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Abstract

Interior methods using iterative solvers for each search direction

can require drastically increasing work per iteration as higher

accuracy is sought.

The Zoom strategy solves first to low accuracy, and

then solves for a correction to both primal and dual variables,

again to low accuracy. We“zoom in”on the correction by

scaling it up, thus permitting a cold start for the correction.

The same strategy applies to warm-starting in general.

The Zoom strategy – p. 3/48



Outline

1 Background on IPMs

2 PDCO

3 Zoom

4 Conclusions and Next Steps

The Zoom strategy – p. 4/48



The Problems

CP minimize
x

φ(x)

subject to ci(x) ≥ 0, i = 1, · · · ,m

φ(x), ci ∈ C2, convex

NP minimize
x

φ(x)

subject to Ax = b, ℓ ≤ x ≤ u

φ(x) convex, separable

LP-Primal minimize
x∈Rn

cT x

subject to Ax = b, x ≥ 0

A ∈ R
m×n, b ∈ R

m, c ∈ R
n
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Basic Elements (cont.)
Duality

LP-Dual maximize
y∈Rm

bT y

subject to AT y ≤ c.

Weak duality:

cT x ≥ bT y

Strong duality:

cTx = bT y ⇐⇒ x and y are optimal
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Basic Elements (cont.)
KKT

x∗ is a KKT point for (CP) if there exists an m-vector λ∗, such
that

(i) ci(x
∗) ≥ 0 (feasibility)

(ii) g(x∗) = J(x∗)Tλ∗ (optimality)

(iii) λ∗ ≥ 0

(iv) ci(x
∗)λ∗

i = 0, i = 1, . . . ,m (complementarity)

• No duality gap → Lagrange multipliers are the dual solutions

• Non-zero duality gap → no Lagrange multipliers exist
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Basic Elements (cont.)

Constraint Qualifications

Constraint qualifications ensure linear approximation at a point
captures the essential geometric information of the true feasible set
in a neighborhood

CQs are therefore required to ensure a KKT point is a local
minimizer

• LICQ: linear problem or JA(x̄) has full row rank

• MFCQ: ci(x̄) > 0, ∀ i or there exists p; JA(x̄)p > 0

• SLCQ: ci(x̄) > 0, ∀ i
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Basic Elements (cont.)

Necessary Optimality Conditions

First order
If x∗ is a local minimizer of (CP) at which the MFCQ holds then x∗

must be a KKT point

Second order
If x∗ is a local constrained minimizer of (CP) at which the LICQ

holds. Then there exists λ∗;λ∗ ≥ 0, c∗Tλ∗ = 0,
g∗ = J∗Tλ∗, and

pTH(x∗, λ∗)p ≥ 0 for all p satisfying J∗

Ap = 0
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Basic Elements (cont.)

Sufficient Optimality Conditions

Sufficient conditions for an isolated constrained minimizer to (CP)

(i) x∗ is a KKT point, i.e. c∗ ≥ 0 and there exists a nonempty set

Mλ of multipliers λ satisfying λ ≥ 0, c∗T λ = 0, and g∗ = J∗T p;

(ii) the MFCQ holds at x∗

(iii) for all λ ∈ Mλ and all nonzero p satisfying g∗T p = 0 and

J∗

Ap ≥ 0, there exists ω > 0 such that pT H(x∗, λ)p ≥ ω‖p‖2
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IPM strategies

Strategy categories

• Algorithm type: affine-scaling, potential-reduction, and
path-following

• Iterate space: primal, dual, primal-dual

• Iterate type: feasible and infeasible (equality constraints)

• Step type: short-step, long-step

The Zoom strategy – p. 11/48



Affine Scaling

LP’ minimize
x

cT x

subject to Ax = b, ‖Xk−1
x − e‖ ≤ 1,

Algorithm scheme is xk+1 = xk + α∆xk (0 < α ≤ 1), where

∆xk = −XkPAXkXkc

‖PAXkXkc‖ ,

and PAXk = I − (AXk)(AXk(AXk)T )−1(AXk)T is the projection

matrix onto the null space of AXk

Convergence proof exists when α = 1/8, but no complexity results
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Potential Reduction

PRP minimize
x,y,z

P (x, z) = q log(xT z) + I(x, z)

subject to Ax = b

x > 0,

AT y + z = c

z ≥ 0,

q is a potential function parameter (Karmarkar used q = m)

I(x) is usually logarithmic interior function or Tanabe-Todd-Ye:

I(x) = −
m∑

i=1

ln(xjzj)

Assuming min δ reduction per iteration yields max N iterations:

N =
q

δ
(log(

xT z

ǫ
) + C2)
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Path-following

LP(µ) minimize
x

B(x, µ) = φ(x) + µI(x)

subject to ci(x) ≥ 0,

where I(x) satisfies:

• I(x) depends only on x ≥ 0

• I(x) preserves continuity

• For any feasible sequence converging to boundary, I(x) → ∞

Two frequently used interior functions:

I(x) =
m∑

i=1

1

xj
, I(x) = −

m∑

i=1

ln(xj)
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Formulating the Primal-Dual Equations

Fµ(x, y) =

(
g(x) − J(x)T y

C(x)y − µe

)
= 0

Newton step:

Fµ(x, y)′(∆x,∆y) = −Fµ(x, y)

Collecting terms on the right-hand side:

(
H(x, y) −J(x)T

Y J(x) C(x)

)(
∆x

∆y

)
= −

(
g(x) − J(x)T y

C(x)(y − π(x, µ))

)
,

πi = µ/ci(x) for i = 1, . . . ,m, and we assume C ≻ 0, Y ≻ 0
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Efficiently Solving the Newton Equations

One option: Pre-conditioned CG on P-D Newton Equations

Block elimination allows for LLT Cholesky factorization to

(H(x, y) + J(x)TY −1C(x)J(x))∆x = −(g(x) − J(x)Tπ(x, µ))

Pre-multiplying by Y −1/2 allows for PMPT = LDLT Cholesky
factorization to
(

H(x, y) J(x)TY 1/2

Y 1/2J(x) −C(x)

)(
∆x

Y −1/2∆y

)
= −

(
g(x) − yJ(x)T

Y −1/2C(x)(y − π)

)
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Line Search

Exact: find argmin of merit function along Newton step direction
Inexact: find step size reducing merit function by a threshold

Backtracking is most popular inexact line search:

Given direction ∆x and α ∈ (0, 0.5), β ∈ (0, 1), t0 = 1, tk+1 = βtk

while
f(x + t∆x) > f(x) + αt∇f(x)T ∆x

Consider residual based on actual newton step pk

rk = ∇2f(xk)pk + ∇f(xk)

Inexact methods are locally convergent if

‖rk‖/‖∇f(xk)‖ ≤ ηk

and {ηk} is uniformly less than 1
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Handling µ

• Too large µ yields small step sizes (slow)

• Too small µ yields steps far from central path

Adaptive updates are typically used:

µk = σk (xk)T z

n

n is the dimension of x and σk ∈ (0, 1), since iterates are assumed
not to be on central path
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PDCO Solver
Matlab primal-dual interior method
http://www.stanford.edu/group/SOL/software.html

Nominal problem:

NP minimize
x

φ(x)

subject to Ax = b, ℓ ≤ x ≤ u

φ(x) convex, separable

Regularized problem:

NP(D1, D2) minimize
x, r

φ(x) + 1

2
‖D1x‖2 + 1

2
‖r‖2

subject to Ax + D2r = b, ℓ ≤ x ≤ u
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PDCO Primal-Dual Equations

Introduce slack variables and replace nonnegativity constraints by
the log barrier:

NP(µ) minimize
x,r,x1,x2

φ(x) + 1

2
‖D1x‖2 + 1

2
‖r‖2 − µ

P
j ln([x1]j [x2]j)

subject to Ax + D2r = b : y

x − x1 = ℓ : z1

−x − x2 = −u, : z2
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PDCO Primal-Dual Equations (cont.)

Eliminate r = D2y and apply Newton’s method:

 ∆x − ∆x1

−∆x − ∆x2


=


rℓ

ru


≡


 ℓ − x + x1

−u + x + x2


 ,


X1∆z1 + Z1∆x1

X2∆z2 + Z2∆x2


=


cℓ

cu


≡


µe − X1z1

µe − X2z2


 ,


 A∆x + D2

2∆y

−H1∆x + AT∆y + ∆z1 − ∆z2


=


r1

r2


≡


 b − Ax − D2

2y

g + D2
1x − ATy − z1 + z2


 ,

where H1 = H + D2
1.
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PDCO Primal-Dual Equations (cont.)

Substitute the first 2 equations into the third:

(
−H2 AT

A D2
2

)(
∆x

∆y

)
=

(
w

r1

)
,

where

H2 ≡ H + D2
1 + X−1

1
Z1 + X−1

2
Z2

w ≡ r2 − X−1
1

(cℓ + Z1rℓ) + X−1
2

(cu + Z2ru)
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PDCO search directions

3 methods for computing ∆y:

• Cholesky on (AD2AT + D2
2I)∆y = AD2w + D2r1

• Sparse QR on min

∥∥∥∥

(
DAT

D2I

)
∆y −

(
Dw

r1

)∥∥∥∥

• LSQR on same LS problem (iterative solver)

Must use LSQR when A is an operator
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Scaling inside PDCO

PDCO allows inputs β and ζ to scale problem data

Guiding principle:

β = input estimate of‖x‖∞
ζ = input estimate of‖z‖∞

Typical choices: β = ‖b‖∞ and ζ = ‖c̃‖∞ = ‖βc‖∞
Final scaling becomes:

Ā = A, b̄ = b/β, c̄ = βc/ζ,

l̄ = l/β, ū = u/β, x̄ = x/β,

ȳ = βy/ζ, z̄1 = βz1/ζ, z̄2 = βz2/ζ,

D̄1 = βD1/
√

ζ, D̄2 =
√

ζD2/β, r̄ = r/
√

ζ.
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Motivation

The problem that started it all

Image reconstruction

Nagy and Strakoš 2000 Byunggyoo Kim thesis, 2002
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Image Reconstruction

min λeTx + 1

2
‖r‖2

st Ax + r = b, x ≥ 0

NNLS: Non-negative least squares λ = 10−4

A is an expensive operator 2-D DFT

65K × 65K

PDCO uses LSQR for each dual search direction ∆y:

min

∥∥∥∥

(
DAT

I

)
∆y −

(
Dw

r1

)∥∥∥∥
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Motivation
LSQR iterations increase exponentially

with requested accuracy
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Zoom strategy: Accelerating IPMs

• Solve to 3 digits: cheap approximation to x, y, z

• Define new problem for correction dx, dy, dz

• Zoom in (scale up correction)

• Solve to 3 digits: cheap approximation to dx, dy, dz

Cold start for both solves
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Zoom theory

Regularized LP:

RLP minimize
x,r,x1,x2

cTx + 1

2
‖D1x‖2 + dTr + 1

2
‖r‖2 + cT

1
x1 + cT

2
x2

subject to Ax + D2r = b : y

x − x1 = ℓ : z1

−x − x2 = −u : z2

x1, x2 ≥ 0

Suppose (x̃, ỹ, z̃1, z̃2, x̃1, x̃2, r̃) is an approximate solution

Redefine problem with

x = x̃ + dx

r = r̃ + dr
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Zoom theory (cont.)

RLP′ minimize
dx,dr,x1,x2

cTdx + 1

2
‖D1dx‖2 + · · ·

subject to Adx + D2dr = eb : y

dx − x1 = ℓ̃ : z1

−dx − x2 = − ũ : z2

x1, x2 ≥ 0

where

b̃ = b − Ax̃ − δr̃

ℓ̃ = ℓ − x̃

ũ = u − x̃
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Zoom theory (cont.)

Add Lagrangian terms

ỹT (b̃ − Adx − D2dr) z̃T
1 (ℓ̃ − dx + x1) z̃T

2 ( − ũ + dx + x2)

to objective:

RLP′′ minimize
dx,dr,x1,x2

ecTdx + 1

2
‖D1dx‖2 + edTdr + 1

2
‖dr‖2 + ecT

1
x1 + ecT

2
x2

subject to Adx + D2dr = eb : dy

dx − x1 = ℓ̃ : dz1

−dx − x2 = − ũ : dz2

x1, x2 ≥ 0

Same form as original RLP
Primal and dual variables are small
Hence, scale up and use cold start
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Revisions to PDCO

Define z̄1 = z1 + c1, z̄1 = z1 + c1

Eliminate r = D2y − d and apply Newton’s method:

 ∆x − ∆x1

−∆x − ∆x2


=


rℓ

ru


≡


 ℓ − x + x1

−u + x + x2


 ,


X1∆z1 + Z1∆x1

X2∆z2 + Z2∆x2


=


cℓ

cu


≡


 µe − X1z̄

µe − X2z̄2


 ,


 A∆x + D2

2∆y

−H1∆x + AT∆y + ∆z1 − ∆z2


=


r1

r2


≡


 b − Ax − D2

2y + D2d

g + D2
1x − ATy − z1 + z2


 ,

where H1 = H + D2
1
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Revisions to PDCO (cont.)

Substitute the first 2 equations into the third:

(
−H2 AT

A D2
2

)(
∆x

∆y

)
=

(
w

r1

)

as before, where

H2 ≡ H + D2
1 + X−1

1
Z1 + X−1

2
Z2

w ≡ r2 − X−1
1

(cℓ + Z1rℓ) + X−1
2

(cu + Z2ru)

Scaling for additional terms:

c̄1 = βc1/ζ, c̄2 = βc2/ζ,

d̄ = d/
√

ζ, κ̄ = κ/ζ
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Scaling Outside PDCO

A well-scaled A improves numerical properties inside PDCO.

Find diagonal matrices R,C such that Â = R−1AC−1 has entries
close to 1.

Adjust other terms for problem consistency:

Â = R−1AC−1, b̂ = R−1b, ĉ = C−1c,

ĉ1 = C−1c1, ĉ2 = C−1c2, l̂ = Cl,

û = Cu, x̂ = Cx, ŷ = Ry,

ẑ1 = C−1z1, ẑ2 = C−1z2, D̂1 = C−1D1,

D̂2 = R−1D2,

while d, r, κ remain unchanged.

Zooming is the choice of appropriate β, ζ for PDCO
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Convergence

Theorem:
Using a strictly self-concordant barrier, if the sublevel set
S = {x; f(x) ≤ f(x0)} is closed and f is bounded below, then
there exists η, γ > 0, with 0 < η ≤ 1/4, dependent only on the line
search parameters such that:

• If λ(xk) > η, then f(xk+1) − f(xk) ≤ −γ

• If λ(xk) ≤ η, then the line search selects t = 1 and

2λ(xk+1) ≤ (2λ(xk))2.

In the damped phase the objective decreases monotonically by at
least γ every iteration, so convergence is guaranteed (with the
assumption about f on the sublevel set S being bounded below).
Convergence is quadratic in the pure Newton phase
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Complexity

Lemma (outer iterations):

Given µ0 and updates of µk+1 = σµk, with 0 < σ < 1, then after at
most

1

1 − σ
log

(
nµ0

ε

)

iterations we have nµ ≤ ε

Lemma (inner iterations):
For given σ, 0 < σ < 1, the number of iterations between µ updates
is not larger than

2

(
1 +

√
(1 − σ)

√
n

σ

)4

The Zoom strategy – p. 38/48



Complexity (cont.)

Theorem:

Upper bound for total iterations of 2-phase zoom and refine
technique:

O

(
n log

(
n2µ0

1µ
0
2

ε

))
,

where µ0
1 and µ0

2 are the starting duality gap values for phase 1 and
phase 2, respectively
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A Closer Look at the Inner Workings

The typical Newton system for an IPM applied to an LP is of the
form (

−X−1Z AT

A

)(
∆x

∆y

)
=

(
r4

r1

)

Wright shows that in the degenerate case,

cond(M) ≈ 1

µ

for iterates near the central path and µ sufficiently small
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Zoom Inner Workings (cont.)

At the end of the first stage with a target precision of 10−4 we have

cond(M1) ≈
1

µ
≃ 104,

where M1 represents the Jacobian at the intermediate solution

At the next stage, by design 1 ≃ µ2 >> µ1 and hence
cond(M2) ≃ 1, so

cond(M2) << cond(M1),

where M2 represents the Jacobian at the starting point for the
scaled new problem (at the start of second stage)
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Results: Accelerating IPMs
LSQR iterations inside PDCO
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Netlib Results: Accelerating IPMs
LSQR iterations inside PDCO

Zoom strategy applied to Netlib LP problems:

criteria (based on single solve) # problems avg Zoom benefit

# LSQR itns < 5,000 16 -1.49%

5,000 ≤ # LSQR itns < 15,000 12 1.37%

15,000 ≤ # LSQR itns 12 28.14%
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Motivation

Solving several related problems is common in industry

Reusing prior solutions in IPMs (warmstarting) is usually not
efficient

• Solutions are close to each other but proximity to central path
varies drastically between problems

• Newton steps end up being greatly shortened and
backtracking often occurs

• Coldstarts typically take less time than warmstarting

Much renewed interest in research: Benson & Shanno (2005),
Gondzio & Grothey (2006), Roos (2006)
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Zoom strategy: Warm-starting IPMs

• Set solution to original LP as current approximation

• Define new problem for correction dx, dy, dz

• Zoom in (scale up correction)

• Solve loosely: cheap approximation to dx, dy, dz

Cold start for loose solve
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Warm-starting IPMs

LP(γ, δ) minimize
x, r

cTx + 1

2
‖γx‖2 + 1

2
‖r‖2

subject to Ax + δr = b, ℓ ≤ x ≤ u

Regularized LP γ = δ = 10−3

PDCO with Cholesky on AD2AT + δ2I

• LPnetlib problems with 5 random perturbations to A, b, or c
(cf. Benson and Shanno 2005)

• Smaller problems (< 100KB): 45 runs for each problem

• Compare Zoom to single solve
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Results: Warm-starting IPMs

PDCO iterations (warm/cold) vs. perturbation to x, y
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Next steps

• Multiple Zooms?

• Adaptive Zooms?

• How much is attributable to Zoom, to scaling?

• Explain outliers
(e.g. Check size of residuals to decide Zoom scaling)

Conclusions

• Minor changes to existing primal-dual algorithms

• Zoom time reduced 30–60%
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