
MULTIPLE-RANK UPDATES TO MATRIX FACTORIZATIONS

FOR NONLINEAR ANALYSIS AND CIRCUIT DESIGN

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Linzhong Deng
June 2010

iv

Abstract

For the numerical solution of ODE/PDEs that describe the basic laws of science, such as Kirchhoff’s
laws in circuit analysis, or nonlinear deformation equations in structural analysis, a series of linear
equations Ax = b are generated to represent the basic laws. The size of A could reach 1010 in
full-chip verification, or 109 in structure-foundation seismic simulation. The traditional method is
to solve these linear equations independently, which leads to a computational bottleneck when we
simulate large and complicated objects because more than 95% of the simulation time is consumed
in solving the equations.

The aim of this thesis is to address the challenge of the computational bottleneck by modifying
the matrix A’s factorization at each simulation step based on the similarities between two consecutive
linear systems. To achieve this aim, we define the similarities as an initial matrix A with multiple-
rank corrections. Then we design algorithms to solve the linear systems based on updating concepts.

The basic algorithm proposed in this study is a rank-1 update of the factors of an unsymmetric
matrix. To solve the well known instability problem, new algorithms are designed to implement
partial or full pivoting strategies for the update procedure.

To improve performance and overcome parallelization difficulties during traditional factorization,
a pipeline is designed to do multiple-rank updates of the matrix factors. We prove two theorems
for this parallel computing. One states that the multiple-rank update sequences are independent.
The other, called the “base camp” theorem, describes a multiple-rank merge rule to reduce the
computing effort. A divide-and-conquer algorithm for sparse matrix factorization is also described.

Finally, we apply the multiple-rank modification of matrix factorization for nonlinear analysis
in structural engineering and functionality verification in circuit design. The same process can be
applied in other time-domain problems and nonlinear systems, including fluid dynamics, aerospace,
chemical processing, structure analysis, graphics rendering, MEMS, seismic, biotech, and electro-
magnetic field analyses.

v

Acknowledgements

GG? Does it mean God’s Gift or God Given? Or does it just mean Gene Golub? When this question
was discussed in a SCCM lunch seminar, people found many explanations. To me, GG means Prof
Gene Golub, who is a Gift from God. Gene is godfather of numerical analysis. His contributions in
computer science and applied mathematics are far ahead of others. I was very fortunate to have him
as my advisor. According to Chinese philosophy (“Da En Bu Yan Xie”, which means you should
not say thanks to a person who gave you immense help because you cannot pay him back for his
invaluable support), I should speak with actions rather than words. But I still want to present my
thanks from the deepest part of my heart. It is he who guided me into this wonderful numerical
world. There are many sweet stories between us. We went to every Chinese spicy restaurant in
the Bay Area. We found and reviewed the computational core in engineering subjects. Gene was
sharp in engineering application and supported my crazy ideas. I felt his love when he said he
missed his students when he was away from The Farm. I especially thank him for his support when
I wrote the very original NSF proposal entitled “Digital Representation of Structural Response for
the Reliability Assessment of Complex Systems”. This project finally received full NSF support
(grant CMS-0218594) in 2003.

After Gene’s death, I was down for quite a while. Prof Michael Saunders gave me a lot of
encouragement, and helped me overcome this difficult time because Gene had become the dearest
person in my life. Michael then kindly stepped in to fill Gene’s giant shoes (1.5 times those of mine),
to hold the torch that Gene lit in Stanford and in the world, and to adopt me as his student. Michael
is a great advisor inside and outside of school. His guidance and help make me feel at home. His
marvelous job let me know the beauty of accuracy in math, and find the joy in research. I knew
Michael long before he became my advisor. He helped me in a “Property A” problem in memory
simulation, in proposal preparation, and much other writing. When publisher VDM Verlag invited
me to write a book “Artificial Intelligence Techniques for Bridge Reliability Assessment: Digital
Representation of Structure Response and Safety” in 2009, I really appreciated Michael’s support
to make this book reach the shelf. When I founded my company Revosys Inc with my partner Bob
Xu to do IC yield analysis, Michael gave me huge support in matrix analysis. Without him, my life
would be different. Especially this thesis: it would have been impossible without his amazing depth
and breadth of knowledge and untiring enthusiasm. The difference between Michael and Gene is
that Gene liked spicy food while Michael likes steak and lamb.

vi

I owe special thanks to Prof Walter Murray. I know Walter from my third day at Stanford. My
deep impression is that he wrote a formula min f on a piece of paper instead of fancy computer
slides during the student orientation to introduce optimization. It is marvelous that many people
devote their whole life to these four letters min f . His leadership guarantees that our study at
Stanford proceeds smoothly. His knowledge and connection to industry let me know the solution of
the toughest problems in the world. His email written at 2:00am kept me working till 3:00am. He
watched me grow up in SCCM and ICME. He is demanding but very nice.

I also want to present my thanks to Dr Zhihong Liu. Dr Liu is a vice president of Cadence
Design Systems Inc, and a pioneer in circuit design. He shared with me his academic and industrial
experience. I consulted him on the simulation in this work. He taught me strategy and leadership
in start-ups. I am so proud to have such a friendly, knowledgeable, and capable person to lead my
way.

Special thanks go to Prof Yinyu Ye and Prof Simon Wong, my committee members. They have
patience to read and support my work. Their personal characteristics light my way.

I owe many thanks to Indira Choudhury, ICME’s “governor”. After Gene’s death, she gave me
an email that said “I hope you are coming to terms with his death. I cannot imagine how profoundly
this has affected you. . . . You are his legacy and your life will be a testament to his efforts and
brilliance. He has passed the torch to all of you and now it is your turn to lead the way.” Thank
you, dear Indira. Your words made me feel better and understand my responsibility. I am so proud
to have you as our “governor”. You made it easy for me to focus on research.

Let me continue my thanks to my research collaborators and friends. Without them, it would be
difficult to imagine my research and life. It is hard to acknowledge all of them here. Some of them
are Ray Sun, Anwei Chai, Zhisu Zhu, and Sou-Cheng Choi.

When my company Revosys merged with Proplus Design Solutions Inc in 2008, we started to
schedule product release of a circuit design system. Although I work fulltime in ProPlus, Proplus
supported my Stanford research by giving me time and resources. My special thanks go to Proplus
CEO James Ma, CTO Bruce McGaughy, and COO Bob Xu for their invaluable technical and
financial support.

During the final year, I have been deeply grateful for the love and friendship that Ms. Martina
Ma brought to me. Her sunny smile and cheerful laugh raised my spirits and enabled me to complete
this research. Her ribeye steaks helped compose many key sentences.

Finally, I would like to present my unconditional gratitude to my parents for their support and
encouragement during my study period in the USA.

vii

Contents

Abstract v

Acknowledgements vi

1 Introduction 1
1.1 Factorization methods for Ax = b . 1
1.2 Stability of factorizations . 2
1.3 Sequences of linear systems . 3
1.4 Updating review . 3
1.5 A new approach . 4
1.6 Parallelization . 4
1.7 Applications . 5
1.8 Overview . 5

2 Matrices at Work 6
2.1 Matrix formation . 7

2.1.1 Circuit simulation . 7
2.2 Hazard analysis . 9

2.2.1 Discretization . 12
2.2.2 Forming the stiffness matrix . 12
2.2.3 Dynamic analysis . 13

2.3 Simulation core . 14

3 Multiple-rank Update Theory 15
3.1 Introduction . 15
3.2 General simulation strategies through matrix updating 16
3.3 Unsymmetric rank-1 update . 23

3.3.1 Factoring I + αpqT . 24
3.3.2 Structured matrix multiplication . 25

3.4 Stability . 28
3.5 Parallel update . 30

viii

3.6 Group update . 31
3.7 Examples . 38
3.8 Performance comparison . 39
3.9 Conclusion . 42

4 Sparse Matrix Factorization by Multiple-Rank Updates 44
4.1 Introduction . 44

4.1.1 Sparse-matrix properties . 45
4.2 Multiple-rank update algorithms for sparse LU factors 49

4.2.1 Notation . 49
4.2.2 Rank-1 update path . 50

4.3 Base-camp theory . 52
4.4 Sparse matrix factorization . 55
4.5 Left- and right-looking LU factorization . 57
4.6 Distributed computing . 60
4.7 Symmetric update . 61

5 Symmetric Factorization by Multiple-Rank Updates 62
5.1 Introduction . 62
5.2 Matrix updating strategies . 64
5.3 Implementation of EVD and SVD algorithms . 67
5.4 Updating LDLT factorization . 67

5.4.1 Application of classical Cholesky factorization 68
5.4.2 Application of Householder matrix method 69

5.5 Analysis of efficiency . 70
5.6 Stiffness matrix sparsification and decoupling . 72
5.7 Implementation of sparse matrix updating . 73
5.8 Nonlinear structural analysis . 75
5.9 Illustrative examples . 76
5.10 Conclusions . 81

6 Circuit Simulation 83
6.1 Introduction . 83

6.1.1 Challenges in nanometer design . 84
6.1.2 Transistor-level simulation profile . 84

6.2 A new simulation method . 85
6.2.1 Forming ∆A . 86
6.2.2 Decomposing ∆A . 87
6.2.3 Multiple-rank updates . 87
6.2.4 Building base-camps . 98

6.3 Examples . 101

ix

7 Conclusion 105
7.1 Contributions . 105
7.2 Future research . 106

Bibliography 107

x

List of Tables

4.1 Algorithm 2: Sparse-matrix update algorithm. 57
4.2 A typical left-looking method. 58
4.3 A typical right-looking method. 58
4.4 Algorithm 3. Sparse matrix hybrid factorization method. 60

xi

List of Figures

2.1 World Trade Center front view. 10
2.2 World Trade Center floor plan. 11

3.1 Node voltage changes dV for a 765-node circuit. 18
3.2 Sorted node voltage changes |dV | for a 765-node circuit. 18
3.3 Node voltage changes for a 5642-node circuit. 19
3.4 Sorted node voltage changes for a 5642-node circuit. 19
3.5 Bridge ultimate loading test. 21
3.6 Changes of plastic region. 21
3.7 Algorithm for factorization of A0 + ∆A. 22
3.8 Update sequence during a rank-1 modification. 31
3.9 Pipeline for k rank-1 updates. 32
3.10 Group update for applying r rank-1 updates. 33
3.11 Random update sequence in group update of r rank-1s. It does not matter if each

step processes the next part of each rank-1 update in a different order. 35
3.12 Performance of merge sort on sets between 4,000 and 4,096,000 keys. 40
3.13 Performance data for left-looking, right-looking, and group updating for A = LU . N:

Matrix dimension. LL: Left-Looking. RL: Right-Looking. GU5, GU10, GU20, GU50:
Group update with group size 5, 10, 20, 50. 41

3.14 Performance comparison among left-looking, right-looking, and group update for A =
LU . N: Matrix dimension. LL: Left-Looking. RL: Right-Looking. GU5, GU10, GU20,
GU50: Group update with group size 5, 10, 20, 50. 42

3.15 Performance comparison between two LL implementations. LL row and LL col mean
the matrix is ordered by row and col respectively. 43

4.1 General simulation flow. 47
4.2 Relationship between latency and ∆A. 48
4.3 A shallow elimination tree. 50
4.4 The elimination tree for a tridiagonal matrix. 51
4.5 Illustration of tree travel in update procedures for a tridiagonal matrix. 52
4.6 Illustration of the base-camp setup. 56

xii

4.7 Elimination tree with different features for left- and right-looking methods. 59

5.1 Illustration of updating strategy for simple truss problem. 63
5.2 Algorithm for recursive factorization of K̄ matrix. 66
5.3 Updating LDLT using classic Cholesky method. 69
5.4 Updating LDLT using Householder matrices Calculation of L̄ based on Gill et al.

[GGMS74]. 71
5.5 Illustration of a structure having high potential for sparsification. 72
5.6 Pseudo-code for sparsification and decoupling. 73
5.7 Illustration of densification of L during recursive algorithm. 74
5.8 Illustration of densification of EVD vectors during recursive algorithm. 74
5.9 Data structure for a typical column of L. 75
5.10 Rank-one updating algorithm for a band matrix with EVD modification. 76
5.11 Illustration of nonlinear analysis process. 77
5.12 Bridge cross section (units in cm) and table of material properties. 77
5.13 Mesh discretization for Slovenia bridge (units in m). 78
5.14 Moment-curvature relationship for girders. 78
5.15 Comparison of NONBAN results with experimental results for Slovenia Bridge. . . . 79
5.16 Comparison of computational time required at every load step for Example 1. 80
5.17 Cumulative solver time for LDLT , pseudoforce, and our proposed method. 80
5.18 Comparison of Example 2 results from different solvers. 81
5.19 Comparison of computational time required at every load step of Example 2. 82
5.20 Cumulative solver time for Example 2 using LDLT , pseudoforce, and proposed methods. 82

6.1 Algorithm to solve systems (6.1). 86
6.2 Operation in elimination tree. 94
6.3 Case 1 description. 95
6.4 Case 2 description. 96
6.5 Matrix symbolic pattern before pivoting. 99
6.6 Matrix symbolic pattern after pivoting. 99
6.7 Symbolic pattern of ∆A. 100
6.8 Symbolic pattern of original Jacobian matrix. 102
6.9 Symbolic pattern of original Jacobian matrix. 103
6.10 Symbolic pattern of original Jacobian matrix. 104

xiii

xiv

Chapter 1

Introduction

Solving a linear system Ax = b is an ancient topic. Leibniz did research on determinants in 1693,
and Gauss introduced the elimination method to solve linear equations in 1820. Although matrices
have a long history of application in solving linear systems, the advent of the computer led to rapid
development of this field and to modern matrix theory. Research in linear algebra has become the
center of scientific computing today to satisfy academic and industrial requirements to solve more
complicated systems with more accurate models by using the exponentially increasing power of the
computer.

The core of numerical linear algebra is the algorithms for solving the linear systems that arise
frequently in engineering and scientific computing [GVL96]. Linear system algorithms can be divided
into two categories: direct methods and iterative methods. The focus of research changes with
hardware progress. Twenty years ago, CPU speed was the critical factor. Ten years ago when
memory was a bottleneck, iterative methods received more attention. As breakthroughs in the
design of memory chips partly remove the bottleneck today, direct methods are now favored by
researchers and engineers for their accuracy and robustness. In this study, we propose a new direct
linear solver based on multiple-rank updates to achieve better performance and use memory in a
more efficient way. Applications of this solver in nonlinear analysis and circuit design are presented.

1.1 Factorization methods for Ax = b

Direct methods can be divided into left-looking methods and right-looking methods [Dav06]. Meth-
ods for solving structured linear equations, such as Toeplitz and Fourier systems, are beyond our
discussion [BP94].

A left-looking method is one that calculates factors L and U one column at a time. At step
k, the method accesses only columns 1 to k of L, and the kth column of the original matrix. A
right-looking method subtracts an outer product of the kth column of L and the kth row of U from
the lower-right submatrix of the remaining matrix and gets the next column of L and the next row
of U from the updated submatrix. Many techniques such as the BLAS level 1, 2 and 3 have been

1

2 CHAPTER 1. INTRODUCTION

introduced to obtain better accuracy, capacity, and performance [Dem97]. Parallelism is the focus of
recent developments in favor of computers’ multi-core architecture. In general, left-looking methods
have an advantage in memory access, while right-looking methods have an advantage in parallel
computing.

There are two types of matrices: dense and sparse. Both left- and right-looking methods can be
used to factorize these two types of matrices, but the rules for choosing a factorization method for
a given matrix vary—they depend on the computer architecture, matrix properties, and customer
accuracy requirements. In general, the computation effort for dense matrix factorization is O(n3)
floating-point operations, and the computation effort for a sparse matrix isO(n1.05)–O(n2). Ordering
strategies and stability rules are critical in solving a sparse linear system [DER86]. Much research
has been done on strategies to reduce fill-ins. Finding a good (fill-reducing) ordering is essential for
reducing time and memory requirements for sparse factorization methods [Dav06].

Many successful factorization algorithms have been developed based on left-looking or right-
looking methods. However, they are all quite expensive for linear systems of high dimension. Al-
though computation power has increased substantially in recent years, the computational require-
ment also increases dramatically when more accurate models are introduced or more complicated
systems need to be simulated. In EDA (Electronic Design Automation), the problem size for sim-
ulation has increased exponentially according to Moore’s law (doubling every two years). It is not
unusual for a test case to run for a month. How to achieve good performance without losing accuracy
has become an important topic in academics and engineering. Much research has been done on the
algebraic or geometric properties of a matrix to improve performance. Our research addresses this
subject by considering latency—an intrinsic physical phenomenon in engineering applications.

1.2 Stability of factorizations

Both left-looking and right-looking factorization methods may have stability difficulties when the
matrix is not positive definite. To obtain acceptable performance and stability, various strategies
have been introduced such as threshold partial pivoting [Mar57] and threshold rook pivoting and
threshold complete pivoting [GMS05]. These strategies seek permutations of the rows and columns
of the matrix that lead to sparse factors while preserving adequate stability. Practical application
has shown these strategies to be effective.

The standard pivot strategies ensure that |Lij | ≤ Lmax when we process column j, for some
stability parameter Lmax. To favor stability, Lmax could be set to 10 or 5 or 2 [Sau09]. To permit
greater sparsity, Lmax is often chosen to be 1000. A positive-definite matrix does not need any such
control because its factorization step is stable. (The row/column permutation can be chosen purely
to enhance sparsity.)

Stability has received more attention in large and complex simulations, where the highly nonlinear
equations are very sensitive to parameter changes and have high condition number. Refinement
processes are used to obtain a relatively reliable solution. In this thesis we also devote much effort
to the stability concerns.

1.3. SEQUENCES OF LINEAR SYSTEMS 3

1.3 Sequences of linear systems

One of the most effective ways to improve performance is to consider properties of the linear system
that depend on the application, discretization methods, and simulation processes. The basic laws
of science such as Maxwell’s equation, Kirchhoff’s laws, and Newton’s second law of motion, are
described by differential equations. Discretization of the associated ODEs or PDEs inside a practical
problem leads to a series of linear equations. Their matrix properties such as symmetry, positive
definiteness, data structure, sparsity, and scaling are considered in the design of an algorithm for
solving each linear system.

Traditionally, the series of linear systems is solved one by one by a direct or iterative method
without consideration of the relationship between consecutive systems, or between the base system
and later systems. However, from physical facts and the law of continuity, we know that the present
simulation step evolved from the preceding step. This clone relationship should be used in the
simulation procedure to achieve accuracy and robustness (no core dump!). It should also be helpful
in discontinuous problems and highly nonlinear problems. The following chapters will discuss this
again in more detail.

1.4 Updating review

How to model this clone relationship efficiently and stably has received much attention from math-
ematicians and engineers. Bennett proposed an LU updating strategy for the solution of modified
matrices [Ben65], and Gill, Golub, Murray, and Saunders published a landmark paper about matrix
factorization updating methods [GM74]. These two papers led to an entire field of research that is
still going on within scientific computing.

For example, Law’s sparse updating method [Law85, Law89] and the method of Chan and Brand-
wajn [CB86] are based on Bennett’s strategy. For simplex-type active-set optimization methods,
Bartels and Golub [BG69] showed how to update LU factors with L kept in product form and U

updated explicitly. Reid [Bar71] showed how to implement this method efficiently in the sparse
case. Fletcher and Matthews [FM84] gave an LU update that keeps both L and U triangular. Davis
and Hager [DH99] implemented a sparse version of the symmetric updating method of Gill, Golub,
Murray, and Saunders [GM74] based on manipulation of the underlying graph structure. Makode,
Corotis and Ramirez [MR99] proposed the Pseudodistortion method, which finds a right-hand side
b1 such that solving Ax = b1 is equivalent to solving (A + ∆A)x = b. Deng and Ghosn [DG01]
extended this method to general engineering applications.

Most of the updating methods have some limitations on their stability, or require considerable
computation effort, or only apply to symmetric systems, or need additional physical information.

Multiple-rank updates require similar care. They can use memory more efficiently, and have the
same degree of stability as rank-1 updates.

4 CHAPTER 1. INTRODUCTION

1.5 A new approach

Based on previous work in research and industrial applications, this thesis develops dense and
sparse linear solvers and applies them in circuit simulation and structural analysis. The aim is to
eliminate the computational bottleneck by developing update procedures for the matrix factors at
each simulation step. A certain clone relationship exists between two consecutive linear systems.
We represent this relationship as a multiple-rank update. The problem is expressed in general as

Given A = LU, solve (A+ ∆A)x = b,

where A is n× n and ∆A has low rank relative to n. The whole simulation flow can be built on the
above equation by recursively forming matrices A, L, and U . If ∆A has rank r, it can be decomposed
as the summation of r rank-1 matrices:

∆A =
r∑
j=1

ujv
T
j .

The basic algorithm proposed in this study is the rank-1 update of L and U factors of an
unsymmetric matrix. To ensure stability, we propose algorithms to implement partial or full pivoting
strategies in such a way that we can transform the “interchange-for-stability problem” into two rank-
1 update problems. In other words, we solve the stability problem by regarding a row interchange
as two rank-1 updates.

1.6 Parallelization

One attractive property of multi-rank updates is that the data flow is suitable for parallel computing.
To obtain good performance and achieve parallelism, we design a pipeline for the updates. We also
prove two theorems for parallel multiple rank-1 computation:

1. One theorem states that a sequence of rank-1 updates can be implemented independently in
different columns or in different stages of a pipeline. Both the result and the computational
effort are the same for any order.

2. The other so-called “base-camp” theorem states that a large group of rank-1 updates can be
merged (coalesced or condensed) into a small group of rank-1 updates to reduce computation.
This theorem makes multiple sparse-matrix updates practical.

Later, a divide-and-conquer algorithm for sparse matrix factorization is discussed, which may lead
to fully parallelized LU factorization.

1.7. APPLICATIONS 5

1.7 Applications

Finally, we apply the multiple-rank factorization updates to nonlinear analysis in structural engi-
neering and functional verification in circuit design. Also they can be applied to other time-domain
and nonlinear systems, including fluid dynamics, aerospace, chemical processing, structural analysis,
graphics rendering, MEMS, seismology, biotech, and electromagnetic field analyses.

1.8 Overview

Chapter 2 introduces the basic numerical algorithms. Their properties, including stability, robust-
ness, capacity, parallelism, and high performance are introduced in Chapter 3. Chapter 4 gives
algorithms for updating sparse matrix factors. Chapter 5 discusses the symmetric updating prob-
lem. Chapter 6 gives some application examples to show the advantages of our proposed method,
and Chapter 7 gives a summary and looks ahead to future work.

Chapter 2

Matrices at Work

Matrices exist in every corner of engineering and science practice. They are at the core of numerical
analysis. When we analyze a new problem, one of the best ways to proceed is to express it in matrix
form. Numerical linear algebra algorithms can be applied to the problem by finding the solution
through scientific computation.

The matrix is a vital invention to help describe and solve massive and complex problems. Circuit
simulation, structure analysis, and the optimization of jet engine design are typical examples. The
matrix is also an effective tool to store, process, and view data. For example, Google regularly builds
a linkage matrix to store the data contained in billions of web pages, and interprets this data using
an eigenvector of the matrix.

Matrix computation can be time-consuming. One would need days of work to invert a general
10× 10 matrix by hand. Before automatic computing devices were invented, people believed matrix
theorems were not useful in application because of the associated unacceptable computational effort.
The advent of computers led to modern numerical linear algebra, and the advances there helped the
development of computer science. It is the computer that is used to solve huge problems expressed
in matrices. When the problem is large and complicated, such as in global weather forecasting,
we need a computer having high speed and immense storage. When computing hardware and
operating systems reach the required power as electrical engineering and computer science advance,
we ask for more power to solve even bigger problems using more accurate models and implementing
more features to understand the investigated problem in more detail. These processes form the
development trajectories of computer science and matrix algebra in the past 60 years.

The core of linear algebra is matrix computation. Why do matrices exist in almost all fields?
How do we form a matrix in a practical problem? How do we use the resulting matrix to find a
solution? This chapter will discuss these problems in general. Please refer to [Bat96, ZT05, GKO95]
for details.

6

2.1. MATRIX FORMATION 7

2.1 Matrix formation

Many of the basic laws of science are expressed as ODE/PDEs [Hea02], including:

• Newton’s second law of motion

• Kirchhoff’s laws

• Heat equation

• Maxwell’s equation

• Navier-Stokes equations

• Linear elasticity equations

• Schrödinger’s equations

• Einstein’s equations.

These ODE/PDEs describe the intrinsic properties in nature, engineering, physics, and more. In
some simple conceptual models, we may obtain their solutions in analytical form. In real application
problems, numerical methods are the only means for obtaining a solution [GKO95, OF02]. The
common numerical methods include modified nodal analysis (MNA), finite element methods (FEM),
difference methods, boundary element methods (BEM), and linear programming (LP). The following
sections summarize the numerical analysis processes of MNA in circuit simulation and FEM in
structural analysis that illustrate the basic numerical procedures.

2.1.1 Circuit simulation

Suppose there is a circuit with n nodes. Define vi to be the voltage of node i, where i = 1, 2, . . . , n.
Let v = [v1, v2, . . . , vn]T be a vector to represent the voltages at all nodes, and t ∈ [0, tmax] be the
instantaneous simulation time up to the stopping point tmax. Let us define Qi(v, t), fi(v, t), and
ui(t) to be the charge, the conductance current, and the current source at node i for i = 1, 2, . . . , n.
According to Kirchhoff’s laws, the summation of all branch currents at node i is equal to zero:

dQi(v, t)
dt

+ fi(v, t) + ui = 0. (2.1)

Let
Q = [Q1, Q2, . . . , Qn]T

be a vector to represent the charge at every node,

f = [f1, f2, . . . , fn]T

be a vector to represent the conductance current at every node, and

u = [u1, u2, . . . , un]T

8 CHAPTER 2. MATRICES AT WORK

be a vector to represent the known current source at every node. The n equations arising from the
application of Kirchhoff’s current law for the n nodes can be expressed as

dQ

dt
+ f(v, t) + u = 0. (2.2)

Equation (2.2) is the basic ODE for all big signal simulations in circuit design. Management and
optimization of timing, power, and reliability in nanometer design require its exact solution because
the traditional timing, power, and reliability analysis methods handle new features in the nanometer
era inappropriately in IC design practice. Equation (2.2) must be solved numerically because of its
stiffness and complex boundary conditions (and because of nonlinearity in the device), and it must
be solved to high accuracy for the solution to be useful.

When we use the Backward Euler method to discretize (2.2), we have

Qt+1 −Qt

∆t
+ f(vt+1, tt+1) + ut+1 = 0 (2.3)

at each timestep t. Equation (2.3) is highly nonlinear. The Newton-Raphson method is an ideal
tool to solve it. Define

F (v, t) ≡ Qt+1 −Qt

∆t
+ f(vt+1, tt+1) + ut+1 = 0. (2.4)

Its derivative is

dF

dv
=

1
∆t

dQt+1

dv
+
df(vt+1, tt+1)

dv

=
1

∆t
C +G, where C =

dQt+1

∆v
and G =

df(vt+1, tt+1))
dv

.

(2.5)

Applying the Newton-Raphson method to solve (2.4), we have

dF (v, t)
dv

∆v = −F (v, t). (2.6)

Substituting dF (v,t)
dt from (2.5) into (2.6), we have(

G+
1

∆t
C

)
∆v = −

(
Qt+1 −Qt

∆t
+ f(vt+1, tt+1) + ut+1

)
. (2.7)

Alternatively, we can solve (2.2) by the classical trapezoidal method:(
G+

2
∆t

C

)
∆v = −

(
2

∆t
(Qt+1 −Qt)− dQ(t)

dt
+ f(vt+1, tt+1) + ut+1

)
. (2.8)

2.2. HAZARD ANALYSIS 9

In general, each Newton-Raphson iteration solves a linear equation Ax = b, where

A = G+
1

∆t
C,

b = −
(
Qt+1 −Qt

∆t
+ f(vt+1, tt+1) + ut+1

)
,

x = ∆v

(2.9)

for the Backward Euler method, and

A = G+
2

∆t
C,

b = −
(

2
∆t

(Qt+1 −Qt)− dQ(t)
dt

+ f(vt+1, tt+1) + ut+1

)
,

x = ∆v

(2.10)

for the trapezoidal method. In both cases, A ∈ Rn×n and x, b ∈ Rn. The dimension n could be
more than 109. For example, the Intel I7-920 processor has 731 million MOSes (transistors). Every
MOS has 4–9 nodes, and the whole chip will have around 109 nodes. Verifying the I7’s functionality
by simulation is clearly a major challenge.

In today’s technology, circuits are operated at 10GHz frequency, which means ∆t should be less
than 1

10G = 10−10 seconds to verify its functionality. If tmax = 10−6, we need at least 10−6

10−10 = 104

timesteps to finish the simulation. If a Newton-Raphson step needs 2 iterations to converge on
average, we need to solve Ax = b 20,000 times (a very conservative estimate). It is common for a
circuit to need multiple millions of timesteps or to solve Ax = b multiple millions of times for its
basic functionality verification.

Abstractly, the circuit simulation procedure solves a series of linear systems

A(i)x(i) = b(i), i = 1, 2, . . . , nt (2.11)

in which nt is the total number of times to solve Ax = b. A(i) ∈ Rn×n defines the matrix at step i.
We will refer to A(i) and b(i) as A and b in the following sections and chapters.

Solving even one of the systems of linear equations is time-consuming. Solving all equations
(2.11) will consume most of the simulation time. This forms the bottleneck in circuit simulation.

It is not practical to solve equations (2.11) directly when n > 106. In industry, a direct solver is
used when n < 50, 000, and a physically or numerically approximate method when n < 10 million.
There are not many success stories about solving (2.11) when n > 10 million.

2.2 Hazard analysis

Structure safety is a serious public issue that has received much attention recently. For example,
events like

10 CHAPTER 2. MATRICES AT WORK

Figure 2.1: World Trade Center front view.

• a bridge collapsing after an unexpected accident,

• a high-rise building resisting sudden hazard forces such as seismic load or terrorist attack,

need serious consideration because of their deep effect on our society.

What is the redundancy in a structure to ensure that it can safely resist the impact of some
accident? How can we design a bridge with enough redundancy to resist the impact caused by an
accident like a fully loaded ship colliding with a pier of the bridge? How can we design a building
that remains standing after a terrorist attack such as on the World Trade Center (WTC). All these
questions can be answered partially by structural simulation. This is another example where linear
algebra forms the core in design and analysis.

Immediately after the 9/11 attack, Prof. Gene Golub talked to me about the public safety
problems in our society. He believed the collapsing phenomenon is a typical implosive process. If
we can simulate this process and understand the change of physical states, we will have the ability
to prevent such a tragedy happening again. In memory of him, we present a prototype for FEM
simulation of the WTC collapse.

WTC had a tube-in-tube structure. The inner tube was formed by the elevator wall. The outer
tube was formed by the dense columns around its outside wall. The inner tube and outer tube were
connected by trusses and beams at every floor to form an innovative skeleton to bear the vertical
loads such as the building’s weight and to resist horizontal forces such as wind and seismic forces.

2.2. HAZARD ANALYSIS 11

Figure 2.2: World Trade Center floor plan.

12 CHAPTER 2. MATRICES AT WORK

Figures 2.1 and 2.2 [God85, Wik05] show WTC’s analysis models of the floor and vertical columns.

To understand the implosive process that happened in WTC, we need to investigate the damage
and collapse trajectory, including

• the structure damage due to the high-speed impact of the Boeing 767 airplane;

• the fire damage and decrease in the structure capacities after the aircraft broke into fragments;

• the collapse mechanism;

• interactions between two towers.

Initial investigations have been conducted [ALT+03, BZ01]. In the following sections we introduce
abstract models of implosive simulation through FEM dynamic analysis, and derive the correspond-
ing linear equations.

2.2.1 Discretization

The first step and the critical step in FEM structure analysis is to discretize a structure into an
assemblage of elements that are interconnected at structure joints (nodes). The node properties
(typically deformations or displacements) are then calculated from an equilibrium equation Kδ = f ,
where K is a stiffness matrix that is assembled from individual element matrices, δ is a vector of
global displacement, and f is a vector of forces acting in the direction of these displacement. (The
element matrices describe the relationship between the element node deformations and the forces
at the element nodes.) The global characteristics of the structure can be obtained from the node
properties.

The WTC consisted of columns, beams, trusses, and tubes as shown in Figures 2.1 and 2.2.
Trusses are modeled by truss elements, and tubes can be modeled by shell elements and/or triangular
elements. Thus we can discretize WTC into rod, column, beam, shell, and triangular elements. The
total number of elements is approximately 1 million.

2.2.2 Forming the stiffness matrix

Assume an element i has ne nodes and k unknown variables. From [ZT05], the force-deformation
relationship for the element is written as

Ke
i (p, t, Tt)δei = fei , (2.12)

in which the element matrix Ke
i (p, t, Tt) ∈ Rk×k describes the effect of physical parameters p, time

t, and temperature Tt; the vector δei ∈ Rk describes the magnitude (deformation) of the k variables;
and the force vector fei ∈ Rk expresses the forces associated with the k variables. The structure
stiffness matrix can be assembled from the stiffness matrices of the individual elements using the
direct stiffness method [Bat96]. In this procedure the structure stiffness matrix K ∈ RN×N is

2.2. HAZARD ANALYSIS 13

calculated by

K =
Nelem∑
i=1

K(i), (2.13)

where N is the total degrees of freedom, Nelem is the total elements, and K(i) is a matrix obtained
by expanding Ke

i to the same size as K. Note that all the entries in K(i) are zero except those
corresponding to an element degree of freedom. Thus the equilibrium equation can be written as

Kδ = f, (2.14)

where δ ∈ RN is a vector of the system global displacements, and f ∈ RN is a vector of forces acting
in the direction of these displacements.

2.2.3 Dynamic analysis

According to Newton’s law, the statics at time t can be expressed as [Bat96]

Ft(t) + FD(t) + FE(t) = R(t), (2.15)

where Ft(t) = Mδ̈ are the inertial forces, FD(t) = Cδ̇ are the damping forces, and FE(t) = Kδ

are the elastic forces; M , C, K are the mass, damping and stiffness matrices formed from element
matrices by following standard FEM assembly procedure; R(t) is the vector of external applied
loads; and δ̈, δ̇, and δ are the acceleration, velocity, and displacement vectors defined at nodes.
Thus, (2.15) can be rewritten as

Mδ̈ + Cδ̇ +Kδ = R. (2.16)

Equation (2.16) is a highly nonlinear ODE equation. In common numerical simulation proce-
dures, an explicit or implicit approach is chosen for time descretization, and a Newton-Raphson
method is used to solve the resulting nonlinear system. To achieve analysis accuracy and trace a
complete physical path such as a collapse trajectory, many timesteps are needed to find accurate
details of the stress redistribution. At every timestep, we create a nonlinear equation and use several
linear equations to solve the nonlinear equation by Newton-Raphson. Thus, the core of simulation
flow, including all timesteps, is to solve a long sequence of linear systems A(i)x(i) = b(i) (2.11) in
which A(i) ∈ RN×N defines the matrix at step i. As mentioned earlier, A(i) and b(i) will be written
as A and b in the following sections and chapters.

An accurate model to simulate the WTC needs more than 10 million variables and more than
100 thousand timesteps to trace the failure states. We hope it will be possible to complete this task
as hardware and linear algebra algorithms advance in the near future.

14 CHAPTER 2. MATRICES AT WORK

2.3 Simulation core

In general, simulation procedures in physics, science, and engineering can be abstracted as a series
of linear equations (2.11). The main concerns are

• accuracy,

• capacity,

• performance.

We need high accuracy to make simulation results trustworthy. We need high capacity so that large
and complicated problems can be analyzed. We need high performance so that the time-to-market
can be achieved. As a multi-gigabyte memory chip is now available and 64-bit machines are being
introduced, the capacity requirement is partly met. But accuracy and performance are still a vital
concern. To reach high accuracy, we need to build more accurate models and use more conservative
integration methods, which lead to large N and nt in (2.11) and substantially lower performance.

Some methods for achieving high performance while keeping reasonable accuracy are

• the Fast Multipole Method of Greengard and Rokhlin [GR87],

• the H-matrix method [BGH03],

• cluster analysis and matrix partition [KK98],

• reuse of Krylov vectors (iterative method) [YZP08],

• consideration of advanced hardware such as cache [LaM96], GPU, and FPGA,

• parallel computing.

All these methods have accuracy limitations still, or severe performance degradation in corner cases.
In contrast to the above-mentioned methods, the following chapters establish a system of the-

orems and algorithms to solve systems (2.11) in a global context instead of solving them one by
one as we consider the intrinsic properties of the problems involved: physical latency, physical con-
tinuity, and physical geometry. We will extract these properties at the matrix level instead of the
related physical level. These algorithms will also overcome the inconsistency between performance
and accuracy.

Chapter 3

Multiple-rank Update Theory

3.1 Introduction

In physical applications, engineering simulation, or financial analysis, the essential task is to solve
an equation

f(t, p, x) = 0 (3.1)

in which t is time, p is a set of parameters with valid range, and x is a vector of variables to be
computed. The equation may be an ODE or a PDE or a stochastic equation. To solve the equation
numerically, we discretize t and possibly x [Bat96, ZT05, GKO95, HN87a, HN87b, TH00, BO99,
PTVF99], thus obtaining a system of linear or nonlinear equations. As we discussed in last chapter,
this process can be abstracted to solving a series of linear systems

A(i)x(i) = b(i), i = 1, . . . , nt (3.2)

for some number nt, to get a solution over some physical domain.
It is quite expensive to solve (3.2) when nt is large, and/or A(i) has high dimension. Although

computation power has increased substantially in recent years, the computational requirement also
increases dramatically when more accurate models are introduced or more complicated systems need
to be simulated. In some fields such as EDA (Electronic Design Automation), the problem size for
simulation has been increasing exponentially according to Moore’s law (doubling every two years).

Given a typical time-to-market of six months, it is not acceptable to take weeks to solve (3.2).
Many efforts [GR87, BGH03, KK98, YZP08, LaM96] have been made to answer industry’s request
for innovative algorithms to drive the advance of technology.

In general, the methods used to solve (3.2) can be divided into two families. One is to treat
the A(i) as independent matrices. The common methods are Cholesky decomposition, Gaussian
elimination, QR, SVD, or iterative methods like CG, LSQR, and so on [GVL96, PS82]. Another is
to take advantage of the relationship between each A(i) and a reference matrix A0 and to consider
A(i), i = 1, . . . , nt systematically. If A(i) = A0 + ∆A and we know A0’s decomposition, the effort to

15

16 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

solve A(i)x(i) = b(i) may be reduced. This problem is expressed in general as to solve

(A0 + ∆A)x = b, given A0 = L0U0. (3.3)

How to solve (3.3) efficiently and stably has received much attention from mathematicians and en-
gineers. Bennett [Ben65] proposed an LU updating strategy for the solution of modified matrices,
and Gill, Golub, Murray, and Saunders [GGMS74] published a landmark paper about matrix fac-
torization updating methods. These two papers led to an entire field of research that is still ongoing
within scientific computing and other areas.

Based on previous work in research and industrial applications, this chapter proposes general and
robust update algorithms to solve (3.3) when ∆A has low rank. The next sections demonstrate that
these proposed algorithms have many advantages, including stability, robustness, capacity, parallel
properties, and high performance.

3.2 General simulation strategies through matrix updating

If A(i) in (3.2) is expressed as
A(i) = A(i−1) + ∆A(i), (3.4)

where ∆A(i) stands for the difference between two consecutive simulation matrices, (3.4) can be
simplified as

A = A0 + ∆A. (3.5)

where the reference matrix A0 is from the previous step, and ∆A represents the part of the matrix
that has changed its physical states. From the intrinsic properties of physics, ∆A is highly sparse
and has low rank.

For example, the simulation matrix A0 represents the device states in a timestep in circuit
simulation, and ∆A represents a part of the matrix that has changed its states between the previous
and current timesteps. The following three examples show how ∆A changes in an engineering
application. They also show that ∆A is sparse and of low rank. We usually refer to ∆A as the
active region.

Example 1. A Spice Simulation. A customer circuit with 765 nodes and 1000 bsim4 MOSes
was simulated from 0 to 1.6×10−7 seconds by SPICE3 [spi, Nag75]. SPICE3 takes 368 timesteps to
execute the simulation to compute the 765 nodes’ voltages V (i, j) at each timestep (i = 1, . . . , 368,
j = 1, . . . , 765). To model node voltage changes between two consecutive timesteps, we define
dV (1, :) = 0 and

dV (i, :) = V (i, :)− V (i−1, :), i = 2, . . . , 368. (3.6)

Figure 3.1 shows dV . The x-coordinate represents time i ∈ [0, 1.6e−7], the y-coordinate represents
the node index j ∈ [0, 765], and the z-coordinate represents dV (i, j).

We see that the voltages of most nodes do not change: dV (i, j) ≈ 0 for most i and j. We define

3.2. GENERAL SIMULATION STRATEGIES THROUGH MATRIX UPDATING 17

such nodes to be idle. If a node’s voltage changes significantly during some timesteps, we define the
node to be active. In practice, the percentage of active nodes is very low. To see this better, we
sort dV (i, j) by rows and replot their absolute values in Figure 3.2. Clearly there are three spikes
of interest to circuit designers and simulation algorithm developers.

Example 2. Here we consider another customer circuit that is 10 times bigger than in Example
1. It has 5642 nodes and 12,000 bsim4 MOSes. SPICE3 takes 822 timesteps to simulates it from
0 to 1.0 × 10−7 seconds. We define V (i, j), i = 1, . . . , 822, j = 1, . . . , 5642 to be the node voltages,
where i represents the timestep and j represents the node index. The voltage change between two
consecutive timesteps can be calculated from dV [1, j] = 0, j = 1, . . . , 5642 and

dV (i, j) = V (i, j)− V (i−1, j), i = 2, . . . , 822, j = 1, . . . , 5642.

Figure 3.3 shows dV . As in Example 1, the x-coordinate represents time i ∈ [0, 1.6e−7], the y-
coordinate represents the node index j ∈ [0, 5642], and the z-coordinate represents dV (i, j). Figure
3.4 shows the sorted dV (absolute values) to illustrate the idle nodes in a more direct way.

We found that the percentage of idle nodes in Example 2 is higher than in Example 1. In general,
the bigger the circuit, the higher the percentage of idle nodes and the lower the percentage of active
nodes. This is a general property of sequential circuits. ∆A in (3.5) is designed to represent the
changes caused by active nodes. It is necessary to use this physical information to enhance the
accuracy and performance of circuit simulation.

Traditionally, transistor-level simulation can be divided into two families of methods: SPICE
and fast SPICE [SJN94, PRV95]. The SPICE methods consider the circuit as an undivided object.
A huge sparse Jacobian matrix will be formed when we numerically discretize the circuit to analyze
instant current [New79, NPVS81]. The matrix dimension is of the same order as the number of the
nodes in the circuit. For transient analysis, this huge nonlinear system needs to be solved hundreds
of thousand times, thus restricting the capacity and performance of SPICE methods. SPICE in
general can simulate a chip with up to about 50,000 nodes. Therefore it is not practical to use this
method in full chip design. It is widely used in cell design, library building, and accuracy verification.

With appropriate accuracy, Fast SPICE methods developed in the early 1990s provided capac-
ity and speed that was two orders of magnitude greater than SPICE [SJN94, ROTH94, HZDS95].
The performance gain was made by employing simplified models [CD86], circuit partition methods
[Ter83, TS03], and event-driven algorithms [New79, ST75], and by taking advantage of circuit la-
tency [Haj80, LKMS93, RH76, RSVH79]. Today, this assumption about circuit latency becomes
questionable for nanometer designs because some subcircuits might have been functionally latent
and yet electrically active because of voltage variation in Vdd and Gnd busses or in small crosstalk
coupling signals. Also, the event-driven algorithm is generally insufficient to handle analog sig-
nal propagation. Fast SPICE’s capacity is limited to a circuit size considerably below 10 million
transistors. It is therefore still inadequate for full chip simulations for large circuits. Furthermore,
the simulation time increases drastically with the presence of many BJTs, inductors, diodes, or a

18 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Figure 3.1: Node voltage changes dV for a 765-node circuit.

Figure 3.2: Sorted node voltage changes |dV | for a 765-node circuit.

3.2. GENERAL SIMULATION STRATEGIES THROUGH MATRIX UPDATING 19

Figure 3.3: Node voltage changes for a 5642-node circuit.

Figure 3.4: Sorted node voltage changes for a 5642-node circuit.

20 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

substantial number of cross-coupling capacitors.

Because of integration capacity in the nanometer era, SOC is widely used at present in the main
design stream [Hut98]. It is possible now to integrate 1 billion transistors on a single chip. The
corresponding matrix size would reach O(109) if we used SPICE to simulate the full chip. This is
not practical.

Fast SPICE families also face difficulties in simulating SOC because of the size difficulty and
modeling inaccuracy. Driven by the market, EDA companies have developed a series of methods
that partly satisfy the performance and accuracy requirements. Those methods include cut algo-
rithms [Haj80, Wu76], hierarchical reduction [Syn03], RC reduction [KY97], and hierarchical storage
strategies [Nas02]. In 65-nm design or below, the above-mentioned algorithms face big challenges in
accuracy, capacity, and performance.

Because of the above limitations, some designers may choose to cut the entire circuit into small
blocks and simulate the sub-circuits in different modes and levels. It is a tedious and error-prone
process. Only full-chip simulation can make the designer understand the entire circuit behavior,
if such a tool were to exist for very large circuits. Other designers may choose not to analyze
nanometer effects but instead add guardbands [JHW+01]. In effect, they overdesign their circuits to
avoid problems caused by parasitics in the power bus, signal interconnects, and transistor devices.
Guardbanding merely hides those effects in present technology, and is designed purely by experience.
With the newest generation of nanometer design, guardbanding will prove to be ineffective and
unreliable [KWC00]. We need solutions that provide insight into nanometer effects, and the ability
to use this insight to control the performance of the design. This leads the functionality of EDA
tools into the next generation.

Our proposed algorithms are different from the two traditional families of methods. We solve
the simulation systems (3.2) in a global context instead of solving them one by one as we consider
the intrinsic properties of the problems involved: physical latency, physical continuity, and physical
geometry. We extract these properties at the matrix level instead of the related physical level through
∆A computation. These algorithms overcome the inconsistency between performance and accuracy.

Example 3. A model bridge (1
3 scale) with three girders was tested by Znidaric and Moses (1997,

1998). The load configuration used, shown in Figure 3.5, simulates the rated loading scheme with a
5-axle 42-ton semi-trailer used for safety assessment of existing road bridges in Slovenia.

As the load increases from zero to the ultimate load, the plastic region increases and ripples out
from the middle toward the two ends. Figure 3.6 shows this in detail. The black region represents
the original ∆A, and each colored region represents another ∆A.

Finding ∆A itself is a challenging problem. There are two ways to form ∆A. The first is to
use algebraic computations: ∆A = A − A0. The second is to use physical measurements. In this
approach, the active region is defined using device models, or through some engineering estimation.
In this way, ∆A can be assembled more efficiently and more accurately, and some truncation errors
[BYCM93, She99] are avoided.

3.2. GENERAL SIMULATION STRATEGIES THROUGH MATRIX UPDATING 21

Figure 3.5: Bridge ultimate loading test.

Figure 3.6: Changes of plastic region.

22 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Given A0 = LU and ∆A =
r∑
j=1

αjxjy
T
j .

For i = 1, 2, . . . , r
[L,U] = update(L,U, αj , xj , yj)

Figure 3.7: Algorithm for factorization of A0 + ∆A.

If ∆A has rank r, it can be decomposed as the sum of r rank-1 matrices:

∆A =
r∑
j=1

ujv
T
j .

Some methods for decomposing ∆A are singular value decomposition (SVD), CUR [MMD08], and
elementary matrix computation. The SVD guarantees the minimum value of r:

∆A = UΣV T =
r∑
j=1

(σjuj)vTj ,

where U , V are orthogonal matrices, Σ is diagonal, r is the rank of ∆A, σi is the ith diagonal of
Σ, and uj , vj are the jth columns of U and V . In other implementations, ∆A may be formed by
algebraic transformation. For example, ∆A can be expressed as

∆A =
[
a1 a2 . . . ar

]
=

r∑
j=1

aje
T
j ,

where r could be the rank of ∆A or greater, and ej is the jth column of I.

In general, (3.5) can be expressed as

A = A0 +
r∑
j=1

αjxjy
T
j ,

in which αj is a parameter, and xj and yj are vectors of dimension n.

The factorization of A may be updated from A0’s factorization instead of factorizing A directly.
The next sections discuss a rank-1 update procedure. When such a procedure is known, the LU
with r rank-1 updates can be computed as follows:

A = A0 + ∆A

= L0U0 +
r∑
j=1

αjxjy
T
j = LU,

in which L and U are obtained by repeated calls to the rank-1 update method described in this
chapter. This process can be easily implemented as illustrated in Figure 3.7.

3.3. UNSYMMETRIC RANK-1 UPDATE 23

To obtain an accurate decomposition of ∆A, all r singular values should be considered. However,
for practical purposes and to improve the efficiency of the process, accurate results can often be
reached if we use a matrix ∆As of rank s to represent the actual ∆A matrix, where s is much
smaller than r. Suppose ∆A has its singular values σ1, σ2, . . . , σr. According to the SVD theorem,
∆Ak of rank k can be used as an approximation to ∆A:

∆Ak =
k∑
i=1

σjxjy
T
j , and ‖∆A−∆Ak‖ ≤ σk+1. (3.7)

Thus, we can reduce the number of rank-1 terms in ∆A while keeping good accuracy by specifying
an error threshold εT , so that ‖∆A − ∆Ak‖ ≤ εT , where εT can be specified as a percentage of
the largest singular value depending on how much accuracy is required. This is very important in
engineering applications.

In this chapter, we discuss dense general matrix updates. Sparse rank-1 updates are discussed
in chapter 4.

3.3 Unsymmetric rank-1 update

As mentioned earlier, a simulation matrix A is modified by a low-rank matrix ∆A that can be
represented as k rank-1 updates. The full updating procedure is built on a rank-1 update algorithm.
In the notation of [GGMS74], the basic rank-1 update problem can be described as

A = A+ αxyT, (3.8)

in which α is a parameter, and x and y are vectors of dimension n. Assuming that A has been
decomposed as A = LU , we wish to determine the factorization A = L U .

Through a transformation, (3.8) can be rewritten as

A = A+ αxyT = L(I + αpqT)U, where Lp = x, UT q = y. (3.9)

If we form the factorization
I + αpqT = L̃Ũ (3.10)

(assuming permutations are not needed), the modified factors become

A = LL̃ŨU, giving L = LL̃ and U = ŨU. (3.11)

In the literature [GGMS74], we have rank-1 update algorithms for symmetric positive-definite ma-
trices A and A. Here we derive an unsymmetric update.

24 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

3.3.1 Factoring I + αpqT

I +αpqT in (3.9)–(3.10) is a structured matrix. Assume its factors L̃ and Ũ are structured matrices
with L̃j+1:n,j = βjpj+1:n, Ũi,i+1:n = γiq

T
i,i+1, L̃j,j = 1, and Ũi,i = θi, for i = 1, . . . , n and j = 1, . . . , n.

When i = 1, by comparing both sides of (3.10), we have

θ1 = 1 + αp1q1

β1piθ1 = αpiq1, i = 2, . . . , n,

γ1p1qj = αp1qj , j = 2, . . . , n.

Rearranging terms, we have

θ1 = 1 + αp1q1

β1 =
αq1

θ1

γ1 = α.

Therefore we get the first column L̃(:, 1) and first row Ũ(1, :) from the first column and row of
I + αpqT . Assume we know L̃(:, 1 : i) and Ũ(1 : i, :), the first i columns and rows of the factors of
I + αpqT . Then we can get the updated factors by induction. For diagonal (i+ 1, i+ 1), we have

i∑
k=1

(βkpi+1)(γkqi+1) + θi+1 = 1 + αpi+1qi+1

⇒ θi+1 = 1 + pi+1qi+1

(
α−

i∑
k=1

βkγk

)
.

Comparing entries (i+ 2 :n, i+ 1) related to L:

i∑
k=1

(βkpm)(γkqi+1) + βi+1pmθi+1 = αpmqi+1, m = i+ 2, . . . , n

⇒ βi+1 =
(
α−

i∑
k=1

βkγk

)
qi+1

θi+1
.

Comparing entries (i+ 1, i+ 2 :n) related to U ,

i∑
k=1

(βkpi+1)(γkqm) + γi+1qm = αpi+1qm, m = i+ 2, . . . , n

⇒ γi+1 =
(
α−

i∑
k=1

βkγk

)
pi+1.

Therefore, βi, γi, θi for i = 1, . . . n are determined uniquely, so that L̃ and Ũ can be determined.
Because LU factorization is unique, our assumption that L̃ and Ũ are structured matrices stands.

3.3. UNSYMMETRIC RANK-1 UPDATE 25

Note that α−
∑i
k=1 βkγk can be formed incrementally during the update process, and the total

computational effort to factor I + αpqT is O(n). The pseudo-code can be expressed as follows:

ω = α

do i = 1 :n
θi = 1 + ωpiqi

βi = ωqi/θi

γi = ωpi

ω = ω − βiγi
end

3.3.2 Structured matrix multiplication

Eq. (3.11) performs the product of two triangular matrices: L = LL̃ and U = ŨU . From the
structure of L̃ and Ũ , the computational effort in this process is O(n2) instead of O(n3). To form L

in O(n2) operations, we start from the equation

1
l̄21 1
l̄31 l̄32 1
...

. . .

l̄n1 l̄n2 l̄n3 · · · 1


=



1
l21 1
l31 l32 1
...

. . .

ln1 ln2 ln3 · · · 1





1
β1p2 1
β1p3 β2p3 1

...
. . .

β1pn β2pn β3pn · · · 1


.

To calculate p, we solve Lp = x by forward substitution:

1
l21 1
l31 l32 1
...

. . .

ln1 ln2 ln3 · · · 1





p1

p2

p3

...
pn


=



x1

x2

x3

...
xn


.

We can reorder the calculation column-wise with the help of a work vector w, which will play an
important role in the update:

w = x

do j = 1 :n
wj+1 :n = wj+1 :n − wj lj+1 :n,j

end
p = w.

To do the structured matrix multiplication, we need to rewrite w’s pattern as follows. When

26 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

j = 1, w has the following value and properties:

w1

w2

w3

...
wn


=



x1

x2 − l21p1

x3 − l31p1

...
xn − ln1p1


=



p1

p2

l32p2 + p3

...
ln2p2 + ln3p3 + · · ·+ pn


.

Using these properties, we can calculate the first column of L as

1
l̄21

l̄31

...
l̄n1


=



1
l21 1
l31 l32 1
...

. . .

ln1 ln2 ln3 · · · 1





1
β1p2

β1p3

...
β1pn



=



1
l21 + β1(p2)
l31 + β1(l32p2 + p3)
...
ln1 + β1(ln2p2 + ln3p3 + · · ·+ pn)



=



1
l21

l31

...
ln1


+ β1


p2

l32p2 + p3

...
ln2p2 + ln3p3 + · · ·+ pn


=



1
l21 + β1w2

l31 + β1w3

...
ln1 + β1wn


.

By repeating the above process, we can update the elements of L according to

l̄ij = lij + βiwj , j = 1 :n, i = j + 1 :n,

where w is updated for each j. The total computational effort is O(n2).

Similarly, to calculate U = ŨU we need to perform the matrix multiplication266666664

ū11 ū12 ū13 · · · ū1n

ū22 ū23 ū2n

ū33 ū3n

. . .

ūnn

377777775
=

266666664

θ11 γ1q2 γ1q3 · · · γ1qn

θ22 γ2q3 γ2qn

θ33 γ3qn

. . .

θnn

377777775

266666664

u11 u12 u13 · · · u1n

u22 u23 u2n

u33 u3n

. . .

unn

377777775
.

3.3. UNSYMMETRIC RANK-1 UPDATE 27

Clearly, ūii = θiuii. To calculate q, we solve UT q = y by forward substitution:

u11

u12 u22

u13 u23 u33

...
. . .

u1n u2n u3n · · · unn





q1

q2

q3

...
qn


=



y1

y2

y3

...
yn


.

Analogously to the computation of w, we perform the calculation row-wise as

s = y

do i = 1 :n
si = si/uii

si+1 :n = si+1 :n − siui,i+1 :n

end
q = s.

In a similar way to calculating L, we have U from

ūii = θiuii

ūij = θiuij + γisi for i 6= j,

where s is updated for each i. We now have the algorithm for updating A.

Algorithm 1: Update LU factors of A+ αxyT

ω = α
do j = 1 :n

y(j) = y(j)/U(j, j)
θ = 1 + x(j) ∗ y(j) ∗ ω
β = ω ∗ y(j)/θ
γ = ω ∗ x(j)
ω = ω − β ∗ γ
U(j, j) = θ ∗ U(j, j)
do i = j + 1 :n

x(i) = x(i) − L(i, j) ∗ x(j)
y(i) = y(i) − U(j, i) ∗ y(j)
L(i, j) = L(i, j) + β ∗ x(i)
U(j, i) = θ ∗ U(j, i) + γ ∗ y(i)

end
end

With some reordering of operations in Algorithm 1, one multiplication can be saved in the inner
loop. We call this modification Algorithm 1a.

Like the symmetric update “Method C1” in [GGMS74], Algorithms 1 and 1a are simple and neat.

28 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Algorithm 1a: Update LU factors of A+ αxyT

ω = α
do j = 1 :n

y(j) = y(j)/U(j, j)
θ = 1 + x(j) ∗ y(j) ∗ ω
β = ω ∗ y(j)/θ
γ = ω ∗ x(j)
ω = ω − β ∗ γ
U(j, j) = θ ∗ U(j, j)
do i = j + 1 :n

x(i) = x(i) − L(i, j) ∗ x(j)
tmp = y(i)
y(i) = y(i) − U(j, i) ∗ y(j)
L(i, j) = L(i, j) + β ∗ x(i)
U(j, i) = U(j, i) + γ ∗ tmp

end
end

Only 4 internal variables are needed to complete the update. The benefit in memory utilization and
parallel computation are described in the following sections.

3.4 Stability

A numerical algorithm should be stable. As in partial pivoting implementations of LU factorization,
we can use permutations in our rank-1 update to control the size of the elements of L and perhaps
U in order achieve stability.

Let Lmax be a given stability tolerance (Lmax ≥ 1). Consider a typical case where the growth
condition lkj < Lmax will not be satisfied at column j. We can interchange rows j and k of L for
some k > j. The matrices L and U become

A = LU =

2666666664

1

× 1

× × 1

× × × 1

× × × × 1

× × × × × 1

3777777775

2666666664

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

3777777775

= TT

2666666664

1

× 1

× × × × 1

× × × 1

× × 1

× × × × × 1

3777777775

2666666664

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

3777777775
,

3.4. STABILITY 29

where T is a permutation. We now split L into the sum of a triangular matrix and a rank-2
correction, which we implement as two rank-1 updates:

TA =





1
× 1
× × 1
× × × 1
× × 1 1
× × × × × 1


+


×−1 × 1

−1







× × × × × ×
× × × × ×
× × × ×
× × ×
× ×
×



=



1
× 1
× × 1
× × × 1
× × 1 1
× × × × × 1





× × × × × ×
× × × × ×
× × × ×
× × ×
× ×
×


+ ejv

T + ekw
T ,

where v and w are the corresponding correction vectors multiplied by U .

Using the rank-1 update procedure described in section 2, the factors of A can be formed stably
through two rank-1 updates. We have to allow that each rank-1 update might lead to two more
(and each of them two more, and so on!), but in practice such a cascading effect does not seem to
happen. This procedure is shown as

A+ αxyT = LU + αxyT

= TT (TLU + αTxyT)

= TT (L′U ′ + αTxyT + ejv
T + ekw

T)

If partial pivoting fails to give small residuals when the updated factors are used to solve a linear
system, greater stability can be obtained by reducing Lmax toward 1, or by using a form of complete
pivoting in which we find Li1,j1, the largest element of L.

Based on the above discussion, multiple rank-1 updates have the same stability characteristics
as Gaussian elimination with partial or complete pivoting.

The above algorithm can be integrated into rank-1 update algorithms naturally. When we finish
the column j’s update, we have the update value of L(:, j). We can check the stability condition
lkj < Lmax. If the condition is not satisfied, we exchange the rows j and k of L, exchange the jth

and kth entrie in w, form two ranks-1s joining the update procedure as the compensation of the
permutation. We now have the algorithm for updating A. We call this as Algorithm 1b.

30 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Algorithm 1b: Stably update LU factors of A+ αxyT

r = 1
x(1)← x; y(1)← y
do j = 1 :n

do p = 1 : r
ω(p) = α
y(p)(j) = y(p)(j)/U(j, j)
θ(p) = 1 + x(p)(j) ∗ y(p)(j) ∗ ω(p)
β(p) = ω(p) ∗ y(p)(j)/θ(p)
γ(p) = ω(p) ∗ x(p)(j)
ω(p) = ω(p)− β(p) ∗ γ(p)
U(j, j) = θ(p) ∗ U(j, j)
do i = j + 1 :n

x(p)(i) = x(p)(i)− L(i, j) ∗ x(p)(j)
y(p)(i) = y(p)(i)− U(j, i) ∗ y(p)(j)
L(i, j) = L(i, j) + β(p) ∗ x(p)(i)
U(j, i) = θ(p) ∗ U(j, i) + γ(p) ∗ y(i)

end
checkAndFixStability()

if not stable, rebase, r = r + 2
end

end

3.5 Parallel update

During rank-1 updates, matrices L and U with dimension n × n are updated from column 1 to
column n, or from top-left to bottom-right, tick by tick as shown in Figure 3.8.

Because the update sequence is a one-way movement, each column is no longer accessed after
we finish its update. If we have k rank-1 updates, we can use this property to define a pipeline
algorithm for k rank-1 updates, as indicated in Figure 3.9, where Ri means the ith rank-1 update
to A0. Because of the pipeline, multiple updates may proceed in parallel using multiple CPUs,
multi-core CPUs, GPUs, and stream processors, or any combination of these processes. Specifically,
in step 1, the first rank-1 update modifies the first column of L and the first row of U . In step 2, the
second rank-1 update further modifies the first column of L and the first row of U , while in parallel,
the first update moves to the second column of L and row or U .

From step k on, the pipeline is loaded, and a moving window of k columns of L and k rows of U
are updated in parallel. The total time for k updates is

T = (k + n)(tu + tc), (3.12)

where tu is the average update time per column, tc is the average communication time for the pipeline
to move and synchronize. When k � n and tc is ignored, T ≈ ntu, which means k pipelined rank-1

3.6. GROUP UPDATE 31

Figure 3.8: Update sequence during a rank-1 modification.

updates have the same performance as 1 rank-1 update in theory. When k = n and tc is ignored,
T = 2ntu, which means k pipelined updates have the performance as 2 updates in theory. k = n

is the worst case for pipeline calculation. We should point out that this performance estimation is
not realistic because tc, which includes the synchronizing time and memory/data fetching time, is
much bigger than tu for common dense and sparse matrices. To take full advantage of the pipeline
algorithm, we can either increase the computation time in each step by updating several columns in
that step, or combine with the group update described in following section.

3.6 Group update

When A = A0 + ∆A with rank(∆A) = r, we define two types of update to the LU factors of A0.

multiple rank-1 updates L and U are updated by calling a rank-1 update method r times as
described in Figure 3.7. This involves an outer loop of length r and an inner loop over n
columns of L and n rows of U .

group update Here the outer and inner loops are reversed. Each column of L and each row of U
is updated r times by the next step of the rank-1 updates R1, R2, . . . , Rr sequentially before
the outer loop moves to the next column and row. See Figure 3.10 and Algorithm 2.

Davis and Hager [DH01] discuss both approaches for the sparse symmetric positive-definite case
(updating a factor L). They explain that multiple-rank updates access memory repeatedly because
each rank-1 update requires access to the whole of L. They conclude that a group update has better
memory traffic and executes much faster (2x) than the equivalent series of rank-1 updates because
the group update makes only one pass through L.

32 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Figure 3.9: Pipeline for k rank-1 updates.

3.6. GROUP UPDATE 33

Figure 3.10: Group update for applying r rank-1 updates.

34 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Algorithm 2: Group update for LU factors of A+
∑r
p=1 αpxpy

T
p

do j = 1 :n
do p = 1 : r

ω(p) = α(p)
y(p)(j) = y(p)(j)/U(j, j)
θ(p) = 1 + x(p)(j) ∗ y(p)(j) ∗ ω(p)
β(p) = ω(p) ∗ y(p)(j)/θ(p)
γ(p) = ω(p) ∗ x(p)(j)
ω(p) = ω(p)− β(p) ∗ γ(p)
U(j, j) = θ(p) ∗ U(j, j)
do i = j + 1 :n

x(p)(i) = x(p)(i)− L(i, j) ∗ x(p)(j)
y(p)(i) = y(p)(i)− U(j, i) ∗ y(p)(j)
L(i, j) = L(i, j) + β(p) ∗ x(p)(i)
U(j, i) = θ(p) ∗ U(j, i) + γ(p) ∗ y(i)

end
//Check stability, and fix stability problems.
checkAndFixStability()

end
end

This conclusion stands also for multiple unsymmetric rank-1 updates and unsymmetric group
updating. The disadvantage of the group update is the extra 2rn storage needed for intermediate
results, while for serial rank-1 updates, only 2n workspace is needed. If A0 is stored as a dense
matrix, this disadvantage can be avoided, but it will remain a serious problem for sparse group
updates.

We now point out that the group update has an advantage in parallel computing also. In the
pipeline algorithm (previous section), the computation time may be much less than the communi-
cation time if one pipe processes just one rank-1 update and one column of L and one row of U .
Even if a pipe updates several columns of L and rows of U , the pipeline will be inefficient because L
and U will be accessed repeatedly. But the pipeline will show advantage if a pipe performs a group
update on one or several columns and rows.

It is a serious task to design a synchronous algorithm in parallel computing. In a group update,
every column will be updated by r rank-1s in the sequence of R1, R2, . . . , Rr if we set up the pipeline
as R1, R2, . . . , Rr sequentially at the beginning and force full synchronization. The performance will
be affected if the update times among pipes are different. If we update asynchronously, even if we
set up the pipeline as R1, R2, . . . Rr, the arriving update sequence at later steps will be random,
as shown in Figure 3.11. The following theory tells us that group updates can be designed using
asynchronous computing. This theory gives group updates a huge advantage in parallel computing.

3.6. GROUP UPDATE 35

Figure 3.11: Random update sequence in group update of r rank-1s. It does not matter if each step
processes the next part of each rank-1 update in a different order.

36 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Theorem 3.1. In a group update, the sequence of rank-1s at the first step can be ordered randomly
as we update the subsequent columns and rows. The different sequences update the original factors
into unique final factors.

Proof. Assume there are two rank-1 updates α1x1y
T
1 and α2x2y

T
2 . When the (j−1)th column of L

has been updated, the first rank-1 has internal variable ω1, and the second has internal variable ω2.
As we perform the first rank-1 update, we have new values for the diagonal U1(j, j) and for L1(:, j)
and U1(j, :):

θ1 = 1 + x1(j)y1(j)ω1/U(j, j)

β1 =
ω1y1(j)

U(j, j) + x1(j)y1(j)

γ1 = ω1x1(j)

U1(j, j) = θ1U(j, j)

L1(i, j) = L(i, j) +
ω1y1(j)

U(j, j) + x1(j)y1(j)ω1
(x1(i)− L(i, j)x1(j))

U1(j, i) = θ1U(j, j) + ω1x1(j) (y1(i)− U(j, i)y1(j))

When we do the second rank-1 update after we finish the first, we have new values for the diagonal
U2(j, j) and for L2(:, j) and U2(j, :) as follows:

θ2 = 1 + x2(j)y2(j)ω2/U1(j, j)

β2 =
ω2y2(j)

U1(j, j) + x2(j)y2(j)

γ2 = ω2x2(j)

U2(j, j) = θ2U1(j, j)

L2(i, j) = L1(i, j) +
ω2y2(j)

U1(j, j) + x2(j)y2(j)ω2
(x2(i)− L1(i, j)x2(j))

U2(j, i) = θ2U1(j, j) + ω2x2(j) (y2(i)− U1(j, i)y2(j))

The diagonal U2(j, j) can be represented as

U2(j, j) = θ2U1(j, j)

= U1(j, j) + x2(j)y2(j)ω2

= U(j, j) + x1(j)y1(j)ω1 + x2(j)y2(j)ω2

Thus, the diagonal value is not related to the update sequence.

3.6. GROUP UPDATE 37

L2(i, j) can be represented as follows:

L2(i, j) = L1(i, j) +
ω2y2(j)

U1(j, j) + x2(j)y2(j)ω2
(x2(i)− L1(i, j)x2(j))

= L(i, j) +
ω1y1(j)

U(j, j) + x1(j)y1(j)ω1
(x1(i)− L(i, j)x1(j))

+
ω2y2(j)

U1(j, j) + x2(j)y2(j)ω2
×(

x2(i)−
(
L(i, j) +

ω1y1(j)
U(j, j) + x1(j)y1(j)ω1

(x1(i)− L(i, j)x1(j))
)
x2(j)

)
= L(i, j)

+
ω1y1(j)

U(j, j) + x1(j)y1(j)ω1 + x2(j)y2(j)ω2
x1(i)

+
ω2y2(j)

U(j, j) + x1(j)y1(j)ω1 + x2(j)y2(j)ω2
x2(i)

+
(

−ω1x1(j)y1(j)− ω2x2(j)y2(j)
U(j, j) + x1(j)y1(j)ω1 + ω2x2(j)y2(j)

)
L(i, j).

This can be further simplified as

L2(i, j) = L(i, j) +
ω1y1(j)
U2(j, j)

(x1(i)− L(i, j)x1(j)) +
ω2y2(j)
U2(j, j)

(x2(i)− L(i, j)x2(j)) .

Thus, the updated L does not depend on the update sequence.
On the other hand, we have

U2(j, i) = θ2U1(j, j) + ω2x2(j) (y2(i)− U1(j, i)y2(j))

= θ2

(
U1(j, j) +

ω2x2(j)
U(j, j) + x1(j)y1(j)ω1 + x2(j)y2(j)ω2

(y2(i)− U1(j, i)y2(j))
)
.

Thus, in a similar way, we can conclude that the update U is not related to the update sequence by
noticing that θ2 is not dependent on the update sequence and the term inside parentheses has the
same symbolic structure as L2(:, j).

Although this algorithm is derived by using two rank-1 updates, it is straightforward to extend
to r rank-1 updates by induction.

38 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

3.7 Examples

Example 1. Verify Algorithm 1. Assuming N is the dimension of A and ∆A, we create at first
diagonally dominant matrices A0 and ∆A by setting randomly

A0(i, j) ∈ [0, 1], ∆A(i, j) ∈ [0, 1], i = 1, . . . , N, j = 1, . . . , N,

A0(i, i) =
N∑
j=1

A(i, j), ∆A(i, i) =
N∑
j=1

∆A(i, j), i = 1, . . . , N,

and computing A0 = L0U0 and A0 +∆A = LU by left-looking and right-looking algorithms [Dav06].
When ∆A is decomposed as

∆A =
N∑
j=1

xjyj =
N∑
j=1

∆A(:, j)eTj (3.13)

where ej is the jth column of I, we then compute the factors of A0 + ∆A through updating by (3.7)
and Algorithm 1 (multiple-rank updates).

Define
εmax = max (|(A− LU)(i, j)|, i = 1, . . . , N, j = 1, . . . , N) (3.14)

to describe the accuracy of a matrix A’s factors L and U . The accuracies of left-looking, right-
looking, and multiple-rank update methods are as follows:

N Method εmax

500 Left-looking 9.663× 10−13

Right-looking 9.663× 10−13

Multiple-rank update 2.160× 10−12

1000 Left-looking 3.069× 10−12

Right-looking 3.069× 10−12

Multiple-rank update 7.048× 10−12

4000 Left-looking 1.592× 10−11

Right-looking 1.592× 10−11

Multiple-rank update 4.820× 10−11

Example 2. Verify the stability algorithm. We create A0, ∆A, L0 and U0 as in Example 1.
Then we compute the factors L and U for a downdated problem A0−∆A by multiple-rank updates.
The results below are obtained by setting Lmax = 10.

N εmax Without Pivoting εmax With Pivoting
500 7.41e-9 4.65e-10
1000 2.86e-7 8.98e-8
4000 2.18e-6 6.25e-9

3.8. PERFORMANCE COMPARISON 39

Example 3. Verify Theorem 1. We create A0, ∆A, L0 and U0 as in Example 1. Then we define
the group size r = 10, 20, 50 respectively. To compute the factor of A0 + ∆A by group update, we
define the update sequence in column j randomly when j > r. The accuracy of the group update is
shown here:

N r εmax

500 10 2.274× 10−12

20 2.046× 10−12

50 2.046× 10−12

1000 10 7.162× 10−12

20 7.958× 10−12

50 6.812× 10−12

4000 10 3.910× 10−11

20 4.047× 10−11

50 3.774× 10−11

3.8 Performance comparison

The flops needed for LU factorization of a dense n× n matrix are:

Methods Flops Comments
Left-looking LU 2

3n
3 O(n2) memory write, bad in parallel

Right-looking LU 2
3n

3 O(n3) memory write, good in parallel
QR 4

3n
3 O(n3) memory write, good in parallel

n rank-1 updates 4
3n

3 O(n3) memory write, good in parallel

.

We can see that the computational effort is the same for the left-looking and right-looking methods.
But performance does not only depend on flops. The memory access time is significant. In sparse-
matrix computation, it is much more than the computation time.

In modern computer architecture, memory has a hierarchical structure as follows:

Memory Type Common Size Relative Speed
Register limit Very fast
Level 1 Cache 32K–64K 1
Level 2 Cache ˜2M 0.1
Main Memory ˜4G 0.01
Virtual Memory >500G 0.001

At the top level are the CPU’s registers, which provide the fastest way to access data. They number
in the dozens. Even including MMX and SIMD registers and other CPU registers, the number is still
limited. Thus we usually do not consider the register usage when designing an algorithm, although
its effect should be considered during implementation.

40 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Figure 3.12: Performance of merge sort on sets between 4,000 and 4,096,000 keys.

From the above table, the performance in the worst case and the best case in implementing an
algorithm could be different by a factor of 1000. A parameter to measure the efficiency of memory
usage in an algorithm is the cache miss rate. We call it a cache miss if an attempt is made to
reference data that has not been cached. Two important factors that affect miss rate are preload
efficiency and reuse rate. Designing an algorithm with respect to hardware is an active research
field [LaM96]. As computation power continuously improves through multi-core or new hardware
architecture, flop counts become less important than memory usage.

When there is a cache miss, a computer will locate 128 bytes (or 8 doubles, including the one
needed) into the cache. Ideally the extra data will be used next. If referenced data is already
present, one memory operation is saved. The operating system preload algorithm tries to load the
data so that the miss rate is as low as possible. Storing data contiguously is important to lower the
missing rate. Data in cache should be used as many times as possible before it is flushed out. A
good implementation of an algorithm, by improving the reuse rate, can lower the cache miss rate
fundamentally. An example of cache usage from [LL99] is repeated in Figure 3.12, where performance
drops suddenly when L2 cache has high miss rate in the base (text book) algorithm. When merge
sort is designed by considering L2 size, 2x performance was shown there. In general, algorithms
with O(n lnn) or O(n0∼2) performance need to consider cache effects seriously.

Suppose a system has 2MB cache and 4GB main memory. When we factorize a dense matrix A
of dimension n = 5000, the matrix can not be located within L2 because it needs 5000× 5000× 8 =
200MB. Common LU factorization needs to access A O(n) times, which leads to L2 flushing O(n)
times. According to the above analysis, we know that the memory usage is not efficient at all.

3.8. PERFORMANCE COMPARISON 41

N LL RL GU5 GU10 GU20 GU50
100 0 0.00 0 0.0 0 0
200 0.02 0.02 0.03 0.03 0.03 0.03
300 0.06 0.06 0.10 0.10 0.10 0.10
400 0.14 0.15 0.24 0.24 0.24 0.24
500 0.28 0.28 0.47 0.47 0.47 0.47
600 0.48 0.50 0.81 0.81 0.81 0.80
700 0.76 0.79 1.28 1.28 1.28 1.28
800 1.14 1.17 1.92 1.92 1.92 1.92
900 1.62 1.69 2.73 2.72 2.72 2.72

1000 2.24 2.32 3.74 3.73 3.74 3.74
2000 18.78 18.70 29.78 29.80 29.80 29.78
3000 63.56 63.40 100.77 100.53 100.43 100.37
4000 150.46 150.55 238.57 238.11 237.92 237.84
5000 293.49 291.95 465.73 464.86 464.51 464.54
6000 507.10 507.05 804.59 803.29 802.49 803.29
7000 800.72 805.02 1277.87 1275.15 1274.12 1276.34
8000 1199.71 1203.55 1899.43 1903.35 1902.35 1907.15
9000 1697.86 1723.93 2705.12 2700.23 2708.66 2718.88

10000 2328.01 2341.05 3725.42 3719.39 3701.73 3722.92

Figure 3.13: Performance data for left-looking, right-looking, and group updating for A = LU . N:
Matrix dimension. LL: Left-Looking. RL: Right-Looking. GU5, GU10, GU20, GU50: Group update
with group size 5, 10, 20, 50.

If we do n rank-1 updates to get A’s LU factorization, we can decompose A as

A =



× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×



=


1

1
1

1
1





× × × × × ×
× × × × ×
× × × ×
× × ×
× ×
×


+A[n, n− 1]eTn−1 + · · ·+A[3 :n, 2]eT2 +A[2 :n, 1]eT1 .

If we construct A’s LU factors by group LU updates based on a computer’s hardware, we can achieve
better performance in memory usage. For example, if we update a group of 100 columns, we only
need to access A 50 times. The performance difference is interesting to review, especially in a
SIMD structure. Figure 3.13 shows the performance comparison for factorizing A = LU by left- and
right-looking methods and four group-updates of varying size.

In Figure 3.14, we see that n rank-1 updates to factor a dense matrix performed better than
the theoretical estimate when n > 400. The time for n rank-1 updates is 1.5 times that for the LL

42 CHAPTER 3. MULTIPLE-RANK UPDATE THEORY

Figure 3.14: Performance comparison among left-looking, right-looking, and group update for A =
LU . N: Matrix dimension. LL: Left-Looking. RL: Right-Looking. GU5, GU10, GU20, GU50:
Group update with group size 5, 10, 20, 50.

or RL methods, not the two times that theory predicts. Also, in engineering applications involving
r rank-1 updates, r is usually only O(

√
n), and O(n2.5) operations are needed instead of O(n3).

Further, as discussed in the last section, multiple-rank updates are fully parallel. Thus, they can be
a powerful tool for dense-matrix factorization.

To show the cache influence on LL matrix factorization, we order the matrix by rows instead of by
columns. We estimate that the performance will be 4 times slower than the standard implementation
because we use only one of the four data that are brought in by a cache operation. Figure 3.15 shows
our estimate is correct.

3.9 Conclusion

We have presented a new general matrix factorization update algorithm. It is stable, and it is
efficient when the matrix size is bigger than L2 cache. Its parallel potential is much higher than
standard LL and RL methods.

Dense matrices are assembled in the Boundary Element Method (BEM), which is the common

3.9. CONCLUSION 43

Figure 3.15: Performance comparison between two LL implementations. LL row and LL col mean
the matrix is ordered by row and col respectively.

method for magnetic field analysis and Schur-complement factorization. Multiple-rank update al-
gorithms will have application in these fields. They are also well suited to matrix factorization on
GPUs because many independent jobs are created by multiple-rank updates are ideal for feeding the
GPUs’ computation cells.

Chapter 4

Sparse Matrix Factorization by

Multiple-Rank Updates

4.1 Introduction

Many of the basic laws of science are expressed as ODE/PDEs [Hea02], including:

• Newton’s second law of motion

• Kirchhoff’s laws

• Heat equation

• Maxwell’s equation

• Navier-Stokes equations

• Linear elasticity equations

• Schrödinger’s equations

• Einstein’s equations.

These ODE/PDEs describe the intrinsic properties in nature, engineering, physics, and more. In
some simple conceptual models, we may get their theoretical solutions. In real problems where the
complicated boundaries and/or geometries make the associated ODE/PDEs impossible to express
in explicit or implicit format, numerical methods are the only tools available to solve them. Some
numerical methods like the Boundary Method eventually lead to a system of dense matrices. Other
numerical methods like FEM [Bat96] and difference methods [GKO95] discretize the domain and
lead to a series of large linear but sparse equations. Solving these large linear equations is still
a computing bottleneck. This chapter develops a sparse solver to eliminate the computational
bottleneck.

Research in sparse matrices has been continuing for decades [Dav06, Sau09, DL, Dava, MUM,
Davb]. Most researchers find applicable pivots to reduce the fill-in in direct methods, or to build

44

4.1. INTRODUCTION 45

an effective preconditioner in iterative methods. In this chapter, we discuss solving a sparse linear
system in various contexts as a multiple-rank matrix update.

Sparse matrices have properties related to their application. Any algorithm dealing with sparse
matrices should respect these properties. Before introducing our update algorithm, let us study the
properties of some typical sparse matrices.

4.1.1 Sparse-matrix properties

Sparse linear systems exist in almost all fields. Research on improving the their performance and
accuracy is active in the past 40 years. It becomes more attractive and and more essential as we
need algorithms to solve the large and complicate problems in circuit design and structural analysis.
Sparse matrices exhibit different properties in different applications. We conclude some examples in
ths section.

In EDA (Electronic Design Automation) industry, the computational effort to solve a linear
system is O(n1.05∼2). EDA involves a long sequence of linear systems in the time domain. Direct
methods factorize a given matrix into two triangular matrices L and U , and then solve the system
by forward and backward substitution with L and U . It is common for the ratio of factorization
time to solve time to be below 5. It is also common for fill-in to change dramatically with different
pivot sequences.

A circuit simulation matrix has the following properties [DS04]:

• Extremely sparse: Average entries per column around 5.

• Nearly symmetric.

• Not positive definite.

• Condition number is high.

• Several columns have almost full entries.

• High dimension: During full chip simulation, the dimension may reach O(109).

• Latency: Solutions for two consecutive systems are almost the same except for the values of a
small number of variables.

Stiffness matrices in structure analysis have these properties:

• Extremely sparse, especially in 3D problems.

• Symmetric positive definite for loading states; symmetric negative definite for unloading states.

• High dimension: For complicate structures, it may reach O(106).

• Latency: During two consecutive simulation steps, most of the structure is kept in the same
state.

• Continuity: The plastic regions increase continuously and ripple out.

• Elastic regions have the same stiffness matrices during different timesteps.

46 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

• Most parts of the simulated structure are in an elastic state. building law requires that
structure should operate in elastic region in normal usage.

In optimization, structure reanalysis or reliability analysis, a sparse matrix has the following prop-
erties:

• A base matrix exists.

• Update matrices have extremely low rank relative to n (but possibly large rank in absolute
terms).

• A trajectory is formed toward the converged solution.

• Latency: During two consecutive search steps along the trajectory, only a small part of the
solution changes significantly.

Among these properties, latency stands out as a common property in system analysis. If we subtract
two consecutive matrices in the simulation process, we will get a matrix ∆A that has low rank
because of latency. This also explains why the intrinsic properties between two consecutive steps do
not change much. The changed solutions form a trajectory that simulations usually follow in order
to reduce the complexity to a tractable level.

The general simulation flow could be described in Figure 4.1. In the section of preprocessing, we
read in the geometry data, analyze options and set up the analysis environment. Then we discretize
the time domain to form a seriel of nonlinear equations. Each of the nonlinear equations is linearlized
and solved through the methods like Newton method. Thus, the core of simulation flow, including
all timesteps, is to solve a long sequence of linear systems. As described in Chapter 2, this series of
linear systems is solved traditionally one by one by a direct or iterative method without considering
the relationship existing between consecutive systems, or between the base system and later systems.
From physical facts and the law of continuity, we know that the present simulation step is evolved
from the preceding step. This clone relationship should be used in the simulation procedure to
achieve robustness and accuracy. It should be helpful also in discontinuous problems and highly
nonlinear problems.

Our proposed multi-rank update simulation flow is to solve

(A+ ∆A)x = b (4.1)

at each stage, where A is the previous A+ ∆A. In this study, we focus on solving (4.1).
The multiple-rank update algorithm developed in Chapter 3 may take full advantage of latency.

The relationship between latency and ∆A is shown in Figure 4.2. The higher the latency, the smaller
the rank of ∆A. In circuit simulation, more than 90% of the devices in a circuit are in a latent state,
which means that rank(∆A) is quite small. Therefore we can get good performance via low-rank
updating.

On the other hand, multiple-rank updates may not have performance advantages even if ∆A has
low rank. Example 1 shows such a case.

4.1. INTRODUCTION 47

Figure 4.1: General simulation flow.

48 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 4.2: Relationship between latency and ∆A.

Example 1: Flops for a full-rank update of a tridiagonal matrix

Let A ∈ Rn×n be a tridiagonal matrix. If ∆A is tridiagonal and has rank n, let us regard ∆A as
n rank-1 updates, where the first update changes column 1, the second update changes column 2,
and so on. The jth update needs 5(n − j + 1) flops. The total flops for all n updates is therefore∑n
j=1 5(n+ 1− j) = 5n2/2 +O(n) flops.

In contrast, direct factorization of a tridiagonal matrix needs only 3n flops as show below.

U(1,1) = A(1,1)

U(1,2) = A(1,2)

L(2,1) = A(2,1)/U(1,1)

for j = 2:n

U(j,j) = A(j,j) - L(j,j-1)*U(j-1,j)

L(j+1,j) = A(j+1,j)/U(j,j)

U(j,j+1) = A(j,j+1)

Thus, even if ∆A has very low rank, there may be no performance gain from treating it as an update.

We now consider how to update sparse LU factors for a general sparse matrix.

4.2. MULTIPLE-RANK UPDATE ALGORITHMS FOR SPARSE LU FACTORS 49

4.2 Multiple-rank update algorithms for sparse LU factors

Suppose A and its LU factors have the following structure:
A1 B1

A2 B2

A3 B3

C1 C2 C3 D

 =


L1

L2

L3

M1 M2 M3 LD



U1 V1

U2 V2

U3 V3

UD

 ,

and suppose there is a rank-1 update to A1. The parts L1, M1, LD, U1, V1, UD need to be updated.
The other parts do not change. It is clear that D depends on A1, A2, A3, while A1, A2, A3 are
independent. This complicated relationship is expressed by an elimination tree. Before introducing
the complex elimination process for a sparse matrix, let us introduce the notation introduced by
George and Liu [GL81] and Amestoy, Davis, and Duff [ADD96].

4.2.1 Notation

Matrices are capital letters like A or L. Vectors are lower-case letters like x or v. Sets and multisets
are in calligraphic style like A, L, or P. Scalars are either lower-case Greek letters or italic style like
σ, κ, or m.

The main diagonals of L and U are always nonzero for factors of a nonsingular matrix. The
nonzero pattern of column j of L is denoted by

Lj = {i : lij 6= 0}, (4.2)

and L denotes the collection of patterns:

L = {L1,L2, . . . ,Ln}. (4.3)

Correspondingly, the nonzero pattern of row i of U is denoted by

Ui = {j : uij 6= 0}, (4.4)

and U denotes the collection of patterns:

U = {U1,U2, . . . ,Un}. (4.5)

In KLU, U is stored in column which makes Ui not shown there. Similarly, Aj denotes the nonzero
pattern of column j of A:

Aj = {i : aij 6= 0}, (4.6)

50 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 4.3: A shallow elimination tree.

and A denotes the collection of patterns:

A = {A1,A2, . . . ,An}. (4.7)

The elimination tree can be defined in terms of a parent map π [ADD96]. For any node j, π(j)
is the row index of the first nonzero element in the jth column of L beneath the diagonal element:

π(j) = min (Lj \ {j}). (4.8)

The children of node k are the set defined by

π−1(j) = {j : π(j) = k}. (4.9)

The ancestors of a node j, denoted by P(j), are the set of successive parents:

P(j) = {π(j), π(π(j)), . . . } ≡ {π1(j), π2(j), . . . }. (4.10)

4.2.2 Rank-1 update path

The path of a rank-1 update follows exactly the path of the elimination tree. If there is a rank-1
change in column j, all the columns in set P(j) need to be updated.

Assume there is a rank-1 change in node 4 of the elimination tree shown in Figure 4.3. The
rank-1 update process will update column 6 in L and U .

The elimination tree for a tridiagonal matrix is shown in Figure 4.4. If there is a rank-1 change
in column 1, the rank-1 update process will modify all remaining columns 2, 3, . . . , n of the original
L and U . This process needs 5n flops. Thus, even a single rank-1 update cannot outperform direct
LU factorization (which needs 3n flops). For more general matrices, as mentioned in the last section,
updating will lead to poor performance if there are O(n) rank-1 updates.

From these two examples, we see that the depth of the elimination tree is a critical factor for
update performance.

Davis and Hager [DH99] developed sparse low-rank update techniques for symmetric positive

4.2. MULTIPLE-RANK UPDATE ALGORITHMS FOR SPARSE LU FACTORS 51

Figure 4.4: The elimination tree for a tridiagonal matrix.

definite matrices. Their techniques are based on an analysis and manipulation of the elimination
tree and Algorithm C1 of Gill, Golub, Murray, and Saunders [GGMS74]. They provide a system of
algorithms to handle fill-in in sparse factors, using symbolic updating and downdating. Later, Davis
and Hager [DH01] showed 2× performance gain with their multiple-rank update algorithm, which
makes only one pass through L. (A series of rank-1 updates requires multiple passes through L.)

The rank-1 update algorithm is optimal in the sense that it takes time proportional to the
number of nonzero entries that are changed in L and U , and optimal in the sense of managing traffic
according to the computer architecture. However, the multiple-rank update algorithm is not optimal
in this sense, because the difficulty shown in Example 1 still exists.

Let us discuss the tridiagonal matrix in Example 1 again. Referring to its elimination tree in
Figure 4.4, we see that the rank-1 updates starting from column 1, 2, . . . , j− 1 will all pass through
column j shown in Figure 4.5.

The sum of r rank-1 updates which pass through a column j depend on the elimination tree and
the location of rank-1s. We define this sum to be

s(j) =
r∑
i=1

π̂(i) (4.11)

where π̂(i) be null if the rank-1 update started from column i does not modify column j, and be 1
if the rank-1 update started from column i does modify column j

The difficulty described in Example 1 still exists when s(j) is bigger than the number of nonzeros
in the jth column of L. In Example 1, s(j) is O(n) even if the number of nonzeros in the jth column
of L is one. This explains why we cannot get good performance in tridiagonal update procedures.
A new algorithm described in the next section is designed to solve this problem.

52 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 4.5: Illustration of tree travel in update procedures for a tridiagonal matrix.

4.3 Base-camp theory

Suppose we have the factorization A = LU . For any given k, the factors can be partitioned as

A =

[
F B

C D

]
=

[
LF

LC LD

][
UF UB

UD

]
=

[
LF

LC I

][
UF UB

S

]
, (4.12)

where F ∈ R(k−1)×(k−1) and S = D − LCUB is the Schur complement of F . The factorization
S = LDUD is part of the factorization of A. Conversely, if we have S and a factorization S = LSUS ,
we can define LD = LS and UD = US .

Now suppose the factorization of A+ ∆A in (4.1) has reached column k, giving

A+ ∆A =

[
F B

C D

]
+

[
∆F ∆B
∆C ∆D

]

=

[
LF̂
LĈ I

][
UF̂ UB̂

Ŝ

]
,

where LF̂ , LĈ , UF̂ , and UB̂ are known. The new Schur complement is Ŝ = D + ∆D − LĈUB̂ , and
its factorization Ŝ = LŜUŜ can be used to complete the factors of A+ ∆A:

A+ ∆A =

[
LF̂
LĈ LŜ

][
UF̂ UB̂

UŜ

]
.

Any method could be used to factorize Ŝ. Our approach is to consider Ŝ as an update of S:

Ŝ = S + ∆S, ∆S = ∆D + LCUB − LĈUB̂ . (4.13)

4.3. BASE-CAMP THEORY 53

If ∆S has rank r, we can factorize S + ∆S by applying r rank-1 updates to S = LSUS . If s(k)
is greater than r, a performance gain is achieved. A key point is how to choose k such that ∆S has
low rank. Before introducing a theorem to express this key point, we need some definitions.

Definition: Let Lj and Ui be known from the factors of A for all i, j = 1, . . . , n. The same Lj
and Ui apply to A + ∆A because we assume that A and ∆A has the same symbolic structure in
this study. A base-camp matrix is a dense matrix Λk ∈ Rp×q associated with column k of A, where
p = card(Lk), q = card(Uk). Column k is called the base-camp’s master column. The map i : Lk(i)
relates row i of Λk to row Lk(i) of L. Similarly, the map j : Uk(j) relates column j of Λk to column
Uk(j) of U . Λk is obtained from rows Lk and columns Uk of LCUB .

Note that Λk ⊆ LCUB ⊆ S, and column k has not yet been included in the LU factorization.
The elimination path to column j and the path that does not come to column j are independent.
For simplicity we can reorder LC and UB so that Λk is in the upper-left corner of LCUB . Thus,
LCUB becomes

LCUB =

[
LC1 LC2

LC3 LC4

][
UB1 UB3

UB2 UB4

]
=

[
LC1UB1 + LC2UB2 LC1UB3 + LC2UB4

LC3UB1 + LC4UB2 LC3UB3 + LC4UB4

]
. (4.14)

When A becomes A+ ∆A, multiple-rank changes in rows Lk and columns Uk are accumulated into
Λk to give Λ̂k, and L̂CÛB becomes

L̂CÛB =

[
L̂C1 L̂C2

L̂C3 L̂C4

][
ÛB1 ÛB3

ÛB2 ÛB4

]
=

[ˆ̂
LC1ÛB1 + L̂C2ÛB2 L̂C1ÛB3 + L̂C2ÛB4

L̂C3ÛB1 + L̂C4ÛB2 L̂C3ÛB3 + L̂C4ÛB4

]
. (4.15)

We regard ∆A as a sum of rank-1 updates. If an update is about to alter column k, then we
terminate the update, the column k is not changed. According to symbolic analysis [DH01],

Lk = {k} ∪

 ⋃
c:k=π(c)

Lc\{c}

 ∪
 ⋃

minAj=k

Aj

 ,

the columns in LC2 have “k” as ancestor, and Lc4 = L̂c4 = 0. In a similar way, we can conclude
that UB4 = ÛB4 = 0.

There are s(k) such updates that will alter column k. Other updates continue till the end (or
until they reach a later base-camp). When s(k) updates have been terminated at column k, those
updates do not modify the term LC1, LC3, UC1, UC3, so we have

LC1 = L̂C1, LC3 = L̂C3, UC1 = ÛC1, UC3 = ÛC3.

Thus we build base-camp matrices Λk = LC2UB2 and Λ̂k = L̂C2ÛB2 to consider the effect of column
k’s update and form

∆Λk ≡ Λk − Λ̂k, (4.16)

54 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

which will be part of ∆S in (4.13) exactly. ∆Λk has much less computation effort than the full ∆S.
This is the one of the advantages of base-camp algorithm. We proceed to update the LU factors
of A, starting at column k, by repeating the preceding process with only min(p, q) rank-1 updates
waiting.

The processing of ∆Λk is explained in Theorem 4.1 and its proof.

Definition: Let κ ≡ min{card(Lk), card(Uk)} be the maximum rank of the base-camp matrix
associated with master column k.

Theorem 4.1. s(k) rank-1 updates entering a base-camp associated with master column k (i.e.,
waiting to contribute to the kth column of L and the kth row of U) can be merged into at most κ
rank-1 updates when no other rank-1 updates are proceeding inside Λk (i.e., waiting to modify some
of the remaining columns of Λk).

Proof. Suppose there are r rank-1 updates to be made. Initially, assume that the updates generate
only one base-camp in A with master column k. We divide the updates into two groups. Group 1
contains s(k) rank-1 updates that modify column k, and together they define a matrix ∆A1. The
other rank-1 updates are put into Group 2, and together they form ∆A2.

We now consider two scenarios that are equivalent in the sense that they lead to the same final
L and U :

Scenario 1: (A+ ∆A1) + ∆A2 = LU ;
Scenario 2: (A+ ∆A2) + ∆A1 = LU .

In scenario 1, we process the group 1 updates first. By definition, all of them stop at column k.
In (4.12), D does not yet change. Instead, the D update information from group 1 is contained in
Λ̂k (which will be computed), while LC1, LC3, UB1 and UB3 do not change. Thus we can merge the
s(k) group 1 updates by forming ∆Λk ≡ Λk − Λ̂k (4.16). Note that if t ≡ rank(∆Λk), then t ≤ κ

and possibly t � s(k). We process ∆Λk as t rank-1 updates to complete the updates for group 1.
We then process group 2 as normal updates to complete the full set of updates.

In scenario 2, we process group 2 first. We analyze this scenario as cases 2a and 2b. In case 2a
we assume that no group 2 update modifies Λk, so that LC1, LC3, UB1 and UB3 are not changed
during the group 2 updates. Since group 1 and group 2 are in different subtrees of the elimination
tree, we can then process group 1 using the base-camp strategy described in the previous paragraph.

In case 2b, the group 2 updates do change Λk, but after they are completed, we can reset Λk
using the present L and U . Following the above argument, in order to apply the group 1 updates
we only need to calculate the change in Λk. Suppose Λk = (LC2)0(UB2)0 after the group 2 updates,
and Λ̂k = LC2UB2 after the group 1 updates reach column k. As in (4.16), the correction matrix is
derived as

∆Λk = (LC2)0(UB2)0 − LC2UB2, (4.17)

and it will have low rank. We can now complete the group 1 updates by taking ∆A from (4.17) to
complete the update procedures for group 1. This conclusion can be extended to multi-group and
multi-base-camp update scenarios by superposition.

4.4. SPARSE MATRIX FACTORIZATION 55

The base-camp theorem can be explained in an algebraic way also. Let p = card(Lk), q =
card(Uk), r = s(k). Each of the r rank-1 updates enters the base-camp as a parameter α, a p-vector
x used to update L(: , k), and a q-vector y used to update U(k, :):

α1 x(1 : p)1 y(1 : q)1

α2 x(1 : p)2 y(1 : q)2

α3 x(1 : p)3 y(1 : q)3

. . .

αr x(1 : p)r y(1 : q)r .

In the multiple-rank update algorithm, x, y, L(: , k), and U(k, :) are updated as follows:

calculate β1 γ1

x(1 : p)1 = x(1 : p)1 − L(: , k) ∗ x(k)1 y(1 : q)1 = y(1 : q)1 − U(k, :) ∗ y(k)1

L(: , k) = L(: , k) + β1x(1 : p)1 U(k, :) = U(k, :) + γ1y(1 : q)1

calculate β2 γ2

x(1 : p)2 = x(1 : p)2 − L(: , k) ∗ x(k)2 y(1 : q)2 = y(1 : q)2 − U(k, :) ∗ y(k)2

L(: , k) = L(: , k) + β2x(1 : p)2 U(k, :) = U(k, :) + γ2y(1 : q)2

. . .

calculate βr γr
x(1 : p)r = x(1 : p)r − L(: , k) ∗ x(k)r y(1 : q)r = y(1 : q)r − U(k, :) ∗ y(k)r
L(: , k) = L(: , k) + βrx(1 : p)r U(k, :) = U(k, :) + γry(1 : q)r .

In other words, L(: , k) is a linear combination of the initial L(: , k) and x1, . . . , xr, and U(k, :) is a
linear combination of the initial U(k, :) and y1, . . . , yr. Assuming a1, . . . , ap ∈ Rp are independent,
we can express L(: , k), x(1 : p)1, . . . , x(1 : p)r as a linear combination of these vectors:

L(: , k) ∈ span{a1, . . . , ap}
x(1 : p)1 ∈ span{a1, . . . , ap}
x(1 : p)2 ∈ span{a1, . . . , ap}

. . .

x(1 : p)r ∈ span{a1, . . . , ap} .

(4.18)

Therefore, the final updated L(: , k) can be expressed as a linear combination of a1, . . . , ap, which
are equivalent to p rank-1 updates. A similar conclusion can be reached for U(k, :). If r is bigger
than p, the input rank-1s can be merged to improve performance.

4.4 Sparse matrix factorization

When solving a system of the form (4.1), it is effective to get a factorization of A+∆A by the update
strategy when ∆A has low rank. Performance can be improved fundamentally if we build base-camps

56 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

during the update procedure. The parallel update procedure can have better load balance because
the data flow is reorganized when base-camps are built along critical paths.

When s(k) > κ, it is obvious that we will get good performance if we build a base-camp at column
k, because computational effort is saved O(s(k)

κ) times. If there are m base-camps at columns k1,
k2, . . . , km in a path of the elimination tree, the total computation effort that could be saved

m∑
i=1

O

(
s(ki)
κ

)

times just for this path in elimination tree. For example, a tritriangular matrix with O(n) updates
can be done in O(n) by base-camp algorithm instead of O(n2) by multiple rank-1 updates.

Figure 4.6: Illustration of the base-camp setup.

It is not obvious how to get good parallel performance by building base-camps. Suppose there
is a long thin path like the one for a tridiagonal matrix. There is not much opportunity to factorize
this matrix in parallel. The optimized computing effort for its factorization is 3n flops. If we build
m base-camps as shown in Figure 4.6(a) and apply truncation when the update vectors become very
small, the total computational effort will be O(nm + log(1

ε)), where ε is the convergence tolerance.
This may be the fastest algorithm for factorization of tridiagonal matrix. In general, base-camps
can be used to define parallel regions, to balance load, and to control data traffic. Many update
flops can be saved if we set up a base-camp in the elimination graph shown in Figure 4.6(b).

4.5. LEFT- AND RIGHT-LOOKING LU FACTORIZATION 57

To give base-camps the ability to lower computational effort and improve load balance, the rules
to build base-camps on candidate master columns k and j (for example), are:

• s(k) > κ. Performance gain is equal to O(s(k)
κ).

• Λk can not overlap with Λj .

• Limiting the length of a long and critical computation path. We can insert base-camps along
a long and critical path to make the computation parallel on this path.

∆Λk = Λk−Λ̂k in (4.15) can be calculated inexpensively if we take advantage of memory localization.
The performance can be enhanced further if we consider how to use the cache. In some situations,
forming ∆Λk by

∆Λk = LŜUŜ − LSUS (4.19)

is more effective if κ is very small.

When ∆Λk is formed, multiple rank-1s can be formed in the following ways:

• Treat one column or one row in ∆Λk as a rank-1 update.

• Use matrix decompositions like Cholesky, SVD, or QR.

• Use SVD approximation.

The first is a straightforward one that leads to the exact update. The last can be the fastest, and
the accuracy can be controlled.

Finally, Table 4.1 gives the sparse-matrix update algorithm, Algorithm 2, to solve (4.1).

Table 4.1: Algorithm 2: Sparse-matrix update algorithm.

Define base-camps.
Define multiple rank-1 update groups.
do {

multiple rank-1 updates
if (base-camp is not full)

continue
merge base-camp rank-1s
form new multiple rank-1 update group

} while (base-camp is not empty)

4.5 Left- and right-looking LU factorization

There are two main types of method to do LU factorization: left-looking and right-looking. For the
left-looking method, LU decomposition is performed column by column. For example, when column
j is processed, only data in columns to the left of column j are needed. The pseudo-code in Table 4.2
illustrates the left-looking method.

58 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

Table 4.2: A typical left-looking method.

for column j = 1 to n do
f = A(: ,j)
Symbolic factor: determine which columns of L will update f
for each updating column r < j in topological order do

Col-col update: f = f − f(r)L(r+1:n,r)
end for
Pivot: interchange f(j) and f(m), where f(m) = max(f(j:n))
Separate L and U: U(1:j, j) = f(1:j); L(j:n, j) = f(j:n)
Scale: L(: , j) = L(: ,j)/L(j,j)

Prune symbolic structure based on column j
end for

The main computation effort in a left-looking method is to solve a triangular system

1
× 1
× × 1
× × × 1
× × × 0 1
× × × 0 0 1





×
×
×
×
×
×


=



×
×
×
×
×
×


.

For a right-looking method, LU decomposition is performed in a left-to-right and top-to-bottom
manner (hence the name right-looking). The pseudo-code shown in Table 4.3 illustrates the right-
looking method.

Table 4.3: A typical right-looking method.

Loop k from 1 to N:
Loop i from k+1 to N:

A(i,k) = A(i,k) / A(k,k);
endLoop
Loop i from k+1 to N:

Loop j from k+1 to N:
A(i,j) = A(i,j) − A(i,k) * A(k,j);

endLoop
endLoop

endLoop

In a typical step of dense matrix factorization, a left-looking method needs O(n2) reads and
O(n) writes, while a right-looking method needs O(n2) writes and O(n) reads. Left-looking is more
memory efficient than right-looking, while right-looking has a better parallel computing pattern.

In sparse-matrix factorization, some sub-trees are good candidates for left-looking processing.

4.5. LEFT- AND RIGHT-LOOKING LU FACTORIZATION 59

Figure 4.7: Elimination tree with different features for left- and right-looking methods.

Other sub-trees may be good for right-looking processing. For example, Figure 4.7 shows the ideal
blocks for different methods. In general, the parts having few fill-ins and small bandwidth are
suitable for a left-looking method. The parts that depend on many other parts are suitable for a
right-looking method so that the surrounding parallel computing can take advantage.

To take full advantage of left-looking and right-looking methods, we need an algorithm that uses
both methods, switching between the methods at judicious times. The details are explained below.

When the LU factorization of a matrix A reaches column k, the factors are of the form

A =

[
A1 B

C D

]
=

[
LA1

LC I

][
UA1 UB

S

]
,

where A1 is (k − 1) × (k − 1) and S = D − LCUB is the Schur complement of A1. If we factorize
S = LSUS , we can get the full factorization as[

LA1

LC I

][
UA1 UB

S

]
=

[
LA1

LC LS

][
UA1 UB

US

]
. (4.20)

Thus, S is an independent block in the factorization. Any method can be used to get its factorization.
At each stage, a left-looking method forms only the first column of UB and S in order to proceed.

60 CHAPTER 4. SPARSE MATRIX FACTORIZATION BY MULTIPLE-RANK UPDATES

A right-looking method forms all of S, and its first row becomes a new row of UB . Thus, when
we reach stage k, UB and S are not available in a left-looking method, but both are complete in a
right-looking method.

The key to transfer between left-looking and right-looking is to form S. If we use right-looking
method to process the first k − 1 steps, S is formed automatically, and we can transfer to a left-
looking factorization of S without cost to get LsUs and complete the process. If we use a left-looking
method to process the first k−1 columns, we have {LA1, LC , UA1}, and {UB , S} can be computed
implicitly or explicitly as

UB = L−1
A1B

S = D − LCUB .

Then we can use a right-looking method to get LsUs from S.
Thus, the complete sparse-matrix factorization is a combination of left-looking, right-looking,

and multiple rank-1 updates, as shown in Table 4.4.

Table 4.4: Algorithm 3. Sparse matrix hybrid factorization method.

Symbolic analysis including MD, AMD, cluster analysis
Analysis elimination tree to get M blocks
Build elimination tree for each blocks
Use DF to travel blocks

For each block, process factorization by one of following methods:
left-looking
right-looking
multiple-updates
group update

4.6 Distributed computing

A divide-and-conquer algorithm is ideal for shared-memory or distributed parallel computing. Ma-
trix factorization can be implemented by this approach through multiple-rank updates.

We can use a cluster analysis algorithm to partition the matrix into blocks, and build a hierar-
chical matrix of the form 

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 .
In cluster analysis, the connections inside clusters (blocks) are stronger than the connections between
clusters, which means that the Aij are much sparser than Aii. In other words, Aij are low-rank
matrices. We can rewrite Aij as the summation of rank-1 matrices as described in earlier chapters.

4.7. SYMMETRIC UPDATE 61

This is the divide process. Then the conquer process can be implemented by multiple-rank updates.
The core of the conquer process is merging 2× 2 blocks into one block. Let us first discuss the 2× 2
block [

A11 A12

A21 A22

]
.

This can be presented as A+ δA in the form[
A11 0
0 A22

]
+

[
0 A12

A21 0

]
.

We can get the factorization [
A11 0
0 A22

]
=

[
L11 0
0 L22

][
U11 0
0 U22

]

while factoring A11 and A11 independently. The block matrix[
0 A12

A21 0

]

can be rewrittene as the sum of rank-1 matrices as
∑r
i=1 xiy

T
i . Thus we can use multiple-rank

updates to get the factors of this 2× 2 blocks as[
A11 0
0 A22

]
=

[
A11 0
0 A22

]
+

[
0 A12

A21 0

]
=

[
L11 0
0 L22

][
U11 0
0 U22

]
+

r∑
i=1

xiy
T
i = LU.

By following the standard (recursive) divide-and-conquer procedure, we obtain the factors of the full
matrix.

4.7 Symmetric update

The general symmetric matrix A update procedure can be defined as

A = LLT + uuT .

Some of the original work was done by Gill, Golub, Murray and Saunders [GGMS74]. More recently,
Davis and Hager [DH99] extended such methods to sparse A. In applications, how to form rank-1
matrices from ∆A is a big challenge. Details are presented in Chapter 5.

Chapter 5

Symmetric Factorization by

Multiple-Rank Updates

5.1 Introduction

Structural design, reliability analysis, and design optimization require repeated analyses of pro-
gressively modified structures. This leads to the need to solve systems of equations of the form
(K + ∆K)δ̄ = R, where K is the stiffness matrix, ∆K represents structural changes in the matrix,
δ̄ is the deformation vector, and R is the applied force vector. Both K and ∆K are symmetric
matrices. K + ∆K is symmetric positive definite when the structure analyzed is in a stable state.
In general, ∆K is a low-rank matrix and highly sparse.

Traditionally, (K + ∆K)δ̄ = R is solved by factoring K + ∆K. Although computational power
has increased substantially in recent years, the computational requirement is still excessive when re-
liability analysis or optimization of nonlinear structures is performed, or when extremely fine meshes
are needed for the analysis of large-scale structures, or when more accurate models are introduced.
To reduce the computational effort in these situations, researchers have developed various reanalysis
techniques, as described by Deng and Ghosn [DG01]. The most common techniques may be grouped
into three categories:

a) distortion-based methods;

b) methods based on the Sherman-Morrison identity;

c) methods based on updating matrix factors.

The basic concept in the “distortion” family is that the response of the modified structure is modeled
as the sum of the response of the applied loads on the original structure and the response of the
original structure to virtual distortions, where the distortions are imposed on the members whose
properties are being modified. In these methods, the types of virtual (or pseudo) distortions vary with
the type of structure. Thus, different distortion equations need to be developed for trusses, frames,

62

5.2. MATRIX UPDATING STRATEGIES 63

Figure 5.1: Illustration of updating strategy for simple truss problem.

or continuous structures like plates and shells. (See for example the work of Gierlinski, Sears and
Shetty [GSS93]; Arora [Aro76]; McGuire and Gallagher [MG79]; Abu-Kassim and Topping [AKT87];
Kirsh and Moses [KM95]; Kirsh and Rubinstein [KR70]; Makode, Corotis and SnRamirez [MR99]
and Holnichi [HS91])

Researchers who developed methods based on the Sherman-Morrison identity [SM49] include
Abu-Kassim and Topping [AKT87], Arora [Aro76], Sack, Carpenter, and Hatch [SCH67], Kirsch
and Rubinstein [KR70, KR72], Mohraz and Wright [MW73], Wang and Pilkey [WP80, WP81],
Wang, Pilkey,and Palazzola [WPP83], Hirai, Wang and Pilkey [HWP84], and more recently, Deng
and Ghosn [DG01].

The last group of methods, which provide exact solutions applicable to nonlinear structural
reanalysis problems, were developed by Bennett [Ben65], Gill, Golub, Murray and Saunders [GM74],
Law [Law85, Law89], Chan and Brandwajn [CB86], and Davis and Hager [DH99]. These methods
had some limitations on their stability, or still required considerable computational effort.

Deng and Ghosn [DG01] proposed a solver by defining the response of the modified structure as
the difference between the response of the original structure to a set of applied loads and to a set of
pseudoforces. Although this method showed good improvement in efficiency, the method was found
not to be stable as the stiffness matrix became ill-conditioned. In addition, it was found that the
size of the inner condensed matrix was growing as the analysis process continued over hundreds of
iterations. This required the establishment of a restart strategy to reinitiate the algorithm.

Building on the experience gained from previous work on structural reanalysis techniques and
matrix solution methods, we propose a new solver that updates matrix factors based on eigenvalue
decomposition (EVD) of the change to the matrix. The next sections demonstrate that the proposed
method has many advantages, including stability, efficiency comparable to other methods, and ability
to handle sequences of modified stiffness coefficients without requiring the restart strategy of Deng
and Ghosn [DG01].

64 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

5.2 Matrix updating strategies

To demonstrate matrix-updating strategies in structural applications consider a truss whose original
members’ cross sectional areas are given as A1, A2, A3, . . . , Af . Suppose that the cross-section areas
of members 1 and 2 are changed from A1 and A2 to Ā1 and Ā2 respectively, as shown in Figure
5.1. The stiffness matrix of the modified structure K̄ is equal to the stiffness matrix of the original
structure K plus a correction matrix ∆K. The finite element stiffness equation can be expressed as

K̄δ̄ = (K + ∆K)δ̄ = R, (5.1)

where δ̄ is the deflection of the modified structure and R is the set of applied forces. Usually, only
a few members change their properties during one reanalysis step. Thus, the correction matrix ∆K
is highly sparse. For example, when the unknown displacements are numbered as shown in Figure
5.1b, the stiffness matrix can be expressed as

K̄ = K + ∆K (5.2)

or 2666664
k̄11 k̄21 k̄18

k̄21 k̄22 k̄28

. . .

. . .

k̄81 k̄82 k̄88

3777775 =

2666664
k11 k21 k18

k21 k22 k28

. . .

. . .

k81 k82 k88

3777775 +

2666664
s11 . . . s15 . . . 0

. . . 0 0 0 . . .

s51 . . . s55 . . . 0

. . . 0 0 0 . . .

0 0 0 . . . 0

3777775 (5.3)

For illustration, and without loss of generality, the matrix ∆K in (5.3) has only four nonzero
entries. For large-scale systems, the number of nonzero entries in ∆K is much smaller than the
dimension of K, and the matrix ∆K can be expressed as the multiplication of two low-rank matrices
P and W :

∆K = PWPT , (5.4)

where P is an n×d pointer matrix, n is the dimension of ∆K, and d is the number of nonzero columns
in ∆K. P is called a pointer matrix because it points to the modified Degrees of Freedom (DOF)
of the modified members. The elements of P are either 0 or 1. The matrix W is the compressed
stiffness matrix, which contains the nonzero entries of ∆K. The rank of P is d, and rank(W) ≤ d.
As an illustration, ∆K for the structure in Figure 5.1 can be expressed as



s11 0 0 0 s15 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
s11 0 0 0 s15 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


=



1 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0



[
s11 s15

s51 s55

]


1 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0



T

. (5.5)

5.2. MATRIX UPDATING STRATEGIES 65

The rank of W is usually much less than n. Therefore, its EVD can be executed at low cost as
follows:

W = V ΛV T =
d∑
i=1

λiviv
T
i . (5.6)

This implies that ∆K can be decomposed as a series of rank-one modifications:

∆K = PWPT

= P

(
d∑
i=1

λivivi
T

)
PT

=
d∑
i=1

λizizi
T, in which zi = Pvi.

(5.7)

If W is not symmetric, which may be the case when solving other engineering simulation prob-
lems such as circuit function verification, the Singular Value Decomposition (SVD) can be used to
decompose W as

W = UΣV T =
d∑
i=1

σiuiv
T
i . (5.8)

As in the symmetric case, ∆K can be decomposed as a series of rank-one modifications:

∆K = PWPT

= P

(
d∑
i=1

σiuivi
T

)
PT

=
d∑
i=1

σiziyi
T , in which zi = Pui, yi = Pvi.

(5.9)

Thus, the general simulation matrix K + ∆K, where K and ∆K are not symmetric, can be written
as

K + ∆K = K + σ1z1y
T
1 + σ2z2y

T
2 + · · ·+ σdzdy

T
d . (5.10)

Since K and ∆K are symmetric in structural analysis problems, it is sufficient to use EVD to
represent ∆K as described in equation (5.7). Let α1, α2, . . . , be the eigenvalues of ∆K ordered
according to decreasing absolute value. Equation (5.2) becomes

K + ∆K = K + α1z1z
T
1 + α2z2z

T
2 + · · ·+ αdzdz

T
d . (5.11)

The reason to order the αi according to absolute value is to minimize truncation error when fewer
than d terms are included.

The setup presented in (5.11) allows for factorization of K̄ = K + ∆K efficiently and in a stable
manner. If the factorization K = LDLT is known, its rank-one modification K + αzzT can be

66 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Given K = LDLT and ∆K =
∑d
i=1 αiziz

T
i

For i = 1, 2, . . . , d
[L,D] = UPDATE(L,D, αi, zi)

Figure 5.2: Algorithm for recursive factorization of K̄ matrix.

factorized as L̄D̄L̄T , where L̄ and D̄ can be easily determined from L and D using the methods
described by Gill, Golub, Murray, and Saunders (1974). Thus, the factors of K + ∆K can be
determined incrementally, as shown in Figure 5.2.

To obtain an accurate decomposition of W , all d eigenvalue terms of (5.11) must be included in
the expansion. However, for practical purposes and to improve the efficiency of the process, accurate
results can often still be reached if we use a matrix Wr of rank r to represent the actual W , where
r is much smaller than d:

Wr =
r∑
i=1

αiviv
T
i ,

‖W −Wr‖ ≤ |αr+1|.
(5.12)

Thus, we can reduce the rank of W while keeping good accuracy by specifying an error limit τ on
the norm, so that ‖W −Wr‖ < τ , where τ can be specified as a percentage of the largest eigenvalue
depending on how much accuracy is required. This is a significant advantage for using the EVD.
Similarly for unsymmetric matrices using the SVD.

Based on the above derivations, the updating algorithm for structural re-analysis problems re-
quires the following steps:

1. Assemble the stiffness matrix K for the original structure and determine the loading vector R.

2. Perform the analysis using the LDLT factorization method.

3. Determine the pointer matrix P associated with the degrees of freedom of the changed structure
having the stiffness matrix K + ∆K, with ∆K = PWPT .

4. Compute the EVD of W and use the results to decompose ∆K by finding the eigenpairs (λi, vi)
of W and the associated eigenpairs (λi, zi) of ∆K (with zi = Pvi), and reorder λi based on
their absolute values to get αi.

5. Set k = 1 to start the factorization process.

6. Update the factorization LDLT ← LDLT + αkzkz
T
k .

7. Set k = k + 1 and repeat step 6 to cover all the eigenvalue factors. Alternatively, repeat step
6 for k = 1, . . . , r, where r is selected so that Wr gives a reasonable approximation to W such
that ‖W −Wr‖ < τ .

8. Find the solution of the changed structure with the stiffness matrix K + ∆K.

5.3. IMPLEMENTATION OF EVD AND SVD ALGORITHMS 67

9. Change K into a new matrix K + ∆K as required by the structural analysis, optimization, or
reliability search algorithm, and go to step 3 (until all required structural changes are covered).

The efficiency of the analysis process depends on steps 4 and 6. Step 6 can be speeded up by
a “group update” as discussed in Chapter 3 and Chapter 4. As Davis and Hager [DH01] describe,
symmetric rank-1 updates require repeated access to the whole matrix L, while the group update
has better memory traffic because it makes a single pass through L and therefore is computationally
more efficient. Here we described the sequential rank-1 updating procedure for simplicity, even
though we recommend multiple-rank updating in practical implementations.

Although several routines are available to execute these steps in an efficient manner, additional
approximations can be introduced to speed up the analysis process further. The next sections
describe the methods used to perform these analysis steps.

5.3 Implementation of EVD and SVD algorithms

The efficiency of the proposed analysis procedure depends on the EVD or SVD of ∆K. Devel-
oping methods for EVD and SVD is an active research field in applied mathematics, and several
researchers have proposed efficient algorithms (see for example Demmel [Dem97] or Golub and Van
Loan [GVL96]). Some standard algorithms follow.

Jacobi’s method This is a classical yet effective algorithm for finding the EVD of a dense matrix
[DV07].

QR iteration and its variations Properly implemented, this is the fastest algorithm to find all
eigenvalues of a tridiagonal matrix or all singular values of a bidiagonal matrix with high
relative accuracy [FB94].

Divide-and-conquer This is currently the fastest method to find all singular values and singular
vectors for large matrices (with n > 25 according to Demmel [Dem97]).

Bisection and inverse iteration This is used to find only the eigenvalues or singular values that
lie within a desired interval.

5.4 Updating LDLT factorization

As mentioned earlier, the updates (5.10) can be executed recursively by progressively adding the
EVD terms one at a time. For each additional term obtained from the EVD one can assume that
the symmetric positive definite matrix K of the previous step is modified by a symmetric matrix of
rank one such that

K̄ = K + αzzT . (5.13)

68 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Assuming that K has been previously decomposed as K = LDLT , we wish to determine the
factors of K̄:

K̄ = L̄D̄L̄T . (5.14)

Through a basic transformation, (5.13) can be rewritten as

K̄ = K + αzzT = L(D + αppT)LT , where Lp = z. (5.15)

If we perform the factorization
D + αppT = L̃D̃L̃T , (5.16)

the required modified Cholesky factors will take the form

K̄ = LL̃D̃L̃TLT , (5.17)

where L̄ = LL̃ and D̄ = D̃, since the product of two lower-triangular matrices is a lower triangular
matrix. Because L̃ is a structured matrix, LL̃ can be calculated in O(n2) operations as shown by
Gill, Golub, Murray and Saunders [GGMS74]. If the factorization of (5.16) can also be executed
within O(n2) operations, then the total number of operations needed to obtain K̄ will remain O(n2).
Thus, the efficiency of the method depends on the efficiency of the factorization performed in (5.16).

Gill, Golub, Murray and Saunders [GGMS74] proposed four different methods to update the
LDLT matrices to obtain the required L̄D̄L̄T matrix. These methods are described and their
stability is thoroughly discussed in their landmark paper. Because of space limitations, only the
first two methods are reviewed here.

5.4.1 Application of classical Cholesky factorization

The Cholesky factorization of D + αppT in (5.15) can be performed directly knowing that the
subdiagonal elements of the jth column of L̃ are multiples of the corresponding elements of the
vector p. This can be expressed by (see [GGMS74])

l̃rj = prβj , r = j + 1, . . . n; j = 1, 2, . . . , n, (5.18)

where

βj =
pj

d̃j

[
α−

j−1∑
i=1

d̃iβ
2
i

]
,

d̃j = di + αp2
i − p2

i

j−1∑
i=1

d̃iβ
2
i .

(5.19)

5.4. UPDATING LDLT FACTORIZATION 69

1 Given K = LDLT , determine the factors of K + αzzT

2

for j = 1 : N
p = z(j); dj = D(j);
D(j) = D(j) + alfa ∗ p ∗ p;
beta = p ∗ alfa/D(j);
alfa = dj ∗ alfa/D(j);
for k = j + 1 : N

z(k) = z(k)− p ∗ L(k, j);
L(k, j) = L(k, j) + beta ∗ z(k);

end
end

Figure 5.3: Updating LDLT using classic Cholesky method.

This result implies that we need only compute the values of d̃j , βj , j = 1, . . . , n in order to obtain
the factors of D + αppT . In practice, we can define the auxiliary quantity

αj = α−
j−1∑
i=1

d̃iβ
2
i (5.20)

and compute the product L̄ = LL̃ in terms of βi to form the algorithm given in Figure 5.3 [GGMS74].
Note that this algorithm is so simple that only nine lines of code are needed to implement it.

The number of operations necessary to compute the modified factorization using this algorithm is
n2 +O(n) multiplications and n2 +O(n) additions.

If the matrix K is sufficiently positive definite, that is, its smallest ordered eigenvalue is suf-
ficiently large relative to some norm of K̄, then this algorithm is numerically stable. However, if
α < 0 and K̄ is nearly singular, it is possible that rounding errors could cause the diagonal elements
d̄j to become zero or arbitrarily small. In such cases, it is also possible that d̄j could change sign,
even when the modification may be known from theoretical analysis to give a positive definite fac-
torization. In such cases, it may be advantageous to use the Householder algorithm described in the
next section because its resulting matrix will always be positive definite regardless of any numerical
errors. For example, a structure matrix is ill-conditioned and close to singular when the structure
bears a load close to its ultimate value. We need to factor this matrix when we calculate the limit
state of a structure.

5.4.2 Application of Householder matrix method

As explained by Gill et al. [GGMS74], the factorization of (5.15) can be performed using Householder
matrices. This is achieved by first rearranging the equation into the following format:

K̄ = K + αzzT = LD1/2(I + αvvT)D1/2LT ,

where v is the solution of LD1/2v = z.

70 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

The matrix I + αvvT can be factorized into the form

I + αvvT = (I + σvvT)(I + σvvT). (5.21)

By choosing
σ =

α

(1 + σvT v)1/2
, (5.22)

we ensure that the expression under the root sign is a positive multiple of the determinant of K̄. If
K̄ is positive definite, σ will be real.

The QR factorization I+σvvT = QR can be computed with Q a product of Householder matrices
and R̄ upper triangular. Thus, (5.21) can be continuously decomposed as

K̄ = K + αzzT

= LD1/2(I + αvvT)D1/2LT

= LD1/2(I + σvvT)(I + σvvT)D1/2LT

= LD1/2(I + σvvT)T (I + σvvT)D1/2LT

= LD1/2RTQTQRD1/2LT

= LD1/2L̃L̃TD1/2LT

= L̄D̄L̄T ,

(5.23)

where L̃ = RT .

The algorithm to find L̄ is described as Algorithm C2 in Gill, Golub, Murray and Saunders
[GGMS74]. The algorithm’s pseudocode is summarized in Figure 5.4. The advantage of the House-
holder method over the Cholesky method lies in the fact that the algorithm will always yield a
positive-definite factorization even under extreme circumstances. The method requires 3n2/2+O(n)
multiplications and n + 1 square roots. We usually face singularity problems during limit analysis
of nonlinear structures. This algorithm is expected to overcome these issues to help trace the full
behavior of a structure from the initiation of loading through ultimate loading and during post-peak
unloading until failure.

5.5 Analysis of efficiency

As described in the previous sections, the total number of flops needed for the implementation of
the recursive LDLT algorithm adds up to:

2rmn+O(d3), r ≤ d (5.24)

where d is the size of the compressed matrix W , r is the number of EVD terms used to approximate
W , n is the size of matrix K, and m is the average bandwidth of K.

5.5. ANALYSIS OF EFFICIENCY 71

1 Solve Lp = z
2 Define

w
(1)
j = zj

sj =
∑n
i=j p

2
i /di ≡

∑n
i=j qi, j = 1, 2, · · ·n

α1 = α
σ1 = α/[1 + (1 + αs1)1/2]

3

For j = 1, 2, . . . , n, compute
qj = p2

j/dj
θj = 1 + σjqj
sj+1 = sj − qj
ρ2
j = θ2

j + σ2
j qjsj+1

d̄j = ρ2
jdj

βj = αjpj/d̄j
αj+1 = αj/ρ

2
j

σj+1 = σj(1 + ρj)/[ρj(θj + ρj)]
w

(j+1)
r = w

(j)
r − pj lrj

lrj = lrj + βjw
(j+1)
r , r = j + 1, j + 2, · · · , n.

Figure 5.4: Updating LDLT using Householder matrices Calculation of L̄ based on Gill et al.
[GGMS74].

If the Sherman-Morrison-Woodbury update is used, Equation (5.1) can be solved via the expres-
sion (Deng & Ghosn [DG01])

δ̄ = K−1R−K−1U(I + V K−1U)−1V K−1R. (5.25)

The computational effort needed for (5.25) includes d+3 backward and forward operations on matrix
K and the solution of a linear system of size d. Thus, the total flops for the Sherman-Morrison-
Woodbury update are

2(d+ 3)mn+O(d3). (5.26)

Comparing (5.24) and (5.26), we see that the proposed new algorithm would be faster than the
Sherman-Morrison-Woodbury update by a factor (d+ 3)/r. The improvement in efficiency depends
on the size of r. If no approximation for W is used and all the EVD factors are included in the
decomposition, then the two algorithms will have about the same efficiency.

Although the proposed algorithm shows improved efficiency, the primary benefit of the new
algorithm as pointed out by Gill, Murray and Wright [GMH91] is mainly in its improved stability
as the matrix becomes ill-conditioned. Another advantage of the new algorithm lies in its ability
to handle large changes in the stiffness matrix without a need to reinitiate the factorization process
regardless of the growth in the compressed matrix W , as was the case in the original algorithm
solved by Deng and Ghosn [DG01].

Further improvements to the algorithm’s efficiency can be introduced through some additional
approximations as described in the next section.

72 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 5.5: Illustration of a structure having high potential for sparsification.

5.6 Stiffness matrix sparsification and decoupling

It is well known that EVD computation for a matrix W ∈ Rd×d requires O(d3) operations. If W
can be decoupled into unrelated smaller blocks, then improved efficiency could be obtained. In
a nonlinear structural analysis problem, the matrix W represents the stiffness terms that undergo
plastification at the particular iteration step. Under normal circumstances, plastification occurs very
gradually, affecting only a small number of degrees of freedom that are not connected or only weakly
connected to the other DOF’s in the system. The matrix W can then be decoupled into smaller
matrices. This process requires eliminating the stiffness coefficients of the weakly connected DOF’s
from the stiffness matrix. The terms in the ∆K and W matrices with very low values are set to 0.
This allows us to break the weak inter-block connections, and creates a set of independent sub-block
matrices that are decoupled from the original W matrix. This process is known as sparsification.

To describe the sparsification process as it applies to structural analysis problems, consider the
structure in Figure 5.5, whose stiffness matrix can be assembled as

k11 k12

k21 k22 k23 k24

k32 k33

k42 k44

 . (5.27)

According to the moment distribution method, the moment at node 3 can be approximated as

M32 ≈M
K32

K22
. (5.28)

If K32
K22

is small, then the moment at end 3 of beam 2-3 will be very small. Thus, if we set the stiffness
coefficient K32 = 0, the final response of the structure will not be affected significantly. Therefore,
if the sparsification conditions are properly established, the error can be limited and estimated in
advance. For example, a possible sparsification threshold value τ can be set in advance as a relatively

5.7. IMPLEMENTATION OF SPARSE MATRIX UPDATING 73

for i = 1, d
for j = 1, d
if |W (i, j)| ≤ τW (i, i) and |W (i, j)| ≤ τW (j, j)
W (i, j) = 0

end
end
for i = 1, d

Form i(V,E)
end
block = 0, tmpBloc = 0, stack(block) = 0

for i = 1, d
if node i is not marked

call DSF(i(V, E))
end
block++, stack(block) = tmpBlock, tmpBlock = 0

end
DSF(i(V,E))

Form tmpBlock whose nodes connect with node i by path search.
Mark nodes in tmpBLock

end

Figure 5.6: Pseudo-code for sparsification and decoupling.

small number, say τ = 0.001. Then a search of the stiffness coefficients of W will replace W (i, j) by
0 whenever |W (i, j)| is found to be less than W (i, i) ∗ τ and W (j, j) ∗ τ .

The object of matrix sparsification by setting the weak W (i, j) terms equal to zero is to break
W into a group of independent matrices. This process, known as decoupling, can be executed on
the graph associated with W after sparsification. The graph algorithm designates a row i as a graph
node and associates with it the structure i(V,E), where V represents the vertex with value i, and
E is a list containing the vertices v for which an edge (i, v) represents the nonzero W (i, j). For
example, the matrix in (5.27) has the four structures 1(1, 2), 2(2, 1, 3, 4), 3(3, 2), 4(4, 2).

The matrix W can be searched using Depth First Search (DFS) to determine the i(V,E) nodes
that will subsequently be used to decouple W into smaller matrices [CLR90]. A pseudo-code for the
sparsification and decoupling of matrix W is summarized in Figure 5.6.

5.7 Implementation of sparse matrix updating

It is well known that a rank-one update such as (5.15) can make L̄ denser than L. If the data
structure is poorly managed, L̄ may even become fully dense. On the other hand, since the LDLT

factorization of a matrix is unique, the factors L and L̄ should have the same symbolic forms if the
two original matrices K and K̄ = K + ∆K have the same symbolic form and the same elimination
trees, as explained by Duff, Erisman and Reid [DER86]. Hence, all the extra entries in L̄ introduced
during the recursive rank-one updating process described in the algorithm of Figure 5.3 should cancel

74 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 5.7: Illustration of densification of L during recursive algorithm.

Figure 5.8: Illustration of densification of EVD vectors during recursive algorithm.

when the updating process is complete. It is very helpful to take advantage of this property during
the implementation of the recursive factorization algorithm.

The issue with the densification of L̄ can be illustrated as shown in Figures 5.7 and 5.8. If matrix
K has the varied band structure shown in Figure 5.7(a), L will have the same varied band as K.
The stars in Figure 5.7(b) point out the entries that are modified during the nonlinear analysis, so
that K + ∆K has the same terms as K except for the coefficients indicated by the star.

A compressed matrix W can be extracted from K in Figure 5.7(a) and is shown in Figure 5.8(a).
Each eigenvector vi of W (5.6) will produce a full matrix vivTi as shown in Figure 5.8(b), where the
triangles represent extra entries that are introduced by that rank-1 update.

The application of vivTi to calculate K + αzzT as in (5.13) during one step of the recursive
algorithm will lead to a matrix like that in Figure 5.7(b). New fill-in terms are introduced and
represented as dots in Figure 5.7(b). As mentioned above, all the fill-ins introduced at different
steps of the recursive algorithm will eventually cancel out as the updating process is completed, so
that the final K + ∆K matrix will have the same structure as that of Figure 5.7(a).

When we use a matrix Wr of rank r to approximate W with rank d as proposed in (5.12), some
of the fill-ins will remain in the factors. Furthermore, when W is large, calculating its EVD is not
cheap. However, when the compressed W can be decoupled as suggested in section 6, not only will

5.8. NONLINEAR STRUCTURAL ANALYSIS 75

struct column j {
double *val;
double *a val;
int *idx;
int *a idx;
int len;
int a len;
int a active;

};

Figure 5.9: Data structure for a typical column of L.

the EVD calculation become more efficient, but also the number of fill-ins introduced during each
rank-one updating becomes small.

To make this algorithm practical, implementation is a critical issue. It is necessary to keep L̄

as sparse as possible and use cache memory efficiently by considering the structure of vector z.
Executing list searches and inserting operations or memory allocation during the algorithm cannot
be efficient. Because the entries in a column of L can be computed independently, efficiency can be
improved by defining a dynamic column structure for L as described in Figure 5.9.

In Figure 5.9, len gives the nonzero entries in column j of L, and idx and val record these entries’
locations and values. Diagonal values are stored as the first elements of vector val. Fill-ins are
dynamically changed. It is efficient to allocate a block of memory and free it when the simulation
finishes. a len is the length of this memory. a active is the actual number of fill-ins introduced
during a rank-one update. a idx and a val record these fill-ins’ locations and values. Based on this
structure, a rank-one update can be efficiently executed as described in the algorithm of Figure
5.10. min index is the smallest global index in W . The first min index columns in L don’t change
when K + ∆K is updated. listL is an array to store L column-wise. This algorithm can be easily
implemented to solve nonlinear structural analysis problems in an efficient manner.

5.8 Nonlinear structural analysis

By its very nature, the nonlinear analysis of a structure is an iterative process that can benefit greatly
from the improved efficiency and stability that the proposed EVD/SVD-based solver provides. As
mentioned earlier, the algorithm remains stable even as the stiffness matrix becomes singular near
the ultimate load, as illustrated in Figure 5.11.

The complete nonlinear structural analysis procedure up to iteration i of load step t, as shown
in Figure 5.11, can be expressed as0K0 +

t−1∑
l=1

Ts(l)∑
k=1

l(∆K)k +
i−1∑
k=1

t(∆K)k + t(∆K)i

 tδi = tRi, (5.29)

where 0K0 is the stiffness matrix for the elastic system at load increment t = 0 and iteration i = 0.

76 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

// Given min indx , n, listL, z, alfa.
for (j = min indx ; j ≤ n; j++){

s = &listL[j]; p1 = z[j]; dj = s→ val [1];
s→ val [1] += alfa ∗ p1 ∗ p1 ;
beta = p1 ∗ alfa/s→ val [1];
alfa = dj ∗ alfa/s→ val [1];
for (k = 2; k <= s→ len; k++){

r = s→ idx [k];
z[r] −= p1 ∗ s→ val [k];
s→ val [k] += beta ∗ z[r];

}
if (s→ a active){

for (k = 1; k<=s→ a active; k++){
r = s→ a idx [k];
z[r] −= p1 ∗ s→ a val [k];
s→ a val [k] += beta ∗ z[r];

}
}
}

Figure 5.10: Rank-one updating algorithm for a band matrix with EVD modification.

Ts is the total number of iterations needed to find the solution for load step l.

To solve for the displacements tδi, the application of the proposed EVD/SVD-based solver starts
by assembling and factorizing the elastic matrix 0K0. The algorithm described above is then followed
to find the solution for iteration 1 of load step 1. The process is continued for iteration 2 in load
step 1, . . . , iteration 1 in load step 2, iteration 2 in load step 2, . . . until the nonlinear analysis is
completed, or the stiffness matrix becomes not positive definite. The application of the algorithm
to solve realistic structural analysis problems is described in the next section.

5.9 Illustrative examples

Example 1 The applicability and efficiency of the proposed solver for the incremental nonlinear
analysis of structural systems is demonstrated through the analysis of the same structural grid
problem previously solved by Deng and Ghosn [DG01]. The grid represents the model of a 10m bridge
(1/3 scale) with three girders, whose elevation and material properties are shown in Figure 5.12.
The bridge was tested by Znidaric and Moses [ZM97, ZM98] to investigate its ultimate capacity.
In this example, the program NONBAN is used to perform its nonlinear analysis [GDX+97]. Each

5.9. ILLUSTRATIVE EXAMPLES 77

Figure 5.11: Illustration of nonlinear analysis process.

Material Yield Strength Ultimate Strength
fy (MPa) fu (MPa)

Tendon 1600 1838
Deck Concrete 52.0
Beam Concrete 52.2

Figure 5.12: Bridge cross section (units in cm) and table of material properties.

girder is discretized into 20 identical beam elements as shown in Figure 5.13. The moment-curvature
relationship for the beam elements is shown in Figure 5.14. The value of the element plastic hinge
length Lgp associated with this mesh and the main girders’ member properties is calculated to be
0.175 m [DGZC01]. Figure 5.15 compares the analysis results to those obtained during laboratory
testing.

The program NONBAN has been modified so that it can perform the nonlinear analysis by
assembling the global stiffness matrix and solving it at each loading step using the traditional LDLT

method, the pseudoforce method proposed in Deng and Ghosn [DG01], or the solver proposed in
that paper in combination with the pseudoforce formulation. All three algorithms reached the same
solution. However as observed from Figure 5.16, the computational effort needed to solve the problem
at each iteration step is different for each of the three solvers. Figure 5.17 shows the accumulated
time as the number of iterations increases. On average, the traditional LDLT method requires

78 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 5.13: Mesh discretization for Slovenia bridge (units in m).

Figure 5.14: Moment-curvature relationship for girders.

5.9. ILLUSTRATIVE EXAMPLES 79

Figure 5.15: Comparison of NONBAN results with experimental results for Slovenia Bridge.

about five times as much time at each iteration step as the other two methods. Twenty milliseconds
were needed for the traditional method, while the average time per step for the new method or
the original pseudoforce method was 4 milliseconds (with times varying between 1 to about 10
milliseconds). The original pseudoforce solver required about the same time as the proposed EVD-
based pseudoforce algorithm, except that the original algorithm had to be restarted at cycles of
about fifty iterations each. The new proposed method did not reach the expected efficiency over the
original pseudoforce method because in the latter, a special list was used to store the K−1U , which
saved some computational time at every step [DG01].

Example 2 The same continuous 2-span 4-girder steel bridge previously described by Deng and
Ghosn [DG01] is also analyzed in this second example. The girders are spaced at 8.33ft center-to-
center and the spans are 100ft each. Two lanes of vehicular loads are applied at the center of each
span and incremented to obtain the ultimate capacity of the bridge. The girders’ composite moment
rotation curves are assumed to be bilinear with initial stiffness of 70750 kip/in and moment capacity
of 38,400 kip-in, and the girders are expected to fracture when the plastic hinge rotation reaches a
value qp=0.03 radian.

As in Example 1, three methods were used to analyze this bridge. Figure 5.18 shows their results.
We see that LDLT and the proposed EVD-based methods reach identical results in 117 steps, while
the pseudoforce method needed 126 iterations to reach almost identical results. This example shows
that the application of the Sherman-Morrison-Woodbury-based algorithm (pseudoforce) introduces
some minor numerical rounding errors despite its rigorous mathematical formulation.

80 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 5.16: Comparison of computational time required at every load step for Example 1.

Figure 5.17: Cumulative solver time for LDLT , pseudoforce, and our proposed method.

5.10. CONCLUSIONS 81

Figure 5.18: Comparison of Example 2 results from different solvers.

Figure 5.19 shows the time needed to solve the stiffness equation at each iteration step. Figure
5.20 shows the cumulative analysis time for this example. In this case, the traditional LDLT

solver was nearly 10 times slower than the proposed method. The latter needed an average of
10 milliseconds per iteration, while the average time per step for the traditional LDLT was 93
milliseconds, and the average time per step for the original pseudoforce method was 16 milliseconds.

5.10 Conclusions

This chapter introduced a new method to solve iterative finite element-based structural analysis
problems. The method has the following features:

1. It uses the pseudoforce formulation previously introduced by the authors [DG01], but includes
an LDLT updating method based on the Eigenvalue Decomposition (EVD) of the original
stiffness matrix and the modified matrix that is related to the changes in the stiffness coeffi-
cients.

2. It is as stable as the traditional LDLT method and does not require the restarting that was
necessary in the original pseudoforce algorithm as the number of modified stiffness coefficients
became large.

3. It is simple to implement, and easy to adapt into existing finite element packages.

82 CHAPTER 5. SYMMETRIC FACTORIZATION BY MULTIPLE-RANK UPDATES

Figure 5.19: Comparison of computational time required at every load step of Example 2.

Figure 5.20: Cumulative solver time for Example 2 using LDLT , pseudoforce, and proposed methods.

Chapter 6

Circuit Simulation

6.1 Introduction

The field of circuit simulation leads IC design in its 50-year history. A device model was established
when a device having multiple electrical components and their interconnections manufactured on a
single substrate was made in 1958 [Rei01]. A simulation program, SPICE (Simulation Program with
Integrated Circuit Emphasis) was developed in 1975 in Berkeley to simulate thousands of transistors
manufactured on a single substrate [Nag75]. At present, nearly 109 transistors can be integrated
on a chip to perform a complex operation while satisfying the economic and power requirements.
The field of circuit simulation evolves as an EDA (Electronic Design Automation) industry [Gar09].
It deals with every aspect of IC design from concept design to formal verification, from data path
analysis to RC extraction, from net schematic to placement and routing.

Engineering productivity in integrated circuit design and development is limited by the effec-
tiveness of the CAD tools used. For those domains of product design that are highly dependent on
transistor-level circuit design and optimization, such as high-speed logic and memory, mixed-signal
analog-digital interface, RF functions, power integrated cicuits, and so forth, circuit simulation is
perhaps the single most important tool [Kun95]. In the nanometer era, new process technologies
need new simulation theory and algorithms to solve the new problems intrinsic to circuit design
with nanometer features [DS00]. Modern integrated circuits continually challenge circuit simulation
algorithms and implementations in the development of new technology generations. EDA tools are
needed with the capacity to simulate a circuit with 109 transistors with high accuracy and accept-
able performance. The EDA industry is built through inter-disciplinary research from mathematics,
circuit theory, graph theory, physics, device modeling, electrical engineering, management, system
engineering, and software engineering. What makes circuit simulation outstanding is its multi-
disciplinary nature. As described in Chapter 2 and Chapter 4, the core of simulation flow, including
all timesteps, is to solve a long sequence of linear systems. A detailed discussion on treating the
core is presented in this chapter.

83

84 CHAPTER 6. CIRCUIT SIMULATION

6.1.1 Challenges in nanometer design

Mainstream designs are using 65-nanometer technology. They entered the nanometer realm in the
year 2000. Integrated-device manufactures and stand-alone foundries have full production running
on 90/65-nanometer parts [IRT].

In design practice, there are new challenges in considering effects such as power leakage, noise,
crosstalk, IR drop, and reliability [SH03]. The inherent variability of manufactured nanometer
parts also has a great impact on the overall performance of designs. Management and optimization
of timing, power, and reliability will become formidable tasks in new nanometer designs as the
traditional timing, power, and reliability analysis methods will no longer be viable for any size of
module or block of gates [SK99]. Some effects like variability in production, circuit complexity, and
significant parasitic effects that introduce huge amounts of interconnect data to be analyzed with
current limited computing power, need to be considered in a new light.

In the EDA industry, the sheer increase in circuit size and complexity has broken some EDA
tools and hence reduced users’ ability to predict design problems accurately. Most EDA tools face
the challenge of establishing appropriate models for nanometer features [SK99]. They also face the
difficulty of not having the capacity to simulate hundreds of millions of transistors. New tools and
methodologies for managing timing, power, and reliability will clearly be in demand.

6.1.2 Transistor-level simulation profile

The semiconductor industry requires EDA software with the ability to analyze nanometer effects
such as coupling noise, ground bounce, transmission line wave propagation, dynamic leakage current,
supply voltage drop, and nonlinear device and circuit behavior, which are all related to dynamic
current. Then the detailed circuit simulation, transistor-level simulation, should become the most
effective way to investigate and resolve these problems.

Traditionally, transistor-level simulation can be divided into two families of methods: SPICE
and Fast SPICE [SJN94, PRV95]. The SPICE methods consider the circuit as an undivided object.
A huge sparse Jacobian matrix will be formed when we numerically discretize the circuit to analyze
instant current [New79, NPVS81]. The matrix dimension is of the same order as the number of the
nodes in the circuit. For transient analysis, this huge nonlinear system needs to be solved hundreds
of thousand times, thus restricting the capacity and performance of SPICE methods. SPICE in
general can simulate a chip with up to about 50,000 nodes. Therefore it is not practical to use this
method in full chip design. It is widely used in cell design, library building, and accuracy verification.

With appropriate accuracy, Fast SPICE methods developed in the early 1990s provided capac-
ity and speed that were two orders of magnitude greater than SPICE [SJN94, ROTH94, HZDS95].
The performance gain was made by employing simplified models [CD86], circuit partition methods
[Ter83, TS03], and event-driven algorithms [New79, ST75], and by taking advantage of circuit la-
tency [Haj80, LKMS93, RH76, RSVH79]. Today, this assumption about circuit latency becomes
questionable for nanometer designs because some subcircuits might have been functionally latent
and yet electrically active because of voltage variation in Vdd and Gnd busses or in small crosstalk

6.2. A NEW SIMULATION METHOD 85

coupling signals. Also, the event-driven algorithm is generally insufficient to handle analog sig-
nal propagation. Fast SPICE’s capacity is limited to a circuit size considerably below 10 million
transistors. It is therefore still inadequate for full chip simulations for large circuits. Furthermore,
the simulation time increases drastically with the presence of many BJTs, inductors, diodes, or a
substantial number of cross-coupling capacitors.

Because of integration capacity in the nanometer era, SOC is widely used at present in the main
design stream [Hut98]. It is possible now to integrate 1 billion transistors on a single chip. The
corresponding matrix size would reach O(109) if we used SPICE to simulate the full chip. This is
not practical.

Fast SPICE families also face difficulties in simulating SOC because of the huge size and the
modeling inaccuracy. Driven by the market, EDA companies have developed a series of methods
that partly satisfy the performance and accuracy requirements. Those methods include cut algo-
rithms [Haj80, Wu76], hierarchical reduction [Syn03], RC reduction [KY97], and hierarchical storage
strategies [Nas02]. In 65-nm design or below, the above-mentioned algorithms face big challenges in
accuracy, capacity, and performance.

Because of the above limitations, some designers may choose to cut the entire circuit into small
blocks and simulate the sub-circuits in different modes and levels. It is a tedious and error-prone
process. Only full-chip simulation can make the designer understand the entire circuit behavior,
if such a tool were to exist for very large circuits. Other designers may choose not to analyze
nanometer effects but instead add guardbands [JHW+01]. In effect, they overdesign their circuits to
avoid problems caused by parasitics in the power bus, signal interconnects, and transistor devices.
Guardbanding merely hides those effects in present technology, and is designed purely by experience.
With the newest generation of nanometer design, guardbanding will prove to be ineffective and
unreliable [KWC00]. We need solutions that provide insight into nanometer effects, and the ability
to use this insight to control the performance of the design. This leads the functionality of EDA
tools into the next generation.

6.2 A new simulation method

The purpose of simulation is to validate circuit functionality and predict circuit performance. The
ability to discover errors early in the design cycle is critically important. Simulation is more than
a mere convenience. It allows a designer to explore his circuit in ways that may otherwise be
impossible. The effects of manufacturing and environmental parameters can be investigated without
actually having to create the required conditions. The ability to detect manufacturing errors can be
evaluated beforehand; voltages and currents can be determined without the difficulties associated
with attaching a probe. To paraphrase a corporate slogan: without simulation, VLSI itself would
be impossible [FM87].

As described in Chapter 2, the core of simulation flow is to solve a long sequence of linear systems

A(i)x(i) = b(i), i = 1, 2, . . . , nt. (6.1)

86 CHAPTER 6. CIRCUIT SIMULATION

A = A(1)

A = LU
Solve LUx(1) = b(1)

for i = 2, 3, . . . , nt
Calculate ∆A, such as ∆A = A(i) −A(i−1)

[L,U]⇐ (A = LU) + ∆A
Solve LUx(i) = b(i)

A = A+ ∆A
end

Figure 6.1: Algorithm to solve systems (6.1).

In the nanometer era, we need to know exact dynamic currents to manage and optimize timing,
power, and reliability. Solving (6.1) approximately, as in Fast SPICE, may make the simulation fail.

Our proposed algorithms are different from the two traditional families of methods. We solve
the simulation systems in a global context instead of solving them one by one as we consider the
intrinsic properties of the problems involved: physical latency, physical continuity, and physical
geometry. We obtain these properties by defining ∆A at the matrix level instead of the related
physical level. This process can be easily implemented as illustrated in Figure 6.1. Our algorithms
overcome the inconsistency between performance and accuracy, combining the advantages of SPICE
and Fast SPICE, and overcoming their disadvantages.

In summary, we address the computational challenge by modifying LU factors of A at each
simulation step based on the similarities between two consecutive systems. We define the similarities
as an initial matrix A with a low-rank correction ∆A. We then use the algorithms developed in
Chapters 3 and 4 to perform multiple-rank updates to the LU factors. Each x(i) is calculated through
standard forward and backward substitution. For today’s advanced memory chips (8GB per chip
available on the market), our algorithms have become increasingly attractive.

6.2.1 Forming ∆A

∆A preserves the important latency property. It can be calculated in different ways. The direct way
is by ∆A = A(i+1) −A(i). The other way is to find active nodes av and calculate

∆A = f(av), (6.2)

where av is a vector of active nodes, and f(av) is a matrix function that calculates ∆A from av. How
to calculate av and how to define f(av) are critical problems related to accuracy and performance.
We introduce the basic algorithms here. The more robust ones needs further research.

The conditions defining a node with index i as active node are

• ∆v(i) = |v(i)t − v(i)t−1| > dVmax

• |I(i)| > Imax

6.2. A NEW SIMULATION METHOD 87

• |∆v(i)
∆t | > dV dtmax

• Satisfying the above conditions in a fixed time interval ∆tmin.

The thesholds dVmax, Imax, dV dtmax and ∆tmin are defined by experience and/or according to
customer specification. We may choose one condition or several combined conditions to define active
nodes by considering accuracy requirements and circuit (gate) properties. All the active nodes form
av.

The function f(.) can be defined in two ways:

• Direct mapping. ∆A can be extracted from A(i+1) − A(i) as D(A(i+1) − A(i))D, where D =
diag(d) and d is a pointer vector with

d(j) =

1 if j is an active node,

0 if j is an idle node,

or according to

∆A(:, j) =

A(:, j)(i+1) −A(:, j)(i) if j is an active node,

0 if j is an idle node.

• Connectivity information. If a device has one active node, we promote all nodes connected to
this device to be active nodes. We then form ∆A by direct mapping.

6.2.2 Decomposing ∆A

In multiple-rank updates, we need to decompose ∆A of rank r as ∆A =
∑r
j=1 ujv

T
j , where uj and

vj are sparse vectors. The submatrix containing the nonzeros of ∆A can be decomposed by the
following methods (see Chapter 3 for details):

• elementary matrix computation

• QR

• SVD

• LUSOL

6.2.3 Multiple-rank updates

Sparse matrices can be stored in triple form, compressed-column form, or compressed-row form.
In triple form, we store every nonzero entry as (i, j, A(i, j)), where i is the row number and j

the column number. In compressed-column form, a square sparse matrix is described with four
parameters [Dav06]:

• n: an integer scalar. The matrix A ∈ Rn×n.

88 CHAPTER 6. CIRCUIT SIMULATION

• Ap: an integer array of size n+ 1. The first entry is Ap[0] = 0, and the last entry nz = Ap[n]
is equal to the number of entries in the matrix. Ap stores the index offset of Ai and Ax.

• Ai: an integer array of size nz = Ap[n]. The row indices of entries in column j of A are located
in Ai[Ap[j] : Ap[j + 1]− 1].

• Ax: a double array of size nz . The numerical values in column j are located in Ax[Ap[j] :
Ap[j + 1]− 1].

Compressed-row form uses four similar parameters:

• n: an integer scalar. The matrix A ∈ Rn×n.

• Ap: an integer array of size n+ 1. The first entry is Ap[0] = 0, and the last entry nz = Ap[n]
is equal to the number of entries in the matrix.

• Ai: an integer array of size nz = Ap[n]. The column indices of entries in row i of A are located
in Ai[Ap[i] : Ap[i+ 1]− 1].

• Ax: a double array of size nz. The numerical values in row i are located in Ax[Ap[i] :
Ap[i+ 1]− 1].

We choose the compressed-column form to represent each A(i) and to express our sparse multiple-
rank update algorithms.

Before describing the multiple-rank updates, let us review left-looking LU factorization. Symbolic
analysis gives permutation matrices P and Q, and we compute the sparse factorization PAQT = LU ,
where L and U are stored in compressed column form (Lp,Li, Lx) and (Up,Ui, Ux). The core of a
left-looking LU is implemented as follows [Dava].

/* clean work space X */

for (k=0; k<n; k++) {

X[k] = 0;

}

for (k=0; k<n; k++) {

oldcol = Q[k];

pend = Ap[oldcol+1]

for (p = Ap[oldcol]; p < pend; p++) {

newrow = Pinv[Ai[p]];

X[newrow] = Ax[p];

}

ulen = Up[k+1] - Up[k];

Uik = &Ui[Up[k]];

Uxk = &Ux[Up[k]];

for (up = 0; up < ulen; up++) {

j = Uik[up];

ujk = X[j];

X[j] = 0;

6.2. A NEW SIMULATION METHOD 89

Uxk[up] = ujk;

Lik = &Li[Lp[j]];

Lxk = &Lx[Lp[j]];

llen = Lp[j+1] - Lp[j];

for (p = 0; p < llen; p++) {

X[Lik[p]] -= Lxk[p]*ujk;

}

}

/* form L */

ukk = X[k];

Diag[k] = ukk;

llen = Lp[k+1] - Lp[k];

Lik = &Li[Lp[k]];

Lxm = &Lx[Lp[k]];

for (p = 0; p < llen; p++) {

i = Lik[p];

Lxk[p] = X[i]/ukk;

X[i] = 0;

}

}

For simplicity, we store L and U in separate compressed-column forms. In KLU [Dava], the
elements of Li and Lx (and those of Ui and Ux) are mixed together for better cache memory usage.

Left-looking algorithms calculate L and U column by column by solving a series of lower-
triangular systems. For example, when computing column j of L and U , we know L(:, 1 : j−1)
and solve 

1

0
. . .

l31 . . . 1
... 0

. . .

0 ln2 0 0 1





w1

...
wj
...
wn


=



A(1, j)
...

A(j, j)
...

A(n, j)


.

to get L(:, j) and U(:, j) through a working array w, assuming P = Q = I. For more general P and
Q, permutation is needed to transfer A(:, j) into local indexes, as in the above code. The relationship

90 CHAPTER 6. CIRCUIT SIMULATION

between w and L(:, j) and U(:, j) is

U(1, j)
...

U(j−1, j)
U(j, j) (= diag(j))
L(j+1, j) diag(j)

...
L(n, j) diag(j)


=



w(1)
...

w(j−1)
w(j)

w(j+1)
...

w(n)


.

The implementation of the working array w must be considered carefully. If we clear w at
every column, the whole clearing effort is O(n2), which is much higher than the computation effort
O(n1.05–2.0) for the sparse matrix factorization. An optimized implementation of w is to clear it
once, and dynamically clear the nonzero entries in w after they have been used. Thus, the whole
clearing effort for w is O(Lp(n) + Up(n)). This implementation leads to success for the left-looking
algorithm. It is a general technique in sparse matrix analysis. We will use it again and again in
multiple-rank updates.

To implement multiple-rank updates, we need to store L in compressed-column form and U in
compressed-row form. We use two linked lists Xwi and Xsi to manage working arrays w and s to
define which column is the one to update next. The left-looking algorithm needs to go through all
the columns, while rank-1 update only goes through the columns defined by the elimination tree.
Please refer to Chapter 4 for details.

When we finish updating column j, we have k1 and k2 as

k1 = min {i | w(i) 6= 0, i > j},

k2 = min {i | s(i) 6= 0, i > j}.

The next updated column in L and row in U is pipe tick ≡ min(k1, k2). A sparse rank-1 update
αxyT with q1 as the first nonzero entry in x and q2 as the first nonzero entry in y can be implemented
as follows.

Xw = x; /* scatter x into Xw according xi */

setup_list(Xwi, xi)

Xs = y;

setup_list(Xsi, yi)

diag_ws = 0;

pipe_tick = min(q1,q2)

while(1) {

if (pipe_tick >= n) break;

if (pipe_tick < 0) break;

6.2. A NEW SIMULATION METHOD 91

orig_si = Xs[pipe_tick];

Xs[pipe_tick] /= Udiag[pipe_tick];

p1 = Xw[pipe_tick];

p2 = Xs[pipe_tick];

d_ws = alpha - diag_ws;

gama = d_ws*p1;

beta = d_ws*p2/(1.0 + p1*p2*d_ws);

diag_ws += beta*gama;

Xw[pipe_tick] = 0.0;

Xs[pipe_tick] = 0.0;

Udiag[pipe_tick] += p1*orig_si*d_ws;

ulen = Up[pipe_tick+1] - Up[pipe_tick-1];

pUi = &Ui[Up[pipe_tick-1]];

pUx = &Ux[Up[pipe_tick-1]];

merge_list(Xsi, pUi, ulen); /* merge pUi into Xsi. */

for (p = 0; p < ulen; p++) {

r = *pUi++;

if (r >= s2) break;

a11 = Xs[r];

Xs[r] = a11 - *pUx*p2;

(*pUx++) += gama*a11;

}

llen = Lp[pipe_tick+1] - Lp[pipe_tick-1];

pLi = &Li[Lp[pipe_tick-1]];

pLx = &Lx[Lp[pipe_tick-1]];

merge_list(Xwi, pLi, llen); /* merge pLi into Xwi. */

for (p = 0; p < llen; p++) {

r = *pLi++;

Xw[r] -= *pLx*p1;

(*pLx++) += beta*Xw[r];

}

tk1 = Xsi->next;

tk2 = xwi->next;

pipe_tick = min(tk1,tk2);

92 CHAPTER 6. CIRCUIT SIMULATION

}

Setup and dynamic updating of lists Xsi and Xwi is tedious work. Its computing effort and
memory access pattern are similar to updating Ux and Lx. If we take the lists out, it is interesting
that the speedup is around 30% rather than double because the computation is memory intensive,
and the lists and updating Ux and Lx share memory with Li and Ui.

It is possible to avoid implementing the lists by considering the pattern of Lj and Uj [DH01]:

Lj = {j} ∪

 ⋃
c:j=π(c)

Lc\{c}

 ∪
 ⋃

minAk=j

Aj

 .

We can just trace the parents of Lj and Uj and the Aj to decide which column to update next. This
leads to an algorithm in which we use function f1 to implement the above formula.

Xw = x; /* scatter x into Xw according xi */

setup_list(Xwi, xi)

Xs = y;

setup_list(Xsi, yi)

diag_ws = 0;

pipe_tick = min(q1,q2)

while(1) {

if (pipe_tick >= n) break;

if (pipe_tick < 0) break;

orig_si = Xs[pipe_tick];

Xs[pipe_tick] /= Udiag[pipe_tick];

p1 = Xw[pipe_tick];

p2 = Xs[pipe_tick];

d_ws = ALFA - diag_ws;

gama = d_ws*p1;

beta = d_ws*p2/(1.0 + p1*p2*d_ws);

diag_ws += beta*gama;

Xw[pipe_tick] = 0.0;

Xs[pipe_tick] = 0.0;

Udiag[pipe_tick] += p1*orig_si*d_ws;

ulen = Up[pipe_tick+1] - Up[pipe_tick-1];

pUi = &Ui[Up[pipe_tick-1]];

pUx = &Ux[Up[pipe_tick-1]];

for (p = 0; p < ulen; p++) {

6.2. A NEW SIMULATION METHOD 93

r = *pUi++;

if (r >= s2) break;

a11 = Xs[r];

Xs[r] = a11 - *pUx*p2;

(*pUx++) += gama*a11;

}

llen = Lp[pipe_tick+1] - Lp[pipe_tick-1];

pLi = &Li[Lp[pipe_tick-1]];

pLx = &Lx[Lp[pipe_tick-1]];

for (p = 0; p < llen; p++) {

r = *pLi++;

Xw[r] -= *pLx*p1;

(*pLx++) += beta*Xw[r];

}

tk1 = f1(pipe_tick, Li, xi)

tk2 = f1(pipe_tick, Ui, yi);

pipe_tick = min(tk1,tk2);

}

Implementing f1 is cheap if we know a node’s children from the elimination tree. Otherwise we
need to trace Aj and Lc by using a stack and pruning Lc to save computation. To have an optimized
implementation, let us study

L̄Ū = LU + ueTj (6.3)

in another way.

If we partition L and U as block matrices L11, U11 ∈ R(j−1)×(j−1), and other submatrices with
appropriate dimension, (6.3) becomes

L̄Ū =

[
L11

L21 L22

][
U11 U12

U22

]
+

[
u1

u2

]
eTj

=

[
L11

L21 L22

][
U11 U12 + L−1

11 u1e
T
j

U22

]
+

[
0

u2 − L21L
−1
11 u1

]
eTj .

To compute L−1
11 u1 and u2−L21L

−1
11 u1, we need a partial forward computation, which is the standard

operation in a left-looking method: [
L11

L21 I

][
x1

x2

]
=

[
u1

u2

]
, (6.4)

94 CHAPTER 6. CIRCUIT SIMULATION

Figure 6.2: Operation in elimination tree.

giving x1 = L−1
11 u1 and x2 = u2−L21x1. Thus the standard sparse rank-1 update procedure can be

implemented as two steps:

1. Calculate x1 and x2 from (6.4).

2. Compute

[
L11

L21 L22

][
U11 U12 + x1e

T
j

U22

]
+

[
0
x2

]
eTj .

(6.5)

These two steps represent different elimination steps in the elimination tree shown as in Figure 6.2,
where the yellow region represents the first step (called j’s children-elimination step), and the blue
region represents the second step (called j’s parent-elimination step).

Node j may have many children, but only one parent. In other words, j’s children-subtree
defined in (4.9) is not unique, while its parent-tree defined in (4.8) is unique. During the elimination
process, all of the children-subtree must be processed before node j. Although this process is
complicated, partial forward computation limits the complexity. We don’t need a special (e.g.,
linked-list) structure to manage the process.

Although step 2 is unique, it is sufficient to follow the parent to do a rank-1 update for a
symmetric matrix. But in the unsymmetric case, two cases need special treatment.

The first case as shown in Figure 6.3 is A(i, k) = 0 for k < j, while A(i, k) may not equal 0 for
k > j. In this case, L(:, j) is equal to A(:, j). The second case as shown in Figure 6.4 is A(i, k) = 0

6.2. A NEW SIMULATION METHOD 95

Figure 6.3: Case 1 description.

for k < j and U(j, k) = 0 for k > j. In this case, the rank-1 update is finished.
Based on our discussion, the optimized sparse multiple-rank update procedure can be designed

as follows.

Xw = x; /* scatter x into Xw according xi */

setup_list(Xwi, xi)

Xs = y;

setup_list(Xsi, yi)

diag_ws = 0;

pipe_tick = min(q1,q2)

while(1) {

if (pipe_tick >= n) break;

if (pipe_tick < 0) break;

orig_si = Xs[pipe_tick];

Xs[pipe_tick] /= Udiag[pipe_tick];

p1 = Xw[pipe_tick];

p2 = Xs[pipe_tick];

d_ws = ALFA - diag_ws;

gama = d_ws*p1;

beta = d_ws*p2/(1.0 + p1*p2*d_ws);

diag_ws += beta*gama;

96 CHAPTER 6. CIRCUIT SIMULATION

Figure 6.4: Case 2 description.

Xw[pipe_tick] = 0.0;

Xs[pipe_tick] = 0.0;

Udiag[pipe_tick] += p1*orig_si*d_ws;

ulen = Up[pipe_tick+1] - Up[pipe_tick-1];

pUi = &Ui[Up[pipe_tick-1]];

pUx = &Ux[Up[pipe_tick-1]];

for (p = 0; p < ulen; p++) {

r = *pUi++;

a11 = Xs[r];

Xs[r] = a11 - *pUx*p2;

(*pUx++) += gama*a11;

}

llen = Lp[pipe_tick+1] - Lp[pipe_tick-1];

pLi = &Li[Lp[pipe_tick-1]];

pLx = &Lx[Lp[pipe_tick-1]];

for (p = 0; p < llen; p++) {

r = *pLi++;

Xw[r] -= *pLx*p1;

(*pLx++) += beta*Xw[r];

6.2. A NEW SIMULATION METHOD 97

}

tk1 = f1(pipe_tick, Li, xi)

tk2 = f1(pipe_tick, Ui, yi);

pipe_tick = min(tk1,tk2);

}

According to our experience, the linked list used to calculate the next candidate column to update
doubles the computational effort (because it is memory intensive) but reduces overall performance
only 30%. It is the most reliable implementation method. Others methods have corner cases or are
hard to implement.

Truncation can be used to shorten the update procedure while preserving the engineering accu-
racy. A voltage will drop when current traverses a long path. This phenomenon causes the values in
Xw and Xs to become smaller and smaller as they proceed column by column. To implement trunca-
tion, we can set different thresholds for p1, p2, beta, and gama. When their values are smaller than
their thresholds, we can terminate the rank-1 update procedure.

If the initial values in x and y are small, truncation may stop the update procedure early, giving
higher performance for the rank-1 update. This can be achieved by considering

LU(:, j) = A(:, j)

L (1 + α)U(:, j) = (1 + α)A(:, j)

L(i, :)U = A(i, :)

(1 + α)L(i, :) U = (1 + α)A(i, :)

for some scalar α. Thus we can approximate ∆A(:, j) ≈ αA(:, j) or ∆A(i, i) ≈ αA(i, i) to speed up
the update procedures. We can calculate α from two possible minimization problems:

min
α
‖∆A(:, j)− αA(:, j)‖

or
∆A(i, i)− αA(i, i) = 0.

It is interesting to note that this strategy works perfectly for the nodes connected to pure capacitors.
In other words, we can get the LU factors at no cost for some nodes in a circuit. The candidate circuits
applying this technology are called charge pump circuits. Another application is for tiny timestep
analysis. In SPICE simulation, the C in the Jacobian matrix G + C

∆t will make G insignificant as
∆t→ 0. Therefore, we can get the factors at no cost as ∆t→ 0.

In solving (A + ∆A)x = b, we may need iterative refinement to obtain more accurate results.
When truncation is used, it is necessary to check the residual r = b − (A + ∆A)x to make sure we
reach the desired accuracy. After truncation and/or approximately using rank-1s to represent ∆A,

98 CHAPTER 6. CIRCUIT SIMULATION

we have LU ≈ A+ ∆A. Letting B = LU , Bx1 = b, A1 = A+ ∆A, we have

r = b− (A+ ∆A)x1.

To improve accuracy, we could make a rank-1 correction to B so that B̄ = LU+uvT , where (ideally)
we choose u and v to minimize

min
u,v
‖(uvT − (A1 −B))‖F .

To simplify this problem, we choosing u = r and obtain v by solving the optimization problem
one column at a time. This proves to be equivalent to one step of iterative refinement, but with a
steplength (linesearch) on the correction to x1:

x2 = x1 + θ∆x1,

where LU∆x1 = r. The new residual is

r2 = b−A1x2 = b−A1(x1 + θ∆x1) = r − θc,

where c = A1∆x1, and we choose θ to minimize ‖r2‖:

θ = cT r/cT c.

Our experiments show that r2 is usually an order of magnitude smaller than r.

Example 1. Verify the multiple-rank update algorithm A sparse matrix of size 63284 is
extracted from a circuit simulation. It has 410801 nonzeros as shown in Figure 6.5. After pivoting,
we have the symbolic pattern as shown in Figure 6.6. ∆A with r = 88 columns has 440 nonzero
entries as shown in Figure 6.7. b is a current vector assembled by device stamping. We perform
multiple-rank updates as described in the last section, and solve Ax = b. We then have residual
norm ‖r‖1 = 0.0019. After the first refinement, ‖r‖1 = 2.71e-6. This refinement process works well.
The time for 88 rank-1 updates is 1e-7 to 0.004 seconds. The time for left-looking LU is 0.03602.
We have 9 to 1900 times performance enhancement.

6.2.4 Building base-camps

For simplicity, we separate the base-camp identification procedure (Chapter 4) and the multiple-rank
update procedure, although these two procedures can be mixed to improve the data flow so that
memory can be used more efficiently. The base-camp in the worst case where ∆A has full rank is
not the same as when ∆A has low rank, although there may be some connection. The best way is
to find a base-camp for each special ∆A.

Let β denote an integer such as 1, 2, or 3. The candidate columns for building a base-camp are
chosen according to one or more of these conditions:

6.2. A NEW SIMULATION METHOD 99

Figure 6.5: Matrix symbolic pattern before pivoting.

Figure 6.6: Matrix symbolic pattern after pivoting.

100 CHAPTER 6. CIRCUIT SIMULATION

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 440

Figure 6.7: Symbolic pattern of ∆A.

• llen < β

• ulen < β

• s(k) > α min(llen, ulen)

• other big-node, bus, or control-node strategies based on special circuits,

where s(k) refers to the number of rank-1 updates that reached column k, llen is the length of
L(:, k), and ulen is the length of U(k, :). In circuit simulation, we recommend β ≤ 3 and α = 2.

How to calculate s(k) efficiently and/or optimally is a big challenge. But we can approximate the
s(k) when all rank-1s lie in a lower-triangular matrix. In this study we implemented the following
steps for sparse multiple rank-1 updates:

1. Trim ∆A into a lower-triangular matrix using the two-step algorithm described in (6.5).

2. Identify the master columns where base-camps will be built.

3. Execute

for (j = 0; j < n; j++) {

if (j is a_master_column) {

build_base_camp()

update_dA_base_camp()

}

if (dA(:, j) == 0) continue; \\ no update for column j

multiple_rank1_update()

}

6.3. EXAMPLES 101

There are two ways to write function build base camp(). One is to implement (4.16). The other
is to implement (4.19) implicitly. To simplify analysis, rewrite (4.19) as

∆Λk = LŜUŜ − LSUS .

As we start to build a base-camp at a master column, LS and US are the values before the update.
We can compute LSUS directly because the base-camp shelters it from being changed. LŜ and
UŜ represent the updated values. We do not have these values because the base-camp prevented
computing them. But from (4.3), we have

LŜUŜ = D + ∆D − LĈUB̂ ,

where LĈ and UB̂ are the available values updated by the rank-1s entering the base-camp. Thus we
have

∆Λk = D + ∆D −
(
LĈUB̂ + LSUS

)
= D + ∆D − L(D, :)U(:, D),

where L(D, :) and U(:, D) represent the rows of L and columns of U corresponding to the base-
camp matrix. This procedure has the same data-flow as the left-looking procedure, and is easy to
implement. The examples in the next section are computed by this implementation.

6.3 Examples

Normal case A test case is to do a transient simulation in [0, 1e-07] seconds for a circuit with
5591 nodes and 11559 Bsim4 transistors that create a Jacobian matrix of size 5641 shown in
Figure 6.8 in transient analysis. SPICE takes 1850 timesteps to finish the simulation in 4215.12
seconds, of which 370.28 seconds are needed for LU factorization and 19.92 seconds for the
solve procedures. Most simulation time is used for finding the DC solution. When SPICE uses
its multiple-rank update algorithm to factor the Jacobian matrix, it takes 3988.1 seconds to
run 1855 timesteps to finish the same simulation.

The results from a direct solver (KLU) and multiple-rank updates are identical. The average
factor time for the direct solver is 0.0431 seconds. The average factor time for multiple-rank
updates is 0.00617 seconds. The factorization speedup is 7 times. Because we use sparsification
technology to get ∆A with low rank, we use refinement to improve the accuracy of multiple-
rank updates. The average number of refinements per step is 1.4.

Memory case A DRAM circuit has 180,483 nodes and 16896 Bsim4 transistors. We need to make
a transient simulation in [0, 5e-08] seconds. The Jacobian matrix of size 180486 is shown in
Figure 6.9 in transient analysis. SPICE takes 362 timesteps to finish the simulation in 14459.4
seconds, of which 1102 seconds are needed for LU factorization and 61.3 seconds for the solve

102 CHAPTER 6. CIRCUIT SIMULATION

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

nz = 81687

Figure 6.8: Symbolic pattern of original Jacobian matrix.

procedures. When using its multiple-rank update algorithm to factor the Jacobian matrix,
SPICE take 12889.6 seconds to run 362 timesteps to finish the same simulation.

The results from the direct solver (KLU) and our multiple-rank update solver are identical.
The average time for multiple-rank updates per timestep is 0.0269 seconds. The average time
for KLU is 1.113 seconds. The factorization speedup is 41.38 times. The average number of
refinements per step is 1.243.

Powernet case A powernet circuit has 160812 nodes with 320801 resistors and 160827 capacitors.
We need to make a transient simulation in [0, 4e-07] seconds. The Jacobian matrix of size
160817 is shown in Figure 6.10 in transient analysis. SPICE takes 103 timesteps to finish the
simulation in 22016.2 seconds, of which 2596.0 seconds are needed for LU factorization and
38.39 seconds for the solve procedures. When using its multiple-rank update algorithm to
factor the Jacobian matrix, SPICE take 15410.1 seconds to run 103 timesteps to finish the
same simulation.

The results from the direct solver (KLU) and our multiple-rank update solver are identical.
The average number of rank-1 updates per timestep is 0.0468 seconds. The average time for
KLU is 9.512 seconds. The factorization speedup per timestep is 203.25. The average number
of refinements per step is 4.89.

Simulation Notes Circuit simulation is complex system work. Its accuracy depends on modeling
and numerical discretization methods. Typically, the integration method has 0.001 relative
error in every timestep. The inner Newton-Ralphson iteration also allows 0.001 relative error
in its convergence conditions. If the error in the linear solver is within the integration method’s

6.3. EXAMPLES 103

Figure 6.9: Symbolic pattern of original Jacobian matrix.

stability range, the linear solver’s error will be damped out or not amplified during the time-
domain calculation. In other words, it is not necessary for the linear solver to have high
accuracy when we keep the number of simulation iterations unchanged. This is the justification
for sparsifying ∆A.

In this study, we form ∆A from linear algebra computation so that it has high dimension
during some timesteps, which causes the simulation to be slow. The simulation will have much
better performance and retain high accuracy if we identify ∆A from the nature of the circuit
functionality. In our algorithm, every part can be parallelized.

In our example, we choose relative tolerance 10−10 for terminating iterative refinement. The
average number of refinements is less than 5, which indicates that our updated LU factors
have high accuracy. In reality, the relative tolerance can be as low as 10−6.

In some cases, SPICE needs a higher number of timesteps with multiple-rank updates than
with the direct solver. We believe this matter can be resolved when we consider ∆A more
carefully.

104 CHAPTER 6. CIRCUIT SIMULATION

Figure 6.10: Symbolic pattern of original Jacobian matrix.

Chapter 7

Conclusion

7.1 Contributions

In this study, we analyzed general simulation flows in engineering and science, we defined the core of
simulation as a series of linear equations Ax = b, and we found that the computational bottleneck
lies in solving these linear systems. We then addressed the challenge of the computational bottleneck
by modifying the matrix A’s factorization at each simulation step based on the similarities between
two consecutive linear systems, and we defined the similarities as an initial matrix A0 with multiple-
rank corrections. We designed algorithms to solve the linear systems based on updating concepts.
The main contributions of this work are as follows:

• Defining the core of a general simulation as

A(i)x(i) = b(i), i = 1, 2, . . . , nt,

and modeling each problem as

(A0 + ∆A)x = b, given A0 = L0U0.

• Defining (A0 + ∆A)x = b as a multiple-rank update problem, and deriving algorithms to
convert to a sum of rank-1 updates:

A0 + ∆A = A0 +
∑

uiv
T
i .

• Deriving a new stable algorithm for unsymmetric rank-1 updating:

A0 + αuvT = L0U0 + αuvT = LU.

• Defining multiple-rank update algorithms and group-update algorithms.

105

106 CHAPTER 7. CONCLUSION

• Designing a pipeline algorithm for parallel multiple-rank updates.

• Analyzing a sparse-matrix update procedure, finding why sparse updating is slow, and obtain-
ing the solution by designing our so-called base-camp algorithm.

• Proving Theorem 1, which eliminates the synchronization difficulty in parallel computing.

• Proving Theorem 2, which is the basis for sparse-matrix multiple/group updates.

• Discussing application problems in structure analysis.

• Discussing application problems in circuit simulation.

The results obtained are confirmed using available public resources, including the circuit sim-
ulator SPICE3, the direct sparse solver KLU, our own variable-bandwidth solver, and the bridge
structure analyzer NONBAN.

7.2 Future research

The long-term benefits of the proposed algorithms will be in improving the efficiency of computer
simulation of devices in mechanical engineering, structural engineering, fluid dynamics, chemical
engineering, aerospace, physics, and so on. Our algorithms are suitable for use on GPU hardware,
and will assist future development of the GPU hardware itself.

More work is needed to extend the range of applicability of the techniques and to demonstrate
their robustness. Specifically, the following tasks should be further developed in the future:

• Forming ∆A more accurately and efficiently.

• Designing an improved refinement procedure that can use physical information from ∆A.

• Running more test cases in circuit simulation.

• Optimizing the base-camp procedure.

• Applying multiple-update algorithms within other fields.

• Performing tests of the parallelization strategies.

• Developing new simulation engines that use multi-rank updates more efficiently. For example,
we can use the detailed changes in the diagonal elements of U to identify the latency properties
that define ∆A and circuit functionality.

Bibliography

[ADD96] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. on Matrix Analysis and Applications, 17(4):886–905, 1996.

[AKT87] A. M. Abu Kassim and B. H. V. Topping. Static reanalysis: A review. J. Struct. Engr.,
113(5):1029–1045, 1987.

[ALT+03] N. Abbound, M. Levy, D. Tennant, J. Mould, H. Levine, S. King, C. Ekwueme, A. Jain,
and G. Hart. Anatomy of a disaster: A structural investigation of the World Trade
Center collapse. In Forensic Engineering, Proceedings of the 3rd congress, San Diego,
CA, 2003.

[Aro76] J. S. Arora. Survey of structural reanalysis techniques. J. Struct. Div., ASCE,
102(4):782–802, 1976.

[Bar71] R. H. Bartels. A stabilization of the simplex method. Numer. Math., 16:414–434, 1971.

[Bat96] K. J. Bathe. Finite Element Procedures. Prentice-Hall, NJ, 1996.

[Ben65] J. M. Bennett. Triangular factors of modified matrices. Numerische Mathematik, 7:217–
221, 1965.

[BG69] R. H. Bartels and G. H. Golub. The simplex method of linear programming using LU
decomposition. Comm. ACM, 12(5):266–268, 1969.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with
applications. EABE, 27:403–564, 2003.

[BO99] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers I: Asymptotic Methods and Perturbation Theory. Springer, 1999.

[BP94] D. Bini and V. Y. Pan. Polynomial and Matrix Computations: Volume 1: Fundamental
Algorithms. Birkuauser, 1994.

[BYCM93] R. Burch, P. Yang, P. Cox, and K. Mayaram. A new matrix solution technique for
general circuit simulation. IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 12:225–241, 1993.

107

108 BIBLIOGRAPHY

[BZ01] Z. P. Bazant and Y. Zhou. Why did the World Trade Center collapse? – Simple analysis.
Archive of Applied Mechanics, 71:802–806, 2001.

[CB86] S. M. Chan and V. Brandwajn. Partial matrix refactorization. IEEE Trans. on Power
Systems, pages 193–200, 1986.

[CD86] L. O. Chua and A. C. Deng. Canonical piecewise-linear modeling. IEEE Transactions
on Circuits and Systems, 5:511–525, 1986.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. The MIT Press, 1990.

[Dava] T. A. Davis. Klu. http://www.cise.ufl.edu/research/sparse/klu/.

[Davb] T. A. Davis. Summary of available software for sparse direct methods. http://www.

cise.ufl.edu/research/sparse/codes/.

[Dav06] T. A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms.
SIAM, Philadelphia, 2006.

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[DER86] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, 1986.

[DG01] L. Deng and M. Ghosn. Pseudoforce method for nonlinear analysis and reanalysis of
structural systems. J. of Structural Engineering, ASCE, 127(5):570–578, 2001.

[DGZC01] L. Deng, M. Ghosn, A. Znidaric, and J Casas. Nonlinear flexural behavior of prestressed
concrete girder bridges. ASCE J. of Bridge Engineering, 6(4):276–284, 2001.

[DH99] T. A. Davis and W. Hager. Modifying a sparse Cholesky factorization. SIAM J. Matrix
Anal. App., 20(3):606–627, 1999.

[DH01] T. A. Davis and W. Hager. Multiple-rank modifications of a sparse Cholesky factoriza-
tion. SIAM J. Matrix Anal. Appl., 22(4):997–1013, 2001.

[DL] J. W. Demmel and X. Li. SuperLU: Sparse Gaussian elimination on high performance
computers. http://www.eecs.berkeley.edu/~demmel/SuperLU.html.

[DS00] R. W. Dutton and A. J. Strojwas. Perspectives on technology and technology-driven
CAD. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1544–1560, 2000.

[DS04] T. A. Davis and K. Stanley. KLU: a “Clark Kent” sparse LU factorization algorithm
for circuit matrices. In 2004 SIAM Conference on Parallel Processing for Scientific
Computing, 2004.

BIBLIOGRAPHY 109

[DV07] Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm. I. SIAM J.
Mat. Anal. Applics., 29(4):1322–1342, 2007.

[FB94] K. Fernando and Parlett B. Accurate singular values and differential qd algorithms.
Numer. Math., 67:191–229, 1994.

[FM84] R. Fletcher and S. P. J. Matthews. Stable modification of explicit LU factors for simplex
updates. Mathematical Programming, 20:167–184, 1984.

[FM87] W. Fichtner and M. Morf, editors. VLSI CAD Tools and Applications. Kluwer Academic
Publishers, 1987.

[Gar09] Gartner. Gartner Dataquest. Gartner Inc., 2009.

[GDX+97] M. Ghosn, L. Deng, J. M. Xu, Y. Liu, and F. Moses. Documentation of Program NON-
BAN. National Cooperative Highway Research Program 12-36, Transportation Research
Board, National Research Council, U.S.A., 1997.

[GGMS74] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix
factorizations. Math. Comp., 28(126):505–535, 1974.

[GKO95] B. Gustafsson, H. O. Kreiss, and J. Oliger. Time Dependent Problems and Difference
Methods. A Wiley-Interscience Publication, 1995.

[GL81] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[GM74] P. E. Gill and W. Murray. Newton-type methods for unconstrained and linearly con-
strained optimization. Math. Prog., 28:311–350, 1974.

[GMH91] P. E. Gill, W. Murray, and Wright M. H. Numerical Linear Algebra and Optimization.
Addison-Wesley Publishing Company, Redwood City, CA, 1991.

[GMS05] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Rev., 47(1):99–131, 2005.

[God85] G. B. Godfrey, editor. Multi-Storey Buildings in Steel. John Hopkins University Press,
Collins, London, England, second edition, 1985.

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. J. Comput.
Phys., 73:325–348, 1987.

[GSS93] J. T. Gierlinski, R. J. Sears, and N. K. Shetty. Integrity assessment of fixed offshore
structures: A case study using RASOS software. Proc. 12th Int. Conf., ASME, New
York, pages 399–408, 1993.

[GVL96] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, third edition, 1996.

110 BIBLIOGRAPHY

[Haj80] I. N. Hajj. Sparsity considerations in network solution by tearing. IEEE Transaction on
Circuits and Systems, 5, 1980.

[Hea02] M. T. Heath. Scientific Computing. McGraw Hill, 2002.

[HN87a] E. Hairer and S. P. Norsett. Solving Ordinary Differential Equations I. Springer-Verlag,
1987.

[HN87b] E. Hairer and S. P. Norsett. Solving Ordinary Differential Equations II. Springer-Verlag,
1987.

[HS91] J. Holnicki-Szulc. Virtual Distortion Method. Springer, Berlin, 1991.

[Hut98] J. Hutcheson. Executive advisory: The market for system-on-chip, July 15, 1998 and the
market for system-on-chip testing, July 27, 1998. Technical report, VLSI Resarch Inc.,
1998.

[HWP84] I. Hirai, B. P. Wang, and W. D. Pilkey. An efficient zooming method for finite element
analysis. International J. for Numerical Methods in Engineering, 20:1671–1683, 1984.

[HZDS95] C. X. Huang, B. Zhang, A. C. Deng, and B. Swirski. The design and implementation of
powermill. In International Symposium On Low Power Design, April 1995, 1995.

[IRT] IRTS. 2009 international technology roadmap for semiconductors. http://www.itrs.

net/Links/2008ITRS/Home2008.htm.

[JHW+01] R.-L. Jiang, J.-W. Hsia, M.-J Wang, C.-H. Wang, and J.-E. Chen. Guardband de-
termination for the detection of off-state and junction leakages in DRAM testing. In
Proceedings of the Asian Test Symposium, 2001, pages 151–156, 2001.

[KK98] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. on Scientific Computing, 20(1):359–392, 1998.

[KM95] U. Kirsh and F. Moses. An Improved Reanalysis Method for Grillage-Type Structures.
Cambridge, England, 1995.

[KR70] U. Kirsh and M. F. Rubinstein. Modification of structural analysis by the solution of
a reduced set of equations. Paper Eng-0570, University of California, Los Angeles, CA,
1970.

[KR72] U. Kirsh and M. F. Rubinstein. Reanalysis of limited structural design modifications.
J. Engineering Mechanics Division, ASCE, 98(1):61–70, 1972.

[Kun95] K. S. Kundert. The Designer’s Guide to Spice and Spectre. Kluwer Academic Publishers,
1995.

BIBLIOGRAPHY 111

[KWC00] C.-T. Kao, S. Wu, and J. E. Chen. Case study of failure analysis and guardband de-
termination for a 64M-bit DRAM. In Proceedings of the Asian Test Symposium, 2000,
pages 447–451, 2000.

[KY97] K. J. Kerns and A. T. Yang. Stable and efficient reduction of large, multiport RC
networks by pole analysis via congruence transformations. IEEE Trans. on Computer-
Aided Design, 16(7), 1997.

[LaM96] A. LaMarca. Caches and Algorithms. PhD thesis, Computer Science Department, Uni-
versity of Washington, WA, 1996.

[Law85] K. H. Law. Sparse matrix factor modification in structural reanalysis. International J.
Numerical Methods Engrg., 21:37–63, 1985.

[Law89] K. H. Law. On updating the structure of sparse matrix factors. International J. Nu-
merical Methods Engrg., 28:2339–2360, 1989.

[LKMS93] S. Lin, E. S. Kuh, and M. Mareck-Sadowska. Stepwise equivalent conductance circuit
simulation technique. IEEE Transaction on Computer-Aided Design of Integrated Cir-
cuits and Systems, 12, 1993.

[LL99] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting.
J. of Algorithms, 31:66–104, 1999.

[Mar57] H. M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management Sci., 3, 1957.

[MG79] W. McGuire and R. H. Gallagher. Matrix Structural Analysis. Wiley, New York, 1979.

[MMD08] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-
based data. SIAM J. on Matrix Analysis and Applications, 30:957–987, 2008.

[MR99] R. B. Makode, P. V. Corotis and M. R. Ramirez. Nonlinear analysis of frame structures
by pseudodistortions. J. Structural Engineering, ASCE, 125, 1999.

[MUM] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.

ens-lyon.fr/MUMPS/.

[MW73] B. Mohraz and R. N. Wright. Solving topologically modified structures. Computers and
Structures, 3:341–35, 1973.

[Nag75] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. PhD
thesis, Electronic Research Laboratory, College of Engineering, University of California
at Berkeley, May 1975.

[Nas02] Nassda. Hsim user’s guide. Technical report, Nassda, 2002.

112 BIBLIOGRAPHY

[New79] A. R. Newton. Techniques for the simulation of large-scale integrated circuits. IEEE
Trans. CAS, Sept, 1979.

[NPVS81] A. R. Newton, D. O. Pederson, A. L. S. Vincentelli, and C. H. Sequin. Design aids for
VLSI: The Berkeley perspective. IEEE Transactions on Circuits and Systems, 7:660–680,
1981.

[OF02] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2002.

[PRV95] T. L. Pillage, R. A. Rohrer, and C. Visweswariah. Electrical Circuit and System Simu-
lation Methods. McGraw-Hill, Inc., 1995.

[PS82] C. C. Paige and M. A. Saunders. Algorithm 583, LSQR: Sparse linear equations and
least-squares problems. TOMS, 8(2):195–209, 1982.

[PTVF99] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flammery. Numerical Recipes
in C. Cambridge University Press, second edition, 1999.

[Rei01] T. R. Reid. The Chip: How Two Americans Invented the Microchip and Launched a
Revolution. Random Hourse, New York, 2001.

[RH76] N. B. Rabbat and H. Y. Hsieh. A latent macromodular approach to large-scale sparse
networks. IEEE Transations on Circuits and Systems, 12, 1976.

[ROTH94] V. B. Rao, D. V. Overhauser, T. N. Trick, and L. N. Hajj. Switch-Level Timing Simu-
lation of MOS VLSI Circuits. Kluwer Academic Publishers, 1994.

[RSVH79] N. B. C. Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh. A multilevel new-
ton algorithm with macromodeling and latency for the analysis of large-scale nonlinear
circuits in the time domain. IEEE Transactions on Circuits and Systems, 9, 1979.

[Sau09] M. A. Saunders. LUSOL: Sparse LU for Ax = b. http://www.stanford.edu/group/

SOL/software/lusol.html, 2009.

[SCH67] R. L. Sack, W. C. Carpenter, and G. L. Hatch. Modification of elements in the displace-
ment method. AIAA J., 5(9):1708–1710, 1967.

[SH03] V. Stojanovic and M. Horowitz. Modeling and analysis of high-speed links. In Custom
Integrated Circuits Conference, Sep. 2003, 2003.

[She99] B. N. Sheehan. TICER: Realizable reduction of extracted RC circuits. In Computer-
Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International Con-
ferences on, pages 200–203, 1999.

[SJN94] R. Saleh, S. J. Jou, and A. R. Newton. Mixed-Mode Sumulation and Analog Multilevel
Simulation. Kluwer Academic Publishers, 1994.

BIBLIOGRAPHY 113

[SK99] D. Sylvester and K. Keutzer. Rethinking deep-submicron circuit design. IEEE Computer,
Nov:25–33, 1999.

[SM49] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to
changes in the elements of a given column or a given row of the original matrix. Annals
of Mathematical Statistics, 20:621–621, 1949.

[spi] The SPICE Page. http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/.

[ST75] A. Szygenda and E. W. Thompson. Digital logic simulation in a time-based, table-driven
environment. Part I, Design verification. IEEE Computer Magazine, March:24–36, 1975.

[Syn03] Synopsis. Nanosim user’s guide. Technical report, Synopsis, 2003.

[Ter83] C. J. Terman. Simulation Tools for Digital LSI Design. PhD thesis, MIT, 1983.

[TH00] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Artech House, second edition, 2000.

[TS03] S. X. D. Tan and C. J. R. Shi. Balanced multi-level multi-way partitioning of analog
integrated circuits for hierarchical symbolic analysis. Integration, the VLSI Journal,
34:65–58, 2003.

[Wik05] WTC floor picture. http://en.wikipedia.org/wiki/Image:World_Trade_Center_

Building_Design_with_Floor_and_Elevator_Arrangment.jpg, 2005.

[WP80] B. P. Wang and W. D. Pilkey. Efficient reanalysis of locally modified structures. Techni-
cal report, Department of Mechanical and Aerospace Engineering, Virginia University,
Charlottesville, VA, 1980.

[WP81] B. P. Wang and W. D. Pilkey. Parameterization in finite element analysis. In Proceedings
of International Symposium on Optimum Structural Design, Tuscon, AZ, pages 7.1–7.7,
1981.

[WPP83] B. P. Wang, W. D. Pilkey, and A. R. Palazzola. Reanalysis, modal synthesis and dynamic
design. In A. K. Noor and W. D. Pilkey, editors, State-of-the-art Surveys on Finite
Element Technology, pages 225–295. American Society of Mechanical Engineers, 1983.

[Wu76] F. F. Wu. Solution of large scale networks by tearing. IEEE Transaction on Circuits
and Systems, 12, 1976.

[YZP08] Z. Ye, Z. Zhu, and J. R. Philips. Generalized Krylov recycling methods for multiple
related linear equation systems in electromagnetic analysis. In DAC 2008, June 8–13,
Anaheim, CA. DAC, 2008.

[ZM97] A. Znidaric and F. Moses. Structural safety of existing road bridges. In 7th International
Conference on Structural Safety and Reliability (ICOSSAR), Kyoto, pages 1843–1850,
1997.

114 BIBLIOGRAPHY

[ZM98] A. Znidaric and F. Moses. Resistance of deteriorated post-tensioned concrete beams:
An ongoing research. In 8th IFIP WG 7.5 Working Conference on Reliability and Op-
timization of Structural Systems, Krakow, pages 339–346, 1998.

[ZT05] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid and Structural
Mechanics. Elsevier Butierworth Heinemann, sixth edition, 2005.

