
Iterative Refinements and Zoom:
Acceleration and Warmstarting of

Interior Point Methods

Leo Tenenblat

June 25, 2008

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Interior Point Methods vs. Active Set

Methods . 2
1.3 Difficulties with IPMs . 2

2 An Overview of Interior Methods 4
2.1 Basic elements . 4

2.1.1 Duality . 4
2.1.2 Optimality Conditions for Constrained Optimization . 6
2.1.3 Newton’s Method for Nonlinear Equations 11

2.2 IP algorithms/strategies . 13
2.2.1 Affine-scaling . 14
2.2.2 Path-following . 16
2.2.3 Potential-reduction . 20

2.3 Theory of Barrier-type Methods 22
2.3.1 Convexity and Self-Concordance 22
2.3.2 Convergence and Complexity of Self-Concordant Bar-

rier Methods . 23
2.4 Implementation Issues . 26

2.4.1 Path-Following Methods 26
2.4.2 Warmstarting Interior Methods 29

3 PDCO 32
3.1 Regularization . 33
3.2 The Barrier Approach . 33
3.3 Newton’s Method . 35
3.4 Solving for (∆x,∆y) . 35

i

3.5 Scaling . 36

4 The Refine and Zoom Technique 38
4.1 Motivation . 38
4.2 Refinement . 39
4.3 Revisions to PDCO . 42

4.3.1 Changes to Newton’s Method 42
4.3.2 Changes to Scaling . 43

4.4 Scaling (outside PDCO) . 44
4.5 Zoom . 45
4.6 Convergence and Complexity 46

5 Accelerating IPMs 48
5.1 Motivation . 48
5.2 Why Zoom and Refine Works 50
5.3 Numerical Results . 52

6 LP Warmstarting 55
6.1 Motivation . 55
6.2 LP Zoomstarting/Jumpstarting 57
6.3 Numerical Results . 58

7 Appendix 76

ii

Chapter 1

Introduction

In this chapter we exhibit the class of problems this thesis covers and give
an overview of the interior point method, its strengths and weaknesses. We
also outline here the structure of the thesis.

1.1 The Problem

We concern ourselves throughout this thesis primarily with the following type
of problem:

NP minimize
x

φ(x)

subject to Ax = b, ℓ ≤ x ≤ u,

where φ(x) is a convex function with known gradient g(x) and Hessian H(x),
and A ∈ R

m×n. The format of NP is suitable for any linear constraints. For
example, a double-sided constraint α ≤ aTx̃ ≤ β (α < β) should be entered
as aTx̃− ξ = 0, α ≤ ξ ≤ β, where x̃ and ξ are relevant parts of x.

Many real-world problems can be modeled through the NP framework.
Electronic circuit design problems or automatic control systems, for example,
can be structured in the form above. Also, linear programs (LP) are a subset
of NP that have numerous classic examples derived from industry.

Theoretical results are often derived within a more generalized context
where the linear constraints are replaced by convex ones. We explain those
problems in detail where applicable.

1

CHAPTER 1. INTRODUCTION 2

1.2 Interior Point Methods vs. Active Set

Methods

Interior Point Methods (IPMs) reached a peak of development (under a differ-
ent name) with the classic work of Fiacco and McCormick [12]. Karmarkar’s
algorithm [30] is considered to be the first algorithm of this kind intended
for large problems and has been enhanced and adapted over the years. They
fell from favor for some 10 years, but were reinvented in disguised form as
a response to the poor complexity properties of active-set methods such as
the Simplex Method for linear programming. IPMs are nowadays considered
essential to every optimization algorithms suite, better suited for solving cer-
tain LPs than Simplex, while also able to tackle nonlinear problems. The
Simplex Method, on the other hand, has also been adapted for use with
nonlinear problems.

The main idea behind IPMs is to specify a series of simpler perturbed
problems whose solutions xk are always in the interior of the feasible region
(l < xk < u). As the perturbation is decreased toward zero, the sequence
xk follows a path leading toward feasibility and optimality for the original
problem. This differs from active-set methods, where iterates move between
adjacent feasible solutions on intersections of a set of active constraints, with
constraints entering or leaving the active set in order to improve the objective
until no such improvement is possible. In this difference lies the essence of
the advantages and disadvantages of each approach. We focus mainly here
on the analysis of IPMs, noting that [54] has a more comprehensive compar-
ison of the two classes of algorithms. While IPMs have better complexity
properties, since they do not face the combinatorial issue of the choice of
active constraints, their iterations are much more costly. Also, because of
the interior quality of its iterates, IPMs can encounter numerical difficulties
as the iterates approach the constraint boundaries near the solution, which
normally resides on some of them.

1.3 Difficulties with IPMs

Typical IPM implementations exploit sparsity patterns and efficient matrix
factorizations to speed up the linear algebra in each iteration. However, for
problems with a dense constraint matrix or when the matrix is expressed
through an operator, it becomes necessary for an IPM to employ iterative

CHAPTER 1. INTRODUCTION 3

solvers in the subalgorithm for computing search directions. Image restora-
tion and basis pursuit are examples of such problems. In these situations,
there can be a drastic increase in computational effort as the iterates ap-
proach the solution. This happens because as the distance to some of the
boundaries approaches zero, the linear system defining each search direction
becomes increasingly ill-conditioned, causing a drastic increase in the num-
ber of iterations required by the subalgorithm solver to achieve adequate
accuracy.

Another well-known deficiency of IPMs is their stalling behavior in prob-
lem restarts. In real world scenarios, it is commonly required to solve a
series of closely related problems. Industrial models with varying capacities,
or economics problems with changing demands, are examples of such situ-
ations. Frequently the solutions of such problems are also closely related,
so one would expect solvers to require less computational effort on one such
problem if starting from a solution to another in the same group. Warm-
starting, as it is called, is common practice with active-set methods such as
Simplex but is notoriously problematic in IPMs, again because of numerical
issues related to boundary proximity of the iterates.

These difficulties and possible solutions to them are the main focal points
of this dissertation.

Chapter 2

An Overview of Interior
Methods

In this chapter we provide a comprehensive overview of the theory of con-
strained optimization, interior point methods, and the numerical implemen-
tation of such methods. For didactical purposes we introduce several of
these elements within the framework of linear programming, giving references
wherever possible to more in-depth analysis of their nonlinear counterparts.

Given the scope of this subject, the several topics underneath it, and the
flurry of new research published in recent years on many of these topics, de-
tailed all-encompassing surveys as well as topic-specific thorough discussions
are widely available in the literature, for example [17, 23, 20, 35]. Many
linear and nonlinear programming books also contain chapters on interior
methods that include many of the latest results and unified viewpoints on
theory, presented in didactical fashion (e.g. [56, 4, 5].)

2.1 Basic elements

2.1.1 Duality

Duality plays an important role in the understanding of interior methods.
From simple nomenclature to the underlying theory and implementation in-
volved in specific algorithms, elements of this concept appear throughout this
thesis.

In the context of linear programming, (NP) can be represented more

4

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 5

succinctly as

LP-Primal minimize
x∈Rn

cTx

subject to Ax = b, x ≥ 0,

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n. To this primal problem, there is a closely

related problem, using the same data, which is called the Dual:

LP-Dual maximize
y∈Rm

bT y

subject to AT y ≤ c.

LP-Dual can also be represented in a similar form to LP-Primal, without loss
of generality, as follows:

LP-Dual’ maximize
y∈Rm

bTy

subject to ATy + z = c, z ≥ 0,

where z is commonly referred to as the dual slack vector. We can assume that
A has full row rank, since linear dependence among the constraints would
imply either an infeasible problem or a redundant constraint. This implies a
1-1 correspondence between y and z in the dual feasible set, so we refer to a
dual point simply as y.

The following theorem establishes the relationship between these two
problems.

Theorem 1 (Fundamental Theorem of Duality). Suppose x and y are feasible
for LP-Primal and LP-Dual respectively.

(i) Weak duality. The objective values satisfy cTx ≥ bTy. In other words,
a feasible primal point provides an upper bound for the objective of the
dual problem and, likewise, a feasible dual point provides a lower bound
for the primal objective. This property has the important consequence
that if either problem is unbounded, the other is infeasible. Note that
since the implication is unidirectional, it is still possible for both to be
infeasible.

(ii) Strong duality. x and y are optimal if and only if cTx = bT y. The
non-negative quantity xT z = xT (c − ATy) = cTx − bT y is known as

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 6

the duality gap. From this property, if one problem has a finite optimal
solution, so does the other, and their optimal objective values are equal.
When this happens, clearly xT z = 0, a condition known as complemen-
tary slackness.

Though most of these properties can be extended in a straightforward
manner to the nonlinear case, it is important to note that the duality gap
is not always zero as it is for LPs. Such a guarantee in the nonlinear case
requires certain convexity properties of the objective and constraint equations
as we see below.

2.1.2 Optimality Conditions for Constrained Optimiza-
tion

The theory of constrained optimization covers the very general class of prob-
lems represented by

NP minimize
x

φ(x)

subject to ci(x) ≥ 0, i = 1, . . . , m,

where we assume throughout that φ and ci are twice-continuously differen-
tiable and convex. We denote the gradient and Hessian of φ by g(x) and
H(x) respectively, where

g(x) = ∇φ(x)

H(x) = ∇2φ(x)

Hi(x) = ∇2ci(x).

Analogously, the gradient and Hessian of ci(x) are denoted by ∇ci(x) and
Hi(x), where

Hi(x) = ∇2ci(x),

while J(x) is used for the m× n Jacobian of the constraints, whose i-th row
is ∇ci(x).

Optimality conditions for (NP) are inextricably linked to what is widely
known in literature as the KKT conditions (or KKT point). The term stands
for “Karush-Kuhn-Tucker”, who identified (Karush in 1939 and Kuhn-Tucker
separately in 1951) the optimality properties of inequality constrained prob-
lems that we now state.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 7

Definition 1. (KKT point) x∗ is a (first-order) KKT point for (NP) if there
exists an m-vector λ∗, called a Lagrange multiplier vector, such that

(i) c(x∗) ≥ 0 (feasibility)

(ii) g(x∗) = J(x∗)Tλ∗ (optimality)

(iii) λ∗ ≥ 0 (nonnegativity of the multipliers), and

(iv) ci(x
∗)λ∗i = 0, i = 1, . . . , m (complementarity).

It is worth noting that KKT points are also saddle points of the La-
grangian function L(x) = L(x, λ) = φ(x) +

∑m
i=1 λici(x). That is, we have

the following result.

Proposition 1.

(x∗, λ∗) ∈ S∗ ⇐⇒ L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀ x ∈ F, λ ∈ R
m
+ ,
(2.1)

where S∗ is the set of points (x∗, λ∗) satisfying the KKT conditions and
F = {x ∈ R

m; ci(x) ≥ 0 ∀ i = 1, . . . , m} represents the feasible set.
The following notation will also be useful later:

gL(x, λ) = ∇xL(x, λ)

HL(x, λ) = ∇2
xxL(x, λ).

The Lagrange multipliers correspond to the dual variables associated with
the problem, and their existence depends on the duality gap being zero, as
the result below states. Analogously to the linear case, the duality gap is
zero for nonlinear problems when supλ≥0(inf L(x)) = inf φ(x).

Proposition 2.

(i) If there is no duality gap, the set of Lagrange multipliers is equal to the
set of optimal dual solutions.

(ii) If there is a duality gap, the set of Lagrange multipliers is empty.

We now formally introduce some definitions that are used throughout this
thesis.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 8

Definition 2. (active, inactive and violated constraints) A constraint ci(x) ≥
0 is said to be active at a point x̄ if ci(x̄) = 0. We denote by A(x̄) =
{i ∈ {1, . . . , m}; ci(x̄) = 0} the set of indices of the active constraints at
x̄. Similarly, ci(x) ≥ 0 is said to be inactive if ci(x̄) 6= 0 (and we denote
by I(x̄) = {1, . . . , m} \ A(x̄) the set of indices of inactive constraints), and
violated if, in particular, ci(x̄) < 0.

From the complementarity property (iv) and the definition above, if a con-
straint ci(x) is inactive then its multiplier λi is zero. That has an immediate
implication: λ∗I = 0 and hence (ii) can be reduced to g(x∗) = JA(x∗)Tλ∗A. If
ci(x) is active, however, nothing can be said of λi. The following property
excludes the possibility of λi and ci(x) being simultaneously zero.

Definition 3. (strict complementarity) Strict complementarity holds at a
KKT point x∗ if there exists a multiplier λ∗ ∈Mλ such that λ∗i > 0 ∀ i ∈ A,

where Mλ = Mλ(x
∗) = {λ ∈ R

m; g(x∗) = J(x∗)Tλ, λ ≥ 0, and ci(x
∗)λi =

0, ∀ i = 1 . . . , m} is the set of acceptable multipliers..
The Lagrange multipliers in Definition 1 are not guaranteed to exist (see

[16].) For such a guarantee we need an additional condition known as a
constraint qualification (CQ). We now state the most commonly encountered
CQs in the literature.

Definition 4. (LICQ) The linear independence constraint qualification (LICQ)
holds at the feasible point x̄ if the problem is linear or if the Jacobian of the
active constraints at x̄ has full row rank, i.e. if the gradients of the active
constraints are linearly independent.

Definition 5. (MFCQ) The Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at the feasible point x̄ if it is strictly feasible, i.e. if ci(x̄) > 0
for all i, or if there exists a vector p such that ∇ci(x̄)Tp > 0 for all i ∈ A(x̄),
i.e. if JA(x̄)p > 0.

Definition 6. (SLCQ) The Slater constraint qualification (SLCQ) holds at
the feasible point x̄ if it is strictly feasible.

While the MFCQ is a weaker condition than the other two, it is more
difficult to verify in practice; doing so requires solving a linear program.
The LICQ is therefore frequently checked for instead, by performing rank-
revealing factorizations, which are still nontrivial but require less work than

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 9

fully solving an LP (see [16] for a recent discussion about constraint qualifi-
cations).

In order to introduce optimality conditions, we first define formally the
notion of optimality.

Definition 7. (local constrained minimizer) The point x∗ is a local con-
strained minimizer of (NP) if it is feasible (x∗ ∈ F) and there exists a com-
pact set S such that

x∗ ∈ int(S) and φ(x∗) = minφ(x) ∀ x ∈ S ∩ F.

First-order necessary conditions for constrained minimization now follow.

Theorem 2 (first-order necessary conditions for a local constrained mini-
mizer). Suppose that x∗ is a local minimizer of (NP) at which the MFCQ
holds. Then x∗ must be a KKT point.

Local maxima can also satisfy the KKT conditions above. However,
second-order properties are frequently as important, when convexity of the
problem at hand is not guaranteed.

The (first-order) conditions stated above are also sufficient only when
(NP) is linear. Nonlinear optimization requires additional conditions on the
behavior of the Hessians of the constraints around the minimizer.

Theorem 3 (second-order necessary conditions for a constrained minimizer).
Suppose that x∗ is a local constrained minimizer of (NP) at which the LICQ
holds. Then there is a vector λ∗ that satisfies λ∗ ≥ 0, c∗Tλ∗ = 0, and
g∗ = J∗Tλ∗, and further, it must be true that

pTH(x∗, λ∗)p ≥ 0 for all p satisfying J∗
Ap = 0.

Without the use of constraint qualifications, the most that can be proved
is that a point x∗ satisfying first- and second-order sufficient conditions is
a strict local constrained minimizer. Proof for the following result can be
found in any of [13, 15, 43, 48].

Theorem 4 (sufficient conditions for a strict constrained minimizer). The
point x∗ is a strict constrained minimizer of (NP) if

(i) x∗ is a KKT point, i.e. c∗ ≥ 0i, and there exists a nonempty set Mλ of
multipliers λ satisfying λ ≥ 0, c∗λ = 0, and g∗ = J∗T p;

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 10

(ii) for all λ ∈ Mλ and all nonzero p satisfying g∗Tp = 0 and J∗
Ap ≥ 0,

there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2.

Simple examples can be constructed (see [14]) where the notion of a strict
minimizer does not seem adequate. Rapid oscillations of the objective in a
neighborhood can yield multiple strict minimizers, producing the effect of a
continuous set of solutions. Formalizing this notion, to ensure a minimizer
x∗ is isolated, i.e. there exists a neighborhood N ∋ x∗ such that no other
minimizers exist in N \ x∗, a constraint qualification is also required, as the
next theorem states.

Theorem 5 (sufficient conditions for an isolated constrained minimizer).
The point x∗ is an isolated local constrained minimizer of (NP) if

(i) x∗ is a KKT point, i.e. c∗ ≥ 0 and there exists a nonempty set Mλ of
multipliers λ satisfying λ ≥ 0, c∗ · λ = 0, and g∗ = J∗Tp;

(ii) the MFCQ holds at x∗, i.e. there is a vector p such that J∗
Ap > 0;

(iii) for all λ ∈ Mλ and all nonzero p satisfying g∗Tp = 0 and J∗
Ap ≥ 0,

there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2.

As mentioned above, since the MFCQ is sometimes not practical to verify,
the following variant, more practical but also more restrictive, is often used
instead.

Theorem 6 (strong sufficient conditions for an isolated constrained mini-
mizer). The point x∗ is an isolated local constrained minimizer of (NP) if

(i) x∗ is feasible and the LICQ holds at x∗, i.e. JA(x∗) has full row rank;

(ii) x∗ is a KKT point and strict complementarity holds, i.e. the (necessar-
ily unique) multiplier λ∗ has the property that λ∗i > 0 ∀ i ∈ A(x∗);

(iii) for all nonzero vectors p satisfying JAx
∗p = 0 there exists ω > 0 such

that pTH(x∗, λ)p ≥ ω‖p‖2.

In 2000, Bertsekas and Ozdaglar [3] portrayed the issue of optimality
and existence of Lagrange multipliers under new light, through the use of an
enhanced version of the Fritz-John optimality conditions and a new principle
unifying the constraint qualifications described above.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 11

Theorem 7 (enhanced Fritz-John conditions). If x∗ is a local minimizer of
(NP) then there exist µ0 ≥ 0 and λ∗i ≥ 0, i = 1, . . . , m not all zero such that

(i) µ0g(x
∗) = J(x∗)Tλ∗;

(ii) if λ∗j > 0 for some j, then there exists a sequence xk with xk → x∗ such
that

(a) φ(xk) < φ(x∗) for all k;

(b) ci(x
k)λ∗i > 0 for all i with λ∗i > 0 and all k.

While perhaps not as easy to deal with from a practical standpoint as
LICQ for instance, but theoretically more elegant, the principle that unifies
the constraint qualifications is that of pseudonormality, now defined.

Definition 8. (pseudonormality) The point x∗ is pseudonormal if there is
no vector λ∗ and sequence {xk} such that

(i) J(x∗)Tλ∗ = 0;

(ii) λ∗i ≥ 0 for all i = 1, . . . , m and λ∗I = 0;

(iii) xk → x∗ and
∑m

i=1 ci(x
k)λ∗i > 0 for all k.

The consequence of the above definition is clear: if x∗ is pseudonormal,
then we can take µ0 = 1 in the Fritz-John conditions, thus guaranteeing
the existence of some λ∗i > 0 satisfying condition (ii)-(b) in Theorem 7.
Such multipliers are called informative because they have inherent sensitivity
information, indicating which constraints to violate in order to improve the
objective value. The proof that all constraint qualifications described herein
(and other generalizations of them) imply pseudonormality is also contained
in [3].

2.1.3 Newton’s Method for Nonlinear Equations

Newton’s method is widely used to compute zeros of nonlinear equations.
We describe the method here briefly and highlight its applicability to opti-
mization.

Given a nonlinear, continuously differentiable function F : R
n → R

n and
a starting point x0, the equation F (x) = 0 can be solved by successively

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 12

computing the zero of an approximation of F at the current iterate. More
explicitly, the Newton step pk from an iterate xk where F ′(xk) is nonsingular
is defined as the vector such that xk+1 = xk + pk is a zero of the first-order
(linear) approximation of F at xk:

0 = F (xk+1) = F (xk) + F ′(xk)pk.

From the discussion in the previous section, we know that given a twice
continuously differentiable function f : R

n → R, a necessary optimal con-
dition is ∇f(x∗) = 0. Applying Newton’s method to this condition (that is,
taking F (x) = ∇f(x) in the previous example) we can construct a method
for computing potential unconstrained optimizers of f(x). If ∇2f(xk) is posi-
tive definite, then each step has a unique minimizer. In this case, our scheme
finds zeros of the local quadratic Taylor-series model, giving

0 = ∇f(xk+1) = ∇f(xk) + ∇2f(xk)pk.

While situations can be construed where Newton’s method diverges, un-
der suitable conditions, it converges quadratically. The formal convergence
result for the pure Newton method now follows.

Theorem 8. If F : R
n → R

n is continuously differentiable, Lipschitz-
continuous in a neighborhood N of x∗ where F (x∗) = 0, and, if x0 ∈ N ,
where ∀x ∈ N,∇F (x) is positive definite, then starting from x0, Newton’s
method converges quadratically to x∗.

Since the result above is rather restrictive with respect to the initial point
x0 and in practice a generic starting point is preferable, Newton’s method
is customarily implemented with a line search as a globalization strategy.
Then, instead of the pure method described above, we have

xk+1 = xk + tkpk,

where tk > 0 is calculated in such a way that there is a decrease of some
merit function (e.g. ‖∇f(xk+1)‖ < ‖∇f(xk)‖.)

One frequently used line search that is simple and effective is the back-
tracking line search. It is based on two constants 0 < α < .5 and 0 < β < 1.
Given a descent direction pk, it starts off with t = 1 and, while F (xk+1) >
F (xk) + αt∇F (xk)Tpk, t is reset to t := βt.

A convergence result for this damped method follows.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 13

Theorem 9. We assume the use of Newton’s method with backtracking line
search, and that f : R

n → R is twice continuously differentiable and the
starting point x0 ∈ S, such that f is strongly convex with constant m in S,
i.e. ∇2f(x) ≥ mI, ∀x ∈ S. In addition, we assume that the Hessian of f
is Lipschitz-continuous in S with constant L. Then there exist numbers η, γ
with γ > 0 and 0 < η ≤ m2/L, such that the following hold.

• If ‖∇f(xk)‖2 ≥ η, then

f(xk+1) − f(xk) ≤ −γ.

• If ‖∇f(xk)‖2 < η, then the line search selects t = 1 and

L

2m2
‖∇f(xk+1)‖2 ≤ (

L

2m2
‖∇f(xk)‖2)

2.

Essentially what the result above states is that this Newton-type method
has two phases: the first, called the damped phase, in which t < 1 is chosen,
and the second pure phase, in which t = 1 and, as the previous result states,
convergence is quadratic.

2.2 IP algorithms/strategies

Interior methods have several variants with differing strategies aimed at theo-
retical or practical improvements. All share the property that iterates remain
in the interior of some space, typically l < x < u and ci(x) > 0 for inequal-
ity constrained problems. The variations among interior methods can be
grouped into the following categories: iterate space, iterate type, step type,
and algorithm type.

• Iterate space. Methods that have iterates satisfying primal constraints
and that treat dual variables as dependent are called primal methods.
Analogously, dual methods have iterates in the dual space. Finally,
primal-dual methods treat both as independent and their iterates be-
long to the Cartesian product of the primal and dual spaces.

• Iterate type. Two variants are possible here: feasible and infeasible
methods. Both methods’ iterates must satisfy the inequality constraints
at all times. However, while iterates in feasible methods must also sat-
isfy equality constraints, the same is not required of infeasible methods.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 14

• Step type. Theoretical results in polynomial complexity often require
some methods to take short steps at each iteration. Though these short-
step methods posess polynomial bounds on the number of iterations, the
polynomial coefficients can be quite large, leading to potentially high
iteration counts. In contrast, long-step methods can and most often
do perform better in practice. Variants of the latter type are the only
ones seen in current implementations of interior methods.

• Algorithm type. Lastly, but most importantly, the underlying strategy
of each approach is what most characterizes each particular method.
It is commonly accepted that three different algorithm categories exist:
affine-scaling, potential-reduction, and path-following. Each of these
is described in detail next, along with its subvariants based on the
different step and iterate strategies outlined above.

2.2.1 Affine-scaling

In 1984, Karmarkar proposed a method based on projective transformations
of gradient-based directional steps. This seminal article [30] led to a flurry of
research that extended the development of interior methods to its extensive
coverage today. In some of this earlier research, Karmarkar’s method was
simplified, the transformations were eliminated, and the new class of methods
that surfaced was termed affine-scaling. It was later realized that Dikin had
proposed, 17 years earlier, the first method of this kind, including a proof of
convergence assuming only primal nondegeneracy.

The general strategy of this class of methods consists of solving a series
of subproblems, substituting an ellipsoid into each feasible set, which can
be more easily handled. Given a strictly feasible (interior) starting point,
an ellipsoid is defined that is centered on the current iterate and inscribed
within the feasible region. The next iterate is defined as the minimizer of the
objective function over this ellipsoid.

In Karmarkar’s original proposal, the variables were scaled so as to have
no component too close to the feasibility boundaries. This way, the feasibility
constraints would not cause the step at each iteration to become too small.
Applying this idea to the LP-Primal problem, we can scale the variables
according to x = Dw, where D is a diagonal matrix. Taking the specific case
of D = Xk = diag(xk) we have at any iteration w = e (i.e. xk maps to e),
which has the desired effect of staying relatively distant from the feasibility

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 15

boundaries. The problem LP-Primal becomes

ASLP1 minimize
w

(Xkc)Tw

subject to AXkw = b, w ≥ 0.

We can then substitute the nonnegativity constraints defining the feasible
region by a unit ball centered at e with radius 1, noting that {w; ‖w − e‖ ≤
1} ⊂ {w;w ≥ 0}. The resulting problem,

ASLP2 minimize
w

(Xkc)Tw

subject to AXkw = b, ‖w − e‖ ≤ 1,

can be solved analytically in a simple fashion. Performing the inverse scaling,
we get the same problem in the original space:

LP’ minimize
x

cTx

subject to Ax = b, ‖Xk−1
x− e‖ ≤ 1,

where the unit ball has been scaled into what is known as the Dikin ellipsoid.
The optimal solution is given by xk+1 = xk + ∆xk, where

∆xk = −X
kPAXkXkc

‖PAXkXkc‖ ,

and PAXk = I − (AXk)(AXk(AXk)T)−1(AXk)T represents the projection
matrix onto the null space of AXk.

With step sizes incorporated into the above algorithm, the scheme be-
comes xk+1 = xk + α∆xk (with 0 < α ≤ 1), for which there exists a conver-
gence proof when α = 1/8. In this variant, the iterates are allowed to move
outside the ellipsoid, while still retaining feasibility. The step then becomes

∆xk = − XkPAXkXkc

‖PAXkXkc‖∞
,

for which the following convergence results exist.

Theorem 10.

• If the problem and its dual are nondegenerate, then for every α < 1, the
sequence generated by the algorithm converges to the optimal solution.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 16

• For α < 2/3, the sequence generated by the algorithm converges to an
optimal solution, regardless of degeneracy.

• There exists an example (with α = 0.995) for which the sequence gen-
erated by the algorithm converges to a nonoptimal solution.

As far as complexity results go, unfortunately there are no formal results
indicating a polynomial bound. In fact, while there are no formal results stat-
ing the contrary, some analysis has been done by Vanderbei [56] suggesting
that in particular circumstances the steps taken by the affine-scaling method
might mimic those of Simplex and, therefore, could theoretically have expo-
nential complexity. Examples of other variants and a more in-depth analysis
of affine-scaling methods can also be seen in [56] and Saigal’s book on linear
programming [51].

2.2.2 Path-following

The main idea behind this type of algorithm is to replace the original prob-
lem of minimizing a given objective subject to constraints by a sequence of
simpler problems that gradually approximate the original problem. In each
subproblem, the objective function is modified by adding to it a weighted
term that guarantees feasibility is satisfied. This weight factor is reduced at
each subproblem, therefore reducing the effect of the added term and hence
obtaining the desired characteristic of approximating the original problem.
In essence, given the LP-Primal problem, we have each subproblem defined
as

LP(µ) minimize
x

B(x, µ) = cTx+ µI(x)

subject to Ax = b,

where I(x) ideally has the following properties:

• [PF1] I(x) depends only on the constraints x ≥ 0;

• [PF2] I(x) preserves the continuity properties of the objective function
at all feasible points;

• [PF3] For any sequence of feasible points converging to a point on the
boundary of the feasible region, I(x) → ∞.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 17

The last property effectively acts as a barrier, preventing iterates from
moving outside the feasible region. For this reason, this type of algorithm is
also commonly referred to as a barrier method.

Such methods can be seen as an extreme case of a similar approach,
termed penalty methods, where a high cost (<∞) is assigned to infeasibility,
in contrast to property (PF3). A popular penalty method is the quadratic
one, based on the augmented Lagrangian function, which for problem LP-
Primal takes the form

Lc(x, y) = cTx+ yT (Ax− b) +
ρ

2
‖Ax− b‖2.

In this method, the incorporation of the constraints into the objective means
they can be entirely dropped from the subproblems, leading to a succession
of bound-constrained problems of the form

LP(ck) minimize
x

Lck(x, yk)

subject to x ≥ 0.

The approximation of Lck(x, yk) to the original objective function is strongly
determined by the proximity of yk to y∗ and the size of the penalty parameter
ck. Strategies for this method therefore revolve around increasing ck and/or
finding good ways to approximate the dual solution yk at each iteration.
Some recent research has been devoted to particular kinds of methods based
on exact penalty functions, whose solutions are also solutions to their related
unpenalized problems. Because of the later use of barrier-type methods in
the remainder of this dissertation, we focus the detailed discussion of the
next few sections strictly on these methods, referring the reader interested
in a thorough analysis of penalty methods to [12].

The interior function I(x) can be interpreted as an approximation of the
indicator function χ : R → R defined as

χ(u) =

{
0 if u ≤ 0,
∞ otherwise.

Given a barrier function I(x), and assuming µ ∈ R+, the set of mini-
mizers {x(µ); x(µ) = argmin (cTx + µI(x))} defines what is known as the
central trajectory or central path, which leads from the feasible region’s an-
alytic center, the solution point for µ = ∞, to the optimal solution on the

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 18

feasible region’s boundary, when µ → 0. The strategy in this algorithm type
is usually for iterates to follow this trajectory (perhaps only roughly); hence,
the term path-following method is frequently used as well. Convergence prop-
erties for this strategy are formally presented below.

Two well known and frequently used functions satisfying the properties
outlined above are

I(x) =
m∑

i=1

1

xj

,

and

I(x) = −
m∑

i=1

ln(xj),

called the inverse and logarithmic interior functions, respectively. There has
been considerable research on both, though the logarithmic function has
surfaced as a notable favorite in both theory and practice because of its
attractive twice-continuously differentiable and self-concordance properties
(the latter to be discussed later). Its first appearance in the literature dates
to 1955 with Frisch’s use of a closely related logarithmic potential method
for retaining feasibility and accelerating convergence [21].

The barrier function derived from the logarithmic interior function then
becomes

B(x, µ) = cTx− µ

m∑

j=1

ln(xj),

which is the de facto standard barrier function for interior methods. It is also
noteworthy that it is very closely related to Karmarkar’s potential reduction
method, as described above; see [22]. Because of the interior property (PF3)
and because B(x, µ) ≃ cTx for small µ > 0 and all strictly feasible x, it seems
reasonable to proceed as in our initial strategy outlined in the beginning of
this section. That is, solve a series of equality constrained subproblems while
decreasing µ at each outer iteration. From a practical standpoint, however, it
is important to note that solving each subproblem accurately would require
a fair amount of computational work and so the strategy must be adapted
so that proximity of the iterates to the central path suffices.

We outline now a short-step primal-dual feasible algorithm based on the
strategy outlined above. Given a current iterate (xk, yk, zk) close to the
central path and a current duality gap measure µk we define µk+1 = σµk(0 <

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 19

σ < 1) and we have the following primal-dual conditions based on µk+1:

Axk = b (2.2)

ATyk + zk = c (2.3)

xjzj = µk+1 ∀ j. (2.4)

Solving for the Newton step, we then have the following linear system



A

AT I
Zk Xk






∆xk

∆yk

∆zk


 =



r1
r2
r3


 ≡




b−Axk

c− Atyk − zk

µk+1e−Xkzk


 , (2.5)

where Zk and Xk are diagonal matrices based on the vectors zk and xk. Solv-
ing this system allows us to define the new iterate simply as (xk+1, yk+1, zk+1) =
(xk, yk, zk) + (∆xk,∆yk,∆zk) and proceed to the next loop. Note that a full
step is taken. This requires (xk, yk, zk) to be close to the central path, and
µk+1 to be sufficiently close to µk. In other words, the change in µ must be
small enough for a pure Newton step to reduce the residual norm ‖(r1, r2, r3)‖.
Hence the name ”short-step” method.

One reason for the popularity of path-following interior methods is the
extent of theory possible from the nature of the algorithm. These theoretical
properties of the central path are presented in detail in the next section
as well as a comprehensive convergence analysis including aspects tied to
implementation. Yet complexity properties for this type of algorithm are
most likely its main attractor. For the scheme outlined above, for example,
it has been proven for feasible methods [50] that a solution with ε accuracy
(for the duality gap) is reached within at most N iterations, where

N = O(
√
n log

nµ0

ε
),

where n is the size of primal solution vector and µ0 = x0T
z0. This polynomial

complexity bound is the best attained so far for linear optimization.
As mentioned above, despite their attractive complexity bounds, short-

step methods often converge too slowly to be useful in practice. In the above
method, σ is actually very close to 1 most of the time, which means a large
decrease of the duality gap requires an enormous number of iterations. In
the long-step variant of the method above, the idea is to pick a smaller σ.
Practical performance is superior, even though this change leads to worse

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 20

overall theoretical properties. The difficulty is that in system (2.5), the last
equation is an approximation of the nonlinear equation (2.4) that becomes
less accurate if µ decreases too quickly. As a consequence, the barrier term
might cease to serve its interiorizing purpose and the Newton step might
lead to an infeasible iterate. Counter-intuitively, in this long-step variant a
damped Newton step is therefore taken,

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk),

where αk ≤ 1 is chosen to ensure feasibility throughout. Unfortunately,
damping the Newton step has the undesirable effect that we now aim at a
duality measure of (1−αk(1−σ))µk instead of the original σµk. Furthermore,
because of our worsened approximation of (2.4) in (2.5) once more, there is no
guarantee that the new iterate remains close to the central path. A common
tactic to circumvent this problem is to keep taking Newton steps with a fixed
duality measure (µk+1 = µk) until the current iterate is sufficiently close to
the central path, at which point µ is decreased (µk+1 = σµk). In [50], the
complexity result for this long-step algorithm is proven to be

N = O(n log
nµ0

ε
). (2.6)

2.2.3 Potential-reduction

While Affine-Scaling methods were derived from Karmarkar’s method, the
basic principle in his original algorithm was somewhat different. His famous
method made use of a potential function in order to measure improvement at
each iteration. In this section that specific method is explained and a class
of methods based on similar strategies is introduced.

Karmarkar’s method (and consequently other potential-reduction meth-
ods) deserves attention not only for its historical significance. Though not as
simple as affine-scaling methods nor, as is seen in the next section, as enticing
as path-following methods in terms of efficiency results, potential-reduction
methods still possess some advantages. In path-following methods, by far the
most popular type of interior method nowadays, the iterates ideally follow,
as the name suggests, a path leading to the optimal solution. Because of
the nonlinear nature of this path, the step sizes (along a computed linear
direction) must be adequately controlled in order not to greatly overshoot
the path and the region around it, in which good convergence properties can

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 21

be expected. Potential-reduction methods, in contrast, have no tie to any
such path, therefore allowing the use of large steps, which can greatly accel-
erate convergence. In addition, these methods have a performance guarantee
and, because dual information is readily available, in their implementation
it becomes simple to allow the user to set an optimality tolerance.

In the context of linear programming, potential-reduction methods typi-
cally involve solving a problem of the form

PRP minimize
x,y,z

P (x, z) = q log(xT z) + I(x, z)

subject to Ax = b
x > 0,

ATy + z = c
z ≥ 0,

where q is a parameter of the potential function (Karmarkar’s method used
q = m) and I(x, z) is again some form of interior function. The first part
of the (objective) potential function acts to reduce the duality gap to zero,
while the second part keeps iterates within the feasible region, as in the
path-following methods. The (primal) logarithmic interior function

I(x) = −
m∑

i=1

ln(xj),

is again a popular choice. Another primal-dual variant, named after Tanabe-
Todd-Ye, uses

I(x) = −
m∑

i=1

ln(xjzj),

which aims at having well-centered iterates, bringing this method closer to
being a path-following method.

Under mild assumptions, it can be easily shown that in the case of the
primal logarithmic barrier, the duality gap is bounded by the potential func-
tion,

xT z ≤ C1e
P (x,z)/q, (2.7)

where C1 is a problem-specific constant. Assuming some reduction of P (x, z)
by at least δ at every iteration, we then have that the method converges in
at most

N =
q

δ
(log(

xT z

ǫ
) + C2)

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 22

iterations, where C2 is a constant dependent upon the starting point and the
problem data.

For a more comprehensive overview of potential-reducing methods, the
reader is referred to [53, 27, 1].

2.3 Theory of Barrier-type Methods

Following Karmarkar’s introduction of interior methods for linear optimiza-
tion, the nonlinear aspect of the method suggested that an extension to
convex programming was possible. Yet most of the subsequent research was
dedicated to the extension of potential-reduction and path-following algo-
rithms to more restricted classes of nonlinear problems. Then, in their mon-
umental contribution of 1994, Nesterov and Nemirovskii presented a deep
and unifying theory and analysis of interior point methods for general con-
vex optimization problems [41]. In this section we give an overview of some
of their work, presenting the main ideas of self-concordant barrier functions
as well as the main associated theoretical results.

2.3.1 Convexity and Self-Concordance

Let us begin by defining the general convex problem as

CP minimize
x

c0(x)

subject to ci(x) ≥ 0, i = 1, . . . , m,

where the functions c0, c1, . . . , cm : R
n → R are convex. That is, they satisfy

ci(αx+ βy) ≤ αci(x) + βci(y), ∀x, y ∈ R
n and α, β ∈ R

+ with α + β = 1.

Clearly the linear problem LP-Primal discussed above is a special case of
CP.

Applying the barrier method idea introduced in the previous section,
we can think of solving CP by reducing it to the solution of a series of
unconstrained problems defined as

CP(µ) minimize
x

c0(x) + µI(c(x)).

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 23

Nesterov and Nemirovskii introduced the notion of a self-concordant func-
tion and showed that if I(x) belongs to this class of functions, then CP can
be solved efficiently using Newton’s method. Formally, a function f : R → R

is self-concordant if it satisfies the following property:

|f ′′′(x)| ≤ f ′′(x)3/2, ∀x ∈ domf. (2.8)

More generally, a function f : R
n → R is self-concordant if it is self-

concordant along every line of its domain. That is, if f̃(t) = f(x+ tv) is self-
concordant of t for all x ∈ domf and for all v. The inverse and logarithmic
functions introduced above are examples from this class.

In addition to providing a relative bound for the third derivative, which
is necessary to obtain complexity results based on Newton’s method, prop-
erty (2.8) has the added benefit of being invariant with respect to affine
coordinate changes. In other words, f̃(y) = f(ay + b) for a, b ∈ R is self-
concordant if and only f is. Furthermore, this notion of properties under
which self-concordancy is preserved can be extended to what is known as
“barrier calculus”, noting that (some) scaling and addition do not alter self-
concordancy, i.e. if c1, c2 are self-concordant, so are ac1 with a ≥ 1 and c1+c2.
This remarkable framework allows for a great deal of flexibility in the devel-
opment of interior methods under one simple and robust unifying theory.
While self-concordant barriers are only known for a few important classes of
programs, such as linear, convex quadratic, and semidefinite programs, [41]
contains a proof that every open convex set in R

n posesses a self-concordant
barrier, which at least in theory provides a great deal of flexibility for its use
in interior methods.

2.3.2 Convergence and Complexity of Self-Concordant
Barrier Methods

While classic results of optimization typically involve the gradient of the
objective or constraints, here a particular term turns out to be more useful.
The Newton decrement,

λ(x) = (gTH−1g)T

which can also be written as

λ(x) = (∆xT∇2f(x)∆x)1/2,

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 24

is not only useful in the analysis of Newton’s method, but is also a practical
stopping criterion, since

f(x) − inf
y
f̂(y) = f(x) − f̂(x+ ∆x) =

1

2
λ(x)2,

where f̂(x) is the second-order approximation of f at x. The Newton decre-
ment can also be used in a backtracking line search, given that

∇f(x)T ∆x = −λ(x)2

is the directional derivative of f at x in the direction of the Newton step. In
this type of line search, starting with t = 1, one takes t = βt until

f(x+ t∆x) < f(x) + αt∇f(x)T ∆x = f(x) + αtλ(x)2,

where α ∈ (0, 1/2) and β ∈ (0, 1). This guarantees the line search eventually
terminates with t such that there is a decrease of the objective for a relatively
large stepsize.

A particularly useful property of the Newton decrement is that, like self-
concordant functions, it is invariant to affine changes in coordinates.

The main convergence result stems from the following result.

Theorem 11. Using Newton’s method with backtracking line search, and
given a starting point x0 and a strictly self-concordant barrier, if the sublevel
set S = {x; f(x) ≤ f(x0)} is closed and f is bounded below, then there exist
numbers η, γ > 0, with 0 < η ≤ 1/4, dependent only on the line search
parameters α, β, such that the following hold:

• If λ(xk) > η, then
f(xk+1) − f(xk) ≤ −γ. (2.9)

• If λ(xk) ≤ η, then the line search selects t = 1 and

2λ(xk+1) ≤ (2λ(xk))2. (2.10)

The first inequality provides a picture of what occurs during the damped
phase of the Newton method, where it is possible that t < 1. Since the
objective decreases monotonically by at least γ every iteration, convergence
is guaranteed (recall the assumption about f on the sublevel set S being

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 25

bounded below). In addition, applying (2.9) recursively we find that λ(xk) ≤
η after at most

f(x0) − p∗

γ

iterations. Once a point xl in this region is reached, (2.10) indicates this is
now a pure Newton phase (t = 1) and convergence is quadratic. In particular
by applying (2.10) repeatedly we find that f(xl) − p∗ ≤ ǫ after at most

log2 log2(
1

ǫ
)

iterations. We thus obtain a final bound on γ

γ = αβ
η2

1 + η
,

and hence a bound on total iterations,

f(x0) − p∗

γ
+ log2 log2(

1

ǫ
) =

20 − 8α

αβ(1 − 2α)2
(f(x0) − p∗) + log2 log2(

1

ǫ
), (2.11)

which is dependent only on the line search parameters α, β and the final
accuracy ǫ.

As mentioned earlier, one of the great advantages of using self-concordant
functions is their invariance to affine transformations. This allows for a great
number of possible self-concordant functions. A few examples follow:

• (Log barrier for linear inequalities) I(x) = −∑m
i=1 log(bi − aT

i x), with
dom I = {aT

i x < bi, i = 1, . . . , m}.

• (Log-determinant) I(x) = − log det(X), with dom I = Sn
++.

• (Log of concave quadratic) I(x) = − log(xTPx+ qTx+ r), where P ∈
−Sn

+ and dom I = {x; xTPx+ qTx+ r > 0}.
It can also be shown that for any convex function φ : R → R with dom

φ = R++ satisfying

|φ′′′(x)| ≤ 3
φ′′(x)

x
for all x, (2.12)

the function
I(x) = − log(−φ(x)) − log(x)

is self-concordant. Examples for φ satisfying (2.12) include

φ(x) = xp for − 1 ≤ p ≤ 0; φ(x) = (ax+ b)2/x.

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 26

2.4 Implementation Issues

2.4.1 Path-Following Methods

Many practical issues arise in the details of typical implementations of the
algorithms described above that can greatly affect their efficiency. We focus
in this section on the particular case of primal-dual path-following methods,
and cover the basic aspects that constitute the framework for an implementa-
tion. These aspects are: formulation of the primal-dual equations, techniques
for solving the equations efficiently, line search methods, stopping criteria,
and strategies for handling the barrier parameter µ.

Primal-dual methods using the log barrier are by far the most common
algorithm type used in practice. Applying this method to CP leads to the
following system that defines a feasible solution (x(µ), y(µ)) for each positive
µ:

F µ(x, y) =

(
g(x) − J(x)Ty
C(x)y − µe

)
= 0,

where J(x) is the Jacobian of the constraints, C(x) the diagonal matrix of
the constraint values, and e the vector of ones of appropriate dimension. The
Newton direction (∆x,∆y) is defined by the Newton equations

F µ(x, y)′(∆x,∆y) = −F µ(x, y).

After collecting terms on the right-hand side, we have what are known as the
Newton primal-dual equations,

(
H(x, y) −J(x)T

Y J(x) C(x)

)(
∆x
∆y

)
= −

(
g(x) − J(x)T y

C(x)(y − π(x, µ))

)
, (2.13)

where H(x, y) is the Hessian of the Lagrangian evaluated at (x, y), Y the
diagonal matrix of the dual values, πi = µ/ci(x) for i = 1, . . . , m, and we
assume C ≻ 0, Y ≻ 0.

Since most of the computational effort during an iteration of a primal-
dual method is dedicated to solving the above system, we shall look more
carefully at the different options for handling this task in an efficient and
numerically reliable way. The system (2.13) can be solved as is using, for
instance, an iterative method such as pre-conditioned conjugate-gradient. In
the case where J(x) is an operator, an iterative approach such as this is the

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 27

only option. In other circumstances, direct solvers based on factorizations
can be more efficient, such as sparse LU factorizations.

Sometimes performing appropriate modifications to (2.13) allows for the
use of specialized factorizations known to be even more efficient. One com-
mon approach is to obtain a more condensed version of (2.13) by performing
block elimination. Proceeding this way leads to the system

Hc(x, y)∆x = −(g(x) − J(x)Tπ(x, µ)),

where
Hc(x, y) = H(x, y) + J(x)TY −1C(x)J(x).

If f(x) is convex, H(x, y) is symmetric positive definite and this system
can be solved using a Cholesky factorization, noting that J(x)TY −1C(x)J(x)
takes the form of AD2AT and is hence also symmetric positive definite. The
Cholesky factorization then takes the form of LLT , which is twice as efficient
for computation as the LU decomposition.

A disadvantage with the above approach is that during the block elimina-
tion, fill-in can occur, causing the system to become dense, which is inappro-
priate for Cholesky solvers dependent on sparsity. A different strategy is to
symmetrize (2.13) and solve it using other factorization techniques. Various
alternatives exist for symmetrizing (2.13), most of which include some rear-
rangement of blocks in the Newton system followed by an appropriate scaling
of certain blocks. A particularly popular symmetrization that works for the
system above, and preserves the eigenvalues of the system, is to premultiply
the second block of equations in (2.13) by Y 1/2 while also scaling the dual
variables by Y −1/2. This results in the system
(
H(x, y) J(x)TY 1/2

Y 1/2J(x) −C(x)

)(
∆x

Y −1/2∆y

)
= −

(
g(x) − yJ(x)T

Y −1/2C(x)(y − π)

)
. (2.14)

In the convex case, the matrix M in (2.14) is quasi-definite, which means
suitable Cholesky-type factorizations such as PMP T = LDLT exist for ar-
bitrary symmetric permutations P , with D a diagonal but indefinite ma-
trix. Another type of factorization for symmetric indefinite systems is LBLT ,
where B is block-diagonal with blocks of order 1 or 2. This last approach has
been analyzed with some success by Fourer and Mehrotra [18] and Wright
[58] for the LP case.

It is important to note that in all of the above situations (and most other
ways of tackling (2.13)), the systems ultimately handled tend to be very large

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 28

and contain few nonzero entries, so the use of efficient sparse linear solvers
is critical.

As mentioned in section 2.2.2, a popular implementation of the primal-
dual method is the long-step variant, where once the Newton directions
are calculated, the step is damped to ensure primal and dual feasibility.
Typically this means αk is chosen so that (xk+1, yk+1, zk+1) = (xk, yk, zk) +
αk(∆xk,∆yk,∆zk) has components positive in (xk, zk). Also common is the
additional use of line search methods (e.g. backtracking) that ensure decrease
of some merit function (see [11]).

The loop of outer iterations should stop when the primal and dual resid-
uals are within a predetermined threshold. For example, in the case of a
problem like (LP) one could use the following criteria,

‖rp‖ = ‖Ax− b‖ < ε (2.15)

‖rd‖ = ‖Aty − c‖ < ε (2.16)

Given that typical machine precision is roughly 10−16, values for ǫ in the
range of 10−8 are generally adequate.

For large-scale problems, the Newton system is often expensive to solve by
direct methods. In such cases, the computational effort required to solve this
inner loop accurately is unjustified for what is ultimately only one iterate on
the (outer loop) path to optimality. Inexact Newton methods can be used to
speed up the overall solve time by making use of reasonable approximations
at this sublevel. Iterative methods can be used instead, for example, with a
natural stopping rule based on the residual ‖rk‖/‖∇f(xk)‖, where, if pk is
the actual Newton step, and rk is given by

rk = ∇2f(xk)pk + ∇f(xk).

At the other end of the spectrum, solving these subproblems too coarsely
might lead to excessive inaccuracy and overall poor performance, so a key
question is what trade-offs are reasonable at this level in terms of improving
overall performance. This question is addressed in [10], where a general class
of inexact Newton methods is handled using

‖rk‖/‖∇f(xk)‖ ≤ ηk.

Such inexact methods are proven to be locally convergent if the forcing se-
quence {ηk} is uniformly less than 1; in other words, if

ηk ≤ ηmax < t < 1. (2.17)

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 29

The rate of convergence is superlinear if and only if ‖rk‖ = o(‖∇f(xk)‖) as
k → ∞.

Another implementation issue deserving of special attention is that of the
choice of barrier parameter µ. For small µ, outer iteration steps are small,
but follow the central path closely, which in turn means fewer Newton steps
(typically 1) are required to obtain the next outer iterate. This results in
a small number of inner iterations while many outer ones are required. A
choice of large µ has the opposite effect: large outer steps are taken, but as
a consequence, little proximity of these outer iterates to the central path is
likely, thus leading to longer time spent in the Newton steps. Reasonably
good performance can be obtained by simply keeping 10 ≤ µ ≤ 20, but a
dynamic parameter can yield better results without requiring much extra
effort to implement.

One popular adaptive method for µ is to make it proportional to the
current complementarity value, that is,

µk = σk (xk)T z

n
, (2.18)

where σk is a centering parameter (σk ∈ (0, 1))and n is the number of vari-
ables. Mehrotra’s predictor-corrector [38] is a popular version of this adaptive
approach, where σk is calculated using a preliminary (predictor) affine-scaling
step (with µ = 0). The primal-dual step is taken with this barrier parameter
2.18 and then a corrector step is added to better follow the central path.
While successful in practice, Mehrotra’s method is based on a heuristic and
thus lacks global convergence properties. In [42], Nocedal, Wächter, and
Waltz propose another probing (predictor-like step) method whereby σk is
determined via minimization of so-called quality functions such as the resid-
ual error based on the Newton step as a function of σk.

2.4.2 Warmstarting Interior Methods

Often times in practice, it is necessary to solve a series of closely related
problems. This situation occurs frequently during, for example, analysis of
what-if scenarios or when tackling a series of problems in which part of the
structure depends on the results of the previous solution. When very little
of the problem actually changes from one instance to the next, consecutive
solutions are also often not far from each other. When this happens, one
would intuitively imagine that a solution to one problem could be used as an

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 30

advanced starting point for solving the other problem. Warmstarting, as this
is called, is common practice with active-set methods for Linear Programming
such as Simplex and is particularly useful when problems are large and have
long solve time. Coldstarting, in contrast, is when no such advanced point is
used at startup.

In the Simplex method the iterates step from one feasible solution (ver-
tex of the feasible polyhedron) to the next, moving along the edge that most
improves the objective, until no further improvement is possible, i.e. an op-
timal solution is reached. In this scenario, the advantages of warmstarting
are immediate: reaching optimality might take only a few iterations. With
interior methods, however, this is most often not the case. The main issue
is that although the warmstart point is close to the solution, it is typically
distant from the central path, on which the algorithm so strongly relies.
This leads then to numerical difficulties and backtracking to the extent that
warmstarting often requires more computational effort than coldstarting. An
illustrative example presented by Benson and Shanno [2], detailed in section
6.1, makes the case clear.

In this same paper, Benson and Shanno provide an alternative to over-
come the issues described above for LP problems. Starting with a perturbed
problem

LP-Primal’ minimize
x∈Rn

cTx

subject to Ax ≤ b, x ≥ 0,

their approach consists of solving, at the warmstart phase, a problem similar
to the original perturbed one, yet with a primal-dual penalty,

LP-P minimize
x,w

cTx− dT
xψx − dT

wψw

subject to Ax+ w ≤ b
−ψx ≤ x ≤ uz

−ψw ≤ w ≤ uy

ψx, ψw ≥ 0,

where ψx and ψw are relaxation variables for the lower bounds on x and
w, respectively, and dx and dw are their corresponding penalty parameters.
Since the ℓ1 penalty function is exact, for sufficiently large values of the
penalty parameters, the solution to LP-P matches that of LP-Primal’. The

CHAPTER 2. AN OVERVIEW OF INTERIOR METHODS 31

reduced KKT system of this penalized problem has its diagonal matrix and
right-hand sides perturbed, in addition to allowing the slack variables of the
original primal and dual problems to become negative. With appropriately
chosen penalty parameters, these changes avert the typical warmstarting
numerical issues highlighted above.

While this technique does improve performance on warmstarting, it relies
on dynamic updates of the penalty parameters dx, dw, uy, uz that, in turn,
require some modifications to the underlying algorithm.

Another approach by Roos [49] has good complexity properties for an
infeasible interior method, making use of an arbitrary starting point.

Gondzio and Grothey have also made some progress with warmstarting
for quadratic programming [26]. Their heuristic is based on performing sensi-
tivity analysis on the Newton step from the warmstart point. Their rationale
is based on the fact that blocking is a common phenomenon in warmstart-
ing; that is, only a small fraction of the Newton step can be taken because
of the proximity of the current iterate to the feasibility boundary. They note
that blocking typically happens only to a small number of components of
the Newton direction. Sensitivity analysis thus allows them to choose appro-
priate modifications for the components to permit larger steps with better
centering properties.

A good overview of strategies for warmstarting LPs is also presented by
John and Yildirim [29]. They also present several implementation issues and
compare the effectiveness of the different approaches based on a variety of
perturbations to data components.

Chapter 3

PDCO

The first implementation of a primal-dual long step algorithm is credited
to McShane, Monma, and Shanno [36], based on developments by Kojima,
Mizuno, and Yoshise [32, 33] and, independently, Megiddo [37]. This method,
which uses the logarithmic barrier, was later extended by Lustig, Marsten,
and Shanno [35] into the structure most existing implementations are closely
related to.

In the remainder of this chapter, we constrain ourselves to the particular
implementation used in later analysis, PDCO, developed by Saunders [52],
noting only that there is no shortage of comprehensive surveys on the subject
of IPM implementation. These cover everything from basic differences of
the various existing algorithms to the nuances of the fine details of each
implementation, as well as ancillary computational aspects applicable to all
methods, such as the choice of an initial point, line searches and trust region
methods, presolving, and higher order methods, e.g. [38, 34, 35, 25].

Likewise, a plethora of software codes implementing interior methods
exist for linear, convex, and nonconvex programming under various licensing
agreements: some are open-source, others free to research community, and
yet others strictly commercial. Examples include CPLEX [7], XPRESS [9],
LOQO [57, 55], PCx [8], HOPDM [24], BPMPD [39], LIPSOL [60], OSL [28].

32

CHAPTER 3. PDCO 33

3.1 Regularization

Nominally, PDCO [52] solves the optimization problem

NP minimize
x

φ(x)

subject to Ax = b, ℓ ≤ x ≤ u,

where φ(x) is a separable smooth convex function.
To allow for constrained least-squares problems, and to ensure unique

primal and dual solutions (and improve solver stability), we regularize (NP)
as

NP2 minimize
x,r

φ(x) + 1
2
‖D1x‖2 + 1

2
‖r‖2

subject to Ax+D2r = b, ℓ ≤ x ≤ u,

where D1, D2 are positive-definite diagonal matrices specified by the user.
The diagonals of D1 are typically small (10−3 or 10−4). Similarly for D2 if
the constraints in NP should be satisfied reasonably accurately. For least-
squares applications, some or all of the diagonals of D2 are 1. Note that
some elements of ℓ and u may be −∞ and +∞ respectively, but we expect
no large numbers in A, b, D1, D2. If ‖D2‖ is small, we would expect A to be
under-determined (m < n). If D2 = I, A may have any shape.

3.2 The Barrier Approach

First we introduce slack variables x1, x2 to convert the bounds to non-
negativity constraints:

NP3 minimize
x,r,x1,x2

φ(x) + 1
2
‖D1x‖2 + 1

2
‖r‖2

subject to Ax+D2r = b
x− x1 = ℓ
x+ x2 = u
x1, x2 ≥ 0.

Then we replace the non-negativity constraints by the log barrier function,
obtaining a sequence of convex subproblems with decreasing values of µ (µ >

CHAPTER 3. PDCO 34

0):

NP(µ) minimize
x,r,x1,x2

φ(x) + 1
2
‖D1x‖2 + 1

2
‖r‖2 − µ

∑
j ln([x1]j[x2]j)

subject to Ax+D2r = b : y
x− x1 = ℓ : z1

−x− x2 = −u, : z2

where y, z1, z2 denote dual variables for the associated constraints. With
µ > 0, most variables are strictly positive: x1, x2, z1, z2 > 0.

The KKT conditions for the barrier subproblem involve the three primal
equations of NP(µ), along with four dual equations stating that the gradient
of the subproblem objective should be a linear combination of the gradients
of the primal constraints:

Ax+D2r = b
x− x1 = ℓ

−x− x2 = −u
ATy + z1 − z2 = g(x) +D2

1x : x
D2y = r : r
X1z1 = µe : x1

X2z2 = µe, : x2

(3.1)

where X1 = diag(x1), X2 = diag(x2), and similarly for Z1, Z2 later. Actually
the last two equations arise in a different form. The dual equation for x1 is
really

−z1 = ∇(−µ ln(x1)) = −µX−1
1 e, (3.2)

where e is a vectors of 1’s. Thus, x1 > 0 implies z1 > 0, and multiplying by
−X1 gives the equivalent equation X1z1 = µe as stated. In this form, the last
two equations are commonly called (perturbed) complementarity conditions.

CHAPTER 3. PDCO 35

3.3 Newton’s Method

We now eliminate r = D2y and apply Newton’s method:

A(x+ ∆x) +D2
2(y + ∆y) = b

(x+ ∆x) − (x1 + ∆x1) = ℓ

−(x+ ∆x) − (x2 + ∆x2) = −u
AT(y + ∆y) + (z1 + ∆z1) − (z2 + ∆z2) = g +H∆x+D2

1(x+ ∆x)

X1z1 +X1∆z1 + Z1∆x1 = µe

X2z2 +X2∆z2 + Z2∆x2 = µe,

where g and H are the current objective gradient and Hessian. To solve this
Newton system, we work with three sets of residuals:

(
∆x− ∆x1

−∆x − ∆x2

)
=

(
rℓ

ru

)
≡
(

ℓ− x+ x1

−u + x+ x2

)
, (3.3)

(
X1∆z1 + Z1∆x1

X2∆z2 + Z2∆x2

)
=

(
cℓ
cu

)
≡
(
µe−X1z1
µe−X2z2

)
, (3.4)

(
A∆x+D2

2∆y
−H1∆x+ AT∆y + ∆z1 − ∆z2

)
=

(
r1
r2

)
≡
(

b−Ax−D2
2y

g +D2
1x−ATy − z1 + z2

)
,(3.5)

where H1 = H +D2
1. We use (3.3) and (3.4) to replace two sets of vectors in

(3.5). With

(
∆x1

∆x2

)
=

(
−rℓ + ∆x
−ru − ∆x

)
,

(
∆z1
∆z2

)
=

(
X−1

1 (cℓ − Z1∆x1)
X−1

2 (cu − Z2∆x2)

)
, (3.6)

H2 ≡ H +D2
1 +X−1

1 Z1 +X−1
2 Z2

w ≡ r2 −X−1
1 (cℓ + Z1rℓ) +X−1

2 (cu + Z2ru),
(3.7)

we find that (
−H2 AT

A D2
2

)(
∆x
∆y

)
=

(
w
r1

)
. (3.8)

3.4 Solving for (∆x,∆y)

If φ(x) is a general convex function with known Hessian H , system (3.8) may
need to be treated directly by sparse or iterative methods.

CHAPTER 3. PDCO 36

Alternatively it may be possible to obtain a sparse Cholesky factorization

H2 = LLT or H2 ≈ LLT , (3.9)

where H2 = H + diagonal terms, and L is a nonsingular permuted triangle.
This is trivial if φ(x) is a separable function, since H and H2 in (3.7) are
then diagonal. In other cases it may suffice to use diag(H) or some other
approximation to H in the definition of H2 and L, thereby implementing a
pseudo-Newton method for obtaining reasonable directions (∆x,∆y).

System (3.8) may now be solved by eliminating either ∆x or ∆y:

(ATD−2
2 A+H2)∆x = ATD−2

2 r1 − w, D2
2∆y = r1 − A∆x, (3.10)

or

(AH−1
2 AT +D2

2)∆y = AH−1
2 w + r1, H2∆x = AT∆y − w. (3.11)

Sparse Cholesky factorization may again be applicable to the left-hand parts
of these systems, but for numerical reasons it is preferable to regard them as
least squares problems:

min
∆x

∥∥∥∥
(
D−1

2 A
LT

)
∆x−

(
D−1

2 r1
−L−Tw

)∥∥∥∥
2

, D2∆y = D−1
2 (r1 −A∆x), (3.12)

or

min
∆y

∥∥∥∥
(
L−1AT

D2

)
∆y−

(
L−1w
D−1

2 r1

)∥∥∥∥
2

, LT∆x = L−1(AT∆y−w). (3.13)

The right-most vectors in (3.12)–(3.13) are part of the residual vectors for
the least squares problems (and may be by-products from the least squares
computation).

3.5 Scaling

PDCO assumes the problem has been sensibly scaled such that ‖A‖ ≈ 1.
One such scaling is described in section 4.4. PDCO then allows the user
to define factors β and ζ to scale other problem data in order to improve

CHAPTER 3. PDCO 37

numerical characteristics of the problem without altering its solution. The
guiding principle for the choice of these inputs is the following:

β = input estimate of‖x‖∞
ζ = input estimate of‖z‖∞.

Within PDCO, they are used to scale the problem data such that ‖x̄‖∞ ≈ 1
and ‖z̄‖∞ ≈ 1, where x̄ and z̄ represent the scaled versions of x and z,
respectively.

Given the LP problem

LP3 minimize
x,r,x1,x2

cTx+ 1
2
‖D1x‖2 + 1

2
‖r‖2

subject to Ax+D2r = b : y
x− x1 = ℓ : z1

−x− x2 = −u : z2
x1, x2 ≥ 0,

a natural choice for the β scaling factor is β = ‖b‖∞ which, given the primal
feasibility equation, leads to x̄ = x/β. To keep the problem consistent, the
objective equation in turn means that c̃ = βc and then a typical choice for
the second scaling factor would be ζ = ‖c̃‖∞ = ‖βc‖∞. Adjusting the other
terms throughout the problem for consistency gives us the following final
scaling set:

Ā = A, b̄ = b/β, c̄ = βc/ζ,
l̄ = l/β, ū = u/β, x̄ = x/β,
ȳ = βy/ζ, z̄1 = βz1/ζ, z̄2 = βz2/ζ,

D̄1 = βD1/
√
ζ, D̄2 =

√
ζD2/β, r̄ = r/

√
ζ.

Chapter 4

The Refine and Zoom
Technique for Linearly
Constrained Optimization

We now introduce the technique that is the main focus of this dissertation,
based on refinements and scaling of problems using Interior Methods. This
technique is aimed at accelerating IPMs using iterative solvers for comput-
ing each search direction, and improving performance of general IPMs for
warmstarting linearly constrained problems. The results from here on are,
to the best of the author’s knowledge, new.

4.1 Motivation

When the constraint matrix of an LP is dense or when it is expressed through
an operator, it is necessary for an IPM to make use of iterative solvers. In
such situations, as the Newton iterations proceed, the systems defining the
search directions become increasingly ill-conditioned, and the number of calls
to the underlying solver increases drastically. Since in such methods most
of the work takes place inside the iterative solver, the overall computational
effort is dramatically increased. The mechanics of this issue are detailed in
the next section, and a variety of concrete examples exhibiting such behavior
are given. This is related to the fact that the iterates in the initial stages
of the solve are more distant from the constraints of the problem, a numeri-
cally more stable configuration for IPMs, coupled with the known result that

38

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 39

greater accuracy is required in solving the Newton equations, the closer one
wishes to get to the true solution, as (2.17) states.

The situation described above serves as motivation for the development
of a new technique aimed at reducing the effort in the final iterations of the
solve. The idea is to solve the problem in two stages, placing a “magnifying
glass” over the second stage, in an effort to emulate the interior quality of
the first (cheap) step. If a final solution with accuracy 10−6 is sought, for
instance, an approximate solution (x̃, ỹ, z̃) is first obtained, with accuracy
10−3 in the normal (cold start) fashion. Given a well-conditioned problem,
theory in [10] says this should always be a relatively effortless solve. Then a
new problem is defined in terms of a correction (dx, dy, dz) such that (x̃ +
dx, ỹ+dy, z̃+dz) solves the original problem within the desired final accuracy
of 10−6. Adequate scaling must be applied to this second-stage problem
because in particular the variables (dx, dy, dz) are scaled up by a factor of
103 to be of O(1). The idea is for the conditions of this second problem to
resemble a problem in its first stage. A cold start is again used, with the
initial iterates well within the interior of the feasible region, where the solver
is usually most efficient. With the scaling, the definition problem only has
to be solved to an accuracy of 10−3 again: in theory another step requiring
little computational effort. When the magnified (dx, dy, dz) is scaled down
by a factor of 103 and added to the first-stage solution, its 3-digit accuracy
should give 6-digit accuracy to the corrected solution.

In the next section the details of the method are given, along with the
modifications necessary to the underlying interior-point method.

4.2 Refinement

Suppose (x̃, ỹ, z̃1, z̃2, x̃1, x̃2, r̃) is an approximate solution to problem P3:

P3 minimize
x,r,x1,x2

φ(x) + 1
2
‖D1x‖2 + dT r + 1

2
‖r‖2 + cT1 x1 + cT2 x2 + κ

subject to Ax+D2r = b : y
x− x1 = ℓ : z1

−x− x2 = −u : z2
x1, x2 ≥ 0,

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 40

where d = c1 = c2 = κ = 0. Then we redefine the problem with

x = x̃ + dx

r = r̃ + dr,

which yields

P3′ minimize
dx,dr,x1,x2

φ(x̃+ dx) + 1
2
‖D1(x̃+ dx)‖2 + dT (r̃ + dr)

+ 1
2
‖r̃ + dr‖2 + cT1 x1 + cT2 x2 + κ

subject to A(x̃+ dx) +D2(r̃ + dr) = b : y
x̃+ dx− x1 = ℓ : z1

−x̃− dx− x2 = −u : z2
x1, x2 ≥ 0,

which simplifies to

P3′ minimize
dx,dr,x1,x2

φ(x̃+ dx) + (D2
1x̃)

Tdx+ 1
2
‖D1dx‖2

+ (d+ r̃)Tdr + 1
2
‖dr‖2 + κ

+ 1
2
‖D1x̃‖2 + dT r̃ + 1

2
‖r̃‖2 + cT1 x1 + cT2 x2

subject to Adx+D2dr = b̃ : y

dx− x1 = ℓ̃ : z1
−dx− x2 = −ũ : z2

x1, x2 ≥ 0,

where

b̃ = b−Ax̃−D2r̃

ℓ̃ = ℓ− x̃

ũ = u− x̃.

We now add the following Lagrangian terms to the objective:

ỹT (b̃− Adx−D2dr), z̃T
1 (ℓ̃− dx+ x1), z̃T

2 (−ũ+ dx+ x2),

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 41

giving a problem with modified dual variables:

P3′′ minimize
dx,dr,x1,x2

φ(x̃+ dx) + (D2
1x̃− AT ỹ − z̃1 + z̃2)

Tdx+ 1
2
‖D1dx‖2

+ (d+ r̃ −D2ỹ)
Tdr + 1

2
‖dr‖2 + (c1 + z̃1)

Tx1

+ (c2 + z̃2)
Tx2 + b̃T ỹ + 1

2
‖D1x̃‖2 + dT r̃

+ 1
2
‖r̃‖2 + z̃T

1 ℓ̃− z̃T
2 ũ+ κ

subject to Adx+D2dr = b̃ : dy

dx− x1 = ℓ̃ : dz1
−dx− x2 = −ũ : dz2

x1, x2 ≥ 0,

It is now clear that if we define

φ̃(dx) = φ(x̃+ dx) + (D2
1x̃−AT ỹ − z̃1 + z̃2)

Tdx

d̃ = d+ r̃ −D2ỹ

c̃1 = c1 + z̃1

c̃2 = c2 + z̃2

κ̃ = κ+ b̃T ỹ + 1
2
‖D1x̃‖2 + dT r̃ + 1

2
‖r̃‖2 + z̃T

1 ℓ̃− z̃T
2 ũ

y = ỹ + dy

z1 = z̃1 + dz1

z2 = z̃2 + dz2,

we return to the structure of problem P3. We therefore concern ourselves
with only problem P3 in our analysis from now on.

Replacing again the non-negativity constraints in P3 by the log barrier
function, we obtain the analogous sequence of subproblems:

P3(µ) minimize
x,r,x1,x2

φ(x) + 1
2
‖D1x‖2 + dT r + 1

2
‖r‖2

+ cT1 x1 + cT2 x2 + κ− µ
∑

j ln([x1]j[x2]j)

subject to Ax+D2r = b : y
x− x1 = ℓ : z1

−x − x2 = −u : z2.

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 42

4.3 Revisions to PDCO

If we define

z̄1 = z1 + c1

z̄2 = z2 + c2,

then the KKT conditions for P3(µ) become

Ax+D2r = b
x− x1 = ℓ

−x− x2 = −u
ATy + z1 − z2 = g(x) +D2

1x : x
D2y = d+ r : r
X1z̄1 = µe : x1

X2z̄2 = µe, : x2

(4.1)

where X1 = diag(x1), X2 = diag(x2), and similarly for Z1, Z2 later. As
before, the last two equations arise in a different form. The dual equation
for x1 is really

−z1 = c1 + ∇(−µ ln(x̄1)) = c1 − µX−1
1 e, (4.2)

where e is a vectors of 1’s. Thus, x1 > 0 implies z̄1 > 0, and multiplying by
−X1 gives the equivalent equation X1z̄1 = µe as stated.

4.3.1 Changes to Newton’s Method

We now eliminate r = D2y − d and apply Newton’s method:

A(x+ ∆x) +D2
2(y + ∆y) −D2d = b

(x+ ∆x) − (x1 + ∆x1) = ℓ

−(x+ ∆x) − (x2 + ∆x2) = −u
AT(y + ∆y) + (z1 + ∆z1) − (z2 + ∆z2) = g +H∆x+D2

1(x+ ∆x)

X1z̄1 +X1∆z1 + Z1∆x1 = µe

X2z̄2 +X2∆z2 + Z2∆x2 = µe,

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 43

where g and H are the current objective gradient and Hessian. To solve this
Newton system, we work with three sets of residuals:

(
∆x− ∆x1

−∆x− ∆x2

)
=

(
rℓ

ru

)
≡
(

ℓ− x+ x1

−u+ x+ x2

)
, (4.3)

(
X1∆z1 + Z1∆x1

X2∆z2 + Z2∆x2

)
=

(
cℓ
cu

)
≡
(
µe−X1z̄
µe−X2z̄2

)
, (4.4)

(
A∆x+D2

2∆y
−H1∆x+ AT∆y + ∆z1 − ∆z2

)
=

(
r1
r2

)
≡
(

b−Ax−D2
2y +D2d

g +D2
1x− ATy − z1 + z2

)
,(4.5)

where H1 = H +D2
1. We use (4.3) and (4.4) to replace two sets of vectors in

(4.5). With

(
∆x1

∆x2

)
=

(
−rℓ + ∆x
−ru − ∆x

)
,

(
∆z1
∆z2

)
=

(
X−1

1 (cℓ − Z1∆x1)
X−1

2 (cu − Z2∆x2)

)
, (4.6)

H2 ≡ H +D2
1 +X−1

1 Z1 +X−1
2 Z2

w ≡ r2 −X−1
1 (cℓ + Z1rℓ) +X−1

2 (cu + Z2)ru)
(4.7)

we find that (
−H2 AT

A D2
2

)(
∆x
∆y

)
=

(
w
r1

)
(4.8)

as before.

4.3.2 Changes to Scaling

The additional data terms c1, c2, d, and κ also need to be scaled appropriately
within PDCO. For the sake of completeness, below is the full revised scaling
set:

Ā = A, b̄ = b/β, c̄ = βc/ζ,
c̄1 = βc1/ζ, c̄2 = βc2/ζ, l̄ = l/β,
ū = u/β, x̄ = x/β, ȳ = βy/ζ,
z̄1 = βz1/ζ, z̄2 = βz2/ζ, D̄1 = βD1/

√
ζ,

D̄2 =
√
ζD2/β, r̄ = r/

√
ζ, d̄ = d/

√
ζ,

κ̄ = κ/ζ.

(4.9)

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 44

4.4 Scaling (outside PDCO)

As mentioned in section 3.5, PDCO assumes that A is well scaled, which
helps improve numerical characteristics (condition number) and speeds up
solve time of problems. An example of one way to perform such a scaling is
given below for the case of an LP problem, though its extension to nonlinear
problems is straightforward. Note that this type of scaling, while used here
in the context of refinement problems (second-stage), is also applicable to
the first-stage and in fact for any LP problem, regardless of the solver being
used.

Given the problem

LP3’ minimize
x,r,x1,x2

cTx+ 1
2
‖D1x‖2 + dT r + 1

2
‖r‖2 + cT1 x1 + cT2 x2 + κ

subject to Ax+D2r = b : y
x− x1 = ℓ : z1

−x− x2 = −u : z2
x1, x2 ≥ 0,

the idea is to find diagonal matrices R,C and scalars β, ζ such that Â =
R−1AC−1, ĉ = c/ζ, and b̂ = b/β all have entries close to 1. To ensure consis-
tency of the data however (that is, to make sure the problem is unchanged),
other components of the LP must be scaled accordingly.

Let us begin with the scaling of the constraint matrix. Assuming A =
RÂC, the primal feasibility equation becomes

RÂCx+D2r = b,

from which x̂ = Cx (and similarly l̂ = Cl,û = Cu). Premultiplying the above
equation by R−1 we get

Âx̂+R−1D2r = R−1b,

from which D̂2 = R−1D2, b̂ = R−1b. Performing a similar analysis on the
dual problem and the objective equation (in order to keep objective values
the same) yields the following scaling set:

Â = R−1AC−1, b̂ = R−1b, ĉ = C−1c,

ĉ1 = C−1c1, ĉ2 = C−1c2, l̂ = Cl,
û = Cu, x̂ = Cx, ŷ = Ry,

ẑ1 = C−1z1, ẑ2 = C−1z2, D̂1 = C−1D1,

D̂2 = R−1D2,

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 45

while d, r, κ remain unchanged.
For the first stage of the zoom and refine technique, the typical choices for

β and ζ described in section 3.5 are appropriate, keeping in mind the scaling
of A as above may alter the value of some of the data used (so A should be
scaled before calculating β or ζ). In the following section we examine how
the circumstances of the second-stage of the technique affect the chioces of
these scaling input parameters.

4.5 Zoom

The second-stage problems that arise from the refinement technique de-
scribed above intentionally contain data of small magnitude, therefore re-
quiring re-scaling, which we call “zooming” to distinguish from the usual
scaling. Let us assume that the initial problem is already well scaled accord-
ing to the methodology described in the previous section. If at the end of the
first-stage solve we obtain x̃, ỹ, z̃ with 3-digit accuracy, we have by definition
that dx, dy, dz will all be O(10−3).

In addition, the second-stage problem has b̃ = O(10−3) and objective
gradient of order O(10−3), which has a significant impact on all the other
scaling factors. Therefore we choose β = 10−3 and, assuming that A is
already well scaled (the refinement step would not materially alter A), per
(4.9) we now have a problem in

∆̂x =
dx

‖b̃‖
≃ 103dx. (4.10)

In addition, ζ is picked so that

d̂z =
b̃dz

‖ζ‖ ≃ 103dz and, analogously, d̂y ≃ 103dy. (4.11)

In particular, we point out that this yields

∆̂xj d̂zj ≃ 106dxjdzj . (4.12)

Now once d̂x, d̂y, d̂z are computed to accuracy of 3 digits, the solution is
unscaled, resulting in x+ dx, y + dy, z + dz accurate to 6 digits.

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 46

4.6 Convergence and Complexity

Theorem 11 already described the convergence results for Newton’s method
applied to a nonlinear optimization problem with inequality constraints re-
placed by a self-concordant barrier. Similar results also exist for the variant
of this problem with additional equality constraints, which are handled ex-
plicitly, i.e. without being substituted by a barrier term in the objective.

If we define

c0(x, r) = φ(x) + 1
2
‖D1x‖2 + dT r + 1

2
‖r‖2 + cT1 x1 + cT2 x2 + κ,

it is clear that c0(x, r) is convex if φ(x) is, because the other terms are
linear or quadratic with respect to x or r. Given that the barrier used in
PDCO is the classic logarithmic one, which enjoys all the properties of self-
concordance, we conclude that the PDCO algorithm applied to NP3 and
each phase of the “refine and zoom” variant applied to P3 have the same
theoretical convergence properties as those expressed in Theorem 11.

The complexity results require more careful attention and depend on the
following two lemmas which provide the bound on outer and inner iterations,
respectively. Their proofs can be found in [50].

Lemma 1. If the barrier parameter µ has the initial value µ0 and is updated
as µk+1 = σµk, with 0 < σ < 1, then after at most

1

1 − σ
log

(
nµ0

ε

)
(4.13)

iterations we have nµ ≤ ε.

Lemma 2. For given σ(0 < σ < 1), the number of inner iterations between
two successive updates of the barrier parameter µ is not larger than

2

(
1 +

√
(1 − σ)

√
n

σ

)4

. (4.14)

Theorem 12. The following expression is an upper bound for the total
number of iterations required by the logarithmic barrier algorithm with line
searches using the 2-phase zoom and refine technique:

O

(
n log

(
n2µ0

1µ
0
2

ε

))
, (4.15)

CHAPTER 4. THE REFINE AND ZOOM TECHNIQUE 47

where µ0
1 and µ0

2 are the starting duality gap values for phase 1 and phase 2,
respectively. Note that µ0

2 is not the same as the ending (unscaled) duality
value for phase 1.

Proof. We assume the zoom and refine technique uses a convergence thresh-
old of

√
ε in each of its 2 phases. By multiplying the bound on outer iterations

(4.14) and the bound on inner iterations (4.13), then rounding the product,
if not integral, to the smallest integer above it, we obtain the following bound
on iterations for the first phase:

1

1 − σ


2

(
1 +

√
(1 − σ)

√
n

σ

)4

 log

(
nµ0

1√
ε

)
.

Analogously, for the second phase of the zoom and refine technique, we have
the following bound:

1

1 − σ



2

(
1 +

√
(1 − σ)

√
n

σ

)4


 log

(
nµ0

2√
ε

)
.

Summing the two, we have a total bound for the full 2-phase method:

1

1 − σ



2

(
1 +

√
(1 − σ)

√
n

σ

)4


 log

(
n2µ0

1µ
0
2

ε

)
.

Now, by taking σ to be a fixed constant independent of n (n = 1/2 makes

the math simple), the bound on total iterations becomes O
(
n log

(
n2µ0

1
µ0

2

ε

))
,

as desired.

Chapter 5

Accelerating IPMs With
Iterative Solvers

In this chapter we illustrate some of the problems encountered with IPMs
based on iterative solvers and show how the zoom technique can be used to
alleviate these difficulties. Numerical results are also given, comparing IPM
performance with and without the zoom technique under various parameter
choices.

5.1 Motivation

As described previously, when IPMs make use of iterative solvers, as further
precision is sought in the solution, the overall computational effort required
increases dramatically.

The particular problem that triggered the research on the zoom technique
was one of image reconstruction, first studied by Nagy and Strakoš [40] in
2000, and later analyzed by Byunggyoo Kim in his 2002 dissertation [31].

Given an observed light intensity image b of stars in our galaxy, and a
blurring operator A, we wish to find a reconstruction of the true image x
such that Ax approximates b in the least squares sense. This amounts to
solving the following non-negative least squares problem:

minimize
x,r

λeTx+ 1
2
‖r‖2

subject to Ax+ r = b, x ≥ 0,

48

CHAPTER 5. ACCELERATING IPMS 49

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iteration of interior method PDCO

LS
Q

R
 it

er
at

io
ns

3 digits at itn 11

6 digits at itn 22

Figure 5.1: LSQR vs. PDCO iterations while solving the star problem

where r is the residual vector, and λ = 10−4 helps redue the number of
variables xj that are significantly greater than zero. The true and blurred
images are shown in figure 5.2.

PDCO has three algorithms available to calculate the search directions
∆y:

• Cholesky factorization on

(AD2AT + δ2I)∆y = AD2w + δr1 (5.1)

• Sparse QR factorization on

min

∥∥∥∥
(
DAT

δI

)
∆y −

(
Dw
r1

)∥∥∥∥ (5.2)

• an iterative least squares solver LSQR [45, 44] on (5.2).

CHAPTER 5. ACCELERATING IPMS 50

Figure 5.2: True and blurred image of star data

The operator A in this case turns out to be an expensive 2-dimensional
(65,000 x 65,000) discretized 2-D convolution, so the only viable alternative
is to make use of the LSQR routine. On a typical star problem solved using
PDCO, however, the number of LSQR iterations grows exponentially with
requested accuracy, as figure 5.1 demonstrates.

Since calculation of the search directions dominates runtime in such solves,
it is clear that overall computational effort and runtime also grow exponen-
tially.

PDCO will thus exhibit the behavior described above whenever LSQR is
used, which is the only option when A is an operator as in the Star problem.
Since Cholesky and QR factorizations also depend heavily on exploiting the
sparsity of A for efficient performance, LSQR is again the method of choice
when the constraint matrix or its factorizations are not sparse. Basis pursuit
problems [6] and multi-commodity network LPs [47] are examples where this
occurs.

The zoom technique is aimed at improving the performance on the classes
of problems described above. While we here only analyze its effect on PDCO
and the underlying LSQR, the potential benefit to similar algorithm packages
is clear.

5.2 Why Zoom and Refine Works

The effects of ill-conditioning on interior methods have been studied exten-
sively in the literature [10]. In the presence of degeneracy, it is well known

CHAPTER 5. ACCELERATING IPMS 51

that as an interior method progresses, the linear system being solved be-
comes increasingly ill-conditioned. As a consequence, if an iterative method
is being used for the linear system, the time to compute an accurate search
direction increases steadily [31].

The benefit of the zoom method is that it attempts to reduce the ill-
conditioning that typically plagues the later stages of interior methods. To
understand the details of the inner workings of the zoom method, we revert
to the simpler case of an interior method applied to an LP problem.

The standard LP problem

LP(µ) minimize
x

cTx+ µ
∑

j ln(xj)

subject to Ax = b, x > 0

has as its KKT conditions

Ax = b,
ATy + z = c,

Xz = µe.
(5.3)

Applying Newton’s method to (5.3) results in the system



A

AT I
Z X






∆x
∆y
∆z


 =



r1
r2
r3


 ≡




b− Ax
c− ATy − z
µe−Xz


 ,

which can be reordered into



I AT

Z X
A






∆x
∆z
∆y


 =



r2
r3
r1


 .

We can then use I as a block pivot to eliminate ∆z, yielding

(
Z −XAT

A

)(
∆x
∆y

)
=

(
r3 −Xr2

r1

)
(5.4)

and, multiplying the top of (5.4) by −X−1 gives

(
−X−1Z AT

A

)(
∆x
∆y

)
=

(
r4
r1

)
, (5.5)

CHAPTER 5. ACCELERATING IPMS 52

where r4 = r2 −X−1r3.
The condition number is defined as

cond(J) =
σmax(J)

σmin(J)
,

where σmax(J) and σmin(J) are, respectively, the maximal and minimal sin-
gular values of J .

In [58], Wright shows that in the degenerate case, the matrix M in (5.5),
has the property that its smallest singular value is O(µ) and thus

cond(M) ≈ 1

µ

for all iterates near the central path, and µ sufficiently small.
Typical algorithms have stopping criteria based on the final value of µ

so, considering the zoom method, at the end of the first stage with a target
precision of 10−4 we have

cond(M1) ≈
1

µ
≃ 104,

where M1 represents the matrix M in (5.5) at the intermediate solution (end
of first stage). However, as the next stage is started, the new problem is
defined based on ∆x and ∆z instead, with appropriate scaling as shown in
(4.9) for which the relationships (4.10)–(4.12) hold. Therefore, by design we
have that 1 ≃ µ2 >> µ1 and hence it is clear that cond(M2) ≃ 1, from which
we conclude that

cond(M2) << cond(M1),

where M2 represents the matrixM in (5.5) at the starting point for the scaled
new problem (at the start of second stage).

5.3 Numerical Results

The PDCO algorithm was used to solve the Star problem described above
using two approaches: the usual single-phase solve and the two-phase method
using the refine and zoom technique. The table below shows how the latter
technique is approximately 30% faster than the usual approach.

CHAPTER 5. ACCELERATING IPMS 53

problem accuracy LSQR itns. time (s)
standard solve 10−6 17,273 9,845
refine+zoom step 1 10−3 382 235
refine+zoom step 2 10−3 11,612 6,784
refine+zoom total 10−6 11,994 7,019

Table 5.1: Solve time and LSQR iteration count for Star problem

Large problems such as Star, based on operators, are hard to come by. So
the refine and zoom technique was also tested on a subset of the Netlib suite
of LP problems. Even though the operator in this case is an explicit matrix,
and therefore a direct method could be used on 5.1 or 5.2 for obtaining search
directions, the use of the iterative LSQR routine to the 5.2 formulation was
forced to simulate a non-explicit operator case. The table below shows the
numerical results for these tests. Since the LSQR routine dominates the
CPU time, the LSQR iteration count displayed can be also interpreted as a
measure for comparing the computational solve time of the two approaches.

In the majority of cases where the standard solve method had a compara-
tively low LSQR iteration count to begin with, the refine and zoom approach
had generally comparable iteration counts, with a few instances slighly above
or below the standard approach. However, in the more complex problems, the
refine and zoom approach outperformed the standard approach every time.
Of the problems where the standard solve took over 15,000 LSQR iterations,
refine and zoom technique had a performance improvement ranging between
2 and 83%, with an average of 28%, in line with the results obtained with
the Star problem. It is worth noting that the overall size of the constraint
matrices in the Netlib problems (the details of which can be found in the
Appendix) is smaller than that of Star by a factor of 100,000.

CHAPTER 5. ACCELERATING IPMS 54

problem name standard solve LSQR itns refine+zoom total LSQR itns

adlittle 1579 1761

afiro 395 394

agg 8136 7793

bandm 25867 13837

beaconfd 612 684

blend 3776 3679

bore3d 4832 5276

brandy 27874 22228

capri 303546 261985

degen2 461399 311783

e226 12496 14463

etamacro 7283 7011

finnis 16549 11973

gfrd pnc 6271 6268

grow7 5068 6413

israel 6721 7756

kb2 2775 3730

lotfi 9451 8263

qap8 246762 40353

recipe 3901 2959

sc105 2514 2846

sc205 6776 5374

sc50a 1138 1131

sc50b 856 907

scagr25 24347 20858

scagr7 4236 3938

scfxm1 46965 30867

scorpion 33758 20909

scrs8 17913 15458

scsd1 855 922

sctap1 13754 10406

share1b 18438 18012

share2b 11197 9983

shell 12856 12768

stair 46746 41689

standata 3938 3872

standgub 4073 3653

standmps 8956 9222

stocfor1 4527 3369

vtp base 4613 4714

Table 5.2: LSQR iteration count for standard solve vs. refine and zoom
applied to Netlib LP problems

Chapter 6

LP Warmstarting for IPMs
with Direct Solvers

The novel technique presented here differs from previous ones found in the
literature in that it requires few changes to existing solvers, being primarily
a modeling approach rather than an algorithmic one. Given two problems,
LP1, LP2, and a solution (x, y, z) to LP1, the strategy is to define a new
problem LP3’ in terms of a correction solution (dx, dy, dz) so that (x+dx, y+
dy, z + dz) solves LP2.

6.1 Motivation

The difficulties with warmstarting in interior point methods are well known
[19, 59, 46, 2, 35]. We exhibit here only a summary of what happens inside a
typical solver. The example below was first presented by Benson and Shanno
[2].

Consider the following LP problem:

LP-x minimize
x1,x2

x1 + 3x2

subject to x1 + x2 ≤ 3
2x1 + x2 ≤ 2
x1, x2 ≥ 0.

The optimal primal and dual solutions for this problem are

x = (0, 2), w = (1, 0),
y = (0, 3), z = (5, 0).

(6.1)

55

CHAPTER 6. LP WARMSTARTING 56

Therefore, we have that the first constraint is inactive and the second con-
straint is active at the optimum.

Next, if the first constraint is altered to be

x1 + x2 ≤ 1,

then the optimal primal and dual solutions for the modified problem become

x = (0, 1), w = (0, 1),
y = (3, 0), z = (2, 0).

Hence, the first constraint has now become active while the second has be-
come inactive.

The reduced KKT system for this problem is

(
−E A
AT F

)(
∆y
∆x

)
=

(
ρ− Eγw

σ + γz

)
, (6.2)

where

E = Y −1W

F = X−1Z

ρ = b− Ax− w

σ = c− ATy + z

γw = µW−1e− y

γz = µX−1e− z,

and the following were block eliminated in the process:

∆z = γz − F∆x

∆w = E(γw − ∆y).

Now when we solve the modified problem with the warmstart solutions (6.1),
the only change to the reduced KKT system is to primal infeasibility, ρ, for
the inactive constraint. The corresponding entry of the diagonal matrix, E,
is of order 108 (theoretically it is 1/0). Therefore, a very small value for this
constraint’s ∆y allows the system to be satisfied. In fact, in the first several
iterations, ∆x and ∆y are both no more than 10−8 for all components.

CHAPTER 6. LP WARMSTARTING 57

Second, the barrier parameter, µ, starts at 0, as its computation,

µ = r
wTy + xT z

m+ n

is not affected by the perturbation to the data. Hence, the step direction
formulas for the slack variables result in ∆z also being close to 0. This means
that primal feasibility also can be restored without disturbing the primal
variables, and by simply moving the primal slacks. In the first iteration, we
have ∆w1 = −2 to obtain feasibility, but the steplength αp is cut to prevent
w1 + αp∆w1 from becoming negative.

The numerical trouble occurs when the short steps decrease w1 to a value
sufficiently close to 0. Since y1 has not moved away from 0, we are now at
a degenerate pair. AD2A becomes almost singular. Cholesky factorization
and the subsequent backsolve start producing numerical errors, and iterative
refinement measures are required. Such measures, however, provide step
directions that move the iterates away from the warmstart solution. In this
case they have the effect of moving the dual variables to values around 1.5
and the dual slack z1 to around 3.05.

Continuing from this point, the algorithm finds the optimal solution in
another 12 iterations, but after losing all the advantage of a warmstart. In
fact, the coldstart solution of the same problem takes 12 iterations while the
warmstart takes a total of 15.

We show below how the zoom technique (for accelerating coldstarts) can
also be applied to alleviate the difficulties just described.

6.2 LP Zoomstarting/Jumpstarting

In the context of interior point methods, LP problems that differ by oly a
small perturbation in their data have solutions that are typically not too
far apart. The challenges described in the previous section show, however,
that the solution to one problem can be a poorly centered starting point
for the perturbed problem, thus leading to solve times that could be longer
than a normal coldstart solve. Though the numerical challenges are some-
what different, the technique described in section 4.2 for accelerating interior
methods based on iterative solvers is also applicable here.

Unlike typical warmstart methods where the perturbed problem is solved
using the original solution as a starting point, the key to the strategy here,

CHAPTER 6. LP WARMSTARTING 58

which we’ll call “zoomstarting”, is to define a new problem based on the dif-
ference vector between the two solutions, and appropriately scale the prob-
lem so we are in essence performing a simple, short, coldstart solve. In this
sense, the formulation of problem LP3’ can be adopted, making use of the
data (A, b, c, etc.) from the perturbed problem and the variables (x̃, ỹ, z̃, etc.)
from the solution to the original problem.

In this case, the theory for convergence and complexity results for a
“zoomstart” are the same as a normal coldstart solve for any typical LP
problem, as described in sections 2.2.2 and 2.3.2. Analogously to the case of
acceleration of IPMs, scaling is key to why the “zoomstarting” method works,
since its effect is in essence to ensure the starting point is well removed from
the bounds on each variable.

The advantage of “zoomstarting” over coldstart is that in the latter one
must solve the problem with the usual precision threshold of, say, 10−6,
whereas in the former, less precision is needed (10−3 or 10−4 say), depending
on the proximity between the original and perturbed solutions. Given the
dependency of the complexity results (2.6) on the precision threshold ε, the
benefit here is clear.

6.3 Numerical Results

The Netlib suite used by Benson and Shanno for their numerical results
[2] is the set we use here. While they have confined themselves to a small
subset of the smallest problems in the set, where the sum of the dimen-
sions of the constraint matrix A is less than 1, 000, we have expanded to
all problems where the problem file is smaller than 100Kb in size. The per-
turbations performed on the problems are identical to those found in [2],
though the formulation below is slightly different, for clarification purposes.
The perturbations are based on two uniformly distributed random variables,
e1 ∈ (0, 1)m, e2 ∈ (−1, 1)m:

bi is perturbed if e1i > max(.9, 1 − 20

m
)

b̃i =

{
δe2i if bi = 0;
bi(1 + δe2i) otherwise.

This means that no more than 10% (if small m) or 20 constraints (if large
m) are perturbed, on average. In addition, the magnitude of the perturba-

CHAPTER 6. LP WARMSTARTING 59

tions is small: δ ∈ {0.001, 0.01, 0.1}. In practice, perturbations are likely to
be made to other data in the problem. To mimic such conditions, analogous
perturbations are made for A and c, which are tested separately. Finally,
for each value of δ and a given data component to be perturbed, 5 sets of
random variables are generated, for a total 45 runs per problem. The results
below represent the averages over all 5 random variable sets.

Within PDCO, the LP problems are regularized to the NP2 form and the
routine based on Cholesky factorizations discussed in section 3.4 is used for
calculating the search directions.

Table 6.1 shows the summary statistics of average performance over 41
Netlib problems. The complete tables of results can be found at the end of
this chapter.

δ = 0.1 δ = 0.01 δ = 0.001
A pert. 0.91 0.77 0.78
b pert. 0.80 0.50 0.43
c pert. 0.86 0.74 0.66

Table 6.1: Average ratio of PDCO iterations (warmstart/coldstart)

Figure 6.1 shows the ratio of warmstart to coldstart iterations vs. the
distance of solutions for perturbations applied to b, where each point on the
graph represents a problem from the Netlib suite for each of the three values
of δ. The graph is restricted to the subset of problems that have average
solution distance ∆ ≤ 1 less than or equal to one where, given the solutions
to the original and perturbed problems xO and xP respectively,

∆ =
‖xO − xP‖
1 + ‖xO‖ .

The clustering of points around the 0.6 mark on the vertical axis of Figure
6.1 indicates that warmstarting using the zoom technique had an efficiency
gain between 57% and 9% compared to coldstart runs, with an improvement
of 40%. One would expect the benefit of the zoom technique to be reduced
as ∆ increases, but the figure shows clearly that this is not quite the case.
The summary results in Table 6.1 indeed show the reduced benefit effect,
but it only happens when the distance between the original and perturbed
solutions is very large. On the other hand, some problems exhibited increased
iteration count under the zoom technique despite a small average ∆.

CHAPTER 6. LP WARMSTARTING 60

Figure 6.1: PDCO iterations (warmstart/coldstart) vs. perturbation to x, y

The tables below present the numerical results, by problem, for each
perturbation to A, b, c and for each δ ∈ {0.001, 0.01, 0.1}. Basic information
about the Netlib LP problems used can be found in the Appendix and the full
set of Netlib LP problems and more information about them can be found
at http://www.netlib.org/lp/data/. It is worth noting that since the CPU
time is directly proportional to the number of PDCO (outer) iterations in
this case, the average iteration ratio displayed in the tables below can also
be interpreted as an average CPU time ratio.

CHAPTER 6. LP WARMSTARTING 61

A perturbed δ = 0.1

problem name avg soln dist avg ratio

adlittle 5.52e−01 0.75

afiro 6.24e−01 0.77

agg 2.84e+03 1.17

bandm 9.15e+04 0.78

beaconfd 1.57e+02 0.83

blend 2.42e−01 0.8

bore3d 1.77e+06 1.16

brandy 1.45e+04 1.47

capri 1.00e+01 1.29

degen2 3.07e+01 1.05

e226 1.48e+01 0.93

etamacro 1.76e+00 0.74

finnis 1.45e+02 0.69

gfrd pnc 1.84e+01 0.86

grow7 1.28e+00 0.47

israel 2.24e−01 0.57

kb2 5.65e+00 1.41

lotfi 3.69e−01 0.67

qap8 1.91e+01 0.89

recipe 4.88e+02 1.35

sc105 2.80e−01 1.05

sc205 8.58e−02 0.78

sc50a 6.44e−02 0.66

sc50b 4.27e+00 0.8

scagr25 6.48e−01 1.21

scagr7 1.13e+00 0.97

scfxm1 1.14e+03 1

scorpion 6.67e+03 1.15

scrs8 3.64e−01 0.64

scsd1 1.09e−01 0.95

sctap1 2.37e−01 0.89

share1b 6.23e−01 0.71

share2b 5.91e−01 1.11

shell 6.28e+01 0.72

stair 8.28e+00 1.04

standata 6.45e−01 0.49

standgub 6.79e−01 0.81

standmps 5.63e+03 0.73

stocfor1 4.21e+01 1.32

vtp base 7.43e+02 1.48

Table 6.2: Warmstart/coldstart ratios with perturbations to A, δ = 0.1

CHAPTER 6. LP WARMSTARTING 62

A perturbed δ = 0.01

problem name avg soln dist avg ratio

adlittle 3.56e−01 0.63

afiro 6.23e−01 0.67

agg 4.45e+02 0.87

bandm 1.24e+00 0.65

beaconfd 1.85e+02 0.88

blend 3.03e−02 0.66

bore3d 4.39e+06 1.24

brandy 1.26e+05 1.47

capri 1.05e+00 0.84

degen2 8.62e+00 0.79

e226 3.58e−01 0.64

etamacro 9.90e+00 0.8

finnis 3.24e+01 0.66

gfrd pnc 1.96e+02 0.82

grow7 1.19e−01 0.48

israel 4.40e−02 0.55

kb2 1.20e+00 1.03

lotfi 3.38e−01 0.61

qap8 3.24e+01 0.93

recipe 2.23e+02 1.12

sc105 4.83e−02 0.62

sc205 5.70e−02 0.71

sc50a 3.00e−02 0.7

sc50b 4.99e+01 0.74

scagr25 5.65e−02 0.66

scagr7 3.78e−01 0.59

scfxm1 6.95e+00 0.73

scorpion 2.38e+03 0.79

scrs8 3.11e−01 0.63

scsd1 1.45e−01 0.92

sctap1 1.50e−01 0.72

share1b 5.33e−01 0.7

share2b 2.79e−01 0.73

shell 1.89e+00 0.63

stair 4.11e−01 0.6

standata 2.70e+00 0.54

standgub 9.06e−01 1

standmps 2.46e+02 0.79

stocfor1 4.56e−01 1.01

vtp base 1.18e+02 1.15

Table 6.3: Warmstart/coldstart ratios with perturbations to A, δ = 0.01

CHAPTER 6. LP WARMSTARTING 63

A perturbed δ = 0.001

problem name avg soln dist avg ratio

adlittle 5.22e−01 0.72

afiro 5.78e−01 0.72

agg 5.81e−01 0.82

bandm 4.05e+00 0.68

beaconfd 2.89e+02 0.96

blend 5.81e−02 0.79

bore3d 1.15e+08 1.06

brandy 1.01e+06 1.58

capri 3.29e−01 0.73

degen2 4.80e−01 0.77

e226 9.30e−01 0.7

etamacro 1.05e+02 0.85

finnis 1.23e+01 0.7

gfrd pnc 2.38e+03 0.94

grow7 3.08e−01 0.48

israel 1.36e−02 0.54

kb2 1.05e+00 1.02

lotfi 3.28e−01 0.69

qap8 4.29e+01 0.96

recipe 2.59e+03 1.18

sc105 4.12e−01 0.74

sc205 2.37e−01 0.73

sc50a 1.48e−01 0.81

sc50b 5.07e+02 0.85

scagr25 5.50e−02 0.67

scagr7 5.62e−01 0.76

scfxm1 6.02e+01 0.75

scorpion 7.09e+02 0.78

scrs8 1.49e+00 0.63

scsd1 1.83e−01 1.03

sctap1 1.40e−01 0.76

share1b 3.65e−01 0.72

share2b 3.28e−01 0.83

shell 2.67e−01 0.69

stair 3.59e−01 0.52

standata 1.17e+01 0.62

standgub 1.32e+00 1.13

standmps 1.83e+01 0.79

stocfor1 7.18e−01 1.03

vtp base 1.31e+02 0.85

Table 6.4: Warmstart/coldstart ratios with perturbations to A, δ = 0.001

CHAPTER 6. LP WARMSTARTING 64

b perturbed δ = 0.1

problem name avg soln dist avg ratio

adlittle 5.31e−01 1.39

afiro 2.55e−01 0.6

agg 4.57e+00 0.7

bandm 2.39e+02 0.64

beaconfd 2.11e+03 0.61

blend 2.56e−02 0.56

bore3d 2.13e+04 1.14

brandy 6.77e+02 1.85

capri 2.19e−02 0.82

degen2 4.21e+02 0.84

e226 1.34e+04 2.12

etamacro 1.42e+03 0.66

finnis 7.28e+02 0.62

gfrd pnc 1.64e−01 0.39

grow7 9.63e+01 0.3

israel 9.45e−02 0.57

kb2 4.67e−04 0.2

lotfi 2.39e−01 0.82

qap8 5.50e+04 1.57

recipe 1.07e+03 0.81

sc105 1.65e+01 0.81

sc205 3.30e−02 0.69

sc50a 1.55e+01 0.61

sc50b 3.61e+01 0.49

scagr25 1.94e−02 0.59

scagr7 4.23e−02 0.34

scfxm1 8.72e+00 0.86

scorpion 6.37e+04 2.09

scrs8 1.36e+03 1.07

scsd1 2.04e−01 1.75

sctap1 3.07e−01 0.86

share1b 1.34e−01 0.38

share2b 4.56e−02 0.52

shell 1.53e−02 0.31

stair 2.13e−01 0.64

standata 3.12e+02 0.46

standgub 7.34e+03 0.49

standmps 7.39e+02 0.45

stocfor1 3.10e−02 0.68

vtp base 1.72e+01 1.21

Table 6.5: Warmstart/coldstart ratios with perturbations to b, δ = 0.1

CHAPTER 6. LP WARMSTARTING 65

b perturbed δ = 0.01

problem name avg soln dist avg ratio

adlittle 2.19e−02 0.33

afiro 2.30e−01 0.48

agg 4.02e−01 0.43

bandm 2.38e+01 0.36

beaconfd 2.09e+02 0.45

blend 3.02e−03 0.55

bore3d 8.00e+02 0.68

brandy 5.26e+00 0.51

capri 5.12e−03 0.43

degen2 4.20e+01 0.73

e226 6.99e+01 0.6

etamacro 1.42e+02 0.43

finnis 7.28e+01 0.47

gfrd pnc 9.41e−03 0.36

grow7 5.80e+00 0.19

israel 1.77e−03 0.2

kb2 4.67e−05 0.2

lotfi 4.78e−02 0.4

qap8 5.50e+03 0.96

recipe 1.07e+02 0.71

sc105 1.70e+00 0.61

sc205 3.37e−02 0.6

sc50a 1.69e+00 0.61

sc50b 3.60e+00 0.49

scagr25 4.14e−03 0.44

scagr7 4.58e−03 0.3

scfxm1 8.60e−01 0.39

scorpion 6.30e+03 1.41

scrs8 1.36e+02 0.52

scsd1 1.52e−01 1.2

sctap1 2.60e−01 0.62

share1b 3.49e−04 0.12

share2b 7.71e−03 0.5

shell 1.54e−03 0.3

stair 6.11e−02 0.27

standata 3.12e+01 0.44

standgub 7.33e+02 0.44

standmps 7.39e+01 0.38

stocfor1 3.35e−02 0.6

vtp base 1.56e+00 0.69

Table 6.6: Warmstart/coldstart ratios with perturbations to b, δ = 0.01

CHAPTER 6. LP WARMSTARTING 66

b perturbed δ = 0.001

problem name avg soln dist avg ratio

adlittle 3.21e−03 0.35

afiro 2.11e−01 0.46

agg 2.55e−02 0.37

bandm 2.28e+00 0.29

beaconfd 2.09e+01 0.35

blend 2.84e−03 0.5

bore3d 8.00e+01 0.6

brandy 5.18e−01 0.31

capri 1.62e−03 0.34

degen2 4.10e+00 0.56

e226 7.08e+00 0.41

etamacro 1.39e+01 0.33

finnis 7.20e+00 0.37

gfrd pnc 2.03e−03 0.34

grow7 3.50e−06 0.26

israel 1.82e−04 0.2

kb2 4.67e−06 0.2

lotfi 3.14e−03 0.37

qap8 5.50e+02 0.82

recipe 1.07e+01 0.67

sc105 1.89e−01 0.53

sc205 2.96e−02 0.62

sc50a 1.74e−01 0.48

sc50b 3.48e−01 0.46

scagr25 6.26e−04 0.41

scagr7 5.37e−04 0.28

scfxm1 8.44e−02 0.34

scorpion 6.03e+02 1

scrs8 1.34e+01 0.4

scsd1 1.52e−01 0.97

sctap1 1.73e−01 0.47

share1b 3.49e−05 0.12

share2b 1.87e−03 0.5

shell 1.54e−04 0.3

stair 4.98e−04 0.17

standata 3.13e+00 0.45

standgub 7.31e+01 0.47

standmps 7.32e+00 0.37

stocfor1 2.76e−02 0.54

vtp base 8.85e−02 0.42

Table 6.7: Warmstart/coldstart ratios with perturbations to b, δ = 0.001

CHAPTER 6. LP WARMSTARTING 67

c perturbed δ = 0.1

problem name avg soln dist avg ratio

adlittle 3.83e−01 0.66

afiro 3.89e−01 0.67

agg 1.71e−02 0.73

bandm 6.84e−02 0.61

beaconfd 1.28e+02 0.85

blend 1.30e−01 0.89

bore3d 6.18e−02 0.93

brandy 1.55e+02 0.68

capri 5.63e−01 0.75

degen2 1.05e−01 0.65

e226 4.90e+01 0.7

etamacro 2.49e−01 0.68

finnis 5.45e−02 0.6

gfrd pnc 2.20e−02 0.64

grow7 9.58e−02 0.5

israel 5.41e−02 0.55

kb2 3.88e−01 0.75

lotfi 3.37e+02 3.11

qap8 1.32e−01 0.93

recipe 8.63e+05 1.51

sc105 1.71e+00 2.21

sc205 5.79e+00 2.42

sc50a 2.37e−01 1.24

sc50b 3.34e−01 1.16

scagr25 4.19e−02 0.64

scagr7 2.06e−01 0.52

scfxm1 3.85e−02 0.66

scorpion 9.55e−02 0.68

scrs8 2.71e−02 0.57

scsd1 1.72e−01 0.87

sctap1 1.92e−01 0.62

share1b 6.99e−01 0.63

share2b 1.94e+00 1.11

shell 6.58e−03 0.63

stair 4.95e−01 0.65

standata 1.26e−01 0.44

standgub 1.38e−01 0.47

standmps 1.89e−02 0.69

stocfor1 1.01e−02 0.79

vtp base 1.58e−03 0.67

Table 6.8: Warmstart/coldstart ratios with perturbations to c, δ = 0.1

CHAPTER 6. LP WARMSTARTING 68

c perturbed δ = 0.01

problem name avg soln dist avg ratio

adlittle 3.55e−01 0.58

afiro 3.34e−01 0.66

agg 1.95e−03 0.72

bandm 6.02e−02 0.6

beaconfd 1.30e+01 0.86

blend 4.00e−03 0.83

bore3d 2.97e−02 0.93

brandy 1.55e+01 0.6

capri 1.19e−03 0.81

degen2 1.35e−02 0.66

e226 4.91e+00 0.61

etamacro 2.71e−01 0.66

finnis 5.72e−02 0.59

gfrd pnc 7.60e−04 0.67

grow7 1.59e−02 0.5

israel 1.15e−02 0.56

kb2 5.10e−02 0.67

lotfi 7.60e+00 2.42

qap8 1.31e−01 0.88

recipe 1.10e+05 2.07

sc105 4.10e−02 0.75

sc205 4.51e+00 1.45

sc50a 1.97e−02 0.67

sc50b 1.37e−02 0.56

scagr25 1.06e−03 0.61

scagr7 1.27e−02 0.53

scfxm1 9.40e−03 0.63

scorpion 1.52e−03 0.57

scrs8 2.60e−03 0.59

scsd1 1.71e−01 0.86

sctap1 1.93e−01 0.59

share1b 1.70e−01 0.56

share2b 3.45e−01 0.72

shell 5.42e−04 0.64

stair 1.40e−01 0.46

standata 1.14e−01 0.44

standgub 1.33e−01 0.46

standmps 1.87e−03 0.69

stocfor1 8.50e−04 0.79

vtp base 1.58e−04 0.67

Table 6.9: Warmstart/coldstart ratios with perturbations to c, δ = 0.01

CHAPTER 6. LP WARMSTARTING 69

c perturbed δ = 0.001

problem name avg soln dist avg ratio

adlittle 2.86e−01 0.59

afiro 2.61e−01 0.65

agg 1.95e−04 0.72

bandm 9.97e−03 0.6

beaconfd 1.28e+00 0.81

blend 8.60e−04 0.85

bore3d 7.87e−03 0.92

brandy 1.57e+00 0.58

capri 2.10e−04 0.8

degen2 7.11e−03 0.66

e226 5.02e−01 0.58

etamacro 1.41e−02 0.63

finnis 2.76e−03 0.58

gfrd pnc 7.80e−05 0.67

grow7 1.59e−03 0.48

israel 2.73e−03 0.58

kb2 1.12e−02 0.62

lotfi 1.89e−01 0.65

qap8 1.24e−01 0.75

recipe 1.10e+04 1.71

sc105 3.89e−03 0.71

sc205 1.07e−02 0.84

sc50a 1.74e−03 0.61

sc50b 1.36e−03 0.56

scagr25 7.65e−05 0.59

scagr7 1.20e−02 0.54

scfxm1 8.37e−03 0.63

scorpion 2.13e−04 0.57

scrs8 1.92e−04 0.59

scsd1 1.71e−01 0.87

sctap1 1.93e−01 0.59

share1b 1.78e−02 0.54

share2b 2.38e−01 0.73

shell 5.55e−05 0.64

stair 1.19e−02 0.43

standata 2.68e−04 0.44

standgub 8.20e−04 0.46

standmps 1.63e−04 0.69

stocfor1 8.54e−05 0.79

vtp base 1.58e−05 0.67

Table 6.10: Warmstart/coldstart ratios with perturbations to c, δ = 0.001

Bibliography

[1] K. M. Anstreicher. Potential reduction algorithms. Technical report, De-
partment of Management Sciences, University of Iowa, Iowa City, Iowa
52242, 1995. Interior Point Methods in Mathematical Programming, T.
Terlaky, editor (Kluwer, 1996).

[2] H. Y. Benson and D. F. Shanno. An exact primal-dual penalty method
approach to warmstarting interior-point methods for linear program-
ming. Technical report, Drexel University, Philadelphia, PA, September
2005.

[3] D. Bertsekas and A. Ozdaglar. Pseudonormality and a Lagrange multi-
plier theory for constrained optimization. Technical report, 2000.

[4] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd
edition, 1999.

[5] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61,
1998. Also appeared in SIAM Review 43(1), 129-159 (2001).

[7] CPLEX Optimization Inc. CPLEX Linear Optimizer and Mixed Integer
Optimizer. Suite 279, 930 Tahoe Blvd. Bldg 802, Incline Village, NV
89541.

[8] J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright. PCx: An interior-
point code for linear programming. Technical report, 1999.

[9] Dash Associates, Ltd. XPRESS-MP. Blisworth, Northants, England.

70

BIBLIOGRAPHY 71

[10] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact New-
ton methods. SIAM J. Numer. Anal., 19(2):400–408, 1982.

[11] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formu-
lation and theory of the primal-dual newton interior-point method for
nonlinear programming. Journal of Optimization Theory and Applica-
tions, 89:507–541, 1996.

[12] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley and Sons, New
York, 1968. Reprinted as Volume 4 of the SIAM Classics in Applied
Mathematics Series, 1990.

[13] Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming.
Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 1990. Reprint
of the 1968 original.

[14] R. Fletcher. Practical Methods of Optimization, 2nd Edition. John
Wiley, Chichester, 2000.

[15] Roger Fletcher. Practical Methods of Optimization. John Wiley and
Sons, Chichester and New York, second edition, 1987.

[16] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear
optimization. SIAM Review, 44(4):525–597, 2002.

[17] Anders Forsgren, Philip E. Gill, and Margaret H. Wright. Interior meth-
ods for nonlinear optimization. SIAM Rev., 44:525–597, 2002.

[18] R. Fourer and S. Mehrotra. Performance of an augmented system ap-
proach for solving least-squares problems in an interior-point method
for linear programming. Math. Program., 19:26–31, August 1991.

[19] R. M. Freund. A potential–function reduction algorithm for solving a
linear program directly from an infeasible “warm start”. Mathematical
Programming, 52:441–466, 1991.

[20] R. M. Freund and S. Mizuno. Interior point methods: Current status
and future directions. Optima, 51:1–9, 1996.

BIBLIOGRAPHY 72

[21] K. R. Frisch. The logarithmic potential method of convex programming.
Memorandum of May 13, University Institute of Economics, Oslo, Nor-
way, 1955.

[22] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright.
On projected Newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method. Mathematical Program-
ming, 36:183–209, 1986.

[23] F. Glineur. Topics in Convex Optimization: Interior-Point Methods,
Conic Duality and Approximations. PhD thesis, Mons, Belgium, January
2001.

[24] J. Gondzio. HOPDM (ver 2.12) — A fast LP solver based on a primal-
dual interior point method. European Journal of Operational Research,
85:221–225, 1995.

[25] J. Gondzio and T. Terlaky. A computational view of interior-point meth-
ods for linear programming. Delft University of Technology, Faculty of
Technical Mathematics and Informatics, 1994.

[26] Jacek Gondzio and Andreas Grothey. A new unblocking technique to
warmstart interior point methods based on sensitivity analysis. Techni-
cal Report MS-06-005, School of Mathematics, The University of Edin-
burgh, Mayfield Road, Edinburgh EH9 3JZ, UK, 2006.

[27] C. C. Gonzaga. Path following methods for linear programming. SIAM
Review, 34(2):167–224, 1992.

[28] IBM. IBM Optimization Subroutine Library Guide and Reference, Au-
gust 1990. Publication number SC23–0519–1.

[29] E. John and E. A. Yildirim. Implementation of warm-start strategies
in interior-point methods for linear programming in fixed dimension.
Technical report, Bilkent, Ankara, Turkey, 2006.

[30] N. K. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984.

[31] B. Kim. Numerical Optimization Methods for Image Restoration. PhD
thesis, December 2002.

BIBLIOGRAPHY 73

[32] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point
algorithm for linear programming. In N. Megiddo, editor, Progress in
Mathematical Programming: Interior Point and Related Methods, pages
29–47. Springer Verlag, New York, NY, 1989.

[33] M. Kojima, S. Mizuno, and A. Yoshise. An iteration potential reduction
algorithm for linear complementarity problems. Mathematical Program-
ming, 50(1):331–342, 1991.

[34] I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience
with a primal-dual interior point method for linear programming. Linear
Algebra Appl., 152:191–222, 1991.

[35] I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods
for linear programming: Computational state of the art. ORSA Journal
on Computing, 6(1):1–14, 1994. See also the following commentaries and
rejoinder.

[36] K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation
of a primal-dual interior point method for linear programming. ORSA
Journal on Computing, 1:70–83, 1989.

[37] N. Megiddo. Pathways to the optimal set in linear programming. In
N. Megiddo, editor, Progress in Mathematical Programming: Interior
Point and Related Methods, pages 131–158. Springer Verlag, NY, 1989.

[38] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, 1992.

[39] Cs. Mészáros. The BPMPD interior solver for convex quadratic prob-
lems. Optimization Methods and Software, 11:431–449, 1999.

[40] J. G. Nagy and Z. Strakos. Enforcing nonnegativity in image recon-
struction algorithms. Mathematical Modeling, Estimation, and Imaging,
4121:182–190, 2000.

[41] Y. E. Nesterov and A. S. Nemirovsky. Interior Point Polynomial Meth-
ods in Convex Programming: Theory and Algorithms. SIAM Publica-
tions. SIAM, Philadelphia, USA, 1993.

BIBLIOGRAPHY 74

[42] J. Nocedal, A. Wachter, and R.Ã. Waltz. Adaptive barrier strategies for
nonlinear interior methods. Research Report RC, 23563, 2005.

[43] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer-Verlag, New York, second edition, 2006.

[44] C. C. Paige and Michael A. Saunders. Algorithm 583; LSQR: Sparse
linear equations and least-squares problems. ACM Trans. Math. Softw.,
8(2):195–209, 1982.

[45] Christopher C. Paige and Michael A. Saunders. LSQR: an algorithm
for sparse linear equations and sparse least squares. ACM Trans. Math.
Software, 8(1):43–71, 1982.

[46] R. Polyak. Modified barrier functions (theory and methods). Mathe-
matical Programming, 54:177–222, 1992.

[47] M. G. C. Resende and P. M. Pardalos. Interior point methods for large-
scale linear programming. In Handbook of Optimization in Telecommu-
nications, pages 3–25. 2006.

[48] Stephen M. Robinson. Generalized equations and their solutions. II.
Applications to nonlinear programming. Mathematical Programming
Study, 19:200–221, 1982.

[49] C. Roos. A full-newton step o(n) infeasible interior-point algorithm for
linear optimization. SIAM Journal on Optimization, 16(4):1110–1136,
2006.

[50] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Lin-
ear Optimization: An Interior Point Approach. John Wiley, Chichester,
1997.

[51] R. Saigal. Linear Programming: A Modern Integrated Analysis. Kluwer
Academic Publishers, Boston, MA, 1995.

[52] M. A. Saunders. PDCO: MATLAB software for convex optimization.
http://www.stanford.edu/group/SOL/software.html.

[53] M. J. Todd. Potential-reduction methods in mathematical programming.
Mathematical Programming, 76:3–45, 1997.

BIBLIOGRAPHY 75

[54] J. A. Tomlin. A note on comparing simplex and interior methods for
linear programming. pages 91–104, 1989.

[55] R. J. Vanderbei. LOQO optimization software.
http://orfe.princeton.edu/˜loqo/.

[56] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, Boston, 1996. Second Edition: 2001.

[57] R. J. Vanderbei. LOQO: An interior point code for quadratic program-
ming. Optimization Methods and Software, 11:451–484, 1999.

[58] S. J. Wright. Stability of augmented system factorizations in interior-
point methods. SIAM J. Matrix Anal. Appl., 18:191–222, 1997.

[59] E. A. Yildirim and S. J. Wright. Warm-start strategies in interior-
point methods for linear programming. SIAM Journal on Optimization,
12(3):692–714, 2002.

[60] Y. Zhang. User’s guide to LIPSOL: Linear programming interior point
solvers v0.4. Optimization Methods and Software, 11:385–396, 1999.

Chapter 7

Appendix

76

CHAPTER 7. APPENDIX 77

problem name # rows # cols # nonzeros

adlittle 57 97 465

afiro 28 32 88

agg 469 163 2541

bandm 306 472 2659

beaconfd 174 262 3476

blend 75 83 521

bore3d 234 315 1525

brandy 221 249 2150

capri 272 253 1786

degen2 445 534 4449

e226 224 282 2767

etamacro 401 668 2489

finnis 498 614 2714

gfrd pnc 617 1092 3467

grow7 141 301 2633

israel 175 142 2358

kb2 44 41 291

lotfi 154 308 1086

qap8 913 1632 8304

recipe 92 180 752

sc105 106 103 281

sc205 206 203 552

sc50a 51 48 131

sc50b 51 48 119

scagr25 472 500 2029

scagr7 130 140 553

scfxm1 331 457 2612

scorpion 389 358 1708

scrs8 491 1169 4029

scsd1 78 760 3148

sctap1 301 480 2052

share1b 118 225 1182

share2b 97 79 730

shell 537 1775 4900

stair 357 467 3857

standata 360 1075 3038

standgub 362 1184 3147

standmps 468 1075 3686

stocfor1 118 111 474

vtp base 199 203 914

Table 7.1: Netlib LP problems used and problem sizes

