the total runtime of CX for the 1 TB dataset on our three platforms. The
distributed Spark portion of the computation is also depicted visually in Figure 26 for
k = 16 and k = 32 on the 1 TB dataset. All three platforms were able to successfully
process the 1 TB dataset in under 25 minutes. As the table and figure illustrates, most of
the variation between the platforms occurred during the MultiplyGramian iterations. We
now explore how these difference relate to the performance of the matrix iterations.

Spark divides each iteration into two stages. The first local stage computes each row’s
contribution, sums the local results (the rows computed by the same worker node), and
records these results. The second aggregation stage combines all of the workers’ locally-
aggregated results using a tree-structured reduction. Most of the variation between plat-
forms occurs during the aggregation phase, where data from remote worker nodes is
fetched and combined. In Spark, all inter-node data exchange occurs via shuffle operations.
In a shuffle, workers with data to send write the data to their local scratch space. Once
all data has been written, workers with data to retrieve from remote nodes request that



6.3 computational results for cx decomposition 98

Figure 25: Strong scaling for the 4 phases of CX on an XC40 for 100GB dataset at k = 32 and default
partitioning as concurrency is increased.

Table 23: Total runtime for the 1 TB dataset (k = 16), broken down into load time and per-iteration
time. The per-iteration time is further broken down into the average time for each task of
the local stage and each task of the aggregation stage. We also show the average amount
of time spent waiting for a network fetch, to illustrate the impact of the interconnect.

platform
total

runtime

load

time

time per

iteration

average

local

task

average

aggregation

task

network

wait

Amazon EC2 r3.8xlarge 24.0 min 1.53 min 2.69 min 4.4 sec 27.1 sec 21.7 sec

Cray XC40 23.1 min 2.32 min 2.09 min 3.5 sec 6.8 sec 1.1 sec

Experimental Cray cluster 15.2 min 0.88 min 1.54 min 2.8 sec 9.9 sec 2.7 sec
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Figure 26: Run times for the various stages of computation of CX on the three platforms using k = 16
and k = 32 on the 1 TB size dataset, using the default partitioning on each platform.

data from the sender’s block manager, which in turns retrieves if from the senders local
scratch space, and sends it over the interconnect to the receiving node.

Examining our three platforms (Table 22), we notice two key hardware differences that
impact shuffle operations:

• First, both the EC2 nodes and the experimental Cray cluster nodes have fast SSD
storage local to the compute nodes that they can use to store Spark’s shuffle data.
The Cray® XC40

™ system’s [Alv+12; Faa+12] nodes, on the other hand, have no local
persistent storage devices. Thus we must emulate local storage with a remote Lustre
filesystem. The impacts of this can be somewhat mitigated, however, by leaving
sufficient memory to store some of the data in a local RAM disk, and/or to locally
cache some of the remote writes to Lustre.3

• Second, the Cray XC40 and the experimental Cray cluster both communicate over
the HPC-optimized Cray Aries interconnect [Alv+12; Faa+12], while the EC2 nodes
use 10 Gigabit Ethernet.

We can see the impact of differing interconnect capabilities in the Average Network
Wait column in Table 23. These lower average network wait times explain why the two
Cray platforms outperform the EC2 instance (with the experimental cluster achieving a
speedup of roughly 1.5x over EC2).

The XC40 is still slightly slower than the experimental Cray cluster, however. Part of
this difference is due to the slower matrix load phase on the XC40. On EC2 and the exper-
imental Cray cluster, the input matrix is stored in SSDs on the nodes running the Spark
executors. Spark is aware of the location of the HDFS blocks, and attempts to schedule
tasks on the same nodes as their input. The XC40, however, lacks SSDs on its compute

3 This is an ideal usage of caching, since Spark assumes the scratch space is only locally accessible; thus we are
guaranteed that the only node that reads a scratch file will be the same node that wrote it.
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Figure 27: A box and whisker plot of the distribution of local (write) and aggregation (read) task
times on our three platforms for the 1TB dataset with k = 16. The boxes represent the
25th through 75th percentiles, and the lines in the middle of the boxes represent the
medians. The whiskers are set at 1.5 box widths outside the boxes, and the crosses are
outliers (results outside the whiskers). Note that each iteration has 4800 write tasks and
just 68 read tasks.

nodes, so the input matrix is instead stored on a parallel Lustre file system. The increased
IO latency slows the input tasks. The rest of the difference in performance can be under-
stood by looking at the distribution of local (write) task times in the box and whiskers plot
in Figure 27. The local/write tasks are much more numerous than the aggregation/read
tasks (4800 vs 68 per iteration), thus they have a more significant impact on performance.
We see that the XC40 write tasks had a similar median time to the experimental cluster’s
write tasks, but a much wider distribution. The large tail of slower "straggler" tasks is
the result of some shuffle data going to the remote Lustre file system rather than being
cached locally. We enabled Spark’s optional speculative re-execution (spark.speculation)
for the XC40 runs, and saw that some of these tasks were successfully speculatively exe-
cuted on alternate nodes with more available OS cache, and in some case finished earlier.
This eliminated many of the straggler tasks and brought our performance closer to the
experimental Cray cluster, but still did not match it (the results in Figure 26 and Table 23

include this configuration optimization).
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Recent advances in chemical imaging techniques have enabled detailed investigation of
metabolic processes at length scales ranging from sub-cellular to centimeter resolution.
One of the most promising chemical imaging techniques is mass spectrometry imaging
(MSI) [CFG97; MH07].

In this chapter, we apply CX matrix decompositions (described in Section 2.4.2) to mass
spectrometry imaging datasets, and we show that this can lead to effective prioritization
of information, both in terms of identifying important ions as well as in terms of identify-
ing important positions. Previously, this approach has been applied to the study of gene
expression [MD09; Pas+07] and astronomy [Yip+14]. The material in this chapter appears
in Yang et al. [Yan+15] and Gittens et al. [Git+16a].

7.1 background on msi datasets and methods

Typically in mass spectrometry imaging, a laser or ion beam is raster scanned across a
surface. At each location, molecules are desorbed from the surface, often with the assis-
tance of a matrix coating or specially prepared surface that enables the formation of gas
phase ions. These ions are collected and analyzed by mass spectrometry [CH10]. MSI
presents many data analysis and interpretation challenges due to the size and complexity
of the data. MSI acquires one or more mass spectra at each location. Each spectrum is
digitized into 104 to 106 m/z bins. Depending on the sample and analysis technique, it
is common to have tens of thousands of intense, sharp peaks at each location. Likewise,
MSI datasets containing up to a million pixels are possible with existing technology. This
results in a situation where careful analysis requires sophisticated computational tools,
infrastructure, and algorithms to reduce the large volume of measured data into easier to
interpret smaller blocks with the goal of prioritizing ions and positions according to their
importance.

Two widely used techniques for this are principle component analysis (PCA) [Jol86] and
non-negative matrix factorization (NMF) [LS01], both of which express the original data
in terms of concise but in general difficult-to-interpret components [Jon+12; Rei+11] since,
for example, eigenvectors are often not meaningful in terms of the physical processes of
metabolism, sample preparation, and data collection; and in addition, it is not always
clear whether a single ion is the distinguishing characteristic of a region or whether it is a
complex combination of relative ion-intensities that distinguish regions.

In contrast, CUR and the related CX matrix decompositions (described in Section 2.4.2)
are relatively new algorithmic approaches that allow scientists to provide a low-rank ap-
proximation of the measured data that is expressed in terms of actual data elements [MD09;
DMM08]. CX and CUR decompositions are provably almost as good as the low-rank ap-
proximation provided by the SVD, but instead of the blocks containing eigenions and
eigenpositions, as they do with the SVD, the low rank approximation provided by CX/CUR
is expressed in terms of actual rows and/or columns, i.e., actual ions and/or actual po-
sitions. In this chapter, we focus on CX decomposition. As is illustrated in Figure 28, the
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CX decomposition uses the leverage score structure within SVD to find actual rows and
actual columns of an MSI matrix that are most informative.
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Figure 28: Mass spectrometry imaging collects one or more spectra at each location in a sample. Be-
cause of the scale and complexity of MSI data, computational tools are required to reach
an understanding of the underlying physical processes. Panel A-D: A traditional pro-
cessing workflow where raw data is cleaned and processed using traditional clustering
and dimension reduction methods. Panel E: Multivariate statistics, such as PCA, yield
informative combinations of ions and pixels, but they do not lend themselves to intu-
itive interpretation in terms of the biological processes generating the data. Panel F: In
contrast, CX decomposition yields the most informative actual ions and actual positions
instead of linear combinations of ions and positions.

Recall that in Section 2.4.2 we provided a brief overview of CX decomposition with
approximate leverage scores; a more detailed introduction can be found in [DMM08]. Here
in our experiments, we consider using several variants of CX decomposition described in
Algorithm 4.

More specifically, as the statistical leverage scores are central to CX decomposition, for
completeness, we use CX decomposition with exact leverage scores on smaller datasets,
but to apply CX decompositions to larger datasets we use CX decompositions with ap-
proximate leverage scores (Algorithm 4). Then, with these (normalized) leverage scores at
hand, one can select columns from A either by viewing pj’s as an importance sampling dis-
tribution over the columns and randomly sampling columns according to it (Algorithm 4),
or by viewing pj’s as a ranking function and greedily selecting the columns with highest
scores. We name them RandColSelect and DeterColSelect, respectively.

randcolselect Select c columns from A, each of which is randomly sampled accord-
ing to the normalized leverage scores {pj}n

j=1.

detercolselect Select the c columns of A corresponding to the largest c normalized
leverage scores pjs.

Finally, our main algorithm can be summarized as follows. It takes as input an m × n
matrix A, a rank parameter k, and desired number of columns c as inputs.

1. Compute the (normalized) leverage scores associated with rank k either exactly or
approximately.
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2. Select c columns from A according to RandColSelect or DeterColSelect.

3. Let X = C† A.

In each computation that is described in the next section, after having specified which
scheme is used to compute the leverage scores, we respectively use randomized CX decom-
position and deterministic CX decomposition to denote the algorithm CX Decomposition

with RandColSelect or DeterColSelect scheme.

7.2 results and discussion

In the following we use three datasets to demonstrate the utility of CX decompositions
for MSI. Two of them are publicly available on the OpenMSI web gateway, and they are
selected from two diverse acquisition modalities, including one NIMS image of the left
coronal hemisphere of a mouse brain acquired using a time-of-flight (TOF) mass analyzer
and one MSI dataset of a lung acquired using an Orbitrap mass analyzer [Lou+13; R+̈13].
These files are previously described elsewhere and were chosen because of the common-
ality of brain-lipid images and the large number of m/z bins generated by Orbitrap de-
tectors, respectively. The other dataset is the 1TB-sized one mentioned in Section 6.3. This
dataset is provided by Norman Lewis’s group at Washington State University and is de-
rived from a MALDI-IMS-MSI analysis of a rhizome of the drug-producing green shrub
Podophyllum hexandrum. For simplicity, we call them Brain, Lung, and Plant dataset,
respectively, and present their science results in the next three subsections respectively.

7.2.1 Results on Brain dataset

To illustrate the utility of CX decompositions, we focus initially on results obtained from
the NIMS image of a coronal brain section. For the analyses described for the NIMS brain
image, the data were processed using peak-finding. The peak-finding identifies the most
intense ions and integrates the peaks, so that each peak is represented by a single image,
rather than a series of images spanning a range of m/z values. Using this approach, the
original data is reduced from O(100, 000) m/z values to the most intense ions. The size of
the brain section dataset is (122× 120× 1926). The (i, j, l)-th value of the matrix represents
the intensity of the ion with the l-th m/z value at position (i, j) in a (122× 120) regular
lattice which discretizes physical space. To compute the CX decomposition and select
ions and spectra, we reshape the three-dimensional MSI data cube into a two-dimensional
(14640× 1926) matrix A, where each row of A corresponds to the spectrum of a pixel in
the image, and where each column of A corresponds to the intensities of an ion over all
pixels, describing the distribution of the ion in physical space. For finding informative ions
and pixels, we perform CX decomposition with exact computations for leverage scores on
A and AT , respectively. In each case, for clarity, we only report the results with a fixed
small value of the rank parameter k. Varying in a range of small values does not have a
large effect on the reconstruction errors. This behavior may indicate that the information
that the corresponding top-k singular spaces contain does not vary a lot as k varies in this
range.

7.2.1.1 Finding Important Ions

Figure 29A shows the reconstruction errors ‖A − CX‖F/‖A‖F using CX decomposition
for selection of c = 20, 30, 40, 50, 60 ions, using a rank parameter k = 5 and using both
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randomized and deterministic CX decompositions. For completeness, we also show the
reconstruction errors using uniform sampling for varying numbers of selected ions and
that of the optimal rank-k approximation of A. Figure 29B and 29C show the distribution
of the leverage scores of A, relative to the best rank-k space, and their relative magnitudes.
Figure 30 then presents the spatial distributions of the 30 most important ions selected
using deterministic CX decomposition with k = 5 and c = 20.
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Figure 29: Analysis of the reconstruction error used to determine the most appropriate CX-based
schemes and settings for selection of ions and locations/spectra. Panel A,D: Reconstruc-
tion error of the CX decomposition for selection of ions (panel A) and locations (panel D)
using randomized and deterministic selection schemes with varying parameter c. Panel
B,E: Distribution of leverage scores of A and AT , relative to the best rank-k space, respec-
tively. Panel C,F: Sorted distribution of these leverage scores of A and AT , respectively.
The blue horizontal line denotes the mean/average leverage score. Due to the fairly non-
uniform shape of the leverage score distribution for ions, deterministic CX selection out-
performs randomized CX sampling for ions. In contrast, pixel selection is best achieved
by randomized CX sampling, since the leverage score distribution for pixels is much more
uniform.

The selection of important ions from the brain dataset (Figure 29A) shows clearly that
using deterministic CX decomposition leads to a smaller error than using randomized CX
decomposition with the same parameters. The reason for this behavior lies in distribution
of the leverage scores for the ions, as shown in Figure 29B and 29C. These leverage scores
are very non-uniform: a few dozen leverage scores are much larger, e.g., 50 times larger,
than the average score. Hence, since the leverage scores are highly non-uniform, the cor-
responding ions can be considered as very informative in reconstructing the matrix, and
keeping the ions with the top leverage scores leads a good basis. The randomized CX de-
composition carries a large variance—for the values of the parameters used here—since
in many trials it failed to select those important ions, and thus it resulted in a large error.
Not surprising, uniformly selecting columns do not give particularly meaningful results,
i.e., many irrelevant ions were chosen and informative ions were not chosen.

As for the absolute magnitude of the error, we use that of the best rank-k approximation
of A, i.e., Ak, as a reference scale suggested by (2.11). In Figure 29A and 29D, we can see
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Figure 30: Ion-intensity visualization of the 20 most important ions selected via deterministic CX
decomposition with k = 5 and c = 20. The distribution of leverage scores is presented
in Figure 29B. Some of these ions map to distinct regions in the brain. Particular regions
of the cortex, pons, and corpus collosum stand out as distinct anatomically identifiable
regions. Also in the list are likely background ions and contaminants from the embedding
material. Of the 20 ions, little redundancy is present, pointing to the effectiveness of the
CX approach for information prioritization.

that the reconstruction error of the CX decomposition is close to that of Ak. In some cases,
CX decomposition can even produce a lower error. This is because the matrix CX returned
by CX decomposition is a rank-c matrix with c > k. It is possible to choose X to be a rank-k
matrix; see Section 4.3 in [DMM08] for detailed construction.

7.2.1.2 Finding Important Pixel/Spectra

Similar to Figure 29A-C, Figure 29D-F provide an overview of the reconstruction errors
and the distribution and magnitude of the leverage scores, relative to the best rank-k
approximation, for the application of CX decomposition to AT for selection of pixel. In
Figure 31, we illustrate the application of both randomized and deterministic CX decom-
positions, with k = 15 and c = 20, on AT for finding informative pixels. The first subplot
(Figure 31A) shows the result returned by the deterministic CX decomposition, meaning
the pixels with the top leverage scores are greedily selected and plotted. The remaining
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subplots in Figure 31B-F we show the results returned by running randomized CX decom-
position in five independent trials.

Figure 31: Visualization of the selection of important pixels using CX decompositions. All visualiza-
tions show a gray-scale image of a selected ion as context, and the 20 locations selected
using the CX decomposition with k = 15 and c = 20 are highlighted via red circles. Panel
A shows the result of using the deterministic CX decomposition. With this approach the
algorithm selects locations clustered around a few regions. In comparison, panels B-F
show the results from five independent trials using the randomized CX decomposition.
Because of the uniformity in leverage scores for pixels, the randomized selection out-
performs the deterministic approach for comprehensive sampling of important locations.
The distribution of leverage scores is presented in Figure 29E.

In contrast with the selection of ions, deterministic CX decomposition results in larger
reconstruction errors than randomized CX decomposition (Figure 29D). Also, the pixels
selected using CX tend to be more localized in specific regions of the images, rather than
selecting characteristic pixels from different physical components of the sample images.
The reason for this behavior lies in the distribution of the leverage scores for the pixels, as
shown in Figures 29E and 29F. These leverage scores are fairly uniform: most of them are
less than 20 times the average. Also, there are many more pixels than ions, and thus we
can consider the distribution of leverage scores to be fairly uniform. Furthermore, since
each row in A represents a pixel in the image, many rows will contain a similar spectra.
Similar locations tend to “split up” the leverage scores, resulting in smaller values for the
score at each location. Importantly, applying random sampling here may still be able to
identify pixels from the important regions (i.e., those with high total leverage scores), even
when the value of any of its single pixel is small.
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7.2.2 Results on Lung dataset

Next, we investigate the quality of the approximation of the leverage scores by which
we mean Algorithm 4. We consider a moderately large dataset on which performing the
full SVD exactly will take hours to finish. In particular, we present the result on the raw
lung data before peak-finding, which has size approximately 20, 000 by 500, 000. We apply
Algorithm 4 with k = 15 and with q = 5 on the raw lung dataset.

As no peak-finding was done on the raw dataset, some ions with high leverage scores
have similar m/z values. In Figure 32a, we present the spatial distributions of the 4 most
representative ions selected from different groups. In Figures 32b and 32c, the approxi-
mate leverage scores and the total sensitivities versus the m/z values are plotted, respec-
tively. In addition, a “zoom-in” version of the above two plots, overlaid on each other, on
ions with m/z values in the range between 866.02 and 866.75 is shown in Figure 32d.

The results suggest that the ion at m/z = 392 (a drug administered to the tissue) was
identified as the highest leverage ion, and ions specific to regions of the lung were also
identified. That the administered drug was identified as the highest importance ion could
be significant for pharmacokinetics/pharmacology and could also be a marker to acceler-
ate identification of degradation products or byproducts that are of unexpected/unprede-
termined m/z values.

What is most significant in this approach is the lack of reliance on peak-finding. By
applying scalable factorization approaches like CX and CUR to raw, profile spectra, a
multitude of previously-ignored features can be considered. As can be seen in Figure 32d,
the zoomed in portion of the leverage score overlaid with the total intensity spectra shows
a large number of recognizable features with high intensity. Strikingly, only one of these
features has a high leverage score. This prioritization allows accelerated interpretation
of results by pointing a researcher towards which ions might be most informative in a
mathematically more objective manner.

7.2.3 Results on Plant dataset

Finally, we present the science results for the terabyte-sized plant dataset used in Sec-
tion 6.3. The size of the dataset is approximately 2.5e5 by 1.6e7 (511-by-507 spatial pixels
by 460342 m/z channels by 200 ion mobility channels).

Again, the rows and columns of our data matrix A correspond to pixels and (τ, m/z)
values of ions, respectively. We compute the CX decompositions of both A and AT in
order to identify important ions in addition to important pixels.

In Figure 33a, we present the distribution of the normalized ion leverage scores marginal-
ized over τ. That is, each score corresponds to an ion with m/z value shown in the x-axis.
Leverage scores of ions in three narrow regions have significantly larger magnitude than
the rest. This indicates that these ions are more informative and should be kept as basis
for reconstruction. Encouragingly, several other ions with significant leverage scores are
chemically related to the ions with highest leverage scores. For example, the ion with
an m/z value of 453.0983 has the second highest leverage score among the CX results.
Also identified as having significant leverage scores are ions at m/z values of 439.0819,
423.0832, and 471.1276, which correspond to neutral losses of CH2, CH2O, and a neutral
“gain” of H2O from the 453.0983 ion. These relationships indicate that this set of ions, all
identified by CX as having significant leverage scores, are chemically related. That fact
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indicates that these ions may share a common biological origin, despite having distinct
spatial distributions in the plant tissue sample.

On the other hand, we observed that the pixel leverage scores are fairly uniform (not
shown here). This is not surprising since similar pixels tend to have similar and small
individual scores. An implication is that the length scales of spatial variation for most
detected ions is much larger than the pixel size used for data acquisition. However, for
each region that contains similar pixels, the total leverage score (sampling probability)
will still be higher if such a region is more important in the reconstruction. Therefore, a
random sample is still able to capture which larger-scale regions contain higher densities
of important pixels, by sampling more pixels from the region as shown in Figure 33b.
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(c) Total intensity as a function of m/z value
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(d) Zoom-in version of panel (b) and (c) with m/z value ranging from 866.02 to 866.75

Figure 32: Quality of the normalized leverage scores using Algorithm 4 with q = 5 on the raw lunch
dataset. In panel A, we select 4 ions that are the most representative from the 30 most
important ions returned by running deterministic CX decomposition. In panel B, we plot
the approximate normalized leverage scores versus the m/z value. The ions with highest
leverage scores are marked by red stars. Note, for a group of ions with similar m/z values
and high leverage scores, only the one with the highest leverage score is plotted. In panel
C, the total sensitivities are plotted. The same ions marked in panel B are marked. In
panel D, a zoom-in version of panel B,C when the m/z value is ranging from 866.02
to 866.75 is shown. The black and red curves are the leverage scores and sensitivities,
respectively.
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(a) Normalized ion leverage scores (b) Visualization of important pixels

Figure 33: (a) Normalized leverage scores (sampling probabilities) for m/z marginalized over τ.
Three narrow regions of m/z account for 59.3% of the total probability mass; (b) Plot
of 10000 points sampled by leverage score. Color and luminance of each point indicates
density of points at that location as determined by a Gaussian kernel density estimate.
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8Q U A S I - M O N T E C A R L O F E AT U R E M A P S F O R S H I F T- I N VA R I A N T
K E R N E L S

Kernel methods [SS02; Wah90] offer a comprehensive suite of mathematically well-founded
non-parametric modeling techniques for a wide range of problems in machine learn-
ing. These include nonlinear classification, regression, clustering, semi-supervised learn-
ing [BNS06], time-series analysis [Par70], sequence modeling [Son+10], dynamical sys-
tems [BGG13], hypothesis testing [Har+13], causal modeling [Zha+11] and many more.

However, there is a steep price to these elegant generalizations in terms of scalability.
Consider, for example, least squares regression given n data points {(xi, yi)}n

i=1 and as-
sume that n� d. The complexity of linear regression training using standard least squares
solvers is O(nd2) with O(nd) memory requirements and O(d) prediction speed on a test
point. Its kernel-based nonlinear counterpart, however, requires solving a linear system
involving the Gram matrix of the kernel function (defined by Kij = k(xi, xj)). In general,
this incurs O(n3 + n2d) complexity for training, O(n2) memory requirements, and O(nd)
prediction time for a single test point—none of which is particularly appealing in “big
data” settings. Similar conclusions apply to other algorithms such as Kernel PCA.

This is rather unfortunate because non-parametric models, such as the ones produced
by kernel methods, are particularly appealing in big data settings as they can adapt to
the full complexity of the underlying domain, as uncovered by increasing dataset sizes.
It is well known that imposing strong structural constraints upfront for the purpose of
allowing an efficient solution (in the above example: a linear hypothesis space) often lim-
its, both theoretically and empirically, the potential to deliver value on large amounts of
data. Thus, as big data becomes pervasive across a number of application domains, it has
become necessary to develop highly scalable algorithms for kernel methods.

In this chapter, we consider the problem of improving the efficiency of randomized
Fourier feature maps [RR08] to accelerate training and testing speed of kernel methods
on large datasets. These approximate feature maps arise as Monte Carlo approximations
to integral representations of shift-invariant kernel functions (e.g., Gaussian kernel). We
propose to use Quasi-Monte Carlo (QMC) approximations instead, where the relevant
integrands are evaluated on a low-discrepancy sequence of points as opposed to random
point sets as in the Monte Carlo approach. We derive a new discrepancy measure called
box discrepancy based on theoretical characterizations of the integration error with respect
to a given sequence.

We provide background on kernel methods, random Fourier feature maps, and Quasi-
Monte Carlo technique in Section 8.1 and Section 8.2. Main algorithm and main theoretical
results are presented in Section 8.3. In Section 8.4 we discuss learning adaptive QMC
sequences to improve the algorithm further. Finally, empirical results are presented in
Section 8.5. The material in this chapter appears in Yang et al. [Yan+14a] and Avron et al.
[Avr+16].

Note that in this chapter, we use slightly different notation. In a sequence of vectors, we
use wi to denote the i-th element of the sequence and use wi

j to denote the j-th coordinate

of vector wi. Given a vector x, we use xi to denote the i-th coordinate of x.
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8.1 background on kernel methods and random fourier feature maps

The central object of kernel methods is a kernel function k : X × X → R defined on an
input domain X ⊂ Rd.1 The kernel k is (non-uniquely) associated with an embedding of
the input space into a high-dimensional Hilbert space H (with inner product 〈·, ·〉H) via a
feature map, Ψ : X → H, such that

k(x, z) = 〈Ψ(x), Ψ(z)〉H.

Standard regularized linear statistical models in H then provide nonlinear inference with
respect to the original input representation. The algorithmic basis of such constructions
are classical Representer Theorems [Wah90; SS02] that guarantee finite-dimensional solu-
tions of associated optimization problems, even if H is infinite-dimensional.

Recent years have seen intensive research on improving the scalability of kernel meth-
ods. In this work, we revisit one of the most successful techniques, namely the random-
ized construction of a family of low-dimensional approximate feature maps proposed
by Rahimi and Recht [RR08]. These randomized feature maps, Ψ̂ : X → Cs, provide
low-distortion approximations for (complex-valued) kernel functions k : X ×X → C:

k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Cs , (8.1)

where Cs denotes the space of s-dimensional complex numbers with the inner prod-
uct, 〈α, β〉Cs = ∑s

i=1 αiβ
∗
i , with z∗ denoting the conjugate of the complex number z. (Al-

though Rahimi and Recht [RR08] also define real-valued feature maps for real-valued ker-
nels, our technical exposition is simplified by adopting the generality of complex-valued
features.) The mapping Ψ̂(·) is now applied to each of the data points to obtain a ran-
domized feature representation of the data. We then apply a simple linear method to
these random features. That is, if our data is {(xi, yi)}n

i=1 we learn on {(zi, yi)}n
i=1, where

zi = Ψ̂(xi). As long as s is sufficiently smaller than n, this leads to more scalable solu-
tions, e.g., for regression we get back to O(ns2) training and O(sd) prediction time, with
O(ns) memory requirements. This technique is immensely successful, and has been used
in recent years to obtain state-of-the-art accuracies for some classical data sets [Hua+14;
AS15].

The starting point of [RR08] is a celebrated result that characterizes the class of positive
definite functions.

Definition 8.1. A function g : Rd 7→ C is a positive definite function if for any set of n points
x1, . . . , xn ∈ Rd, the n× n matrix A defined by Aij = g(xi − xj) is positive semidefinite.

Theorem 8.2 (Bochner [Boc33]). A complex-valued function g : Rd 7→ C is positive definite if
and only if it is the Fourier Transform of a finite non-negative Borel measure µ on Rd, i.e.,

g(x) = µ̂(x) =
∫

Rd
e−ixTwdµ(w), ∀x ∈ Rd.

Without loss of generality, we assume henceforth that µ(·) is a probability measure with
associated probability density function p(·).

A kernel function k : Rd ×Rd 7→ C on Rd is called shift-invariant if k(x, z) = g(x − z)
for some positive definite function g : Rd 7→ C. Bochner’s theorem implies that a scaled

1 In fact, X can be a rather general set. However, here it is restricted to being a subset of Rd.
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shift-invariant kernel can therefore be put into one-to-one correspondence with a density
p(·) such that

k(x, z) = g(x− z) =
∫

Rd
e−i(x−z)Tw p(w)dw. (8.2)

For the most notable member of the shift-invariant family of kernels, the Gaussian kernel

k(x, z) = e−
‖x−z‖22

2σ2 ,

the associated density is again Gaussian N (0, σ−2 Id).
The integral representation of kernel (8.2) may be approximated as follows:

k(x, z) =
∫

Rd
e−i(x−z)Tw p(w)dw

≈ 1
s

s

∑
j=1

e−i(x−z)Tws

= 〈Ψ̂S(x), Ψ̂S(z)〉Cs

through the feature map

Ψ̂S(x) =
1√

s

[
e−ixTw1

. . . e−ixTws
]
∈ Cs. (8.3)

The subscript S denotes dependence of the feature map on the sequence S = {w1, . . . , ws}.
The goal of this work is to improve the convergence behavior of this approximation, so

that a smaller s can be used to get the same quality of approximation to the kernel function.
This is motivated by recent work showing that in order to obtain state-of-the-art accuracy
on some important data sets, a very large number of random features is needed [Hua+14;
AS15].

Our point of departure from the work of Rahimi and Recht [RR08] is the simple ob-
servation that when w1, . . . , ws are drawn from the distribution defined by the density
function p(·), the approximation (8.3) may be viewed as a standard Monte Carlo (MC)
approximation to the integral representation of the kernel. Instead of using plain MC
approximation, we propose to use the low-discrepancy properties of Quasi-Monte Carlo
(QMC) sequences to reduce the integration error in approximations of the form (8.3). A
self-contained overview of Quasi-Monte Carlo techniques for high-dimensional integra-
tion problems is provided in the next section.

8.2 quasi-monte carlo techniques : an overview

In this section we provide a self-contained overview of Quasi-Monte Carlo (QMC) tech-
niques. For brevity, we restrict our discussion to background that is necessary for un-
derstanding subsequent sections. We refer the interested reader to the excellent reviews
by Caflisch [Caf98] and Dick, Kuo, and Sloan [DKS13], and the recent book Leobacher
and Pillichschammer [LP14] for a much more detailed exposition.

Consider the task of computing an approximation of the integral

Id[ f ] =
∫
[0,1]d

f (x)dx. (8.4)
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Figure 34: Comparison of MC and QMC sequences.

One can observe that if x is a random vector uniformly distributed over [0, 1]d then Id[ f ] =
E [ f (x)]. An empirical approximation to the expected value can be computed by drawing
a random point set S = {w1, . . . , ws} independently from [0, 1]d and computing

IS[ f ] =
1
s ∑

w∈S
f (w).

This is the Monte Carlo (MC) method.
Define the integration error with respect to the point set S as

εS[ f ] = |Id( f )− IS( f )|.

When S is drawn randomly, the Central Limit Theorem asserts that if s = |S| is large
enough then εS[ f ] ≈ σ[ f ]s−1/2ν, where ν is a standard normal random variable and σ[ f ]
is the square-root of the variance of f ; that is,

σ2[ f ] =
∫
[0,1]d

( f (x)− Id( f ))2 dx.

In other words, the root mean square error of the Monte Carlo method is(
ES

[
εS[ f ]2

])1/2
≈ σ[ f ]s−1/2. (8.5)

Therefore, the Monte Carlo method converges at a rate of O(s−1/2).
The aim of QMC methods is to improve the convergence rate by using a deterministic

low-discrepancy sequence to construct S, instead of randomly sampling points. The underly-
ing intuition is illustrated in Figure 34, where we plot a set of 1000 two-dimensional ran-
dom points (left graph), and a set of 1000 two-dimensional points from a quasi-random
sequence (Halton sequence; right graph). In the random sequence we see that there is an
undesired clustering of points, and as a consequence empty spaces. Clusters add little to
the approximation of the integral in those regions, while in the empty spaces the inte-
grand is not sampled. This lack of uniformity is due to the fact that Monte Carlo samples
are independent of each other. By carefully designing a sequence of correlated points to
avoid such clustering effects, QMC attempts to avoid this phenomenon, and thus provide
faster convergence to the integral.
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The theoretical apparatus for designing such sequences are inequalities of the form

εS( f ) ≤ D(S)V( f ),

in which V( f ) is a measure of the variation or difficulty of integrating f (·) and D(S) is a
sequence-dependent term that typically measures the discrepancy, or degree of deviation
from uniformity, of the sequence S. For example, the expected Monte Carlo integration
error decouples into a variance term, and s−1/2 as in (8.5).

A prototypical inequality of this sort is the following remarkable and classical result.

Theorem 8.3 (Koksma-Hlawka inequality). For any function f with bounded variation, and
sequence S = {w1, . . . , ws}, the integration error is bounded above as follows,

εS[ f ] ≤ D?(S)VHK[ f ],

where VHK is the Hardy-Krause variation of f (see Niederreiter [Nie92]), which is defined in
terms of the partial derivatives

VHK[ f ] = ∑
I⊂[d],I 6=∅

∫
[0,1]|I|

∣∣∣∣∣ ∂ f
∂uI

∣∣∣∣
uj=1,j/∈I

∣∣∣∣∣ duI , (8.6)

and D? is the star discrepancy defined by

D?(S) = sup
x∈[0,1]d

|disrS(x)|,

where disrS is the local discrepancy function

disrS(x) = Vol(Jx)−
|{i : wi ∈ Jx}|

s

and Jx = [0, x1)× [0, x2)× · · · × [0, xd) with Vol(Jx) = ∏d
j=1 xj.

Given x, the second term in disrS(x) is an estimate of the volume of Jx, which will be
accurate if the points in S are uniform enough. D?(S) measures the maximum difference
between the actual volume of the subregion Jx and its estimate for all x in [0, 1]d.

An infinite sequence w1, w2, . . . is defined to be a low-discrepancy sequence if, as a func-
tion of s, D?({w1, . . . , ws}) = O((log s)d/s). Several constructions are known to be low-
discrepancy sequences. One notable example is the Halton sequences, which are defined as
follows. Let p1, . . . , pd be the first d prime numbers. The Halton sequence w1, w2, . . . of
dimension d is defined by

wi = (φp1(i), . . . , φpd(i)),

where for integers i ≥ 0 and b ≥ 2 we have

φb(i) =
∞

∑
a=1

iab−a,

in which i0, i1, · · · ∈ {0, 1, . . . , b− 1} is given by the unique decomposition

i =
∞

∑
a=1

iaba−1.
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It is outside the scope to describe all these constructions in detail. However, we mention
that in addition to the Halton sequences, other notable members are Sobol’ sequences, Faure
sequences, Niederreiter sequences, and more (see Dick, Kuo, and Sloan [DKS13], Section 2).
We also mention that it is conjectured that the O((log s)d/s) rate for star discrepancy decay
is optimal.

The classical QMC theory, which is based on the Koksma-Hlawka inequality and low
discrepancy sequences, thus achieves a convergence rate of O((log s)d/s). While this is
asymptotically superior to O(s−1/2) for a fixed d, it requires s to be exponential in d
for the improvement to manifest. As such, in the past QMC methods were dismissed as
unsuitable for very high-dimensional integration.

However, several authors noticed that QMC methods perform better than MC even for
very high-dimensional integration [DKS13].2 Contemporary QMC literature explains and
expands on these empirical observations, by leveraging the structure of the space in which
the integrand function lives, to derive more refined bounds and discrepancy measures,
even when classical measures of variation such as (8.6) are unbounded. This literature has
evolved along at least two directions: one, where worst-case analysis is provided under
the assumption that the integrands live in a Reproducing Kernel Hilbert Space (RKHS)
of sufficiently smooth and well-behaved functions (see Dick, Kuo, and Sloan [DKS13],
Section 3) and second, where the analysis is done in terms of average-case error, under an
assumed probability distribution over the integrands, instead of worst-case error [Woz91;
TW94]. We refrain from more details, as these are essentially the paths that the analysis
in Section 8.3.2 follows for our specific setting.

8.3 main algorithm and main theoretical results

8.3.1 QMC Feature Maps: Our Algorithm

We assume that the density function in (8.2) can be written as p(x) = ∏d
j=1 pj(xj), where

pj(·) is a univariate density function. The density functions associated with many shift-
invariant kernels, e.g., Gaussian, Laplacian and Cauchy, admit such a form.

The QMC method is generally applicable to integrals over a unit cube. Thus, inte-
grals of the form (8.2) are typically handled by generating a low discrepancy sequence
t1, . . . , ts ∈ [0, 1]d and transforming it into a sequence w1, . . . , ws in Rd, instead of drawing
the elements of the sequence from p(·) as in the MC method.

To convert (8.2) to an integral over the unit cube, a simple change of variables suffices.
For t ∈ Rd, define

Φ−1(t) =
(

Φ−1
1 (t1), . . . , Φ−1

d (td)
)
∈ Rd, (8.7)

where Φj(·) is the cumulative distribution function (CDF) of pj(·), for j = 1, . . . , d. By
setting w = Φ−1(t), then we can write (8.2) as∫

Rd
e−i(x−z)Tw p(w)dw =

∫
[0,1]d

e−i(x−z)TΦ−1(t)dt.

2 Also see: “On the unreasonable effectiveness of QMC", I. H. Sloan https://mcqmc.mimuw.edu.pl/
Presentations/sloan.pdf

https://mcqmc.mimuw.edu.pl/Presentations/sloan.pdf
https://mcqmc.mimuw.edu.pl/Presentations/sloan.pdf
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Algorithm 12 Quasi-Random Fourier features

1: Input: Shift-invariant kernel k, size s.
2: Output: Feature map Ψ̂(x) : Rd 7→ Cs.
3: Find p, the inverse Fourier transform of k.
4: Generate a low discrepancy sequence t1, . . . , ts.
5: Transform the sequence: wi = Φ−1(ti) by (8.7).

6: Set Ψ̂(x) =
√

1
s

[
e−ixTw1

, . . . , e−ixTws
]
.

7: Return Ψ̂(x).

Thus, a low discrepancy sequence t1, . . . , ts ∈ [0, 1]d can be transformed using wi =
Φ−1(ti), which is inserted into (8.3) to yield the QMC feature map. This simple procedure
is summarized in Algorithm 12. QMC feature maps are analyzed in the next section.

8.3.2 Theoretical Analysis and Average Case Error Bounds

The proofs for assertions made in this section and the next can be found in the Appendix D.
Before diving into the details, we give the notation. We use i both for subscript and for
denoting

√
−1, relying on the context to distinguish between the two. Given x1, . . . , xn,

the Gram matrix is defined as K ∈ Rn×n where Kij = k(xi, xj) for i, j = 1, . . . , n. We denote

the error function by erf(·), i.e., erf(z) =
∫ z

0 e−z2
dz for z ∈ C; see Weideman [Wei94] for

more details.
In “MC sequence” we mean points drawn randomly either from the unit cube or certain

distribution that will be clear from the text. For “QMC sequence” we mean a deterministic
sequence designed to reduce the integration error. Typically, it will be a low-discrepancy
sequence on the unit cube.

It is also useful to recall the definition of Reproducing Kernel Hilbert Space (RKHS).

Definition 8.4 (Reproducing kernel Hilbert space [BTA04]). A reproducing kernel Hilbert
space (RKHS) is a Hilbert Space H : X → C that possesses a reproducing kernel, i.e., a function
h : X ×X → C for which the following hold for all x ∈ X and f ∈ H:

• h(x, ·) ∈ H

• 〈 f , h(x, ·)〉H = f (x) (Reproducing Property)

Equivalently, RKHSs are Hilbert spaces with bounded, continuous evaluation function-
als. Informally, they are Hilbert spaces with the nice property that if two functions f , g ∈ H
are close in the sense of the distance derived from the norm in H (i.e., ‖ f − g‖H is small),
then their values f (x), g(x) are also close for all x ∈ X ; in other words, the norm controls
the pointwise behavior of functions in H [BTA04].

The goal of this section is to develop a framework for analyzing the approximation
quality of the QMC feature maps described in the previous section (Algorithm 12). We
need to develop such a framework since the classical Koksma-Hlawka inequality cannot
be applied to our setting, as the following proposition shows:

Proposition 8.5. For any p(x) = ∏d
j=1 pj(xj), where pj(·) is a univariate density function, let

Φ−1(t) =
(

Φ−1
1 (t1), . . . , Φ−1

d (td)
)

.
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For a fixed u ∈ Rd, consider fu(t) = e−iuTΦ−1(t), t ∈ [0, 1]d. The Hardy-Krause variation of fu(·)
is unbounded. That is, one of the integrals in the sum (8.6) is unbounded.

Our framework is based on a new discrepancy measure, box discrepancy, that character-
izes integration error for the set of integrals defined with respect to the underlying data
domain. Throughout this section we use the convention that S = {w1, . . . , ws}, and the
notation X̄ = {x− z | x, z ∈ X}.

Given a probability density function p(·) and S, we define the integration error εS,p[ f ]
of a function f (·) with respect to p(·) and the s samples as,

εS,p[ f ] =

∣∣∣∣∣
∫

Rd
f (x)p(x)dx− 1

s

s

∑
i=1

f (wi)

∣∣∣∣∣ .

We are interested in characterizing the behavior of εS,p[ f ] on f ∈ FX̄ where

FX̄ =
{

fu(x) = e−iuT x, u ∈ X̄
}

.

As is common in modern QMC analysis [LP14; DKS13], our analysis is based on setting
up a Reproducing Kernel Hilbert Space of “nice" functions that is related to integrands
that we are interested in, and using properties of the RKHS to derive bounds on the
integration error. In particular, the integration error of integrands in an RKHS can be
bounded using the following proposition.

Proposition 8.6 (Integration error in an RKHS). LetH be an RKHS with kernel h(·, ·). Assume
that κ = supx∈Rd h(x, x) < ∞. Then, for all f ∈ H we have,

εS,p[ f ] ≤ ‖ f ‖HDh,p(S), (8.8)

where

Dh,p(S)2 =

∥∥∥∥∥
∫

Rd
h(ω, ·)p(ω)dω− 1

s

s

∑
l=1

h(wl , ·)
∥∥∥∥∥

2

H
(8.9)

=
∫

Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ− 2
s

s

∑
l=1

∫
Rd

h(wl , ω)p(ω)dω

+
1
s2

s

∑
l=1

s

∑
j=1

h(wl , wj).

Remark 10. In the theory of RKHS embeddings of probability distributions [Sri+10], the function

µh,p(x) =
∫

Rd
h(ω, x)p(ω)dω

is known as the kernel mean embedding of p(·). The function

µ̂h,p,S(x) =
1
s

s

∑
l=1

h(wl , x)

is then the empirical mean map.
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The RKHS we use is as follows. For a vector b ∈ Rd, let us define �b = {u ∈ Rd | |uj| ≤
bj}. Let

F�b =
{

fu(x) = e−iuT x, u ∈ �b
}

,

and consider the space of functions that admit an integral representation over F�b of the
form

f (x) =
∫

u∈�b
f̂ (u)e−iuT xdu where f̂ (u) ∈ L2(�b). (8.10)

This space is associated with bandlimited functions, i.e., functions with compactly-supported
inverse Fourier transforms, which are of fundamental importance in the Shannon-Nyquist
sampling theory. Under a natural choice of inner product, these spaces are called Paley-
Wiener spaces and they constitute an RKHS [BTA04; Yao67].

Proposition 8.7 (Kernel of Paley-Wiener RKHS). By PWb, denote the space of functions which
admit the representation in (8.10), with the inner product 〈 f , g〉PWb = (2π)2d〈 f̂ , ĝ〉L2(�b). PWb
is an RKHS with kernel function,

sincb(u, v) = π−d
d

∏
j=1

sin
(
bj(uj − vj)

)
uj − vj

.

For notational convenience, in the above we define sin(b · 0)/0 to be b. Furthermore, 〈 f , g〉PWb =
〈 f , g〉L2(�b).

If bj = supu∈X̄ |uj| then X̄ ⊂ �b, so FX̄ ⊂ F�b. Since we wish to bound the integration
error on functions in FX̄ , it suffices to bound the integration error on F�b. Unfortunately,
while F�b defines PWb, the functions in it, being not square integrable, are not members
of PWb, so analyzing the integration error in PWb do not directly apply to them. However,
damped approximations of fu(·) of the form f̃u(x) = e−iuT x sinc(Tx) are members of
PWb with ‖ f̃ ‖PWb = 1√

T
. Hence, we expect the analysis of the integration error in PWb to

provide provide a discrepancy measure for integrating functions in F�b.
For PWb the discrepancy measure Dh,S in Proposition 8.6 can be written explicitly.

Theorem 8.8 (Discrepancy in PWb). Suppose that p(·) is a probability density function, and
that we can write p(x) = ∏d

j=1 pj(xj) where each pj(·) is a univariate probability density function
as well. Let ϕj(·) be the characteristic function associated with pj(·). Then,

Dsincb ,p(S)2 = π−d
d

∏
j=1

∫ bj

−bj

|ϕj(β)|2dβ−

2(2π)−d

s

s

∑
l=1

d

∏
j=1

∫ bj

−bj

ϕj(β)eiwl
j βdβ +

1
s2

s

∑
l=1

s

∑
j=1

sincb(wl , wj). (8.11)

This naturally leads to the definition of the box discrepancy, analogous to the star dis-
crepancy described in Theorem 8.3.

Definition 8.9 (Box discrepancy). The box discrepancy of a sequence S with respect to p(·) is
defined as,

D�b
p (S) = Dsincb ,p(S).
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For notational convenience, we generally omit the b from D�b
p (S) as long as it is clear

from the context.
The worse-case integration error bound for Paley-Wiener spaces is stated in the follow-

ing as a corollary of Proposition 8.6. As explained earlier, this result not yet apply to
functions in F�b because these functions are not part of PWb. Nevertheless, we state it
here for completeness.

Corollary 8.10 (Integration error in PWb). For f ∈ PWb we have

εS,p[ f ] ≤ ‖ f ‖PWb D�p (S).

Our main result shows that the expected square error of an integrand drawn from a
uniform distribution over F�b is proportional to the square discrepancy measure D�p (S).
This result is in the spirit of similar average case analysis in the QMC literature [Woz91;
TW94].

Theorem 8.11 (Average case error). Let U (F�b) denote the uniform distribution on F�b. That
is, f ∼ U (F�b) denotes f = fu where fu(x) = e−iuT x and u is randomly drawn from a uniform
distribution on �b. We have,

E f∼U (F�b)

[
εS,p[ f ]2

]
=

πd

∏d
j=1 bj

D�p (S)
2.

We now give an explicit formula for D�p (S) for the case that p(·) is the density function
of the multivariate Gaussian distribution with zero mean and independent components.
This is an important special case since this is the density function that is relevant for the
Gaussian kernel.

Corollary 8.12 (Discrepancy for Gaussian distribution). Let p(·) be the d-dimensional multi-
variate Gaussian density function with zero mean and covariance matrix equal to diag(σ−2

1 , . . . , σ−2
d ).

We have,

D�p (S)
2 =

1
s2

s

∑
l=1

s

∑
j=1

sincb(wl , wj)−

2
s

s

∑
l=1

d

∏
j=1

cl j Re

(
erf

(
bj

σj
√

2
− i

σjwl
j√

2

))
+

d

∏
j=1

σj

2
√

π
erf

(
bj

σj

)
, (8.12)

where

cl j =

(
σj√
2π

)
e−

σ2
j (w

l
j)

2

2 .

Intuitively, the box discrepancy of the Gaussian kernel can be interpreted as follows. The
function sinc(x) = sin(x)/x achieves its maximum at x = 0 and minimizes at discrete
values of x decaying to 0 as |x| goes to ∞. Hence the first term in (8.12) tends to be
minimized when the pairwise distance between wj are sufficiently separated. Due to the
shape of cumulative distribution function of Gaussian distribution, the values of tj =
Φ(wj) (j = 1, . . . , s) are driven to be close to the boundary of the unit cube. As for second
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term, the original expression is − 2
s ∑s

l=1
∫

Rd h(wl , ω)p(ω)dω. This term encourages the
sequence {wl} to mimic samples from p(ω). Since p(ω) concentrates its mass around
ω = 0, the wj also concentrates around 0 to maximize the integral and therefore the values
of tj = Φ(wj) (j = 1, . . . , s) are driven closer to the center of the unit cube. Sequences with
low box discrepancy therefore optimize a tradeoff between these competing terms.

Two other shift-invariant kernel that have been mentioned in the machine learning lit-
erature is the Laplacian kernel [RR08] and Matern kernel [LSS13]. The distribution associ-
ated with the Laplacian kernel can be written as a product p(x) = ∏d

j=1 pj(xj), where pj(·)
is density associated with the Cauchy distribution. The characteristic function is simple
(φj(β) = e−|β|/σj ) so analytic formulas like (8.12) can be derived. The distribution associ-
ated with the Matern kernel, on the other hand, is the multivariate t-distribution, which
cannot be written as a product p(x) = ∏d

j=1 pj(xj), so the presented theory does not apply
to it.

discrepancy of monte-carlo sequences .
We now derive an expression for the expected discrepancy of Monte-Carlo sequences,

and show that it decays as O(s−1/2). This is useful since via an averaging argument we
are guaranteed that there exists sets for which the discrepancy behaves O(s−1/2).

Corollary 8.13. Suppose t1, . . . , ts are chosen uniformly from [0, 1]d. Let wi = Φ−1(ti), for
i = 1, . . . , s. Assume that κ = supx∈Rd h(x, x) < ∞. Then

E
[

Dh,p(S)2
]
=

1
s

∫
Rd

h(ω, ω)p(ω)dω− 1
s

∫
Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ.

Again, we can derive specific formulas for the Gaussian density. The following is straight-
forward from Corollary 8.13. We omit the proof.

Corollary 8.14. Let p(·) be the d-dimensional multivariate Gaussian density function with zero
mean and covariance matrix equal to diag(σ−2

1 , . . . , σ−2
d ). Suppose t1, . . . , ts are chosen uniformly

from [0, 1]d. Let wi = Φ−1(ti), for i = 1, . . . , s. Then,

E
[

D�p (S)
2
]
=

1
s

(
π−d

d

∏
j=1

bj −
d

∏
j=1

σj

2
√

π
erf

(
bj

σj

))
. (8.13)

8.4 learning adaptive qmc sequences

For simplicity, in this section we assume that p(·) is the density function of Gaussian
distribution with zero mean. We also omit the subscript p from D�p . Similar analysis and
equations can be derived for other density functions.

Error characterization via discrepancy measures like (8.12) is typically used in the QMC
literature to prescribe sequences whose discrepancy behaves favorably. It is clear that
for the box discrepancy, a meticulous design is needed for a high quality sequence and
we leave this to future work. Instead, in this work, we use the fact that unlike the star
discrepancy (8.3), the box discrepancy is a smooth function of the sequence with a closed-
form formula. This allows us to both evaluate various candidate sequences, and select
the one with the lowest discrepancy, as well as to adaptively learn a QMC sequence that is
specialized for our problem setting via numerical optimization. The basis is the following
proposition, which gives an expression for the gradient of D�(S).
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Proposition 8.15 (Gradient of box discrepancy). Define the following scalar functions and
variables,

sinc′(z) =
cos(z)

z
− sin(z)

z2 , sinc′b(z) =
b
π

sinc′(bz) ;

cj =

(
σj√
2π

)
, j = 1, . . . , d ;

gj(x) = cje−
σ2

j
2 x2

Re

(
erf

[
bj

σj
√

2
− i

σjx√
2

])
;

g′j(x) = −σ2
j xgj(x) +

√
2
π

cjσje
−

b2
j

2σ2
j sin(bjx).

In the above, we define sinc′(0) to be 0. Then, the elements of the gradient vector of D� are given
by,

∂D�

∂wl
j

=
2
s2

s

∑
m=1
m 6=l

(
bj sinc′bj

(wl
j, wm

j )∏
q 6=j

sincbq(w
l
q, wm

q )

)
−

2
s

g′j(w
j
l)

(
∏
q 6=j

gq(wl
q)

)
. (8.14)

We explore two possible approaches for finding sequences based on optimizing the
box discrepancy, namely global optimization and greedy optimization. The latter is closely
connected to herding algorithms [Wel09]. In addition, we also consider weighted sequences.

8.4.1 Global Adaptive Sequences

The task is posed in terms minimization of the box discrepancy function (8.12) over the
space of sequences of s vectors in Rd:

S∗ = argminS=(w1 ...ws)∈Rds D�(S).

The gradient can be plugged into any first order numerical solver for non-convex opti-
mization. We use nonlinear conjugate gradient in our experiments (Section 8.5.2).

The above learning mechanism can be extended in various directions. For example,
QMC sequences for n-point rank-one Lattice Rules [DKS13] are integral fractions of a
lattice defined by a single generating vector v. This generating vector may be learnt via
local minimization of the box discrepancy.

8.4.2 Greedy Adaptive Sequences

Starting with S0 = ∅, for t ≥ 1, let St = {w1, . . . , wt}. At step t + 1, we solve the following
optimization problem,

wt+1 = argminw∈Rd D�(St ∪ {w}). (8.15)
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Set St+1 = St ∪{wt+1} and repeat the above procedure. The gradient of the above objective
is also given in (8.14). Again, we use nonlinear conjugate gradient in our experiments
(Section 8.5.2).

The greedy adaptive procedure is closely related to the herding algorithm, recently
presented by Welling [Wel09]. Applying the herding algorithm to PWb and p(·), and using
our notation, the points w1, w2, . . . are generated using the following iteration

wt+1 ∈ arg max
w∈Rd

〈zt(·), h(w, ·)〉PWb

zt+1(x) ≡ zt(x) + µh,p(x)− h(w, x).

In the above, z0, z1, . . . is a series of functions in PWb. The literature is not specific on the
initial value of z0, with both z0 = 0 and z0 = µh,p suggested. Either way, it is always the
case that zt = z0 + t(µh,p − µ̂h,p,St) where St = {w1, . . . , wt}.

Chen, Welling, and Smola [CWS10] showed that under some additional assumptions,

the herding algorithm, when applied to a RKHS H, greedily minimizes
∥∥∥µh,p − µ̂h,p,St

∥∥∥2

H
,

which, recall, is equal to Dh,p(St). Thus, under certain assumptions, herding and (8.15)
are equivalent. Chen, Welling, and Smola [CWS10] also showed that under certain restric-
tions on the RKHS, herding will reduce the discrepancy in a ratio of O(1/t). However, it
is unclear whether those restrictions hold for PWb and p(·). Indeed, Bach, Lacoste-Julien,
and Obozinski [BLO12] recently shown that these restrictions never hold for infinite-
dimensional RKHS, as long as the domain is compact. This result does not immediately
apply to our case since Rd is not compact.

8.4.3 Weighted Sequences

Classically, Monte-Carlo and Quasi-Monte Carlo approximations of integrals are unweighted,
or more precisely, have a uniform weights. However, it is quite plausible to weight the ap-
proximations, i.e. approximate Id[ f ] =

∫
[0,1]d f (x)dx using

IS,Ξ[ f ] =
n

∑
i=1

ξi f (wi), (8.16)

where Ξ = {ξ1, . . . , ξs} ⊂ R is a set of weights. This lead to the feature map

Ψ̂S(x) =
[√

ξ1e−ixTw1
. . .
√

ξse−ixTws
]

.

This construction requires ξi ≥ 0 for i = 1, . . . , s, although we note that (8.16) itself does
not preclude negative weights. We do not require the weights to be normalized, that is it
is possible that ∑s

i=1 ξi 6= 1.
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One can easily generalize the result of the previous section to derive the following
discrepancy measure that takes into consideration the weights

D�b
p (S, Ξ)2 = π−d

d

∏
j=1

∫ bj

−bj

|ϕj(β)|2dβ−

2(2π)−d
s

∑
l=1

ξl

d

∏
j=1

∫ bj

−bj

ϕj(β)eiwl
j βdβ +

s

∑
l=1

s

∑
j=1

ξlξ j sincb(wl , wj).

Using this discrepancy measure, global adaptive and greedy adaptive sequences of points
and weights can be found.

However, we note that if we fix the points, then optimizing just the weights is a simple
convex optimization problem. The box discrepancy can be written as

D�b
p (S, Ξ)2 = π−d

d

∏
j=1

∫ bj

−bj

|ϕj(β)|2dβ− 2vTξ + ξT Hξ ,

where ξ ∈ Rs has entry i equal to ξi, v ∈ Rs and H ∈ Rs×s are defined by

Hij = sincb(wl , wj)

vi = (2π)−d
d

∏
j=1

∫ bj

−bj

ϕj(β)eiwl
j βdβ .

The ξ that minimizes D�b
p (S, Ξ)2 is equal to H−1v, but there is no guarantee that ξi ≥ 0

for all i. We need to explicitly impose these conditions. Thus, the optimal weights can be
found by solving the following convex optimization problem

Ξ∗ = argminξ∈Rs ξT Hξ − 2vTξ s.t. ξ ≥ 0. (8.17)

Selecting the weights in such a way is closely connected to the so-called Bayesian Monte
Carlo (BMC) method, originally suggested by Ghahramani and Rasmussen [GR03]. In
BMC, a Bayesian approach is utilized in which the function is a assumed to be random
with a prior that is a Gaussian Process. Combining with the observations, a posterior
is obtained, which naturally leads to the selection of weights. Huszár and Duvenaud
[HD12] subsequently pointed out the connection between this approach and the herding
algorithm discussed earlier.

We remark that as long as all the weights are positive, the hypothesis space of functions
induced by the feature map (that is, {gw(x) = Ψ̂T

S (x)w, w ∈ Rs}) will not change in terms
of the set of functions in it. However, the norms will be affected (that is, the norm of a
function in that set also depends on the weights), which in turn affects the regularization.

8.5 empirical evaluation

In this section we report experiments with both classical QMC sequences and adaptive
sequences learnt from box discrepancy minimization.
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8.5.1 Experiments With Classical QMC Sequences

We examine the behavior of classical low-discrepancy sequences when compared to ran-
dom Fourier features (i.e., MC). We consider four sequences: Halton, Sobol’, Lattice Rules,
and Digital Nets. For Halton and Sobol’, we use the implementation available in MAT-
LAB.3 For Lattice Rules and Digital Nets, we use publicly available implementations.4

For all four low-discrepancy sequences, we use scrambling and shifting techniques rec-
ommended in the QMC literature (see Dick, Kuo, and Sloan [DKS13] for details). For
Sobol’, Lattice Rules and Digital Nets, scrambling introduces randomization and hence
variance. For Halton sequence, scrambling is deterministic, and there is no variance. The
generation of these sequences is extremely fast, and quite negligible when compared to
the time for any reasonable downstream use. For example, for census data set with size
18,000 by 119, if we choose the number of random features s = 2000, the running time
for performing kernel ridge regression model is more than 2 minutes, while the time of
generating the QMC sequences is only around 0.2 seconds (Digital Nets sequence takes
longer, but not much longer) and that of MC sequence is around 0.01 seconds. Therefore,
we do not report running times as these are essentially the same across methods.

In all experiments, we work with a Gaussian kernel. For learning, we use regularized
least square classification on the feature mapped data set, which can be thought of as
a form of approximate kernel ridge regression. For each data set, we performed 5-fold
cross-validation when using random Fourier features (MC sequence) to set the bandwidth
σ, and then used the same σ for all other sequences.

8.5.1.1 Quality of Kernel Approximation

In our setting, the most natural and fundamental metric for comparison is the quality of
approximation of the Gram matrix. We examine how close K̃ (defined by K̃ij = k̃(xi, xj)

where k̃(·, ·) = 〈Ψ̂S(·), Ψ̂S(·)〉 is the kernel approximation) is to the Gram matrix K of the
exact kernel.

We examine four data sets: cpu (6554 examples, 21 dimensions), census (a subset chosen
randomly with 5,000 examples, 119 dimensions), USPST (1,506 examples, 250 dimensions
after PCA) and MNIST (a subset chosen randomly with 5,000 examples, 250 dimensions af-
ter PCA). The reason we do subsampling on large data sets is to be able to compute the full
exact Gram matrix for comparison purposes. The reason we use dimensionality reduction
on MNIST is that the maximum dimension supported by the Lattice Rules implementation
we use is 250.

To measure the quality of approximation we use both ‖K− K̃‖2/‖K‖2 and
‖K− K̃‖F/‖K‖F. The plots are shown in Figure 35.

We can clearly see that except Sobol’ sequences classical low-discrepancy sequences consistently
produce better approximations to the Gram matrix than the approximations produced using MC
sequences. Among the four classical QMC sequences, the Digital Nets, Lattice Rules and
Halton sequences yield much lower error. Similar results were observed for other data
sets (not reported here). Although using scrambled variants of QMC sequences may incur
some variance, the variance is quite small compared to that of the MC random features.

Scrambled (whether deterministic or randomized) QMC sequences tend to yield higher
accuracies than non-scambled QMC sequences. In Figure 36, we show the ratio between
the relative errors achieved by using both scrambled and non-scrambled QMC sequences.

3 http://www.mathworks.com/help/stats/quasi-random-numbers.html
4 http://people.cs.kuleuven.be/ dirk.nuyens/qmc-generators/
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(a) USPST, n = 1506

Number of features
200 400 600 800

R
e
la

ti
v
e
 e

rr
o
r 

o
n
 |
|K

||

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Euclidean norm

Digital Net
MC
Halton
Sobol'
Lattice

Number of features
200 400 600 800

0

0.01

0.02

0.03

0.04

0.05

0.06

Frobenius norm

Digital Net
MC
Halton
Sobol'
Lattice

(b) cpu, n = 6554
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(c) census, n = 5000

Number of features
200 400 600 800

R
e

la
ti
v
e

 e
rr

o
r 

o
n

 |
|K

||

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Euclidean norm

Digital Net
MC
Halton
Sobol'
Lattice

Number of features
200 400 600 800

0

0.05

0.1

0.15

Frobenius norm

Digital Net
MC
Halton
Sobol'
Lattice

(d) MNIST, n = 5000

Figure 35: Relative error on approximating the Gram matrix measured in Euclidean norm and Frobe-
nius norm, i.e., ‖K − K̃‖2/‖K‖2 and ‖K − K̃‖F/‖K‖F, for various s. For each kind of
random feature and s, 10 independent trials are executed, and the mean and standard
deviation are plotted.

As can be seen, scrambled QMC sequences provide more accurate approximations in most
cases as the ratio value tends to be less than one. In particular, scrambled Lattice sequence
outperforms the non-scrambled one across all the cases for larger values of s. Therefore,
in the rest of the experiments we use scrambled sequences.

8.5.1.2 Generalization Error

We consider two regression data sets, cpu and census, and use (approximate) kernel ridge
regression to build a regression model. The ridge parameter is set by the optimal value we
obtain via 5-fold cross-validation on the training set by using the MC sequence. Table 24

summarizes the results.
As we see, for cpu, all the sequences behave similarly, with the Halton sequence yielding

the lowest test error. For census, the advantage of using Halton sequence is significant
(almost 20% reduction in generalization error) followed by Digital Nets and Sobol’. In
addition, MC sequence tends to generate higher variance across all the sampling size.
Overall, QMC sequences, especially Halton, outperform MC sequences on these data sets.
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Figure 36: Ratio between relative errors on approximating the Gram matrix using both the scram-
bled and non-scambled version of the same QMC sequence for various s. The lower the
ratio value is, the more accurate the scrambled QMC approximation is. For each kind of
QMC sequences and s, 10 independent trails are executed, and the mean and standard
deviation are plotted.

Table 24: Regression error, i.e., ‖ŷ− y‖2/‖y‖2 where ŷ is the predicted value and y is the ground
truth. For each kind of random feature and s, 10 independent trials are executed, and the
mean and standard deviation are listed.

s Halton Sobol’ Lattice Digit MC

c
p
u

100
0.0367 0.0383 0.0374 0.0376 0.0383

(0) (0.0015) (0.0010) (0.0010) (0.0013)

500
0.0339 0.0344 0.0348 0.0343 0.0349

(0) (0.0005) (0.0007) (0.0005) (0.0009)

1000
0.0334 0.0339 0.0337 0.0335 0.0338

(0) (0.0007) (0.0004) (0.0003) (0.0005)

c
e
n
s
u
s

400
0.0529 0.0747 0.0801 0.0755 0.0791

(0) (0.0138) (0.0206) (0.0080) (0.0180)

1200
0.0553 0.0588 0.0694 0.0587 0.0670

(0) (0.0080) (0.0188) (0.0067) (0.0078)

1800
0.0498 0.0613 0.0608 0.0583 0.0600

(0) (0.0084) (0.0129) (0.0100) (0.0113)
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When performed on classification data sets by using the same learning model, with a
moderate range of s, e.g., less than 2000, the QMC sequences do not yield accuracy im-
provements over the MC sequence with the same consistency as in the regression case.
The connection between kernel approximation and the performance in downstream appli-
cations is outside the scope of the current paper. Worth mentioning in this regard, is the
recent work by Bach [Bac13], which analyses the connection between Nyström approx-
imations of the Gram matrix, and the regression error, and the work of El Alaoui and
Mahoney [EAM15] on kernel methods with statistical guarantees.

8.5.1.3 Behavior of Box Discrepancy

Next, we examine if D� is predictive of the quality of approximation. We compute the
normalized square box discrepancy values (i.e., πd(∏d

j=1 bj)
−1D�(S)2) as well as Gram

matrix approximation error for the different sequences with different sample sizes s. The
expected normalized square box discrepancy values for MC are computed using (8.13).

Our experiments revealed that using the full �b does not yield box discrepancy values
that are very useful. Either the values were not predictive of the kernel approximation,
or they tended to stay constant. Recall, that while the bounding box �b is set based
on observed ranges of feature values in the data set, the actual distribution of points
X̄ encountered inside that box might be far from uniform. This lead us to consider the
discrepancy measure when measured on the central part of the bounding box (i.e., �b/2
instead of �b), which is equal to the integration error averaged over that part of the
bounding box. Presumably, points from x̄ concentrate in that region, and they may be
more relevant for downstream predictive task.

The results are shown in Figure 37. In the top graphs we can see, as expected, increasing
number of features in the sequence leads to a lower box discrepancy value. In the bottom
graphs, which compare ‖K− K̃‖F/‖K‖F to D�b/2, we can see a strong correlation between
the quality of approximation and the discrepancy value.

8.5.2 Experiments With Adaptive QMC Sequences

The goal of this subsection is to provide a proof-of-concept for learning adaptive QMC
sequences, using the three schemes described in Section 8.4. We demonstrate that QMC
sequences can be improved to produce better approximation to the Gram matrix, and that
can sometimes lead to improved generalization error.

Note that the running time of learning the adaptive sequences is less relevant in our
experimental setting for the following reasons. Given the values of s, d, b and σ the op-
timization of a sequence needs only to be done once. There is some flexibility in these
parameters: d can be adjusted by adding zero features or by doing PCA on the input; one
can use longer or shorter sequences; and the data can be forced to a fit a particular bound-
ing box using (possibly non-equal) scaling of the features (this, in turn, affects the choice
of the σ) . Since designing adaptive QMC sequences is data-independent with applicabil-
ity to a variety of downstream applications of kernel methods, it is quite conceivable to
generate many point sets in advance and to use them for many learning tasks. Further-
more, the total size of the sequences (s× d) is independent of the number of examples n,
which is the dominant term in large scale learning settings.

We name the three sequences as Global Adaptive, Greedy Adaptive and Weighted respec-
tively. For Global Adaptive, the Halton sequence is used as the initial setting of the optimiza-
tion variables S. For Greedy Adaptive, when optimizing for wt, the t-th point in the Halton
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(b) census, D�b/2 versus s
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Figure 37: Discrepancy values (D�b/2) for the different sequences on cpu and census. We measure
the discrepancy on the central part of the bounding box (we use �b/2 instead of �b as
the domain in the box discrepancy).

sequence is used as the initial point. In both cases, we use nonlinear conjugate gradient to
perform numerical optimization. For Weighted, the initial features are generated using the
Halton sequence and we optimize for the weights. We used CVX [GB14] to compute the
sequence (solve (8.17)).

8.5.2.1 Quality of Kernel Approximation

In Figure 38 and Figure 39 we examine how various metrics (discrepancy, maximum
squared error, mean squared error, norm of the error) on the Gram matrix approximation
evolve during the optimization process for both adaptive sequences. Since learning the
adaptive sequences on data set with low dimensional features is more affordable, the
experiment is performed on two such data sets, namely, cpu and housing.

For Global Adaptive, we fixed s = 100 and examine how the performance evolves as
the number of iterations grows. In Figure 38a we examine the behavior on cpu. We see
that all metrics go down as the iteration progresses. This supports our hypothesis that by
optimizing the box discrepancy we can improve the approximation of the Gram matrix.
Figure 38b, which examines the same metrics on the scaled version of the housing data
set, has some interesting behaviors. Initially all metrics go down, but eventually all the
metrics except the box-discrepancy start to go up; the box-discrepancy continues to go
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Figure 38: Examining the behavior of learning Global Adaptive sequences. Various metrics on the
Gram matrix approximation are plotted.
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Figure 39: Examining the behavior of learning Greedy Adaptive sequences. Various metrics on the
Gram matrix approximation are plotted.

down. One plausible explanation is that the integrands are not uniformly distributed in
the bounding box, and that by optimizing the expectation over the entire box we start
to overfit it, thereby increasing the error in those regions of the box where integrands
actually concentrate. One possible way to handle this is to optimize closer to the center
of the box (e.g., on �b/2), under the assumption that integrands concentrate there. In
Figure 38c we try this on the housing data set. We see that now the mean error and
the norm error are much improved, which supports the interpretation above. But the
maximum error eventually goes up. This is quite reasonable as the outer parts of the
bounding box are harder to approximate, so the maximum error is likely to originate
from there. Subsequently, we stop the adaptive learning of the QMC sequences early, to
avoid the actual error from going up due to averaging.

For Greedy Adaptive, we examine its behavior as the number of points increases. In Fig-
ure 39a and Figure 39b, as expected, as the number of points in the sequence increases,
the box discrepancy goes down. This is also translated to non-monotonic decrease in the
other metrics of Gram matrix approximation. However, unlike the global case, we see in
Figure 39c, when the points are generated by optimizing on a smaller box �b/2, the re-
sulting metrics become higher for a fixed number of points. Although the Greedy Adaptive
sequence can be computed faster than the adaptive sequence, potentially it might need a
large number of points to achieve certain low magnitude of discrepancy. Hence, as shown
in the plots, when the number of points is below 500, the quality of the optimization is
not good enough to provide a good approximation the Gram matrix. For example, one



8.5 empirical evaluation 132

can check when the number of points is 100, the discrepancy value of the Greedy Adaptive
sequence is higher than that of the Global Adaptive sequence with more than 10 iterations.

Table 25: Discrepancy values, measured on the full bounding box and its central part, i.e., D�b and
D�b/4.

D�b D�b/4

s Halton Globalb Greedyb Weightedb Halton Globalb/4 Greedyb/4 Weightedb/4

c
p
u

100 3.41e-3 1.29e-6 3.02e-4 7.84e-5 9.44e-5 5.57e-8 2.62e-5 1.67e-8

300 8.09e-4 5.14e-6 5.85e-5 1.45e-6 2.57e-5 1.06e-7 3.08e-6 2.93e-9

500 2.39e-4 2.83e-6 1.86e-5 3.39e-7 7.91e-6 2.62e-8 1.04e-6 2.43e-9

c
e
n
s
u
s

400 2.61e-3 9.32e-4 7.47e-4 8.83e-4 5.73e-4 2.79e-5 2.20e-5 2.45e-5

800 1.21e-3 5.02e-4 3.33e-4 4.91e-4 2.21e-4 1.12e-5 8.04e-6 5.46e-6

1200 8.27e-4 3.41e-4 2.06e-4 3.39e-4 1.39e-4 8.15e-6 4.23e-6 2.29e-6

1800 5.31e-4 2.17e-4 1.27e-4 2.31e-4 3.79e-5 5.59e-6 2.63e-6 8.37e-7

2200 4.33e-4 1.73e-4 1.01e-4 1.87e-4 2.34e-5 3.35e-6 1.95e-6 4.93e-7

Table 25 also shows the discrepancy values of various sequences on cpu and census.
Using adaptive sequences improves the discrepancy values by orders-of-magnitude. We
note that a significant reduction in terms of discrepancy values can be achieved using only
weights, sometimes yielding discrepancy values that are better than the hard-to-compute
global or greedy sequences.

8.5.2.2 Generalization Error

We use the three algorithms for learning adaptive sequences as described in the previ-
ous subsections, and use them for doing approximate kernel ridge regression. The ridge
parameter is set by the value which is near-optimal for both sequences in 5-fold cross-
validation on the training set. Table 26 summarizes the results.

Table 26: Regression error, i.e., ‖ŷ− y‖2/‖y‖2 where ŷ is the predicted value and y is the ground
truth.

s Halton Glbobalb Globalb/4 Greedyb Greedyb/4 Weightedb Weightedb/4

c
p
u

100 0.0304 0.0315 0.0296 0.0307 0.0296 0.0366 0.0305

300 0.0303 0.0278 0.0293 0.0274 0.0269 0.0290 0.0302

500 0.0348 0.0347 0.0348 0.0328 0.0291 0.0342 0.0347

c
e
n
s
u
s

400 0.0529 0.1034 0.0997 0.0598 0.0655 0.0512 0.0926

800 0.0545 0.0702 0.0581 0.0522 0.0501 0.0476 0.0487

1200 0.0553 0.0639 0.0481 0.0525 0.0498 0.0496 0.0501

1800 0.0498 0.0568 0.0476 0.0685 0.0548 0.0498 0.0491

2200 0.0519 0.0487 0.0515 0.0694 0.0504 0.0529 0.0499

For both cpu and census, at least one of the adaptive sequences sequences can yield
lower test error for each sampling size (since the test error is already low, around 3%
or 5%, such improvement in accuracy is not trivial). For cpu, greedy approach seems to
give slightly better results. When s = 500 or even larger (not reported here), the per-
formance of the sequences are very close. For census, the weighted sequence yields the
lowest generalization error when s = 400, 800. Afterwards we can see global adaptive
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sequence outperforms the rest of the sequences, even though it has better discrepancy
values. In some cases, adaptive sequences sometimes produce errors that are bigger than
the unoptimized sequences.

In most cases, the adaptive sequence on the central part of the bounding box outper-
forms the adaptive sequence on the entire box. This is likely due to the non-uniformity
phenomena discussed earlier.



9R A N D O M L A P L A C E F E AT U R E M A P S F O R S E M I G R O U P K E R N E L S
O N H I S T O G R A M S

A wide spectrum of statistical learning problems in computer vision have been elegantly
framed within the framework of kernel methods; see Section 8.1 for introduction. Kernel
methods are highly generalizable and versatile: it leads to nonlinear algorithms for su-
pervised image classification and object detection, unsupervised visual feature extraction,
image denoising, action recognition in videos, integration of multiple descriptors [GN09]
, and many other tasks [Lam09].

In the face of “big data” in computer vision [Den+09; TFF08], the scalability of kernel
methods, which is typically super-linear in the number of data points, is well-recognized
as a valid concern. In recent years, as introduced in Section 8.1, approximations to kernel
functions via explicit low-dimensional feature maps [RR08; VZ12; LIS10; MB09; Hua+14]
have emerged as an appealing strategy to turn the complexity of learning nonlinear ker-
nel methods back to that of training linear models, which typically scale linearly in the
number of data points in a variety of settings such as regression, classification [Joa06] and
principal component analysis. Importantly, storage requirements and test-time prediction
speed can also be dramatically improved.

In this work, we propose new randomized approximate feature maps for kernels based
on the semigroup structure of Rd

+. These semigroup kernels are characterized via exten-
sions of Bochner’s theorem (Theorem 8.2) developed in the theory of harmonic analysis
for general algebraic structures such as groups and semigroups. The Laplace transform as-
sumes the role of the Fourier transform in our setting. Our proposed technique is therefore
termed as random Laplace features, analogous to random Fourier features for shift-invariant
kernels on Rd. We provide theoretical results on the uniform convergence of random
Laplace features. Empirical analyses on image classification and surveillance event de-
tection tasks demonstrate the attractiveness of using random Laplace features relative to
several other feature maps proposed in the literature.

Construction of random Laplace features is presented in Section 9.1. Theoretical results
are stated in Section 9.2. Finally, empirical results are shown in Section 9.3. The material
in this chapter appears in Yang et al. [Yan+14b].

Note that in this chapter, as in Chapter 8, in a sequence of vectors, we use wi to denote
the i-th element of the sequence and use wi

j to denote the j-th coordinate of vector wi.
Given a vector x, we use xi to denote the i-th coordinate of x.

9.1 main algorithm

The starting point of this work is the observation that the natural algebraic structure on
the space of histograms and other non-negative descriptors, is that of an abelian semi-group.

Definition 9.1 (Abelian semigroup). A semigroup (S, ◦) is a nonempty set S equipped with an
associative composition ◦, i.e. for any x, y, z ∈ S : x ◦ (y ◦ z) = (x ◦ y) ◦ z and a neutral/identity
element e, i.e., for any x ∈ S : x ◦ e = x. For an abelian semigroup, the composition is commutative,
i.e., for any x, y ∈ S : x ◦ y = y ◦ x.

134
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Algorithm 13 Random Laplace features

1: Input: Characteristic kernel k on (Rd
+,+), size s.

2: Output: Feature map Ψ̂(x) : Rd 7→ Rs.
3: Find p, the inverse Laplace transform of k.
4: Draw sequence w1, . . . , ws from p.

5: Set Ψ̂(x) =
√

1
s

[
e−xTw1

, . . . , e−xTws
]
.

6: Return Ψ̂(x).

In particular, (Rd
+,+) forms an abelian semigroup with 0 ∈ Rd

+ as the identity element.
This basic definition is sufficient to introduce the concept of kernels on semigroups.

Definition 9.2 (Kernels on Abelian semigroups [BCR84]). A function k : S × S 7→ R is
a positive definite kernel function on an abelian semigroup (S, ◦) if k(s, t) = φ(s ◦ t) where
φ : S 7→ R is a positive definite function, i.e., for any s1 . . . sn ∈ S, and any real-valued scalars
c1 . . . cn, the following holds1: ∑n

i,j=1 cicjφ(si ◦ sj) ≥ 0.

As per Definition 9.2, kernels respecting the algebraic structure of the semigroup (Rd
+,+)

can be written as k(x, z) = φ(x + z) where φ : Rd
+ 7→ R is a positive definite function in

the sense of satisfying ∑n
i=1 cicjφ(xi + xj) ≥ 0 for any set of n non-negative vectors x1 . . . xn

and choice of real-valued scalars c1 . . . cn. The key observation is that positive-definite func-
tions on Rd

+ are characterized by a theorem similar to Bochner’s Theorem (Theorem 8.2),
in which the Laplace transform replaces the Fourier transform.

Theorem 9.3 ([BCR84]). A bounded continuous kernel function k(x, z) ≡ φ(x + z) on the
Abelian semigroup (Rd

+,+) is positive definite if and only if it is the Laplace transform of a unique
non-negative measure on Rd

+. That is, for any x, z ∈ Rd
+,

k(x, z) =
∫

Rd
+

e−(x+z)Tw p(w)dw = Ew∼p

[
e−(x+z)Tw

]
.

This theorem should be contrasted with the Bochner’s characterization for shift-invariant
kernels on Rd. As We assume without loss of generality that the non-negative measure
above is a probability measure with associated density p. This result establishes one-to-
one correspondence between semigroup kernels and probability densities on Rd, via the
Laplace transform. Exactly analogous to the random Fourier construction, we can now
develop random Laplace feature maps via a Monte Carlo approximation,

k(x, z) ≈ 1
s

s

∑
j=1

e−xTwj
e−zTwj

= 〈Ψ̂(x), Ψ̂(z)〉, (9.1)

where the points wj are drawn from p, yielding a feature map of the form

Ψ̂(x) =
1√

s
[e−xTw1

. . . e−xTws
]. (9.2)

This simple algorithm is summarized in the Algorithm 13.

1 For semigroups with involution operator ∗, the condition is ∑n
i,j=1 cicjφ(s∗i ◦ sj); see Berg, Christensen, and Ressel

[BCR84].
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When the density p corresponds to Lévy or Exponential distributions, the Laplace trans-
form provides the associated Exponential-Semigroup and Reciprocal-Semigroup kernels, re-
spectively. The exact form of these kernels is given in Table 27. These kernels have also
been studied in the context of injective Reproducing Kernel Hilbert Space (RKHS) embed-
dings of probability distributions on groups and semigroups [Fuk+08; DGS10]. Through
random Laplace features, one can expect to approximate these kernels well and deploy
them for large-scale applications.

Indeed, beyond shift-invariant kernels on Rd, several recent papers have attempted to
develop explicit low-dimensional feature maps to approximate specific kernels that excel
in computer vision applications [VZ12; LIS10; MB09]. These kernels are typically much
better adapted to data representations in the form of finite probability distributions or nor-
malized histograms, that common descriptors such as bag of visual words [Csu+04] and
spatial pyramids [GD05] assume. Vedaldi and Zisserman [VZ12] suggested approximate
feature maps for the additive family of Intersection, Hellinger’s, χ2 and Jensen-Shannon
kernels whose feature spaces respectively induce well-known divergence measures on
finite probability distributions. Li, Ionescu, and Sminchisescu [LIS10] suggested approxi-
mate feature maps for “skewed” multiplicative variants of the Intersection and χ2 kernels,
in an attempt to match the empirical performance of the exponentiated-χ2 kernel, consid-
ered state-of-the-art [Cha99] for histogram descriptors. Table 27 catalogues these kernels
and their associated approximate feature maps obtained through a randomized or deter-
ministic sampling process.

Table 27: Summary of kernels and associated approximate feature maps. Above,
⊕s

j=1 xj =(
x1, . . . , xs) , i =

√
−1, h(x, z) = x

2 log2
x+z

2 +
y
2 log2

x+z
z , log(x) = [log(x1) . . . log(xd)]. The

feature map for Exponentiated-χ2 is a composition of feature maps for the χ2 and Gaus-
sian kernels.

kernel k(x, z) Ψ̂(x) sampling reference

Gaussian e

‖x−z‖22
2σ2 ⊕s

j=1

√
1
s e−ixT wj 1√

(2πσ2)
e−

σ2w2
2 (Normal) [RR08]

Laplacian e
‖x−z‖1

σ
⊕s

j=1

√
1
s e−xT wj σ

π(1+σ2w2)
(Cauchy) [RR08]

Hellinger ∑d
j=1

√
xj zj

⊕d
j=1

√
xj – [VZ12]

χ2 2 ∑d
j=1

xjzj
xj+zj

⊕d
j=1,k e

iwk log xj√xjsech(πwk ) wk = kL,−r ≤ k ≤ r [VZ12]

Intersection ∑s
j=1 min(xj , zj )

⊕d
j=1,k e

iwk log xj
√√√√ 2xj

π(1+4w2
k )

wk = kL,−r ≤ k ≤ r [VZ12]

Jensen-Shannon ∑d
j=1 h(xj , zj )

⊕d
j=1,k e

iwk log xj

√√√√ 2xjsech(πwk )

log 4(1+4w2
k )

wk = kL,−r ≤ k ≤ r [VZ12]

Exponentiated-χ2 e
−σ−2 ∑d

j=1
(xj−zj )

2

xj+zj ⊕s
j=1

√
1
s e
−iΨ̂

χ2 (x)T wj
1√

(2πσ2)
e−

σ2w2
2 (Normal) [VZ12]

Jensen-Shannon ∑d
j=1 h(xj , zj )

⊕d
j=1,k e

iwk log xj

√√√√ 2xjsech(πwk )

log 4(1+4w2
k )

wk = kL,−r ≤ k ≤ r [VZ12]

Skewed-χ2 ∏d
j=1

2
√

xj+ε
√

zj+ε

xj+zj+2ε
⊕s

j=1

√
1
s e−i log(x+ε)T wj

sech(πw) (Hyperbolic-secant) [LIS10]

Skewed-Interection ∏d
j=1 min

(√
xj+ε

zj+ε ,

√
zj+ε

xj+ε

) ⊕s
j=1

√
1
s e−i log(x+ε)T wj 2

π(1+4w2)
(Cauchy) [LIS10]

Exponential-Semigroup [Fuk+08] e
−β ∑d

j=1
√

xj+zj ⊕s
j=1

√
1
s e−xT wj β

2
√

π
w−

3
2 e
−β2
4w (Lévy) This Paper

Reciprocal-Semigroup [Fuk+08] ∏d
j=1

λ
xj+zj+λ

⊕s
j=1

√
1
s e−xT wj

λe−λw (Exponential) This Paper

In the next section we bound the approximation error |k(x, z)− 〈Ψ̂(x), Ψ̂(z)〉| for inputs
x, z drawn from a bounded domain in Rd

+; we then study the empirical behaviour of the
random Laplace feature map with respect to predictive tasks at hand, and benchmark its
performance against several alternative approximate feature maps detailed in Table 27.
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9.2 main theoretical results

In this section, we assume that the density function can be written as p(w) = ∏d
j=1 q(wj),

where q(·) is a univariate density function. The kernel function can be written as k(x, z) =
φ(x + z). We assume that φ is a differentiable function in R+

d /{0}. Proofs for all the
assertions are provided in Appendix E.

The following is a general result characterizing the error in approximating the kernel
function using random Laplace features (Algorithm 13). The proof follows a similar strat-
egy to the one used by Rahimi and Recht [RR08].

Theorem 9.4. Let M be the set consisting of all the points in Rd satisfying ‖x‖2 ≤ R and
xi ≥ r ≥ 0, i = 1, . . . , d. Then, provided that Lq,r ≡ Ew∼q

[
e−2wrw2] < ∞ and Lq,rR > ε, then

for the mapping Ψ̂ defined in Algorithm 13, we have

P

[
sup

x,z∈M
|〈Ψ̂(x), Ψ̂(z)〉 − k(x, z)| ≥ ε

]

≤ 26

(
dR2Lq,r

ε2

)
exp

(
− sε2

d + 2

)
, (9.3)

Furthermore,
sup

x,z∈M
|〈Ψ̂(x), Ψ̂(z)〉 − k(x, z)| < ε

with any constant probability when s = Ω
(

d
ε2 log R2L

ε2

)
.

Note that the quantity Lq,r depends on the specific choice of kernel. We now give explicit
expression for Lq,r for q corresponding to two popular semigroup kernels.

The following proposition gives an explicit expression for the Exponential-Semigroup
kernel.

Proposition 9.5. Let β > 0, and let q(w) = β

2
√

π
w−3/2e−β2/4w (this corresponds to the kernel

k(x, z) = e−β ∑d
i=1
√

xi+zi ). For r > 0 we have Lq,r =
β
4

√
2rβ+1

(2r)
3
2 e
√

2rβ
.

In the above we require all the coordinates of x and z to be positive. Furthermore, if β is
fixed, Lq,r will go to infinity as r approaches zero. To get an approximate feature map with
finite error bound for the Exponential-Semigroup kernel even when some coordinates of
x or z are zero, it is natural to consider building a feature map on perturbed dataset, i.e.,
on x + δ and z + δ for some small δ (the addition here denotes a component-wise addition
of the scalar).

Let x′ = x + δ and z′ = z + δ. For any approximate kernel c(·, ·), by the triangle inequal-
ity we have,

|k(x, z)− c(x′, z′)| ≤ |k(x, z)− k(x′, z′)|+
|k(x′, z′)− c(x′, z′)|. (9.4)

So, if the kernel function is sufficiently smooth and c(x+ δ, z+ δ) approximates k(x+ δ, z+
δ) well, then c(x + δ, z+ δ) will approximate k(x, z) well. In particular, for the Exponential-
Semigroup kernel we have the following proposition.
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Proposition 9.6. Let M be the set consisting of all the points in Rd satisfying ‖x‖2 ≤ R and
xi ≥ 0, i = 1, . . . , d. Let β > 0, and let q(w) = β

2
√

π
w−3/2e−β2/4w (this corresponds to the kernel

k(x, z) = e−β ∑d
i=1
√

xi+zi ). For δ = ε2

4d2 we have

P
[
supx,z∈M|k(x, z)− 〈Ψ̂(x + δ), Ψ̂(z + δ)〉| ≥ ε

]
≤ 1− 26

(
d(R+δ)2Lq,δ

ε2/4

)
exp

(
− sε2/4

d+2

)
, (9.5)

where Lq,δ =
β
4

√
2δβ+1

(2δ)
3
2 e
√

2δβ
.

The following proposition gives an explicit expression for the Reciprocal-Semigroup
kernel.

Proposition 9.7. Let λ > 0, r ≥ 0, and let q(w) = λe−λw (this corresponds to the kernel
k(x, z) = ∏d

i=1

(
λ

xi+zi+λ

)
). We have, Lq,r =

2λ
(λ+2r)3 .

9.3 empirical evaluation

The number of random features controls the kernel approximation quality and the compu-
tational cost of solving a downstream task such as classification. Several empirical ques-
tions are of interest: For the same number of random features, how well do random
Laplace features perform relative to other alternative feature maps on a given predictive
task? How well is the underlying exact semigroup kernel approximated? Do histogram-
based kernels outperform common shift-invariant kernels on Rd for problems of interest?

In the results reported in this section, we use the kernel name to denote the associated
feature map. For example, by “Exp-Semigroup”, we mean the use of random Laplace
features to approximate the Exponential-Semigroup kernel. We report experiments on
an image classification task (Caltech-101 [LFP03]) and a surveillance event detection task
(TRECVID SED).

9.3.1 Caltech-101

For this dataset, we evaluate how well inner products in the Euclidean space induced by
random Laplace features approximates the true semigroup kernel; we compare random
Laplace features with other approximate feature maps on the predictive problem of clas-
sifying the 102 (101 + background) classes of the Caltech-101 benchmark dataset [LFP03].
Our data preparation follows the one used by Vedaldi and Zisserman [VZ12]. In particular,
our results are competitive with the state of the art on this dataset for methods that use a
single but strong image feature (multi-scale dense SIFT). We use the phow_caltech function
of VLFeat2 which rescales images to have a largest side of 480 pixels; dense SIFT features
are extracted every four pixels at four scales and quantized into a 200 visual words dictio-
nary estimated using k-means. Each image is described by a 4200-dimensional histogram
of visual words with 1× 1, 2× 2 and 4× 4 spatial subdivisions.

quality of gram matrix approximation

Given data points {xi}n
i=1, the Gram matrix K ∈ Rn×n is defined as Kij = k(xi, xj).

2 http://www.vlfeat.org

http://www.vlfeat.org
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Figure 40: Gram matrix approximation relative error on Caltech-101 by using random Laplace
features with s ranging from 100 to 1500. The two plots correspond to Exponential-
Semigroup and Reciprocal-Semigroup kernel, respectively (see Table 27). Each curve cor-
responds to one value of β or λ. For the fixed pair of parameter, ten independent trials
are executed and the mean is reported.

Suppose Z ∈ Rn×s is the data matrix in the induced feature space, with the i-th row Z(i) =
Ψ̂(xi) where Ψ̂(xi) is the random Laplace feature of xi generated from Algorithm 13. We
will evaluate relative error in terms of Frobenius norm, ‖K− ZZT‖F/‖K‖F, as a function
of s, as this provides an overall measure of approximation quality over the entire set of
points. We consider both Exp-Semigroup and Rec-Semigroup kernels.

In Figure 40, we show the relative error of random Laplace feature with the number of
random features s ranging from 100 to 1500 on the full Caltech-101 dataset comprising of
n = 3060 samples. We can see that as s grows, random Laplace feature converges to the
exact kernel quickly, meaning the relative approximation error goes to zero fast in practice.
As expected, the rate of convergence depends on the choice of the kernel parameters.

classification performance

Next, we compare SVM classification accuracies on Caltech-101 by using approximate
feature maps associated with different kernels as described in Table 27. We use the usual
training-test splitting protocol with 15-images per class in the training set and an equal
number in the test set. SVM parameters are tuned with cross-validation. Figure 41 reports
mean test set accuracy as a function of the number of random features s. We include
the original input features (i.e., using linear kernel) as a baseline. Among the semigroup
kernels, the Exponential-Semigroup significantly outperforms the reciprocal semigroup
whose performance is below baseline levels, and hence results for the latter are ommited.

Among the seven feature maps compared in Figure 41, the random Laplace features for
the Exponential-Semigroup (β = 0.01) consistently yield the highest accuracy, outperform-
ing the Exponentiated-χ2 kernel which is widely considered state of the art on histogram
descriptors.

The Gaussian kernel does not improve over the linear kernel baseline, while kernels
such as the skewed-Intersection kernel [LIS10] perform significantly better, confirming
the need to design kernels better adapted to histogram-like data.

The computation time for generating random features and solving the resulting classi-
fication problem is near-identical for all feature maps shown in Figure 41, except for the
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Figure 41: Prediction accuracy on Caltech-101 by using random feature maps associated to different
kernels with s ranging from 1000 to 10000. The results are generated by using SVM. For a
feature map and an s, five independent trials are executed and the mean is reported. For
comparisons with χ2, Intersection and Jensen-Shannon, see Table 28.

Exponentiated-χ2. While Exponentiated-χ2 yields the second highest accuracy, its running
time is six times higher than the rest, since it generates a much higher dimensional inter-
mediate χ2 feature map, which is then composed with the feature map for the Gaussian
kernel. For the feature maps of the homogeneous additive kernels [VZ12] which include
χ2, the number of random features that can be generated is of the form (2r + 1)d where
d is the dimension of the original feature and r is a parameter. For high-dimensional in-
put spaces, the resulting feature maps can be very high-dimensional and hence costly
for downstream processing. For the Exponentiated-χ2 feature map, we used r = 3 which
corresponds to 29400 intermediate χ2 features. The comparison with homogeneous ad-
ditive kernels [VZ12] is reported in Table 28 for s = 12600, 21000, 29400 corresponding
to r = 1, 2, 3. Again, the proposed random Laplace feature maps for the Exponential-
Semigroup kernel are significantly better.

kernel s = 12600 s = 21000 s = 29400

Exp-Semigroup 0.6536 0.6627 0.6643

χ2
0.6510 0.6497 0.6471

Intersection 0.6399 0.6392 0.635

Jensen-Shannon 0.6510 0.6477 0.6477

Table 28: Caltech 101 SVM accuracies: Comparison against χ2, Intersection and Jensen-Shannon can
only be done for s = (2r + 1)d. Here, r = 1, 2, 3. For a feature map and an s, five indepen-
dent trials are executed and the mean is reported.

9.3.2 Surveillance Event Detection (SED)

There are seven target events in the TRECVED Surveillance Event Detection (SED) dataset,
i.e., CellToEar, Embrace, ObjectPut, Pointing, PeopleMeet, PeopleSplitUp and PersonRuns. The
dataset was captured in five locations at a busy airport. Many confounding issues exist
in this dataset such as high activity levels, camera view changes, large variances in how
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Figure 42: Prediction accuracy and F1 score on SED by using random feature maps associated to
different kernels with s ranging from 3000 to 9000. The two subplots are results of Pre-
diction accuracy and F1 score respectively. For a feature map and an s, five independent
trials are executed and the mean is reported.

events play out (e.g., “PeopleMeet”) and small objects carrying predictive signals (i.e.,
“CellToEar”). The development set consists of 100 hours of video and the evaluation set
has an additional 50 hours of data. The annotations of the dataset only include temporal
extents and event labels, and no localization information is provided for events. We used
the development set in our experiments, and divided it into two equal part for validation.

The training size of SED is 7024, containing approximately even number of event and
non-event samples. The test size is 22437, containing 5381 events instances. By event
sample, we mean an observation coming from any of the seven events described above.
We use bag of visual words on motion-SIFT features resulting in final dimensionality of
d = 24000.

Due to the high dimensionality of the SED dataset, we do not generate the homoge-
neous additive and Exponentiated-χ2 kernels in this case. We report the results for a
regularized least squares classification model (SVMs perform similarly) with parameters
tuned using cross-validation. The test accuracies and F1 scores are shown in Figure 42. As
before, random Laplace feature maps for the exponential semigroup kernel (β = 0.001)
outperform other feature maps in this task.
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This thesis mainly illustrates how randomized linear algebra can be useful in big data
applications. Theoretically, as advanced algorithms with better complexities for common
matrix problems are desired, we show how techniques such as rounding, embedding, and
preconditioning discussed in Chapter 2 can be used to derive improved algorithms for
large-scale regression and optimization problems. Practically, as distributed systems built
on top of clusters of commodity hardware provide cheap and reliable storage, scalable
implementations of these algorithms on cluster computing platforms are essential. We
present computational results of implementing several RLA algorithms in parallel and
distributed environments showing that these algorithms successfully minimize not only
floating-point operations but also communication cost. We also show that RLA algorithms
are useful in real-world large-scale applications for better interpretability.

10.1 theoretical results

Part I focuses on the underlying theory of RLA. We show that subspace embeddings can
be used in one of two related ways: to construct sub-sampled problems that can be solved
with traditional numerical methods; or to construct preconditioned versions of the original
full problem that are easier to solve with iterative algorithms. These ideas are manifested
in Chapter 3 and Chapter 4. In particular, in Chapter 3 we develop a fast sampling al-
gorithm for quantile regression. As a key step, our algorithm computes a low-distortion
subspace-preserving embedding with respect to the loss function of quantile regression
to obtain a subproblem whose size depends on the low dimension only. This subspace-
preserving embedding is constructed based on data-aware `1 subspace-preserving em-
bedding techniques discussed in Section 2.3.2.4 because of the close relationship between
quantile regression and `1 regression. In Chapter 4, we present a hybrid algorithm for `p
regression that combines RLA and SGD. Here embeddings are used to construct a pre-
conditioner for the linear system, with which the underlying SGD solver converges much
more quickly and has a complexity that depends on the low-dimension of the linear sys-
tem only. This permits us to obtain a higher-precision solution. Finally, in Chapter 5, we
develop a class of randomized Newton-type algorithms for optimization problems whose
objective is ∑n

i fi(w) + R(w). As the challenge of applying Newton’s method to these
optimization problems is the Hessian computation, which scales linearly in n, by notic-
ing that forming the Hessian is essentially equivalent to a matrix-matrix multiplication
problem, we exploit two data-aware sampling techniques in RLA to expedite the Hessian
computation without losing too much convergence speed.

We only studied the optimization performance of these algorithms. That is, our theory
is about the closeness between the approximate solution, ŵ provided by our algorithms,
and the optimal solution of the optimization problem being solved. However, in many
applications such as statistical learning, it is often assumed that the data matrix is gener-
ated from a statistical model parameterized by a true parameter vector w∗. Attention has
been drawn to the investigation of the statistical performance of RLA algorithms, namely
closeness between ŵ and w∗. Several recent works [MMY15; Che+15; WYS16] have shown
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promising results for linear regression problems. A more comprehensive study of the
statistical property of RLA algorithms remains an exciting research area.

Furthermore, most of our theory provides worst-case theoretical guarantees. That is,
these bounds are “pessimistic” in the sense that they hold for arbitrary inputs. Two lines
of research are of interest. The first is the study of complexity lower bounds. For exam-
ple, Section 6.3 in [Woo14] discusses complexity lower bounds for several typical matrix
problems in the streaming setting. The second is to study the performance of the algo-
rithm when the input matrix satisfies certain structure. Whether computationally and
statistically improved algorithms can be derived for specific inputs is left to explore in the
future.

10.2 implementations and applications

Part II focuses on implementations and applications. In Chapter 6 we present the com-
putational results of implementing RLA algorithms for `2 regression, quantile regression
and CX decomposition problems in parallel and distributed environment with terabyte-
sized inputs using Apache Spark and Apache Hadoop. These algorithms are described
in Section 2.4.1, Chapter 3 and Section 2.4.2, respectively. Empirical results indicate these
RLA algorithms are scalable to large-scale datasets and are amenable to parallel and dis-
tributed computing environments. Next, in Chapter 7, we present the results of applying
CX decomposition to problems in bioimaging. More specifically, we show that CX decom-
position successfully identifies a few important actual rows and columns of the original
data matrix, i.e., pixels and ions of a complex biological sample, for nearly optimal recon-
struction.

As Spark has been developed for industrial applications and commodity data center
hardware, a more extensive study of the linear algebraic computation performance of
Spark at scale is necessary. Recently, we [Git+16b] took on the important task of test-
ing nontrivial linear algebra and matrix factorization computations in Spark, and com-
pare and contrast its performance with C+MPI implementations on High Performance
Computing (HPC) hardware. These comparisons have revealed a number of opportuni-
ties for improving Spark performance. For example, the current end-to-end performance
gap is 2x-25x (Spark is slower), and 10x-40x without I/O. This is mainly because Spark
performance overheads associated with scheduling, stragglers, result serialization, and
task deserialization dominate the runtime by an order of magnitude. Improvements can
be considered from these perspectives. In addition, in order for Spark to leverage exist-
ing high-performance linear algebra libraries, it may be worthwhile to investigate better
mechanisms for integrating and interfacing with MPI-based runtimes with Spark.
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Throughout the proofs in this chapter, for simplicity, we use κ to denote κ̄1. Also, by Step
x below, we mean Step x + 2 in the corresponding algorithm description, as the first two
steps are used for illustrating inputs and outputs.

a.1 proof of lemma 3 .2

By Lemma 2.17, in Step 1, Π1 is a low-distortion embedding satisfying (2.2) with κΦ =
O(d3 log3 d), and r1 = O(d5 log5 d). In fact, AR−1 in Step 2 is a well-conditioned basis with

κ = O(d 13
2 log

11
2 d) according to (2.3). In Step 3, by Lemma 2.22, the sampling complex-

ity required for obtaining a (1± 1/2)-distortion sampling matrix is s̃ = O(d 15
2 log

11
2 d).

Finally, if we view S̃ as a low-distortion embedding matrix with r = s̃ and κΦ = 3,
then the resulting R in Step 4 will ensure that AR−1 is a well-conditioned basis with

κ = O(d 19
4 log

11
4 d).

For the running time, it takes O(nnz(A)) time for completing Step 1. In Step 2, the
running time is r1d2 = poly(d). As pointed out in Section 2.3.2.4, the running time for
constructing S̃ in Step 3 is O(nnz(A) · log n). Since the large dimension of S̃A is a low-
degree polynomial of d, the QR factorization of it costs s̃d2 = poly(d) time in Step 4.
Overall, the running time of Algorithm 6 is O(nnz(A) · log n).

a.2 proof of lemma 3 .3

Although ρτ(·), defined in (3.2), is not a norm, since the loss function does not have the
positive linearity, it satisfies some “good” properties, as stated in the following lemma:

Lemma A.1. Suppose that τ ≥ 1
2 . Then, for any x, y ∈ Rd, a ≥ 0, the following hold:

1. ρτ(x + y) ≤ ρτ(x) + ρτ(y);

2. (1− τ)‖x‖1 ≤ ρτ(x) ≤ τ‖x‖1;

3. ρτ(ax) = aρτ(x);

4. |ρτ(x)− ρτ(y)| ≤ τ‖x− y‖1.

Proof. It is trivial to prove every equality or inequality for x, y in one dimension. Then by
the definition of ρτ(·) for vectors, the inequalities and equalities hold for general x and y.

Two important ingredients for proving subspace preservation are γ-nets and tail in-
equalities. Suppose that Z is a point set and ‖ · ‖ is a metric on Z. A subset Zγ is called
a γ-net for some γ > 0 if for every x ∈ Z there is a y ∈ Zγ such that ‖x − y‖ ≤ γ. It is
well known that the unit ball of a d-dimensional subspace has a γ-net with size at most
(3/γ)d [BLM89]. Also, we use the standard Bernstein inequality to prove concentration
results for the sum of independent random variables.
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Lemma A.2 (Bernstein inequality). Let X1, . . . , Xn be independent random variables with zero-
mean. Suppose that |Xi| ≤ M, for i ∈ [n]; then for any positive number t, we have

Pr

 ∑
i∈[n]

Xi > t

 ≤ exp

(
− t2/2

∑i∈[n] E
[
Xj
]2

+ Mt/3

)
.

Since U is a well-conditioned basis for the range space of A, to prove (3.5) it is equivalent
to prove the following holds for all y ∈ Rd:

(1− ε)ρτ(Uy) ≤ ρτ(SUy) ≤ (1 + ε)ρτ(Uy). (A.1)

To prove that (A.1) holds for any y ∈ Rd, first we show that (A.1) holds for any fixed
y ∈ Rd, and then we apply a standard γ-net argument to show that (A.1) holds for every
y ∈ Rd.

Assume that U is (α, β)-conditioned with κ = αβ. For i ∈ [n], let vi = U(i)y. Then
ρτ(SUy) = ∑i∈[n] ρτ(Siivi) = ∑i∈[n] Siiρτ(vi) since Sii ≥ 0. Let wi = Siiρτ(vi)− ρτ(vi) be a
random variable, where

wi =

( 1
p̂i
− 1)ρτ(vi), with probability p̂i;

−ρτ(vi), with probability 1− p̂i.

Therefore, E [wi] = 0, Var[wi] = ( 1
p̂i
− 1)ρτ(vi)

2, |wi| ≤ 1
p̂i

ρτ(vi). Note here we only
consider i such that ‖U(i)‖1/|U|1 < 1 because otherwise we have p̂i = 1 and the cor-
responding term will not contribute to the variance. According to our definition, p̂i ≥
s · ‖U(i)‖1/|U|1 = s · ti. Consider

ρτ(vi) = ρτ(U(i)y) ≤ τ‖U(i)y‖1 ≤ τ‖(U(i))‖1‖y‖∞.

Hence,

|wi| ≤
1
p̂i

ρτ(vi) ≤
1
p̂i

τ‖U(i)‖1‖y‖∞ ≤
τ

s
|U|1‖y‖∞

≤ 1
s

τ

1− τ
αβρτ(Uy) := M.

Also,

∑
i∈[n]

Var[wi] ≤ ∑
i∈[n]

1
p̂i

ρτ(vi)
2 ≤ Mρτ(Uy).

Applying the Bernstein inequality to the zero-mean random variables wi gives

Pr

∣∣∣∣∣∣ ∑
i∈[n]

wi

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−ε2

2 ∑i Var[wi] +
2
3 Mε

)
.
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Since ∑i∈[n] wi = ρτ(SUy)− ρτ(Uy), setting ε to ερτ(Uy) and substituting the results we
derive above gives

Pr [|ρτ(SUy)− ρτ(Uy)| > ερτ(Uy)] ≤ 2 exp

(
−ε2ρ2

τ(Uy)
2Mρτ(Uy) + 2ε

3 Mρτ(Uy)

)
.

Let’s simplify the exponential term on the right-hand side of the above expression:

−ε2ρ2
τ(Uy)

2Mρτ(Uy) + 2ε
3 Mρτ(Uy)

=
−sε2

αβ

1− τ

τ

1
2 + 2ε

3
≤ −sε2

3αβ

1− τ

τ
.

Then, when s ≥ τ
1−τ

27αβ

ε2

(
d log

(
3
γ

)
+ log

(
4
δ

))
, with probability at least 1− (γ/3)dδ/2,

(1− ε/3)ρτ(Uy) ≤ ρτ(SUy) ≤ (1 + ε/3)ρτ(Uy), (A.2)

where γ is specified later.
We show that, for all z ∈ range(U),

(1− ε)ρτ(z) ≤ ρτ(Sz) ≤ (1 + ε)ρτ(z). (A.3)

By the positive linearity of ρτ(·), it suffices to show (A.3) holds for all z with ‖z‖1 = 1.
Next, let Z = {z ∈ range(U) | ‖z‖1 ≤ 1} and construct a γ-net of Z, denoted by Zγ,

such that for any z ∈ Z, there exists a zγ ∈ Zγ that satisfies ‖z− zγ‖1 ≤ γ. By [BLM89],
the number of elements in Zγ is at most (3/γ)d. Hence, with probability at least 1− δ/2,
(A.2) holds for all zγ ∈ Zγ.

We claim that with suitable choice γ, with probability at least 1 − δ/2, S will be a
(1± 2/3)-distortion embedding matrix of (A, ‖ · ‖1). To show this, first we state a similar
result for ‖ · ‖1 from Theorem 6 in [Das+09] with p = 1 as follows.

Lemma A.3 (`1 subspace-preserving sampling lemma). Given A ∈ Rn×d, let U ∈ Rn×d be
an (α, β)-conditioned basis for A. For s > 0, define

p̂i ≥ min{1, s · ‖U(i)‖1/|U|1}

and let S ∈ Rn×n be a random diagonal matrix with Sii = 1/ p̂i with probability p̂i, and 0
otherwise. Then when ε < 1/2 and

s ≥ 32αβ

ε2

(
d log

(
12
ε

)
+ log

(
2
δ

))
,

with probability at least 1− δ, for every x ∈ Rd,

(1− ε)‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + ε)‖Ax‖1. (A.4)

Note here we change the constraint ε ≤ 1/7 and the original theorem to ε ≤ 1/2 above.
One can easily show that the result still holds with such setting. If we set ε = 2/3 and
the failure probability to be at most δ/2, the construction of S satisfies the conditions of

Lemma A.3 when the expected sampling complexity s ≥ s̄ := 72αβ
(

d log (18) + log
(

4
δ

))
.

Then our claim for S holds. Hence we only need to make sure with suitable choice of γ
that s ≥ s̄.
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For any z with ‖z‖1 = 1, we have

|ρτ(Sz)− ρτ(z)| ≤ |ρτ(Sz)− ρτ(Szγ)|+ |ρτ(Szγ)− ρτ(zγ)|+ |ρτ(zγ)− ρτ(z)|
≤ τ‖S(z− zγ)‖1 + (ε/3)ρτ(zγ) + τ‖zγ − z‖1

≤ τ|‖S(z− zγ)‖1 − ‖(z− zγ)‖1|+ (ε/3)ρτ(z) + (ε/3)ρτ(zγ − z)

+2τ‖zγ − z‖1

≤ 2τ/3‖z− zγ‖1 + (ε/3)ρτ(z) + τ(ε/3)‖zγ − z‖1 + 2τ‖zγ − z‖1

≤ (ε/3)ρτ(z) + τγ(2/3 + ε/3 + 2)

≤
(

ε/3 +
τ

1− τ
γ(2/3 + ε/3 + 2)

)
ρτ(z)

≤ ερτ(z),

where we take γ = 1−τ
6τ ε, and the expected sampling size becomes

s =
τ

1− τ

27αβ

ε2

(
d log

(
τ

1− τ

18
ε

)
+ log

(
4
δ

))
.

When ε < 1/2, we will have s > s̄. Hence the claim for S holds and (A.3) holds for every
z ∈ range(U).

Since the proof involves two random events with failure probability at most δ/2, by
a simple union bound, (A.1) holds with probability at least 1 − δ. Our results follows
because κ = αβ.

a.3 proof of lemma 3 .4

In this lemma, slightly different from the previous notation, we use s and ŝ to denote the
actual number of rows selected and the input parameter for defining the sampling proba-
bility, respectively. From Lemma 3.3, a (1± ε)-distortion sampling matrix S could be con-
structed by calculating the `1 norms of the rows of AR−1. Indeed, we will estimate these
row norms and adjust the sampling complexity s. According to Lemma 12 in [Cla+13],
with probability at least 0.95, the λi, i ∈ [n] we compute in Steps 1-3 of Algorithm 7 satisfy

1
2
‖U(i)‖1 ≤ λi ≤

3
2
‖U(i)‖1,

where U = AR−1. Conditioned on this high probability event, we set

p̂i ≥ min

{
1, ŝ · λi

∑i∈[n] λi

}
.

Then we will have p̂i ≥ min
{

1, ŝ
3 ·
‖U(i)‖1

|U|1

}
. Since ŝ/3 satisfies the sampling complexity

required in Lemma 3.3 with δ = 0.05, the corresponding sampling matrix S is constructed
as desired. These are done in Step 4 and Step 5. Since the algorithm involves two random
events, by a simple union bound, with probability at least 0.9, S is a (1± ε)-distortion
sampling matrix.

By the definition of sampling probabilities, E [s] = ∑i∈[n] p̂i ≤ ŝ. Note here that s is the
sum of some random variables and it is tightly concentrated around its expectation. By
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a standard Bernstein bound, with probability 1− o(1), s ≤ 2ŝ = O
(
µκd log (µ/ε) /ε2),

where µ = τ
1−τ , as claimed.

Now let’s compute the running time in Algorithm 7. The main computational cost
comes from Steps 2, 3 and 5. The running time in other steps will be dominated by it. It
takes d2r2 time to compute R−1Π2; then it takes O(nnz(A) · r2) time to compute AR−1Π2;
and finally it takes O(n) time to compute all the λi and construct S. Since r2 = O(log n),
the total running time is O((d2 + nnz(A)) log n + n) = O(nnz(A) · log n).

a.4 proof of theorem 3 .5

In Step 1, by Lemma 3.1, the matrix R ∈ Rd×d computed by Algorithm 5 satisfies that
with probability at least 0.9, AR−1 is a well-condition basis for A with κ = 6d2. The
probability bound can be attained by setting the corresponding constants sufficiently large.
In Step 2, when we apply Algorithm 7 to construct the sampling matrix S, by Lemma 3.4,
with probability at least 0.9, S will be a (1± ε)-distortion sampling matrix of (A, ρτ(·)).
Solving the subproblem minx∈C ρτ(SAx) gives a (1 + ε)/(1− ε) solution to the original
problem (3.3). This is because

ρτ(Ax̂) ≤ 1
1− ε

ρτ(SAx̂) ≤ 1
1− ε

ρτ(SAx∗) ≤ 1 + ε

1− ε
ρτ(Ax∗), (A.5)

where the first and third inequalities come from (3.6) and the second inequality comes
from the fact that x̂ is the minimizer of the subproblem. Hence the solution x̂ returned
by Step 3 satisfies our claim. The whole algorithm involves two random events, and the
overall success probability is at least 0.8.

Now let’s compute the running time for Algorithm 8. In Step 1, by Lemma 3.1, the run-
ning time for Algorithm 5 to compute R is O(nnz A). By Lemma 3.4, the running time for
Step 2 is O(nnz(A) · log n). Furthermore, as stated in Lemma 3.4 because κ(AR−1) = 2d2,
with probability 1− o(1), the actual sampling complexity is O

(
µd3 log (µ/ε) /ε2), where

µ = τ/(1− τ), and it takes φ
(
O
(
µd3 log (µ/ε) /ε2) , d

)
time to solve the subproblem in

Step 3. This implies the overall running time of Algorithm 8 as claimed.
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b.1 proof of theorem 4 .2

The proof of this theorem is structured as follows. First we reformulate the problem using
Lemma 4.1. Second we show that the sequence of solution vector estimates {xt}T

t=1 in
Algorithm 9 is equivalent to the solution vector estimates {yt}T

t=1 obtained by running
SGD on the equivalent problem. Third, we analyze the convergence rate of {yt}T

t=1 and
conclude the error bound analysis.

problem reformulation Suppose U is an `p well-conditioned basis for the range
space of A and A = UR for some nonsingular matrix R. Let P be the distribution based
on the estimation of the corresponding leverage scores. That is, for i ∈ [n],

pi =
λi

∑n
j=1 λj

,

where λi is an estimation of ‖Ui‖
p
p satisfying

(1− γ)‖U(i)‖
p
p ≤ λi ≤ (1 + γ)‖U(i)‖

p
p.

This implies
1− γ

1 + γ

‖U(i)‖
p
p

|U|pp
≤ pi ≤

1 + γ

1− γ

‖U(i)‖
p
p

|U|pp
. (B.1)

From Lemma 4.1, recall that for any nonsingular matrix F ∈ R(d+1)×(d+1), the constrained
`p regression problem

min
x∈Z

f (x) := ‖Ax− b‖p
p (B.2)

can be equivalently written as the stochastic optimization problem

min
y∈Y

h(y) = ‖URFy− b‖p
p = Eξ∼P

[
|U(ξ)RFy− bξ |p/pξ

]
. (B.3)

Note that by comparing to the objective function defined in (4.1) with f (x) = ‖Ax− b‖p,
we rewrite f (x) in the form of the sum of subfunctions, i.e., f (x) = ‖Ax − b‖p

p, so that
SGD can be applied.

equivalence of sequences By using the following linear transformation, one no-
tices that the sequence {xt}T

t=1 obtained by (4.8) in Algorithm 9 has a one-to-one corre-
spondence to the sequence {yt}T

t=1 obtained by running SGD on problem (B.3):

Fyt = xt,

Fȳ = x̄,

Fy∗ = x∗. (B.4)
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Thus with condition (B.4), immediately the objective function value has the following
equivalence as well:

h(yt) = f (xt),

h(ȳ) = f (x̄),

h(y∗) = f (x∗), (B.5)

where x̄ = 1
T ∑T

i=1 xt, ȳ = 1
T ∑T

i=1 yt, and x∗ and y∗ are the optimal points to optimization
problem (B.2) and (B.3) respectively.

Now we prove (B.4) by induction. By defining Fy0 = x0, one immediately shows that
the equivalence condition holds at the base case (t = 0). Now as induction hypothesis,
assume (B.4) holds for case t = k. Now for t = k + 1, we show that xk+1 returned by
Algorithm 9 and yk+1 returned by the update rule of SGD satisfy (B.4).

For simplicity, assume that at k-th iteration, the i-th row is picked. For subfunction
hk(y) = |U(i)RFy|p − bi/pi, its (sub)gradient is

gk(y) = p · sgn(U(i)RFy− bi) · (U(i)RFy− bi)
p−1 ·U(i)RF/pi,

for which the SGD update rule becomes

yk+1 = arg min
y∈Y

η〈y− yk, ckU(i)RF〉+ 1
2
‖yk − y‖2

2, (B.6)

where ck = p · sgn(U(i)RFy− bi) · (U(i)RFy− bi)
p−1/pi is the corresponding (sub)gradient.

Recall that with the linear transformation Fyk = xk, feasible set Y = {y ∈ Rk|y =
F−1x, x ∈ Z} and input matrix Ai = U(i)R, the update rule (B.6) becomes

xk+1 = arg min
x∈Z

ηck A(i)x +
1
2
‖F−1(xk − x)‖2

2. (B.7)

This equation is exactly the update performed in (4.8). In particular, when Z = Rd, i.e., in
the unconstrained case, (B.7) has a closed-form solution as shown in (4.8). From the above
analysis on the equivalence between (B.6) and (B.7), one notices xk+1 and yk+1 satisfy the
relationship defined in (B.4), i.e., the induction hypothesis holds at t = k + 1.

By induction, we just showed that condition (B.4), and therefore condition (B.5), hold
for any t.

convergence rate Based on the equivalence condition in (B.5), it is sufficient to
analyze the performance of sequence {yt}T

t=1. When p = 1, the objective function is non-
differentiable. Thus by substituting the subgradient of an `1 objective function into the
update in (B.6), one notices that the SA method simply reduces to stochastic subgradient
descent. We now analyze the convergence rate of running stochastic subgradient descent
on problem (B.3) with p = 1.

Suppose the i-th row is picked at the t-th iteration. Recall that the (sub)gradient of the
sample objective |U(i)RFy− bi|/pi in (B.6) is expressed as

gt(y) = sgn(U(i)RFy− bi) ·U(i)RF/pi.
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Hence, by inequality (B.1), the norm of gt(y) is upper-bounded as follows:

‖gt(y)‖1 = ‖U(i)RF · sgn(U(i)RFy− bi)‖1/pi

≤ |RF|1‖Ui‖1
1 + γ

1− γ
· |U|1‖U(i)‖1

≤ α|RF|1
1 + γ

1− γ
.

Here, we use the property of the well-conditioned basis U. Furthermore by Proposition 17

in [Yan+16b] and the equivalence condition in (B.5), for H =
(

FFT)−1 we have

E [ f (x̄)]− f (x∗) = E [h(ȳ)]− h(y∗)

≤ 1
2η(T + 1)

‖y∗ − y0‖2
2 +

η

2

(
α|RF|1

1 + γ

1− γ

)2

=
1

2η(T + 1)
‖x∗ − x0‖2

H +
η

2

(
α|RF|1

1 + γ

1− γ

)2
.

In particular, when the step-size is

η =
‖y∗ − y0‖2

α|RF|1
√

T + 1
1− γ

1 + γ
,

the expected error bound is given by

E [h(ȳ)]− h(y∗) ≤ α|RF|1
‖y∗ − y0‖2√

T + 1
1 + γ

1− γ
. (B.8)

By simple algebraic manipulations, we have

1√
d
‖y∗‖2 ≤ ‖y∗‖∞ = ‖(RF)−1RFy∗‖∞ ≤ |(RF)−1|1‖RFy∗‖∞

≤ β|(RF)−1|1‖URFy∗‖1 = c3β|(RF)−1|1h(y∗),

where c3 = ‖URFy∗‖1/h(y∗) and we use the property of the well-conditioned basis U.
Furthermore from inequality (B.8) and the equivalence condition in (B.5), the expected

relative error bound can be upper-bounded by

E [ f (x̄)]− f (x∗)
f (x∗)

=
E [h(ȳ)]− h(y∗)

h(y∗)

≤ c3
√

dβ|(RF)−1|1
‖y∗‖2

(
α|RF|1

‖y∗ − y0‖2√
T + 1

1 + γ

1− γ

)
≤ |RF|1|(RF)−1|1

‖y∗ − y0‖2

‖y∗‖2

(
c3
√

dαβ√
T + 1

1 + γ

1− γ

)
.

Since the right-hand side of the last inequality is a function of stopping time T > 0, for
any arbitrarily given error bound threshold ε > 0, by setting the right-hand side to be ε,
one obtains the following stopping condition:

√
dαβ√

T + 1
=

ε

c1c3
√

c2|RF|1|(RF)−1|1
,
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where the constants are given by

c1 =
1 + γ

1− γ
, c2 =

‖x0 − x∗‖2
H

‖x∗‖2
H

=
‖y0 − y∗‖2

2
‖y∗‖2

2
.

Rearranging the above terms we know that after

T ≥
dα2β2c2

1c2c2
3

ε2 |RF|21|(RF)−1|21

iterations, the relative expected error is upper-bounded by ε > 0, i.e.,

E [ f (x̄)]− f (x∗)
f (x∗)

≤ ε.

b.2 proof of theorem 4 .3

Similar to the proof of Theorem 4.2, the proof of this theorem is split into three parts: Prob-
lem reformulation, Equivalence of sequences and Convergence rates. From the proof of
Theorem 4.2, one notices that the proofs in Problem reformulation and Equivalence of
sequences hold for general p, and thus the proofs hold for the case when p = 2 as well.
Now we proceed to the proof of the convergence rate. Again by the equivalence con-
dition, we can show the convergence rate of solution vector estimate {xt} by showing
the convergence rate achieved by the sequence {yt}, i.e., the convergence rate of SGD of
problem (B.3) for p = 2.

Throughout the rest of the proof, we denote

f (x) = ‖Ax− b‖2
2, h(y) = ‖AFy− b‖2

2.

Denote by H =
(

FFT)−1 the weights of the ellipsoidal norm. Also recall that when the
leverage scores satisfy the error condition in (4.3), we have the condition

1− γ

1 + γ

‖U(i)‖2
2

‖U‖2
F
≤ pi ≤

1 + γ

1− γ

‖U(i)‖2
2

‖U‖2
F

.

Also, we assume that U is (α, β)-conditioned with κ̄2(U) = αβ. Based on Definition 2.4,
we have

α2 = ‖U‖2
F,

β2 = ‖(UTU)−1‖2,

and thus
κ̄2

2(U) = ‖(UTU)−1‖2 · ‖U‖2
F = α2β2.

Before deriving the convergence rate, we compute a few constants.

µ = 2σ2
min(AF) =

2∥∥∥((URF)TURF)−1
∥∥∥2

2

≥ 2∥∥∥(UTU)
−1
∥∥∥

2
· ‖(RF)−1‖2

2

=
2

β2 · ‖(RF)−1‖2
2

,

(B.9)
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and

sup
i

Li = sup
i

2‖A(i)F‖2
2

pi
= sup

i

2‖U(i)RF‖2
2

pi
≤ 2c1‖U‖2

F · ‖RF‖2
2 = 2c1α2 · ‖RF‖2

2, (B.10)

and

σ2 = Ei∼D
[
‖gi(y∗)‖2

]
= 4

n

∑
i=1

(A(i)Fy∗ − bi)
2‖A(i)F‖2/pi

= 4
n

∑
i=1

(U(i)RFy∗ − bi)
2‖U(i)RF‖2/pi

≤ 4c1‖RF‖2
2‖U‖2

F

(
n

∑
i=1

(U(i)RFy∗ − bi)
2

)
= 4c1‖U‖2

F · ‖RF‖2
2 · h(y∗)

= 4c1α2 · ‖RF‖2
2 · h(y∗). (B.11)

Equipped with these constants and from Proposition 18 in [Yan+16b], we have the fol-
lowing error bound of the solution vector estimate {yt}T

t=1 generated by the weighted
SGD algorithm:

E
[
‖xT − x∗‖2

H

]
= E

[
‖yT − y∗‖2

2

]
≤

(
1− 4ησ2

min(AF)

(
1− η sup

i

2‖A(i)F‖2
2

pi

))T

‖y0 − y∗‖2
2

+
2η ∑n

i=1(AiFy∗ − bi)
2‖A(i)F‖2

2/pi

σ2
min(AF)(1− η supi

2‖A(i)F‖2
2

pi
)

=

(
1− 4ησ2

min(AF)

(
1− η sup

i

2‖A(i)F‖2
2

pi

))T

‖x0 − x∗‖2
H

+
2η ∑n

i=1(A(i)Fy∗ − bi)
2‖A(i)F‖2

2/pi

σ2
min(AF)(1− η supi

2‖A(i)F‖2
2

pi
)

≤
(

1− 4η
(
1− 2ηc1α2‖RF‖2

2
)

β2‖(RF)−1‖2
2

)T

‖x0 − x∗‖2
H +

2c1ηκ̄2
2(U)κ2(RF)h(y∗)

1− 2ηc1α2‖RF‖2
2

.

Notice that the above equalities follow from the equivalence condition in (B.5).
Before moving on, we show a useful inequality:

c3h(y∗) = c3 f (x∗) = ‖Ax∗‖2
2 = ‖URFy∗‖2

2 ≥ µ‖y∗‖2
2/2. (B.12)

Also recall the following constants defined in the statement of proposition:

c1 =
1 + γ

1− γ
, c2 =

‖y0 − y∗‖2
2

‖y∗‖2
2

=
‖x0 − x∗‖2

H
‖x∗‖2

H
, c3 =

‖Ax∗‖2
2

f (x∗)
.
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Now we show the first part. For an arbitrary target error ε > 0, using (B.9), (B.10), (B.11)
and setting

c3ε · h(y∗)
‖AF‖2

2
→ ε

in Corollary 19 in [Yan+16b] we have that when the step-size is set to be

η =
1
4

c3ε · σ2
min(AF) · h(y∗)/‖AF‖2

2

∑n
i=1(A(i)Fy∗ − bi)2‖AiF‖2

2/pi + c3
(
ε · h(y∗)/‖AF‖2

2
)

σ2
min(AF) supi

‖A(i)F‖2
2

pi

,

then after

log

(
2‖y0 − y∗‖2

2
c3ε · h(y∗)/(‖U‖2

2‖RF‖2
2)

)
(B.13)

·
(

c1α2β2‖RF‖2
2‖(RF)−1‖2

2 +
c1α2β4‖U‖2

2‖RF‖4
2‖(RF)−1‖4

2
c3ε

)

≤ log

(
2‖U‖2

2‖RF‖2
2 · ‖y0 − y∗‖2

2
c3ε · h(y∗)

)(
c1κ̄2

2(U)κ2(RF) +
c1κ̄2

2(U)κ2(U)κ4(RF)
c3ε

)

≤ log
(

2c2κ2(U)κ2(RF))
ε

)(
c1κ̄2

2(U)κ2(RF)
)(

1 +
κ2(U)κ2(RF)

c3ε

)
(B.14)

iterations, the sequence {yt}T
k=1 generated by running weighted SGD algorithm satisfies

the error bound

‖yT − y∗‖2
2 ≤

c3ε · h(y∗)
‖AF‖2

2
.

Note that in (B.13) we used (B.12). From this, we have

‖A(xT − x∗)‖2
2 = ‖AFF−1(xT − x∗)‖2

2

≤ ‖AF‖2
2 · ‖xT − x∗‖2

H

= ‖AF‖2
2 · ‖yT − y∗‖2

2

= c3ε · h(y∗)
= ε‖Ax∗‖2

2.

For the second part, we show the result for general choice of F. The proof is basically
the same as that of the first part except that we set

2εh(y∗)
‖AF‖2

2
→ ε

in Corollary 19 in [Yan+16b]. The resulting step-size η and number of iterations required
T become

η =
1
4

2ε · σ2
min(AF) · h(y∗)/‖AF‖2

2

∑n
i=1(A(i)Fy∗ − bi)2‖A(i)F‖2

2/pi +
(
2ε · h(y∗)/‖AF‖2

2
)

σ2
min(AF) supi

‖A(i)F‖2
2

pi
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and

T = log
(

c2κ2(U)κ2(RF))
ε

)(
c1κ̄2

2(U)κ2(RF)
)(

1 +
κ2(U)κ2(RF)

2ε

)
.

Setting F = R−1 recovers the value of T shown in Theorem 4.3. The sequence {yt}T
k=1

generated by running weighted SGD algorithm satisfies the error bound

‖yT − y∗‖2
2 ≤

2εh(y∗)
‖AF‖2

2
.

Note that when the problem is unconstrained, by smoothness of the objective h(y) we
have

h(yT)− h(y∗) ≤ ‖AF‖2
2 · ‖yT − y∗‖2

2 ≤ 2εh(y∗).

Then by (B.5) we have

f (xT) ≤ (1 + 2ε) f (x∗) ≤ (1 + 2ε + ε2) f (x∗).

This implies √
f (xT) ≤ (1 + ε)

√
f (x∗).

This completes the proof because
√

f (x) = ‖Ax− b‖2.

b.3 proof of theorem 4 .4

Consider the following three events:

• E1: Compute a matrix R such that U = AR−1 has condition number κ̄p, and then

compute F = R−1 and H =
(

FFT)−1.

• E2: Given R−1, compute {λi}n
i=1 as an estimation of row norms of AR−1 satisfying

(4.3) with γ = 0.5.

• E3: For a given basis U with condition number κ̄p(U) and {λi}n
i=1 with approxima-

tion quality γ, pwSGD returns a solution with the desired accuracy with iterations
10T, where T is specified in Theorem 4.2 or Theorem 4.3.

Since each preconditioning method shown in Table 2 succeeds with constant probabil-
ity, E1 holds with a constant probability. Also, as introduced in Section 2.3.2.3, E2 has
a constant failure probability. Finally, by Markov inequality, we know that E3 holds with
probability at least 0.9. As setting the failure probability of E1 and E2 to be arbitrarily small
will not alter the results in big-O notation, we can ensure that, with constant probability,
E1 ∩ E2 ∩ E3 holds.

Conditioned on the fact that E1 ∩ E2 ∩ E3 holds, to converge to the desired solution
for `1 regression, pwSGD runs in O(dκ̄1(U)/ε2) iterations. Since all the preconditioning
methods in Table 2 provide κ(U) = O(1) and κ̄2(U) = O(

√
d), for unconstrained `2

regression it runs in O(d log(1/ε)/ε) iterations. For constrained `2 regression, since an
ε-approximate solution in terms of the solution vector measured in the prediction norm
implies an

√
ε-approximate solution on the objective, it runs in O(d log(1/ε)/ε2) itera-

tions to return an ε-solution in the objective value.
The overall complexity is the sum of the complexity needed in each of the above events.

For E1, it is time(R) because the time for computing F and H is O(d3), which can absorbed



B.4 proof of theorem 4 .7 157

into time(R) and they only have to be computed once. For E2, it is O(nnz(A) · log n).
Finally, for E3, when the problem is unconstrained, timeupdate = O(d2); when the problem
is constrained, timeupdate = poly(d). Combining these, we get the complexities shown in
the statement.

b.4 proof of theorem 4 .7

Let G f consist of m f copies of g f and G =
⋃

f∈F G f . We may view the sampling step in
Algorithm 10 as follows. Sample s items uniformly from G independently with replace-
ment and denote the corresponding subset of samples by S. Then rescale every function
in S by M(F )/s and obtain D.

By Theorem 4.1 in [FL11], we know that if the above intermediate set S is an (ε ·
n/M(F ))-approximation of the set G, then the resulting set D is a desired ε-coreset for
F . Indeed, S is such a set according to Theorem 6.10 in [FL11].

b.5 proof of proposition 4 .8

We use A to denote Ā for the sake of simplicity. Also define the sensitivity at row index
i ∈ [n] as

si = n · sup
x∈C

|A(i)x|p

∑n
j=1 |A(j)x|p

. (B.15)

Suppose U ∈ Rn×k is an (α, β) well-conditioned basis of the range space of A satisfying
A = UR, where k = rank(A) and R ∈ Rk×(d+1). Then from (B.15), we have

si
n

= sup
x∈C

|A(i)x|p

‖Ax‖p
p

= sup
x∈C

|U(i)Rx|p

‖URx‖p
p

= sup
y∈C ′

|U(i)y|p

‖Uy‖p
p

≤ sup
y∈C ′

‖U(i)‖
p
p‖y‖

p
q

‖y‖p
q /βp

= βp‖U(i)‖
p
p = βp · λi,

where C ′ = {y ∈ Rd|y = Rx, x ∈ C} is a one-to-one mapping. The first inequality follows
from Hölder’s inequality with 1

p + 1
q = 1 and the properties of well-conditioned bases.

According to the definition of sensitivity m( fi) = bsic+ 1, the above property implies

m( fi) ≤ nβpλi + 1,

which implies M(F ) = ∑n
i=1 si ≤ (nβp ∑n

i=1 λi) + n = n((αβ)p + 1), and completes the
proof.

b.6 proof of proposition 4 .9

According to Definition 4.6, we only have to show that for any arbitrary constant n and
set of points G = {a1, . . . , an} ⊆ Rd, the following condition holds:

|{Range(G, x, r)|x ∈ X , r ≥ 0}| ≤ nd+1,
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where Range(G, x, r) = {ai||aT
i x|p ≤ r} is the region located in the p-norm ellipsoid

|aT
i x|p = r. Since the condition {ai||aT

i x|p ≤ r} = {ai||aT
i x| ≤ r

1
p } holds and the constant

r is non-negative and arbitrary. Without loss of generality, we assume p = 1 in the above
definition, i.e., Range(G, x, r) = {ai||aT

i x| ≤ r}.
Notice that for every x and r, Range(G, x, r) is a subset of G. Hence, we may view it as

a binary classifier on G, denoted by cx,r. Given x ∈ X and r ≥ 0, for any ai ∈ G we have

cx,r(ai) =

1, if |aT
i x| ≤ r;

0, otherwise.

Therefore, one immediately sees that |{Range(G, x, r)|x ∈ X , r ≥ 0}| is the shattering
coefficient of C := {cx,r|x ∈ X , r ≥ 0} on n points, denoted by s(C, n). To bound the
shattering coefficient of C, we provide an upper bound based on its VC dimension.

We claim that the VC dimension of C is at most d + 1. By contradiction, suppose there
exist n + 2 points such that any labeling on these n + 2 points can be shattered by C. By
Radon’s Theorem [Cla+93], we can partition these points into two disjoint subsets, namely
V and W with size n1 and n2 respectively, where the intersection of their convex hulls is
nonempty. Let b be a point located in the intersection of the convex hulls of V and W,
which in general can be written as

b =
n1

∑
i=1

λivi =
n2

∑
i=1

σiwi, (B.16)

where λi ≥ 0, σi ≥ 0 and ∑n1
i=1 λi = ∑n2

i=1 σi = 1.
By the above assumption, we can find vector x ∈ Rn and nonnegative constant r such

that

−r ≤ xTvi ≤ r, i = 1, . . . , n1; (B.17)

xTwi > r or xTwi < −r, i = 1, . . . , n2. (B.18)

By combining conditions (B.16), (B.17) and (B.18), we further obtain inequalities

−r ≤ bTx ≤ r

and
bTx < −r or bTx > r,

which is clearly paradoxical! This confirms that the VC dimension of C is less than or
equal to d+ 1. Furthermore, by Sauer’s Lemma [Sau72], for n ≥ 2 the shattering coefficient
s(C, n) = |{Range(G, x, r)|x ∈ X , r ≥ 0}| is less than nd+1, which completes the proof of
this proposition.

b.7 proof of proposition 4 .10

Without loss of generality, assume the low dimension d is even (because if d is odd, we
can always add an extra arbitrary row to input matrix A and upper bound the size of the
original total sensitivity set by the same analysis). Let ai ∈ [0, 1]d be a vector with exactly
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d/2 elements to be 1. For each i ∈ [n], let Bi = {j|aij = 1}, where aij denotes the j-th
element of vector ai. For fixed i, define x as,

xj =

2/d, if j ∈ Bi,

−d, otherwise.

One immediately notices that xTai = 1. Thus for j 6= i, aj 6= ai, there exists an index k ∈ [d]
such that ajk = 1 but aik = 0. Furthermore,

x>aj =
d

∑
l=1

xlajl =
d

∑
l∈Bj ,l 6=k

xlajl +
d

∑
l 6=Bj

xlajl + xkajk ≤ (d/2− 1)(2/d)− d < 0,

which further implies f j(x) = xTaj = 0; Therefore, the i-th sensitivity becomes

si = sup
x

fi(x)
∑n

i=j f j(x)
≥ 1.

Since the above condition holds for arbitrary index i ∈ [n], and we have ( d
d/2) vectors ai,

i.e., n = ( d
d/2), this confirms that the size of the total sensitivity set is at least ( d

d/2) ≈ 2d.
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c.1 proof of lemma 5 .6

The proof has two parts. Part 1 is to prove the case where the subproblem is solved exactly
and Part 2 is for the case when the subproblem is solved approximately. In Part 1, there
are also two cases corresponding to condition (C1) and condition (C2) respectively.

Throughout the proof, we use � to denote the partial order defined on the cone {B ∈
Rd×d | wT Bw ≥ 0 ∀w ∈ K}. With ∆t := wt − w∗, then based on Assumptions 1 and 2, we
have

‖∇2F(wt)−∇2F(w∗)‖2 ≤ L‖∆t‖2, µI � H∗ � νI.

Therefore we can get

(µ− L‖∆t‖2)I � ∇2F(wt) � (ν + L‖∆t‖2)I.

Since ‖∆t‖2 ≤ µ
4L , then

3
4

µI � ∇2F(wt) �
5
4

νI. (C.1)

Let
Ψt(w) :=

1
2
(w− wt)

T H̃t(w− wt) + (w− wt)
T∇F(wt).

Part 1 In this part, we consider the case where the subproblem is solved exactly in every
iteration of Algorithm 11. We show the following two results:

(a) Under condition (C1), the error recursion (5.10) holds with factors in (5.12).

(b) Under condition (C2), the error recursion (5.10) holds with factors in (5.13).

If the subproblem minw∈C Ψt(w) is solved exactly in Algorithm 11, namely

wt+1 = arg min
w∈C

Ψt(w),

then Ψt(wt+1) ≤ Ψt(w∗). By expanding both sides, we have

1
2

∆T
t+1H̃t∆t+1 ≤ ∆T

t H̃t∆t+1 −∇F(wt)
T∆t+1 +∇F(w∗)T∆t+1. (C.2)

The third term on the right-hand side satisfies ∇F(w∗)T∆t+1 ≥ 0 because of the
optimality condition.

Note that

RHS = ∆T
t H̃t∆t+1 −∇F(wt)

T∆t+1 +∇F(w∗)T∆t+1

= ∆T
t ∇2F(wt)∆t+1 − (∇F(wt)−∇F(w∗))T∆t+1︸ ︷︷ ︸

T1

+ ∆T
t (H̃t −∇2F(wt))∆t+1,

160
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where,

T1 = ∆T
t ∇2F(wt)∆t+1 − ∆T

t

(∫ 1

0
∇2F(w∗ + δ(wt − w∗))dδ

)
∆t+1

≤ ∆T
t

(∫ 1

0

(
∇2F(w∗ + δ(wt − w∗))−∇2F(wt)

)
dδ

)
∆t+1

≤ ‖∆t‖2 ·
∫ 1

0
Lδ‖∆t‖2dδ · ‖∆t+1‖

≤ L
2
· ‖∆t‖2 · ‖∆t+1‖.

Substituting it into T1 and rewriting (C.2), we get

1 ≤ L · ‖∆t‖2 · ‖∆t+1‖
∆T

t+1H̃t∆t+1
+ 2

∆T
t (H̃t −∇2F(wt))∆t+1

∆T
t+1H̃t∆t+1

. (C.3)

(a) Under condition (C1), we have

λKmin(H̃t) ≥ λKmin(∇2F(wt))− ε · λKmax(∇2F(wt))

= (1− εκ(∇2F(wt))) · λKmin(∇2F(wt))

≥ (1− 2εκ) · λKmin(∇2F(wt)).

Then

∆T
t (H̃t −∇2F(wt))∆t+1 ≥ [λKmin(∇2F(wt))− ε · λKmax(∇2F(wt))] · ‖∆t+1‖2.

Therefore

1 ≤ L · ‖∆t‖2 · ‖∆t+1‖
[λKmin(∇2F(wt))− ε · λKmax(∇2F(wt))] · ‖∆t+1‖2

+2
ε · λKmax(∇2F(wt)) · ‖∆t‖ · ‖∆t+1‖

[λKmin(∇2F(wt))− ε · λKmax(∇2F(wt))] · ‖∆t+1‖2
.

Reorganizing it and combining (C.1), we get

‖∆t+1‖ ≤
L

3µ/4− 5εν/4
· ‖∆t‖2 +

5εν/2
3µ/4− 5εν/4

· ‖∆t‖

≤ 2L
(1− 2κε)µ

· ‖∆t‖2 +
4κε

1− 2κε
· ‖∆t‖.

(b) Under condition (C2), we have

∆T
t+1H̃t∆t+1 ≥ ∆T

t+1∇2F(wt)∆t+1 − ε · ∆T
t+1∇2F(wt)∆t+1

= (1− ε) · ∆T
t+1∇2F(wt)∆t+1

and

∆T
t (H̃t −∇2F(wt))∆t+1 ≤ ε ·

√
∆T

t ∇2F(wt)∆t ·
√

∆T
t+1∇2F(wt)∆t+1.
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Substituting into (C.3) gives

1 ≤ L · ‖∆t‖2 · ‖∆t+1‖
(1− ε) · ∆T

t+1∇2F(wt)∆t+1
+ 2

ε ·
√

∆T
t ∇2F(wt)∆t ·

√
∆T

t+1∇2F(wt)∆t+1

(1− ε) · ∆T
t+1∇2F(wt)∆t+1

≤ L · ‖∆t‖2 · ‖∆t+1‖
(1− ε) · λKmin(∇2F(wt)) · ‖∆t+1‖2

+
2ε ·

√
∆T

t ∇2F(wt)∆t

(1− ε) ·
√

∆T
t+1∇2F(wt)∆t+1

≤ L
(1− ε) · λKmin(∇2F(wt))

· ‖∆t‖2

‖∆t+1‖
+

2ε

1− ε
·
√

λKmax(∇2F(wt)) · ‖∆t‖2

λKmin(∇2F(wt)) · ‖∆t+1‖2
.

Reorganizing and combining (C.1) gives

‖∆t+1‖ ≤
L

(1− ε) · 3µ/4
· ‖∆t‖2 +

2ε

1− ε
·
√

5ν/4
3µ/4

· ‖∆t‖

≤ 2L
(1− ε)µ

· ‖∆t‖2 +
3ε

1− ε
·
√

κ · ‖∆t‖.

Part 2 Now we prove the case where the subproblem is solved approximately. We want
to show that under condition (5.9), the error recursion (5.11) holds with Cl , Cq being
the same as in the case where the problem is solved exactly.

Consider iteration t in Algorithm 11. First, w∗t+1 = argminw∈C Ψt(w) (note that wt+1
is not the minimizer any more). Based on the proof in Part 1, we have

‖w∗t+1 − w∗‖ ≤ Cq · ‖wt − w∗‖2 + Cl · ‖wt − w∗‖.

Then

‖wt+1 − w∗‖ ≤ ‖wt+1 − w∗t+1‖+ ‖w∗t+1 − w∗‖
≤ ε0 · ‖w∗t+1 − wt‖+ ‖w∗t+1 − w∗‖
≤ ε0 · ‖w∗t+1 − w∗‖+ ε0 · ‖wt − w∗‖+ ‖w∗t+1 − w∗‖
= (1 + ε0) · ‖w∗t+1 − w∗‖+ ε0 · ‖wt − w∗‖
≤ (1 + ε0)Cq · ‖wt − w∗‖2 + (ε0 + (1 + ε0)Cl) · ‖wt − w∗‖.

c.2 proof of theorem 5 .7

From Assumption 3, it takes O(nnz(A)) time to construct the augmented matrix A ∈
Rnk×d. Here we apply a variant of the algorithm in [Dri+12], which uses the sparse sub-
space embedding [Coh16] as the underlying sketching method. One can show that, with
high probability, it takes O(nnz(A))d log(nk + d)) = O(nnz(A) log n) time to compute a
set of approximate leverage scores with constant approximation factor, under the assump-
tion n ≥ d3 log d. This completes the proof.
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c.3 proof of theorem 5 .8

Before we show the proof of Theorem 5.8, we present our main results for the new pro-
posed leverage scores, namely block partial leverage scores, for approximating a matrix
of the form AT A + Q.

Theorem C.1. Given A ∈ RN×d with n blocks, Q ∈ Rd×d satisfying Q � 0 and ε ∈ (0, 1), let
{τQ

i (A)}n
i=1 be its block partial leverage scores. Let pi = min{1, s · τ̃i

∑n
j=1 τ̃j
} with τ̃i ≥ τQ

i (A).

Construct SA by sampling the i-th block of A with probability pi and rescaling it by 1/
√

pi. Then
if

s ≥ 2

(
n

∑
i=1

τ̃i

)
·
(
‖UT DU‖+ ε

3

)
· log

(
4d
δ

)
· 1

ε2 , (C.4)

where D is a diagonal matrix with Dii = τQ
i (A)/τ̃i, and U is a matrix satisfying UTU � I, with

probability at least 1− δ, we have

− ε(AT A + Q) � ATSTSA− AT A � ε(AT A + Q). (C.5)

Proof. Denote Ā =

(
A

Q
1
2

)
. Let Ā = ŪR where Ū has orthonormal columns. Then define

U = AR−1 and Ui = AiR−1 for i = 1, . . . , n. By definition, the true partial leverage scores
τQ

i (A)’s are defined as τi = tr(UiUT
i ). For simplicity, we use τi to denote τQ

i (A).
In the following we bound ‖UTSTSU − UTU‖ ≤ ε with high probability. For i =

1, . . . , n, define

Xj =

( 1
pi
− 1)UT

i Ui with probability pi;

−UT
i Ui with probability 1− pi.

Also define Y = ∑n
i=1 Xi. We have E [Xi] = 0. In the following we bound ‖Y‖ using the

matrix Bernstein bound.
First, we bound ‖Xi‖ for i = 1, . . . , n. Let I = {i|pi < 1}. If i ∈ I c, then Xi = 0 and
‖Xi‖ = 0. Thus we only consider the case where i ∈ I . In this case pi =

sτ̃i
∑j τ̃j

. Since pi < 1,
we have

−UT
i Ui/pi � Xi � UT

i Ui/pi.

Moreover,

‖Xi‖ ≤ ‖UT
i Ui‖/pi = ‖Ui‖2/pi

≤

(
∑n

j=1 τ̃j

)
‖Ui‖2

sτ̃i
=

(
∑n

j=1 τ̃j

)
‖Ui‖2

sτi

τi
τ̃i

≤

(
∑n

j=1 τ̃j

)
s

τi
τ̃i
≤

(
∑n

j=1 τ̃j

)
s

. (C.6)

The last inequality comes from the fact that τ̃i ≥ τi = tr(UiUT
i ) ≥ ‖Ui‖2.
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Next, we bound E
[
Y2] = ∑n

i=1 E
[
X2

i
]
. We have

n

∑
i=1

E
[

X2
i

]
= ∑

i∈I
E
[

X2
i

]
=

n

∑
i=1

(pi · (
1
pi
− 1)2 + (1− pi))AT

i Ai AT
i Ai

= ∑
i∈I

(
1
pi
− 1)UT

i UiUT
i Ui � ∑

i∈I

1
pi

UT
i UiUT

i Ui

� ∑
i∈I

∑n
j=1 τ̃j

s
· τi

τ̃i
·UT

i Ui (C.7)

�
∑n

j=1 τ̃j

s
·UTDU,

where D is a diagonal matrix with Dii = τi/τ̃i. Above, (C.7) holds since by (C.6) we have

UT
i Ui/pi �

(
∑n

j=1 τ̃j

)
· τi

τ̃i
1
s · I. Therefore,

‖E
[
Y2
]
‖ ≤

∑n
j=1 τ̃j

s
· ‖UT DU‖.

Since U consists of a subset of rows of Ū, one can show that UTU � ŪTŪ = I.
Given these, by the matrix Bernstein bound [Tro15], we have when

s ≥ 2

(
n

∑
j=1

τ̃j

)(
‖UT DU‖+ ε

3

)
· log

(
4d
δ

)
· 1

ε2 ,

with probability at least 1− δ,
‖Y‖ ≤ ε

holds. With this one can show that

−εI � UTSTSU −UTU � εI.

Furthermore, we have

−εRT R � RUTSTSUR− RTUTUR � εRT R.

Therefore,
−εĀT Ā � ATSTSA− AT A � εĀT Ā.

Remark 11. In (C.4), since each element of D is no greater than 1 and UTU � I, we have

UTDU � UTU � I.

Hence the sampling size

s = 4

(
n

∑
i=1

τ̃i

)
· log

(
4d
δ

)
· 1

ε2

is sufficient to yield (C.5).
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Based on Lemma C.2 (stated below), we convert condition (C2) to a standard matrix
product approximation guarantee. A direct corollary of Theorem C.1 completes the proof.

Lemma C.2. Given A ∈ RN×d with n blocks, Q ∈ Rd×d satisfying Q � 0 and ε ∈ (0, 1), and a
sampling matrix S ∈ Rs×n, the following two conditions are equivalent:

(a)
− ε(AT A + Q) � ATSTSA− AT A � ε(AT A + Q). (C.8)

(b)

|xT(ATSTSA−AT A)y| ≤ ε ·
√
‖Ax‖2

2 + xTQx ·
√
‖Ay‖2

2 + yTQy, ∀x, y ∈ Rd. (C.9)

Proof. First, it is straightforward to see (B) ⇒ (A) by setting x = y in (C.9). So now we
prove the other direction.

Denote Ā =

(
A

Q
1
2

)
. Let Ā = ŪR where Ū has orthonormal columns. Then define

U = AR−1 and Ui = AiR−1 for i = 1, . . . , n. Then (C.8) is equivalent to

−εĀT Ā � ATSTSA− AT A � εĀT Ā.

Since R−1 is a full-rank matrix,

−εR−T ĀT ĀR−1 � R−T(ATSTSA− AT A)R−1 � εR−T ĀT ĀR−1.

That is,

−εI = −εŪTŪ � UTSTSU −UTU � εŪTŪ = εI. [Ū is orthonormal bases]

Therefore

‖UTSTSU −UTU‖ ≤ ε.

Now consider

|xT(ATSTSA− AT A)y| = |xT RT(UTSTSU −UTU)Ry|
≤ ‖Rx‖2 · ‖UTSTSU −UTU‖2 · ‖Ry‖2

≤ ε · ‖ŪRx‖2 · ‖ŪRy‖2 [Ū is orthonormal bases]

= ε · ‖Āx‖2 · ‖Āy‖2

= ε ·
√
‖Ax‖2

2 + xTQx ·
√
‖Ay‖2

2 + yTQy.
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c.4 proof of corollary 5 .12

According to Lemma 5.6, we have the error recursion

‖wt+1 − w∗‖ ≤ (1 + ε0)Cq · ‖wt − w∗‖2 + (ε0 + (1 + ε0)Cl) · ‖wt − w∗‖

≤
[
(1 + ε0)Cq

µ

4L
+ ε0 + (1 + ε0)Cl

]
· ‖wt − w∗‖.

If leverage scores sampling is used, then

Cq =
2L

(1− ε)µ
, Cl =

3ε
√

κ

1− ε
.

Therefore

‖wt+1 − w∗‖ ≤
[
(1 + ε0)Cq

µ

4L
+ ε0 + (1 + ε0)Cl

]
· ‖wt − w∗‖

=

[
1 + ε0

2(1− ε)
+ ε0 + (1 + ε0)

3ε
√

κ

1− ε

]
· ‖wt − w∗‖

= ρ · ‖wt − w∗‖.

Now by choosing ε ≤ min
{

1
10
√

κ
, 0.1

}
and ε0 ≤ 0.01, we can get ρ < 0.9.

Since we use CG, in order to achieve ε0 ≤ 0.01, we need Õ(sd
√

κ) according to Ta-
ble 12 (note that since we are in the local region, κ̃t = Θ(κ)). Meanwhile, since ε ≤
min

{
1

10
√

κ
, 0.1

}
, then s = Õ(d/ε2) = Õ(dκ).

Therefore, the complexity per iteration is

tconst + tsolve = Õ(nnz(A)) + Õ(d2κ3/2) = Õ(nnz(A) + d2κ3/2).

Similarly, if block norm squares sampling is used, then

Cq =
2L

(1− 2εκ)µ
, Cl =

4εκ

1− 2εκ
.

Therefore

‖wt+1 − w∗‖ ≤
[
(1 + ε0)Cq

µ

4L
+ ε0 + (1 + ε0)Cl

]
· ‖wt − w∗‖

=

[
1 + ε0

2(1− 2εκ)
+ ε0 + (1 + ε0)

4εκ

1− 2εκ

]
· ‖wt − w∗‖

= ρ · ‖wt − w∗‖.

Now by choosing ε ≤ min
{

1
10κ , 0.1

}
and ε0 ≤ 0.01, we can get ρ < 0.9. As in the case

where leverage scores sampling is used, we get the total complexity per iteration as

tconst + tsolve = Õ(nnz(A)) + Õ(sr(A)dκ5/2) = Õ(nnz(A) + sr(A)dκ5/2).
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c.5 proof of theorem 5 .13

For j = 1, . . . , s, define

Xj =
1
s
(nAT

i Ai − AT A) with probability 1/n, ∀i.

Let Y = ∑s
j=1 Xj = ATSTSA − AT A. Then E

[
Xj
]
= 0. In the following we bound ‖Y‖

through matrix Bernstein inequality. For convenience, we denote Kt := maxi ‖Ai‖2.
First,

‖Xj‖ =
1
s
‖nAT

i Ai − AT A‖ ≤ 2nKt/s,

and

E
[

X2
j

]
=

1
ns2

n

∑
i=1

(nAT
i Ai − AT A)2

=
1

ns2

n

∑
i=1

[
n2(AT

i Ai)
2 + (AT A)2 − 2nAT

i Ai AT A
]

=
1
s2 (AT A)2 +

1
s2

n

∑
i=1

n(AT
i Ai)

2 − 2
s2 (AT A)2

� 1
s2

n

∑
i=1

n(AT
i Ai)

2

� 1
s2 nKt AT A.

Therefore,

‖E
[
Y2
]
‖ ≤ ‖1

s
nKt AT A‖ = 1

s
nKt‖A‖2.

By the matrix Bernstein bound [Tro15], we have when

s ≥ 4nKt(‖A‖2 +
ε0

3
) · log(

d
δ
) · 1

ε2
0

,

with probability at least 1− δ,

‖Y‖ ≤ ε.

Now by setting ε0 = ‖A‖2ε, where ε ∈ (0, 1), we have when

s ≥ 4
nKt

‖A‖2 · log(
d
δ
) · 1

ε2 = 4n
maxi ‖Ai‖2

‖A‖2 · log(
d
δ
) · 1

ε2 ,

with probability at least 1 − δ, ‖ATSTSA − AT A‖ ≤ ε · ‖AT A‖ holds. Since Q � 0,
‖AT A‖ ≤ ‖AT A + Q‖. This implies condition (C1).
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d.1 proof of proposition 8 .5

Recall, for any t ∈ Rd, for Φ−1(t), we mean
(

Φ−1
1 (t1), . . . , Φ−1

d (td)
)
∈ Rd, where Φj(·) is

the CDF of pj(·).
From fu(t) = e−iuTΦ−1(t), for any j = 1, . . . , d we have

∂ f (t)
∂tj

= (−i)
uj

pj(Φ−1
j (tj))

e−iuTΦ−1
j (t).

Thus,
∂d f (t)

∂t1 · · · ∂td
=

d

∏
j=1

(
(−i)

uj

pj(Φ−1
j (tj))

)
e−iuTΦ−1

j (t).

In (8.6), when I = [d],

∫
[0,1]|I|

∣∣∣∣ ∂ f
∂uI

∣∣∣∣ dtI =
∫
[0,1]d

∣∣∣∣∣ ∂d f (t)
∂t1 · · · ∂td

∣∣∣∣∣ dt1 · · · dtd

=
∫
[0,1]d

∣∣∣∣∣ d

∏
j=1

(
(−i)

uj

pj(Φ−1
j (tj))

)
e−iuTΦ−1

j (t)

∣∣∣∣∣ dt1 · · · dtd

=
∫
[0,1]d

d

∏
j=1

∣∣∣∣∣ uj

pj(Φ−1
j (tj))

∣∣∣∣∣ dt1 · · · dtd

=
d

∏
j=1

(∫
[0,1]

∣∣∣∣∣ uj

pj(Φ−1
j (tj))

∣∣∣∣∣ dtj

)
. (D.1)

With a change of variable, Φj(tj) = vj, for j = 1, . . . , d, (D.1) becomes

d

∏
j=1

(∫
[0,1]

∣∣∣∣∣
(

uj

pj(Φ−1
j (tj))

)∣∣∣∣∣ dtj

)
=

d

∏
j=1

(∫
R
|uj|dvj

)
= ∞.

As this is a term in (8.6), we know that VHK[ fu(t)] is unbounded.

d.2 proof of proposition 8 .6

We need the following lemmas, across which we share some notation.

Lemma D.1. Assuming that κ = supx∈Rd h(x, x) < ∞ if f ∈ H, where H is an RKHS with
kernel h(·, ·), the integral

∫
Rd f (x)p(x)dx is finite.

168
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Proof. For notational convenience, we note that∫
Rd

f (x)p(x)dx = E [ f (X)] ,

where E [·] denotes expectation and X is a random variable distributed according to the
probability density p(·) on Rd.

Now consider a linear functional T that maps f to E [ f (X)], i.e.,

T[ f ] = E [ f (X)] . (D.2)

The linear functional T is a bounded linear functional on the RKHS H. To see this:

|E [ f (X)] | ≤ E [| f (X)|] (Jensen’s Inequality)

= E [|〈 f , h(X, ·)〉H|] (Reproducing Property)

≤ ‖ f ‖HE [‖h(X, ·)‖H] (Cauchy-Schwartz)

≤ ‖ f ‖HE

[√
h(X, X)

]
= ‖ f ‖H

√
κ < ∞.

This shows that the integral
∫

Rd f (x)p(x)dx exists.

Lemma D.2. The mean µh,p(u) =
∫

Rd h(u, x)p(x)dx is in H. In addition, for any f ∈ H,

E [ f (X)] =
∫

Rd
f (x)p(x)dx = 〈 f , µh,p〉H. (D.3)

Proof. From the Riesz Representation Theorem, every bounded linear functional on H
admits an inner product representation. Therefore, for T defined in (D.2), there exists
µh,p ∈ H such that

T[ f ] = E [ f (X)] = 〈 f , µh,p〉H.

Therefore we have, 〈 f , µh,p〉H =
∫

f (x)p(x)dx for all f ∈ H. For any z, choosing f (·) =
h(z, ·), where h(·, ·) is the kernel associated with H, and invoking the reproducing prop-
erty we see that

µh,p(z) = 〈h(z, ·), µh,p〉H =
∫

Rd
h(z, x)p(x)dx.

The proof of Proposition 8.6 follows from the existence lemmas above, and the following
steps.
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εS,p[ f ] =

∣∣∣∣∣
∫

Rd
f (x)p(x)dx− 1

s

s

∑
l=1

f (wl)

∣∣∣∣∣
=

∣∣∣∣∣〈 f , µh,p〉H −
1
s

s

∑
l=1
〈 f , h(wl , ·)〉H

∣∣∣∣∣
=

∣∣∣∣∣〈 f , µh,p −
1
s

s

∑
l=1

h(wl , ·)〉H

∣∣∣∣∣
≤ ‖ f ‖H

∥∥∥∥∥µh,p −
1
s

s

∑
l=1

h(wl , ·)
∥∥∥∥∥
H
= ‖ f ‖H Dh,p(S),

where Dh,p(S) is given by

Dh,p(S)2 =

∥∥∥∥∥µh,p −
1
s

s

∑
l=1

h(wl , ·)
∥∥∥∥∥

2

H

= 〈µh,p, µh,p〉H −
2
s

s

∑
l=1
〈µh,p, h(wl , ·)〉H +

1
s2

s

∑
l=1

s

∑
j=1
〈h(wl , ·), h(wj, ·)〉H

= E
[
µh,p(X)

]
− 2

s

s

∑
l=1

E
[

h(wl , ·)
]
+

1
s2

s

∑
l=1

s

∑
j=1

h(wl , wj)

=
∫

Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ− 2
s

s

∑
l=1

∫
Rd

h(wl , ω)p(ω)dω

+
1
s2

s

∑
l=1

s

∑
j=1

h(wl , wj).

d.3 proof of theorem 8 .8

We apply (8.9) to the particular case of h = sincb. We have

∫
Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ = π−d
∫

Rd

∫
Rd

d

∏
j=1

sin(bj(ωj − φj))

ωj − φj
pj(ωj)pj(φj)dωdφ

= π−d
d

∏
j=1

∫
R

∫
R

sin(bj(ωj − φj))

ωj − φj
pj(ωj)pj(φj)dωjdφj,

and

s

∑
l=1

∫
Rd

h(wl , ω)p(ω)dω = π−d
s

∑
l=1

∫
Rd

d

∏
j=1

sin(bj(wl
j −ωj))

wl
j −ωj

pj(ωj)dω

= π−d
s

∑
l=1

d

∏
j=1

∫
Rd

sin(bj(wl
j −ωj))

wl
j −ωj

pj(ωj)dωj.

Thus we can consider each coordinate on its own.



D.3 proof of theorem 8 .8 171

For fixed j, we have

∫
R

sin(bjx)
x

pj(x)dx =
∫

R

∫ bj

0
cos(βx)pj(x)dβdx

=
1
2

∫ bj

−bj

∫
R

eiβx p(x)dxdβ

=
1
2

∫ bj

−bj

ϕj(β)dβ.

The interchange in the second line is allowed because the pj(x) makes the function inte-
grable (with respect to x).

Now fix w ∈ R as well. Let hj(x, y) = sin(bj(x− y))/π(x− y). We have

∫
R

hj(ω, w)pj(ω)dω = π−1
∫

R

sin(bj(ω− w))

ω− w
pj(ω)dω

= π−1
∫

R

sin(bjx)
x

pj(x + w)dx

= (2π)−1
∫ bj

−bj

ϕj(β)eiwβdβ,

where the last equality follows from first noticing the characteristic function associated
with the density function x 7→ pj(x + w) is β 7→ ϕ(β)eiwβ, and then applying the previous
inequality.

We also have∫
R

∫
R

sin(bj(x− y))
x− y

pj(x)pj(y)dxdy =
∫

R

∫
R

∫ bj

0
cos(β(x− y))pj(x)pj(y)dβdxdy

=
1
2

∫
R

∫
R

∫ bj

−bj

eiβ(x−y)pj(x)pj(y)dβdxdy

=
1
2

∫ bj

−bj

∫
R

∫
R

eiβ(x−y)pj(x)pj(y)dxdydβ

=
1
2

∫ bj

−bj

(∫
R

eiβx pj(x)dx
)(∫

R
e−iβy pj(y)dy

)
dβ

=
1
2

∫ bj

−bj

ϕj(β)ϕj(β)∗dβ

=
1
2

∫ bj

−bj

|ϕj(β)|2dβ.

The interchange at the third line is allowed because of pj(x)pj(y). In the last line we use
the fact that ϕj(·) is Hermitian.
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d.4 proof of theorem 8 .11

Let b > 0 be a scalar, and let u ∈ [−b, b] and z ∈ R. We have∫ ∞

−∞
e−iux sin(b(x− z))

π(x− z)
dx = e−iuz

∫ ∞

−∞
e−i2π u

2b y sin(πy)
πy

dy

= e−iuz rect(u/2b)

= e−iuz,

where rect is the function that is 1 on [−1/2, 1/2] and zero elsewhere.
The last equality implies that for every u ∈ �b and every x ∈ Rd we have

fu(x) =
∫

Rd
fu(y) sincb(y, x)dy.

We now have for every u ∈ �b,

εS,p[ fu] =

∣∣∣∣∣
∫

Rd
fu(x)p(x)dx− 1

s

s

∑
i=1

f (wi)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Rd

∫
Rd

fu(y) sincb(y, x)dyp(x)dx− 1
s

s

∑
i=1

∫
Rd

fu(y) sincb(y, wi)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫

Rd
fu(y)

[∫
Rd

sincb(y, x)p(x)dx− 1
s

s

∑
i=1

sincb(y, wi)

]
dy

∣∣∣∣∣ .

Let us denote

rS(y) =
∫

Rd
sincb(y, x)p(x)dx− 1

s

s

∑
i=1

sincb(y, wi).

Then

εS,p[ fu] =

∣∣∣∣∫
Rd

fu(y)rS(y)dy
∣∣∣∣ .

Since the function rS(·) is square-integrable, it has a Fourier transform r̂S(·), and this
formula is exactly the value of r̂S(u). That is,

εS,p[ fu] = |r̂S(u)| .
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Now,

E f∼U (F�b)

[
εS,p[ f ]2

]
= Eu∼U (�b)

[
εS,p[ fu]

2
]

=
∫

u∈�b
|r̂S(u)|2

(
d

∏
j=1

2bj

)−1

du

=

(
d

∏
j=1

2bj

)−1

‖r̂S‖2
L2

=
(2π)d

∏d
j=1 2bj

‖rS‖2
PWb

=
πd

∏d
j=1 bj

D�p (S)
2.

The equality before the last follows from Plancherel formula and the equality of the norm
in PWb to the L2-norm. The last equality follows from the fact that rS is exactly the expres-
sion used in the proof of Proposition 8.6 to derive D�p .

d.5 proof of corollary 8 .12

In this case, p(x) = ∏d
j=1 pj(xj) where pj(·) is the density function of N (0, 1/σj). The

characteristic function associated with pj(·) is ϕj(β) = e
− β2

2σ2
j . We apply (8.11) directly.

For the first term, since

∫ bj

0
|ϕj(β)|2dβ =

∫ bj

0
e
− β2

σ2
j dβ

= σj

∫ bj/σj

0
e−y2

dy

=
σj
√

π

2
erf

(
bj

σj

)
,

we have

π−d
d

∏
j=1

∫ bj

0
|ϕj(β)|2dβ =

d

∏
j=1

σj

2
√

π
erf

(
bj

σj

)
. (D.4)
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For the second term, since

∫ bj

−bj

ϕj(β)eiwl
j βdβ =

∫ bj

−bj

e−
β2

j
2σ2 +iwl

j βdβ

= e−
σjwl

j
2

∫ bj

−bj

e
−
(

β√
2σj
−i

σjwl
j√

2

)2

dβ

=
√

2σje−
σ2

j (w
l
j)

2

2

∫ bj√
2σj

−
bj√
2σj

e
−
(

y−i
σjwl

j√
2

)2

dy

=
√

2σje−
σ2

j (w
l
j)

2

2

∫ bj√
2σj
−i

σjwl
j√

2

−
bj√
2σj
−i

σjwl
j√

2

e−z2
dz

=

√
πσj√

2
e−

σ2
j (w

l
j)

2

2

(
erf

(
−

bj√
2σj
− i

σjwl
j√

2

)
− erf

(
bj√
2σj
− i

σjwl
j√

2

))

=
√

2πσje−
σ2

j (w
l
j)

2

2 Re

(
erf

(
−

bj√
2σj
− i

σjwl
j√

2

))
,

we have

2
s
(2π)−d

s

∑
l=1

d

∏
j=1

∫ bj

−bj

ϕj(β)eiwl
j βdβ =

2
s

s

∑
l=1

d

∏
j=1

σj√
2π

e−
σ2

j (w
l
j)

2

2 Re

(
erf

(
−

bj√
2σj
− i

σjwl
j√

2

))
.

(D.5)
Combining (D.4), (D.5) and (8.11), (8.12) concludes the proof.

d.6 proof of corollary 8 .13

The proof is similar to the proof of Theorem 3.6 of [DKS13]. Note that since supx∈Rd h(x, x) <
∞, we have

∫
Rd h(x, x)p(x)dx < ∞. From Lemma D.2 we know that

∫
Rd h(·, y)p(y)dy ∈ H;

hence from Lemma D.1, we have
∫

Rd

∫
Rd h(x, y)p(x)p(y)dxdy < ∞.

By (8.9), we have

Dh,p(S)2 =
∫

Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ

−2
s

s

∑
l=1

∫
Rd

h(wl , ω)p(ω)dω

+
1
s2

s

∑
l=1

h(wl , wl) +
1
s2

s

∑
l,j=1,l 6=j

h(wl , wj).
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Then,

E
[

Dh,p(S)2
]
=
∫
[0,1]d
· · ·

∫
[0,1]d

(∫
Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ

− 2
s

s

∑
l=1

∫
Rd

h(Φ−1(tl), ω)p(ω)dω

+
1
s2

s

∑
l=1

h(Φ−1(tl), Φ−1(tl))

+
1
s2

s

∑
l,j=1,l 6=j

h(Φ−1(tl), Φ−1(tj))

)
dt1 · · · dts.

Obviously, the first is a constant independent of t1, . . . , ts. Since all the terms are finite,
we can interchange the integral and the sum among rest of the terms. In the second term,
for each l, the only dependence on t1, . . . , ts is tl ; hence all the other tj can be integrated
out. That is,∫
[0,1]d
· · ·

∫
[0,1]d

∫
Rd

h(Φ−1(tl), ω)p(ω)dωdt1 · · · dts =
∫
[0,1]d

∫
Rd

h(Φ−1(tl), ω)p(ω)dωdtl

=
∫

Rd

∫
Rd

h(φ, ω)p(φ)p(ω)dφdω.

The last equality comes from a change of variable, i.e., tl = (Φ1(φ1), . . . , Φd(φd)).
Similar operations can be done for the third and fourth term. Combining all of these,

we have

E
[

Dh,p(S)2
]

=
∫

Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ− 2
∫

Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ

+
1
s

∫
Rd

h(ω, ω)p(ω)dω +
s− 1

s

∫
Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ

=
1
s

∫
Rd

h(ω, ω)p(ω)dω− 1
s

∫
Rd

∫
Rd

h(ω, φ)p(ω)p(φ)dωdφ.

d.7 proof of proposition 8 .15

Before we compute the derivative, we prove two auxiliary lemmas.

Lemma D.3. Let x ∈ Rd be a variable and z ∈ Rd be fixed vector. Then,

∂ sincb(x, z)
∂xj

= bj sinc′bj
(xj, zj)∏

q 6=j
sincbq(xq, zq). (D.6)

We omit the proof as it is a simple computation that follows from the definition of sincb.

Lemma D.4. The derivative of the scalar function f (x) = Re
[
e−ax2

erf (c + idx)
]
, for real

scalars a, c, d is given by

∂ f
∂x

= −2axe−ax2
Re [erf (c + idx)] +

2d√
π

e−ax2
ed2x2−c2

sin(2cdx).
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Proof. Since

f (x) =
1
2

(
e−ax2

erf(c + idx) +
(

e−ax2
erf(c + idx)

)∗)
=

1
2

(
e−ax2

erf(c + idx) + e−ax2
erf(c− idx)

)
, (D.7)

it suffices to compute the the derivative g(x) = e−ax2
erf(c + idx).

Let k(x) = erf(c + idx). We have

g′(x) = −2axe−ax2
k(x) + e−ax2

k′(x). (D.8)

Since

k(x) = erf(c + idx)

=
2√
π

∫ c+idx

0
e−z2

dz

=
2√
π

(∫ c

0
e−z2

dz +
∫ c+idx

c
e−z2

dz
)

=
2√
π

(∫ c

0
e−y2

dy + (id)
∫ x

0
e−(c+idt)2

dt
)

, (D.9)

we have
k′(x) =

2√
π

e−(c+idx)2
=

2d√
π

ed2x2−c2
(sin(2cdx) + i cos(2cdx)). (D.10)

We now have

f ′(x) =
1
2
(

g′(x) + (g∗(x))′
)

=
1
2
(

g′(x) + (g′(x))∗
)

=
1
2

(
−2axe−ax2

(k(x) + k∗(x)) + e−ax2
(k′(x) + (k′(x))∗)

)
=

1
2

(
−4axe−ax2

Re [erf (c + idx)] + e−ax2 4d√
π

ed2x2−c2
sin(2cdx)

)
= −2axe−ax2

Re [erf (c + idx)] +
2d√

π
e−ax2

ed2x2−c2
sin(2cdx). (D.11)

For the first term in (8.12), that is 1
s2 ∑s

m=1 ∑s
r=1 sincb(wm, wr), to compute the partial

derivative of wl
j, we only have to consider when at least m or r is equal to l. If m = j = l,

by definition, the corresponding term in the summation is one. Hence, we only have
to consider the case when m 6= r. By symmetry, it is equivalent to compute the partial
derivative of the function 2

s2 ∑s
m=1,m 6=l sincb(wl , wm). Applying Lemma D.3, we get the

first term in (8.14).
Next, for the last term in (8.12), we only have consider the term associated with one in

the summation and the term associated with j in the product. Since
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(
σj√
2π

)
e−

σ2
j (w

l
j)

2

2 Re
(

erf
(

bj

σj
√

2
− i

σjwl
j√

2

))
satisfies the formulation in Lemma D.4, we can

simply apply Lemma D.4 and get its derivative with respect to wl
j.

Equation (8.14) follows by combining these terms.



EP R O O F S O F R E S U LT S I N C H A P T E R 9

e.1 proof of theorem 9 .4

Let c(σ) = 1
s ∑s

i=1 gi(σ) where gi(σ) = e−σTwi
. It is easy to see that for any x + z = σ we

have c(σ) = 〈Ψ̂(x), Ψ̂(z)〉. The function k is additive-invariant, so we can abuse notation
and write k(σ) = k(x, z) for x + z = σ. Now, let us denote f (σ) = c(σ)− k(σ).

LetMσ = {x + z | x, z ∈ M}. It is easy to see thatMσ is a subset of T = {σ | ‖σ‖ ≤
2R and σi ≥ r, i = 1, . . . , d }. Our goal is to show that with probability specified in (9.3),

| f (σ)| < ε, ∀σ ∈ T . (E.1)

Since diam(T ) ≤ 4R and it is closed in Rd, T is compact. We can construct an ε-net
over T using less than J = (4diam(T )/γ)d balls with radius γ [CS02]. Denote the anchors
of the net by {ηi}J

i=1. We bound | f (σ)| uniformly (with high probability) by showing that
the following two claims hold with high probability:

• For i = 1, . . . , J, | f (ηi)| < ε/2 ;
• For ∀σ ∈ Mσ, ‖∇ f (σ)‖ < ε/2γ.

These are sufficient because for any σ ∈ T , let ηi be the nearest anchor to σ. It satisfies
‖σ− ηi‖ < γ, and hence

‖ f (σ)‖ = ‖ f (ηi) + f (σ)− f (ηi)‖
≤ ‖ f (ηi)‖+ ‖ f (σ)− f (ηi)‖
= ‖ f (ηi)‖+ ‖∇ f (ξ)T(σ− ηi)‖
≤ ‖ f (ηi)‖+ ‖∇ f (ξ)‖ · ‖σ− ηi‖
≤ ε/2 + γ · ε/2γ = ε (E.2)

for some ξ on the line connecting σ and ηi (note that T is convex, so the line is contained
in it). The second equality uses the mean-value theorem.

To show the first claim, it is sufficient to show | f (σ)| < ε holds with high probability
for any (fixed) σ. The claim then follows from a union bound. For any σ ∈ T , we have

f (σ) = c(σ)− k(σ) =
1
s

s

∑
i=1

(gi(σ)− k(σ)) . (E.3)

From Theorem 9.3, it is not hard to show that E [wi] gi(σ) = k(σ), for i = 1, . . . , s. Also,
|gi(σ)| ≤ 1. By the Hoeffding inequality, we have

P

{∣∣∣∣∣1s s

∑
i=1

gi(σ)− k(σ)

∣∣∣∣∣ > ε

}
≤ 2e−2sε2

. (E.4)

By a union bound, the first claim holds with probability at least 1− 2Je−sε2/2.
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To show the second claim, we need to bound the Lipschitz constant of f uniformly. Let
λ = arg maxσ∈T ‖∇ f (σ)‖. Since E [c(λ)] = k(λ), we have E [∇c(λ)] = ∇k(λ), as

∂k(λ)
∂λi

=
∂

∂λi

∫
Rd
+

e−λTw p(w)dw

=
∫

Rd
+

wie−λTw p(w)dw

= E
[
wie−λTw

]
= E

[
∂c(λ)

∂λi

]
. (E.5)

The interchange between the integral and derivative is allowed because the functions
w, λ 7→ e−λTw p(w) and w, λ 7→ wie−λTw p(w) are both continuous on λ and w.

Taking the expectation on ‖∇ f (λ)‖2 = ‖∇c(λ)−∇k(λ)‖2, we have

E
[
‖∇ f (λ)‖2

]
= E

[
‖∇c(λ)‖2 − 2∇c(λ)T∇ f (λ) + ‖∇k(λ)‖2

]
= E

[
‖∇c(λ)‖2

]
− ‖∇k(λ)‖2

≤ E
[
‖∇c(λ)‖2

]
= E

 d

∑
j=1

(
∂c(λ)
∂λj

)2
 . (E.6)

Recall that c(λ) = 1
s ∑s

i=1 gi(λ), so ∂c(λ)
∂λj

= 1
s ∑s

i=1
∂gi(λ)

∂λi
. As gi(λ) = e−λTwi

, we have

∂gi(λ)

∂λj
= −e−λTwi

wi
j. (E.7)

Hence, continuing (E.6), we have

E
[
‖∇ f (λ)‖2

]
≤ 1

s2 E

 d

∑
j=1

(
s

∑
i=1

e−λTwi
wi

j

)2


≤ 1
s2 E

 d

∑
j=1

(
s

∑
i=1

e−wi
jλj wi

j

)2


≤ 1
s2 E

 d

∑
j=1

(
s

∑
i=1

e−wi
jrwi

j

)2


=
1
s2

d

∑
j=1

E

( s

∑
i=1

e−wi
jrwi

j

)2
 , (E.8)

where we used the facts that wi
j, λj are positive and λj ≥ r.
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By our assumption, wi
j are i.i.d. variables with density q. Hence the expectations in the

summand above are identical. Let ν be a random variable with density function q. We have

E
[
‖∇ f (λ)‖2

]
≤ d

s2 E

( s

∑
i=1

e−νirνi

)2
 . (E.9)

Expanding the last inequality and using Jensen’s inequality, we have

E
[
‖∇ f (λ)‖2

]
=

d
s2

(
sE
[
(e−νrν)2

]
+ (s2 − s)(E

[
e−νrν

]
)2
)

≤ d ·E
[
e−2νrν2

]
= dLq,r. (E.10)

By Markov’s inequality, we have

P{‖∇ f (λ)‖2 > ε2/4γ2} ≤ 4γ2Lq,r/ε2. (E.11)

Overall, with probability at least 1− 2
(

16R
γ

)d
e−sε2/2 − 4γ2Lq,r/ε2, the two events will

hold simultaneously. With γ := (16R)
d

d+2 (2e−sε2/2γ2Lq,r)
1

d+2 , and since Lq,rR > ε, the
success probability is at least

1− 26

(
R2Lq,r

ε2

)2

e−
sε2
d+2 . (E.12)

The second part of the theorem follows by fixing the failure probability and solving
for s.

e.2 proof of proposition 9 .5

By the definition of Lq,r, we have

Lq,r = E
[
e−2wrw2

]
=

β

2
√

π

∫ ∞

0
e−2wrw2w−

3
2 e−β2/4wdw

=
β

2
√

π

∫ ∞

0
e−2wr−β2/4ww

1
2 dw

=
β

2
√

π
c

3
2

∫ ∞

0
e−(2rc)(w+1/w)w

1
2 dw

=
β

4

√
2rβ + 1

(2r)
3
2 e
√

2rβ
, (E.13)
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where c = β

2
√

2σi
and we use the fact that

∫
e−a(x+1/x)x1/2dx

= −
√

πe−2a

4a3/2

(
(2a + 1)er f (

√
a(1/
√

x−
√

x)
)
−

√
πe−2a

4a3/2

(
(2a− 1)e4aer f (

√
a(1/
√

x +
√

x))
)
−

√
xe−a(x+1/x)

a
+ C. (E.14)

e.3 proof of proposition 9 .6

Let φ(σ) = e−β ∑d
i=1
√

σi . It is easy to verify that for ρ = ε2/d2, we have |φ(σ+ ρ)−φ(σ)| < ε

for σ ∈ Rd
+. Hence, for δ = ε2

4d2 we have |k(x, z)− k(x + δ, z + δ)| < ε/2. Now, applying
Theorem 9.4 to the setM+ δ shows that with the specified probability, |k(x + δ, z + δ)−
c(x + δ, z + δ)| < ε/2. The bound now follows from (9.4).

e.4 proof of proposition 9 .7

By the definition of Lq,r, we have

Lq,r = E
[
e−2wrw2

]
= λ

∫ ∞

0
e−2wre−λww2dw

= λ
∫ ∞

0
e−(2r+λ)ww2dw

=
2λ

(λ + 2r)3 , (E.15)

where we use the fact that∫
eaxx2dx =

eax(a2x2 − 2ax + 2)
a3 + C. (E.16)
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