
STOCHASTIC PROGRAMMING SOLUTIONS TO

SUPPLY CHAIN MANAGEMENT

a dissertation

submitted to the department of

management science and engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

in

operations research

Rene C. Schaub

March 2009

Copyright c© 2009 by Rene C. Schaub

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Gerd Infanger
(Principal Advisor)

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Michael A. Saunders

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Yinyu Ye

Approved for the University Committee on Graduate Studies:

iii

iv

Abstract

We formulate a finite-horizon multistage stochastic linear program model for tactical

supply chain planning problems and study the effect of random demands on expected

profit, through appropriate material flow and inventory allocation.

The associated deterministic model is a capacitated Leontief substitution system,

which itself is an instance of a capacitated Hypergraph. We find a fast algorithm to

compute approximate solutions, based on Positive Linear Programming.

We explore different decomposition approaches and suggest enhancements to the

Benders decomposition method. Supply chain test cases from the literature are used

to generate models with large numbers of scenarios and stages, for which we compute

near-optimal solutions.

v

vi

Acknowledgments

I would like to thank my advisor Prof. Gerd Infanger for his guidance and advice that

always turned out to be to the point. He showed much patience for my deliberate

branching into areas that I thought merited investigation. I would like to thank Profs.

Michael Saunders and Yinyu Ye for their numerous advice and contageous optimism.

Profs. Serge Plotkin and Warren Hausman agreed to serve on my defense committee.

I could not have hoped for a better matched group of experts to present my findings.

My girlfriend of many years Galicia Vaca could not believe that I finally finished this

project of mine, and I am grateful for her support through all this time and hard

work. Sometimes I think I may not have been able to find the endurance to finish

my dissertation without her. I would also like to thank my parents for always offering

support to all my endeavours, and the companies that provided me with consulting

and work opportunities, providing financial independence and the ability to go where I

wanted to be.

vii

viii

Contents

List of Tables, Figures, and Algorithms xi

1 Introduction 1

1.1 Finite Horizon . 2

1.2 Aggregation . 2

1.3 Continuous Variables . 3

2 Stochastic Programming for Supply Chain Management 5

2.1 Productions as a Directed Hypergraph Model 5

2.2 Expressiveness of the Production Model 8

2.3 Demand Distributions . 13

2.3.1 Unknown Trend Models . 14

2.3.2 Forecast Update Models . 15

3 Leontief Systems and Extensions for Capacities and Profits in the

Deterministic Case 17

3.1 Solving the Capacitated Acyclic Leontief Substitution System 18

3.1.1 Minimum Cost Trees . 21

3.1.2 Running Times . 22

4 Stochastic Supply Chains using Positive Programming and Scenario

Aggregation 25

4.1 Decomposition . 26

4.2 Non-Smooth Optimization Using a Collection of Subgradients 28

4.2.1 Cutting Plane Method . 28

4.2.2 Bundle Methods . 28

4.3 Some Stochastic Decomposition with Subgradient Optimization Algo-

rithms . 31

4.4 Degeneracy and the Cutting Plane LP 32

4.5 Scenario Aggregation with Bundle Method 32

5 Stochastic Supply Chains Using Multistage Benders Decomposition 35

5.1 Benders Decomposition . 35

ix

5.2 Multistage Benders Decomposition . 37

5.3 Multiperiod Cuts . 37

5.4 Shared Cuts . 40

5.5 Serial Correlation of Demand Capacities 40

5.5.1 Vector Autoregression and Multiplicative Dependencies 41

5.5.2 Positive Demand . 43

5.5.3 Correlated Demand . 44

6 Computational Results and Comparison 45

6.1 Benders Implementation . 45

6.2 Test Supply Chains . 47

6.2.1 Demand Distributions . 47

6.2.2 Number of Stages . 50

6.2.3 Lower Bound Accuracy . 50

6.3 Redundant Solution Space . 52

6.4 Conclusions . 52

Bibliography 52

x

Tables, Figures, and Algorithms

Tables

6.1 Origins of the selected supply chains . 50

6.2 Test case parameters and numerical results 50

6.3 Descriptions of columns of Table 6.2 . 51

Figures

2.1 A simple bill of materials . 5

2.2 Productions over time . 7

4.1 Cutting plane iteration . 29

4.2 Bundle method . 29

4.3 Bundle ε-descent method . 30

4.4 Bundle method with level sets iteration 30

6.1 Test Case 1 . 46

6.2 Test Case 3 . 46

6.3 Test Case 5 . 47

6.4 Test Case 8 . 48

6.5 Test Case 19 . 49

xi

xii

Chapter 1

Introduction

Operational or tactical supply chain planning problems (TSCP) have a horizon of less

than one year, and have long been the domain of Material Resource Planning (MRP),

see [33] and [52] for historical surveys. The decisions to be made concern material flow,

stocking, sourcing and timing [17, 39, 58]. Because of the short horizon it is assumed the

supply chain network itself has already been designed and built; that is, manufacturing

plants, distribution centers, and potential transportation routes already exist.

MRP uses rules to make decisions. When there are many suppliers, a sourcing rule

may allocate each one a fixed percentage of business. When an order is confirmed and

material released, the planning process takes one step at a time in looking up which

materials go into the current assembly, and allocates them at the earliest availability, or

creates new requisitions, which in turn are followed upstream in the supply chain until

all components have been accounted for and resources allocated.

Kanban is a very simple, ‘just-in-time’ (JIT) manufacturing planning system popu-

larized by Toyota. Contrary to the above ‘push’-based system — meaning orders can

result in coordinated material decisions affecting many stages of the chain all at once —

Kanban is a ‘pull’-based system. Material orders are only released when a certain num-

ber of units have been used up (Kanban cards), and only for the immediate upstream

stage. That way, material is ‘pulled’ down the chain. The advantages are that very

little coordination is required, implementation is easy, and decisions can be made very

quickly. The process of setting the right number of Kanban cards is made in advance

and is itself an independent planning process.

What has crystallized in recent years in the commercial space is a focus on more and

more integrated multi-echelon planning (enterprise or inter-enterprise wide) as opposed

to the traditional decentralized local approaches as it has become clear that there are

additional cost savings to centralized inventory planning once uncertainties are made

part of the model [55, 36, 19]. This requires that all of the enterprise data be accessible

from a central location. The enabler of such integrated data storage in practice are

so-called Enterprise Resource Planning (ERP) systems [34].

During the last decade, operations research optimization techniques have been ap-

1

2 Chapter 1 Introduction

plied to commercial MRP software, typically going under the name of ‘Advanced Sup-

ply Chain Planning’ or MRP II. For early approaches see [4]. One typically sees a

combination of linear programming and constraint programming. More recently, some

approaches have considered uncertainties in the supply chain. Here we are mainly con-

cerned with demand uncertainties. We propose a model that optimizes over multiple

items and multiple stages (‘echelons’), globally over a certain number of time units.

While it may seem that a multi-echelon view spanning production and distribution

would make the model too unwieldy, we build on simple constructs that allow us to

take advantage of structural properties. Furthermore we restrict ourselves to continu-

ous variables to make the model computationally tractable. For an overview of modeling

approaches and issues, see [16].

Related issues that we do not address here are integral constraints such as used in the

lot-sizing problem, or designing the supply chain. The latter can be solved separately

and in advance of the TSCP, while the former can be treated as a post-processing step.

1.1 Finite Horizon

We use a finite-horizon formulation. It can be applied for seasonal demand that vanishes

after the last stage, or over the life cycle of a family of products. An infinite horizon or

static model can be approximated by making the horizon sufficiently long and rolling

over the time window after some number of periods.

1.2 Aggregation

The length of a period is typically chosen to be between a day and a month. This

implies aggregation of all time-related entities of the supply chain, such as demand

amounts, resource capacities, and rounding of production lags to time periods. Clearly,

accuracy is lost, and optimization of such a model may require post-processing of the

solution to enforce constraints locally at a finer level. In the extreme case, aggregation

results in all productions finishing in the same time bucket. The only productions

with non-zero lag are the inventory productions, carrying over stock to the next period.

Demand is satisfied instantaneously. The only remaining issue is material stocking levels

if production cannot meet demand spikes. On the other end, we have a continuous time

spectrum with individual orders and exact production lags. A compromise is struck to

balance computational and other effort with accuracy.

1.3 Continuous Variables 3

1.3 Continuous Variables

Our model is a continuous one, with decision variables taking values on the real line.

We don’t include binary or integer variable constraints, which result in problems that

in general cannot be solved to optimality (NP hard). The main victims are setup costs

and lot sizing, which, however, become progressively less important at higher levels of

aggregation. One possibility for approximately modeling setup costs is to introduce

multiple bills of materials with different lag times and capacities, corresponding to the

length of production runs. Each bill will have the setup cost added as part of the total

cost. The item output of the BOM can also be spread out evenly. The longer the lag,

the lower the per-unit setup cost. It is not an entirely accurate way to measure setup

costs, because the total amount being built is a continuous variable and may be less

than capacity. The idea is that committing for a long run has a much higher risk of

producing too much or too little, if the long lag is used to reduce setup costs only.

As our model is capable of optimizing such profit risks, it will select shorter runs with

higher setup cost if responsiveness to changes in demand is important.

4

Chapter 2

Stochastic Programming for

Supply Chain Management

2.1 Productions as a Directed Hypergraph Model

Let us start by looking at a simple bill of materials (BOM), which describes the com-

position of an item made from raw materials or intermediate items.

a

c

b

Figure 2.1 A simple bill of materials

We assume that Figure 2.1 means that to make one unit of item c, we need one unit

of item b and one unit of item c.

We can express this relationship as a hyperedge e ∈ E in a hypergraph (E, V), with

the items as nodes V . We adopt here the notation in [8]. A hyperedge e differs from

an edge in a regular graph in that it can connect more than two nodes. e is a set

{v1, . . . , vk} ∈ V of the nodes. We are interested in directed Hypergraphs that have

at most one destination node — that is, one produced item — denoted by he (head of

edge). The set of source nodes is denoted by Te (tail of edge). Then the hyperedge e is

the pair (Te, he). In our example, the bill of materials is hyperedge e, the produced item

is he = {c}, and the components are Te = {a, b}. As the components used may not be

exactly one unit each, we have the usage p(v, e) indicating the amount. The number of

time units to finish production is indicated by le. Costs associated with unit production

of he are denoted by c(e). Given these parameters, we now introduce a decision variable

xe for each production in a given time period to indicate how many units are being

produced. To summarize,

5

6 Chapter 2 Stochastic Programming for Supply Chain Management

(E, V) Productions e ∈ E are hyper-arcs between items v ∈ V
Te Set of component items consumed by production e

he Item being produced by e

p(v, e) Amount of item v ∈ Te ∪ he required (≤ 0) or

produced (≥ 0) in production e

le Time units to complete production e (lag)

c(e) Unit production cost (≤ 0) or revenue (≥ 0)

xe Decision variable of how many units to produce

What is interesting about our production construction is that while mainly intended

to model BOMs, it actually suffices to model the whole supply chain. This implies that

a solution is simply a flow on a directed hypergraph. When written as linear program

equations, the corresponding production matrix is a Leontief substitution system, which

has at most one positive entry in each column.

We now show what we mean by the statement that we only use productions. Let us

start with an inventory type equation, which keeps track of the net inventory position

of item v at a given time, which we shall call Iv:

Iv =
∑
v∈he

xe −
∑
v∈Te

p(v, e)xe.

Note that if we allow p(v, e) to be negative or positive according to v corresponding

to a component item or the item produced, we only need one summation term with

v ∈ he ∪ Te:
Iv =

∑
e∈E(v)

p(v, e)xe,

where E(v) ⊂ E is the set of hyperarcs that contain v. We further assume that we

have a distinct item v for each time period 1, . . . , T ; that is, v only exists for that time

period. In other words, V = V0 × {1, . . . , T } for some initial timeless item set V0, and

similarly for E. We don’t signal the time period with an index on v, rather we use t(v)

and t(e) to retrieve the item’s location in time, and the production’s starting period,

respectively. What is needed now clearly is linking the inventories Iv for consecutive

time periods, as otherwise any positive inventory Iv simply expires. Thus we have

Iv =
∑

e∈E(v)

p(v, e)xe + Ipr(v),

where pr(v) is the item instantiation during the previous time period, so that t(v) =

t(pr(v)) + 1. Similarly, let nx(v) be the item in the next period. Now it is obvious

2.1 Productions as a Directed Hypergraph Model 7

that Iv is simply another production ea, with Tea = {v}, hea = {nx(v)}, p(v, ea) = −1,

p(nx(v), ea) = 1, t(ea) = t(v). xea then indicates the inventory at time t(v).

t = 1

t = 2

t = 3

t = 4

B

PD P

A

PB P

D

C

P

P

A

PB

B

PD

D

C

Figure 2.2 Productions over time. The angled icons represent unit lag hyperedge productions,
linking components and output items over time periods

Our inventory (or flow conservation) equation now takes the simple final form

∑
e∈E(v)

p(v, e)xe ≥ 0 (2.1)

using only productions. See Fig. 2.2 for an example bill of materials tracing each item

for two time periods. For several reasons, we use greater than instead of equality in

(2.1). This says that we can drop any inventory at any given time. While this would

be very unlikely to occur in any optimal feasible solution, it is very useful for feasible,

non-optimal solutions encountered during problem decomposition. It prevents subprob-

lems from ever becoming infeasible, thus saving us from introducing relief inventory

8 Chapter 2 Stochastic Programming for Supply Chain Management

productions, or dealing with feasibility cuts. It is also natural in the case of resource

productions, as a time resource not used is a missed opportunity, but there is no point

in forcing its usage, and it cannot be recovered by carrying it over to the next period.

Each production variable can have an upper bound ū(e), and is always non-negative.

In general, this corresponds to capacity constraints on processes modeled by produc-

tions. In particular though, it also allows us to model demand, for which we appropri-

ately introduce demand productions ed, with hed = ∅, Ted = {v}, p(v, ed) = −1, and

ū(ed) = d, where the capacity bound d indicates how much demand exists during the

time period. Of course the incentive to satisfy demand, that is invoke the demand pro-

duction decision variable xed , is missing. We address this by adding the profit objective,

∑
e∈E

c(e)xe, (2.2)

where c(e) is the positive cost or negative revenue, so that (2.2) is to be minimized. For

demand productions, c(ed) is always negative to indicate revenue opportunity.

2.2 Expressiveness of the Production Model

Now we are ready to show that the remaining essential constructs of a supply chain can

also be modeled by productions. Standardized definitions can be found in the APICS

dictionary [10].

Safety Stock Safety stock is just the inventory production ea. The production amount

indicates how much surplus was carried over to the next period. (Safety stock

trades off lead time. If we always keep enough safety stock at a location to satisfy

actual local demand, the effective lead time is zero).

External Supply Raw material or starting components have to be sourced from some-

where. These productions es don’t use any other items, that is, Tes = ∅.

Resource In addition to using common items, productions can use common resources

such as work hours available, or a shared machine. Like external supply, the

resource production has Ter = ∅. In addition, there is no inventory: we drop

the carry over productions ea corresponding to the resource ‘item’. Either the

hours of work available are used, or they expire. Of course every resource has a

limiting upper bound capacity ū(er). To indicate use of a common resource er, any

production e can add the resource item her to its components Te with appropriate

usage p(her , e,).

2.2 Expressiveness of the Production Model 9

Warehouse Capacity and Cost If shared, limited storage availability can be modeled as

a resource used by the inventory productions ea. If limited space is allocated for an

item individually, we can simply set the capacity of the corresponding inventory

production. The cost is charged to the respective resource or inventory produc-

tion.

Warehousing costs are also incurred for items in the production pipeline, pro-

portional to the amount being produced, in which case we add the cost to the

production itself.

Optionally, some other concepts can be implemented using productions. Some only

become meaningful in the stochastic setting, in particular when timing of decisions is

concerned. The cost typically is an increase of part of the problem size by a constant

multiple.

Shelf Life Some types of item, for example produce or consumer electronics, expire after

a while and become more or less worthless. We assume that after a certain time

period since production, the item has no more use and its inventory is scrapped.

We model this by introducing a version of the item indicating its current age in

1, . . . , exp; that is, we go from v to {v1, . . . , vexp}. Instead of the usual inventory

productions eav having the same item in the next period as their output, they

point to the adjacent item at age +1. vexp does not have any inventory carried

over, and its stock will have to be used up or expire. In addition, we have to

replicate all productions feeding off v in a similar fashion so that they can use any

aged version of the item.

Lag It is possible to model lags > 1 using only unit lags. While it may not be clear

why we would want to do that right now, we shall indicate the procedure here.

Assume the production e takes le periods to complete. Then we proceed similarly

to the case for shelf life, by introducing aged versions of the output item he. Only

the last version vexp with exp = le is used by any productions feeding off v.

Backorder We have so far assumed that demand has to be satisfied during the time

period in which it materializes. This corresponds to a service time of zero, which

we would see for example at a consumer outlet, where the customer expects the

item to be stocked and available. Similarly, it could model a situation where

an order is taken and expected to be shipped during the next business day. If

however we allow for a service time to fulfill the order (not counting shipping), we

can model that as a backorder. That is, we allow demand to live on for a certain

number of periods, until it expires if not satisfied. To do this, we introduce an

10 Chapter 2 Stochastic Programming for Supply Chain Management

external supply that injects a shelf life token item, up to the amount of the demand

during that period. This item is then passed on — as far as it hasn’t been used

by appropriate demand productions — up to the expiration period.

Alternatively, we can approximate a positive service time slack s modeled as early

demand, see below, without tokens. We use a stage-dependent additive distri-

bution where the demand has a regressive lag equal to the demand slack, and

demand times are moved out by s periods.

Early Demand In some situations, precise demand may be assumed known in advance

of the actual time of commitment to fulfill the order. This is only a slight variation

of the backorder construction. The only difference is that demands may feed off

the last token item only, instead of all of them. But we don’t need to implement

early demand that way, as it is more natural to represent it directly in a VAR

demand model, see section 5.5. (Conversely, any positive VAR distribution can

be implemented using token flows to carry random outcomes to future stages.)

On the other hand, if early demand means early commitment, then the proper

thing to do is to allocate all materials needed at the time of the order. This can

be achieved as follows. Let L be the time allowed to fulfill the order. From the

demand item as root, we collect all upstream production trees that have a max

total lag of no more than L. Then we roll up the bills of materials so that for each

tree we end with a cumulative bill of materials that has no output and as inputs

all the leaf components in the tree. Depending on the supply chain and L, there

may be too many such trees, in which case we could instead use the uncommitted

early demand approach as an approximation.

Another useful case for early demand is when a manufacturer or distributor shares

demand data with an upstream supplier. The latter will know in advance what

amounts are needed. Conversely, if that information is not shared, the supplier

will have to create a demand forecast based on past history and in general carry

greater safety stocks, or quote a longer lead time. Withholding demand infor-

mation from upstream suppliers can result in greater variation of demand, the

so-called Bullwhip effect [30].

Diminishing Marginal Revenue Diminishing revenue can be modeled by linearizing a

concave revenue curve and splitting it into linear parts, each of which becomes a

different demand production for the same item, each subsequent one with lower

revenue. The same can be used for convex costs.

Supplier Failure and Random Yield AMR Research has reported that businesses indi-

2.2 Expressiveness of the Production Model 11

cate supplier failure as their number one risk factor [23]. Supplier failure can

be modeled as random capacities for supply productions. While the risk of an

individual supplier failing may be small, the overall probability of at least one

supplier failing will be much larger in a supply chain with many external compo-

nents. Some of the risk may lie with supplier stockouts, but more dangerous are

orders with long lag time that fail to arrive.

To model disruption, we introduce a dummy item for each period until delivery,

and put zero capacity as a possible outcome on some of the carry productions.

To model recovery of supplier payments, we add an artificial, parallel demand

production at cost, whose capacity is different from zero only if disruption was

the outcome.

The cost of this manoeuver is that outcomes with large jumps (such as zero vs

non-zero capacities) generally are so different that Benders cuts (as described in

chapter 5) derived on one path may not provide much support for other paths

with different outcomes, so that more cuts are needed for convergence.

Random yield can be modeled the same way. Alternatively, it can be implemented

directly by making the output coefficient of the production matrix random. If se-

rial random correlation is required (we only support random rhs for serial correla-

tion), we can model it indirectly through capacities, as follows. For each outcome,

we replicate the production, and set the yield according to the outcome. Random-

ness is then moved to the production capacities, with only one production having

non-zero capacity at each outcome.

Random Variable Lead Time Globalized procurement is one source for greater variabil-

ity of lead times. The latter can be modeled by sending the supply into a dummy

holding item each period, with connecting carry production, up to a maximum

lag period. For each holding item, there is a delivery production that moves the

dummy to the real item. Its capacity is determined according to the lead time

distribution (in parallel, the dummy carry production may be penalized by at

least the carry cost so that the supply is pushed into the real item).

We can model any lag distribution by independent binary random capacities on

each dummy delivery production.

Cost Risk Cost increases cut into profitability. We model the risk within our existing

framework by using several supply productions with different costs. A high cost

scenario is characterized by limited availability of the lower cost productions.

Sequential dependency of the capacity distributions makes sense here (section 5.5),

12 Chapter 2 Stochastic Programming for Supply Chain Management

otherwise a high cost will most likely revert back by the independence of the stage

random variables.

Tax uncertainty from country to country in a global network also translates into

cost risk and can be modeled as such.

Overtime We copy the production or resource that is going into overtime and add

overtime costs to its objective. Then the overtime production will be selected

only when the regular production has been exhausted.

Product Substitution Clearly our model allows for substituting the same item from dif-

ferent sources or productions. Similarly, different items can be modeled this way

if they effectively can satisfy the same demand. When items are a little bit more

differentiated, we would like to have separate demands, but correlated in some

way. For example, an item may be a substitute for another, if the price is brought

down sufficiently to make the consumer consider the lower priced item. Similarly,

a customer may choose to upgrade to a more expensive item if the price is brought

down sufficiently. For effect of pricing on substitutability, see for example [32]. In

either case, we achieve demand pooling, thus preventing stockouts in one item to

result in a lost sale. This can be easily implemented as follows: in case of the ex-

pensive item, let it flow to its original price point demand, as well as to a separate

demand where it is the substitution item. The latter will have lower revenue, so

the higher cost item will only satisfy that demand after there is no more of its own

proper demand, and after the low cost item supply has been exhausted. Similarly

for substituting with a lesser item.

The opposite case is when we have items that are not substitutes, but demand is

inversely correlated, in that one of them will be much more popular than the other,

no matter what pricing points are chosen. Instead of risk pooling, we increase risk

by differentiation. Such a case can be modeled with an appropriate, autocorrelated

demand distribution. We would expect that as a profit maximizing measure, the

model would decide to build sufficient inventory at intermediate assemblies before

the items are differentiated.

Expediting To satisfy demand expediently, sometimes it pays to expedite movement of

material and products. This can be modeled as alternate transportation routes

with smaller lead times and higher cost.

Lastly we describe some concepts that cannot be modeled effectively in the produc-

tion model and haven’t already been mentioned.

2.3 Demand Distributions 13

Satisfaction Level One customer satisfaction or service metric is to guarantee a mini-

mum percentage of orders filled. While this can be as simple as an upper bound

on satisfying demand in a period, even in this case we are changing the model

in that subproblems in Benders decomposition (chapter 5) can now be infeasible,

requiring infeasibility cuts and introducing other difficulties.

When the percentage is to be over multiple time units, more complications arise,

which in any case invalidate our simple productions model.

The good news is that satisfaction levels have been mainly in use to drive stocking

levels of a single-echelon system, which makes sense in such a simple model. But

in a multi-echelon, multi-item model such as ours, where we can finally begin

to talk about expected profit, maximizing the latter is a lot more useful. If we

are concerned about customer goodwill, we can simply assign a cost of unserved

demand to each order, and add it to revenue. Then the expected lost goodwill

can be broken out from the solution and reported. Desired higher order fill rates

for distinct item categories (A,B,C [10]) can also be reflected in higher lost order

values for the higher priority items.

This seems to be a better way to account for customer satisfaction than strict

percentages, which may or may not make economical sense (and certainly are not

profit driven).

The other case where satisfaction levels are useful is when cost data is very in-

accurate. This is quite a common occurrence in ERP databases, and the culprit

usually is that the cost data has not been used in any critical function, e.g. to

drive profit. Of course the remedy is to improve accuracy of the costing data.

‘Rolling’ Inventory A company may decide to store products in truck trailers at the

back of the warehouse instead of at the warehouse itself [47].

As this is trying to maximize individual trailer usage, it is better to model this as

a MIP and thus falls outside the scope of our model.

2.3 Demand Distributions

The question of what kind of demand distribution (expressed as the values ū(ed)) we

should have needs to be addressed. Demand should be non-negative. Negative demand

can be interpreted as customer returns, although realistically returns are a small frac-

tion of demand and would be very unlikely to outnumber total sales during a given

period. Models composed of normal random variables can always be negative, albeit

14 Chapter 2 Stochastic Programming for Supply Chain Management

the probability can be kept arbitrarily small when the mean is sufficiently large and

the variance small. When errors are not normal, more safety stock is usually needed

[54]. A variety of standard non-negative distributions lends itself as building blocks to

time series construction. We shall not elaborate on conditions for stationarity, which

is extensively treated in the literature. A stationary model is easier to estimate. How-

ever, even a trend or seasonal adjustment does not hide the fact that variance remains

constant over time. We believe it is more natural for the demand variance to grow with

time, rather than to assume a fixed underlying trend. The toolbox of standard continu-

ous non-negative distributions includes the exponential, truncated normal, conditional

normal [54], lognormal, Weibull, and Gamma distribution. For the positive integers,

there are the Poisson and binomial distributions. Simple autoregressive models with

non-normal innovation have been analyzed in [20].

Correlation between time series can be captured in a (lagged) covariance matrix. For

a vector normal distribution, this completely determines all parameters. By conditioning

on positive vector outcomes (i.e. discarding sample vectors with negative coefficients),

we obtain a model that may be easy to fit and allows for negative autocorrelation. The

probability of a negative outcome should be small however, otherwise conditioning may

be hard to achieve. Negative correlation can also be easily realized without allowing the

vector to go negative by correlating the positive vector of innovation in a multiplicative

or additive vector autoregressive model (fitting the model may have its own challenges,

but we ignore that problem here). However we do not see the need to model negative

correlation: the main case that comes to mind is cannibalization, which seems to be

avoidable when the supply chain in question is for products of the same company.

Instead, we would expect the products to be substitutable, in which case a common

demand distribution can be found for the product family of substitutes. Similarly,

introducing a new product replacement does not need to be left to random chance, a

strategy might be to force production capacities for the replaced item to go to zero

quickly.

We do not address the question of how to estimate or select among the various

models given historical samples and other information.

2.3.1 Unknown Trend Models

For illustrative purposes, we chose a model that exhibits positive autocorrelation but

no correlation between demand time series, and has growing variance. (The model can

be easily extended to dependencies between time series, for example by sharing some

of the underlying variables or series.) one instance of our model exhibits a linearly

2.3 Demand Distributions 15

growing standard deviation using a triangle distribution construction (with some noise

thrown in if desired to add another source of variability). We believe this to be a very

good approximation of actual uncertainty, as when demand peaks is the most critical

unknown given a certain growth trend. We acknowledge this very important source of

uncertainty by using a distribution that actually reflects it. To hedge, we have to know

what we are hedging against.

In practice the peak will announce itself by flatlining growth close to it, but triangle

trends with common growth rates are a useful approximation.

Note. If each trend outcome had a distinct incline rate, then the full triangle could be

identified as soon as the gradient became visible during the first few periods. Hence we

assume here that all possible trend outcomes have the same incline, so that the curve is

identified only after its peak. This would not be very useful for traditional forecasting

applications, as we cannot make any reliable forecasts until the peak occurs, but it is

very useful indeed to let the stochastic program hedge against all such trend outcomes.

Demand for a given item at stage t is defined to be

d(t) =
t∑

j=1

εjt

t∏
k=1

µk, (2.3)

where εjt and µk are independent non-negative random variables, for example truncated

normals, and t = 1, . . . , T .

If we let µt be binomial random variables, and let εjt be identical constants, we

obtain the ‘triangle’ distribution. It embodies the unknown peak property, as the first

failure outcome µt = 0 signals that the peak occurred at t− 1. Of course εjt can be any

function of j and t, so that the individual peak demand curves can take any shape.

As a second more practical instance, let µt be some random variable with

E(µt) > 1, Var(µt) < 1. (2.4)

We can interpret εjt, t = j, . . . , T as early demand information that becomes available

in period j. Future demand at t is positively correlated with early demand information

via µk, k = 1, . . . , t. This implements the notion that the amount of early demand is a

good predictor of future demand.

2.3.2 Forecast Update Models

Stefanescu et al. [53] look at the problem of estimating a correlated demand model as

data becomes available. They assume that a common initial ‘shock’ vector determines

16 Chapter 2 Stochastic Programming for Supply Chain Management

all the individual demand trends. As more data becomes available, the parameter es-

timation is refined. We shall now explain why this and similar models are not going

to be very useful here, even when they are a good fit. The reason is that forecasts

are updated as more information becomes available, and production adjusted accord-

ingly, instead of hedging against possible future outcomes. A Bayesian approach seems

conceivable, where the conditional distribution model is represented by the posterior.

However this is circular, as we would have to simulate a partial outcome from the true

distribution to obtain the posterior. Instead of updating a forecast or parameters for a

fixed-trend model, the partial demand outcomes should be used only to condition the

distribution. If we knew the exact parameters, then the stochastic program would know

the trend functions and be able to optimize for the remaining random noise. Since we

don’t know the exact trends in advance, the trend curves can take various forms that

become clear only later on, so it is a mistake to think that the stationary random noise

remaining will somehow obscure the trends and lead the stochastic program to hedge

against different trend curves: the conditional future distribution is fully known to the

stochastic program for any simulated outcome. Any trend that becomes deterministic

after some simulated point in time is fully visible for all future periods, and no hedging

occurs, except for the remaining yet to be realized noise.

The appropriate analogy for our model of the approach used in [53] is

1. Solve the stochastic program.

2. Implement the first stage decisions.

3. Observe the next stage demand outcome and any other visible variables.

4. Update the demand distribution given the new information.

5. Roll the time horizon window forward one period.

Chapter 3

Leontief Systems and

Extensions for Capacities and

Profits in the Deterministic

Case

Looking at the linear program made up of the minimizing objective term (2.2) and the

item constraints (2.1), we see that the matrix P :=
(
p (v, e)

)
|V |×|E| is pre-Leontief [56]:

any production e is represented by a column in P that has at most one positive entry

for the output item. All other items v in e are consumed and have negative p(v, e)

coefficients. As we allow more than one production to output the same item (that is,

we allow multiple sources), the corresponding linear program is a pre-Leontief substitu-

tion system (LSS). Leontief systems, not surprisingly, have their origins in production

planning and economics. For some models that are very similar to ours, see for example

[11, 57]. Koehler et al. suggest solving a general LSS with matrix iterative techniques

in [29]. Dantzig [11] shows how to solve efficiently the special block triangular structure

resulting from a time-phased LSS with the simplex algorithm.

When constructing (V,E) from time-phasing items and productions using lag le, the

matrix P takes the form

A

B1 A
... B1

. . .

BL
...

BL
.

BL . . . B1 A

, (3.1)

where L = maxe le, Pi. denotes items at time i, and P.j productions starting at time

17

18 Chapter 3 Leontief Systems and Extensions for Capacities and Profits in the
Deterministic Case

j. The band block structure is due to ordering the item rows by time t(v), and the

production columns by the production starting period t(e). Alternatively we could have

ordered the productions by finishing period, that is t(e) + le, but we need to group

variables by time of decision (starting period) for the stochastic version later.

We don’t allow cycles in the supply chain. An item may not be fed to one of its

component productions. Such occurrences would mainly be seen when reverse supply

chains for returns and disassembly are integrated into the main supply chain. While

reverse supply chains are certainly important, we don’t see a need to integrate them

into the global supply chain, as the reverse flows are only a small fraction of the total. It

seems sufficient to treat the reverse supply chain independently as a separate problem.

We thus consider only acyclic LSS (ALSS). Based on [11], Veinott shows in [57] how

ALSS can be solved in a single pass through the (ordered) data.

None of these approaches applies when there are upper bound capacity constraints

on the productions (as the problem is not a LSS anymore, except in special cases, see

[57]). Cambini et al. [8] propose a network simplex-inspired method for solving flows

on capacitated directed hypergraphs, or equivalently, capacitated Leontief substitution

systems (CLSS). There is a correspondence between spanning hypertrees and bases,

but unlike the network simplex method, updating the basis tree potentially involves a

quadratic effort. Note that any linear program with upper bounds on all its variables

can be translated into a CLSS [8].

The problem that we are interested in solving is a capacitated, acyclic Leontief

substitution system (CALSS). This is the linear program

min cx

Px ≥ 0

x ≤ ū,

(3.2)

where ū and c are the production capacity and cost vector, and P is as in (3.1).

3.1 Solving the Capacitated Acyclic Leontief Substitution

System

Since the problem matrix P grows linearly with the number of periods, it can become

quite large. As deterministic subproblems can be used to solve a stochastic version of

(3.2), it is important that the many inner iterations involving (3.2) be solved quickly. In

the following we take advantage of the structure of CALSS to develop an approximation

3.1 Solving the Capacitated Acyclic Leontief Substitution System 19

algorithm. A hypertree is a subgraph of (V,E) without undirected cycles.

Theorem 3.1. Every optimal solution to CALSS (3.2) is a sum of at most |E| flows

on hypertrees.

Proof. A feasible solution can have surplus at any given item and time. But since the

only productions with negative cost are the terminal demand productions, any feasible

solution with discarded surplus can be transformed into a solution without surplus and

equal or lower total cost.

Assume optimal solutions x∗ don’t have surplus. Then Px = ū, which acts as

flow conservation constraints, so that x∗ is a flow on the hypergraph (V,E). All flow

terminates at the demands. Since the hypergraph is acyclic, we can start at any demand

production variable ed and trace the flow upstream. At each upstream production, we

determine how much has to flow on it to satisfy the downstream flow value. If there are

multiple upstream productions providing flow for a component item, then we arbitrarily

pick one source e. We potentially reduce the flow if x∗e is not large enough. In the

end, we have traced out a hypertree with the demand production ed as root, and a

corresponding flow that feeds a portion or all of the demand production needs. Since

the flow conservation constraints have to hold, we can subtract the tree flow from x∗

and still have a feasible flow left. Each time we reduce at least one edge of x∗ to zero.

As there are only a finite number of productions, eventually we will have partitioned x∗

into flows on hypertrees with demand productions as roots.

We now reformulate (3.2) in terms of hypertrees. Assign each possible hypertree δ

with some demand root a flow variable f(δ). The size of f indicates how many units

of demand are being satisfied by the tree. The tree is represented by the vector p(., δ),

indicating how many units of capacity the tree needs for each of its productions, to

satisfy one unit of demand. For example, if a unit of the demand item can be made by a

production using 2 units of capacity, and that production in turn has a component that

can be made by another production e with 3 units of capacity, then the usage p(e, δ) of

that production is 6. dδ ∈ E is the tree’s demand production, c(dδ) is the revenue of

the tree’s demand production, c(δ) denotes the cumulative production cost on the tree

to satisfy one unit of demand. The resulting problem is

max
f

∑
δ

(c(dδ)− c(δ)) f(δ) s.t.
∑
e∈δ

p(e, δ)f(δ) ≤ ū(e), e ∈ E,

f ≥ 0.

(3.3)

There can be an exponential number of possible trees, and thus solving (3.3) directly

may be intractable. But there are only linearly many trees in the solution. A column

20 Chapter 3 Leontief Systems and Extensions for Capacities and Profits in the
Deterministic Case

generation type approach is needed. We need to be able to find a tree quickly given

some ‘reduced-cost’ type criterion.

What is interesting about (3.3) is that p(e, δ) and ū(e) are non-negative, and f ≥ 0.

We are thus dealing with all positive constraints, that is with a positive linear program

(PLP), with only fractional packing inequalities (≤). Fast approximation algorithms

exist for this problem, for example [61]. A variety of special cases are treated in [18, 40].

PLP also goes by the name of (mixed) fractional packing and covering in the Computer

Science literature. Similar algorithmic approaches can also be applied when the positive

constraints are nonlinear convex and concave functions [27].

What both algorithms by Young [61] and Koenemann [18] have in common is they

assign dual weights to the rows and require finding the minimum weight [18] or negative

weight [61] rows in an iteration, and maintain weights to remain exponential in the

constraint violations.

Koenemann considers a PLP of the form

max
x

cx subject to Ax ≤ b, x ≥ 0, (3.4)

and defines column j’s cost as

c(j) := π′A.j/cj (3.5)

for some π. We cannot apply (3.3) directly here, as c(j) depends on which tree has been

selected for a given demand, and we don’t know how to find efficiently a smallest cost

tree when the cost involves a divisor that is a function of the tree. Instead, we use a

budget constraint, as in [40]. The budget constraint

∑
δ

c(δ)f(δ) ≤ β (3.6)

separates the cost from the revenue in the profit objective of (3.3), resulting in problem

g(β) := max
f

∑
δ

c(dδ)f(δ) subject to
∑
e∈δ

p(e, δ)f(δ) ≤ ū(e), e ∈ E,

∑
δ

c(δ)f(δ) ≤ β,

f ≥ 0.

(3.7)

The revenue of a tree for a given demand does not depend on the selected tree, and

as shown below, we can efficiently find the smallest cost tree. The budget constraint

(3.6) sums up the total production cost of all trees, and requires it to be less than

3.1 Solving the Capacitated Acyclic Leontief Substitution System 21

some constant β. If β is too large, it means we are ignoring production costs and only

maximize total revenue. If β is set too small, potential revenue is held back. For a

given β, total profit is at most total revenue minus β (If the budget is not binding at an

optimal solution, it implies that the trees maximizing total revenue are all profitable.

Furthermore, the trees maximizing flow also use the cheaper production sources. While

this is highly unlikely by chance, it certainly holds when the supply chain problem is

posed pre-sourced, that is each item is only made by one production.)1

A bisection line search can be applied to maximize

g(β)− β, (3.8)

which is a concave function of β.2

3.1.1 Minimum Cost Trees

For simplicity assume that p(he, e) = 1 for all productions. Designate by w(v) the

minimum cost of any tree producing item v:

w(v0) = min
he=v0

πe + c(e)πb +
∑
v∈Te

p(v, e)w(v), (3.9)

where πe and πb are the dual weight assigned to productions and the budget constraint.

w(v) can be computed recursively in any order implementing the partial order induced

by the acyclic productions. As the total column cost according to Koenemann is defined

to be the inner product of the column and the dual weights, divided by the objective

coefficient, we can get the final tree column cost by adding πdδ to w(Tdδ), and then

dividing by c(dδ). Then among all demands we simply select the one with the smallest

tree cost. We traverse the selected tree a second time to obtain the total usages p(e, δ)

for each production that the tree uses, which constitute the column coefficients of the

tree. We also don’t forget the tree’s demand production, which has a capacity, and a

usage of 1 as column coefficient. The effort to determine the minimum cost trees given

dual weights π is O(|E|).
Young’s algorithm [61] finds a feasible point, if it exists, of mixed PLP equations

Kx ≤ p, Cx ≥ c, x ≥ 0. (3.10)

1This does not result in more efficient selection of minimum cost trees, as for different duals traversing
the tree for each demand will cover all productions, otherwise the production would not be included.
In the time-phased case, it does not apply at all as we always have the ‘sourcing’ option of taking from
inventory vs. from the item production.

2Problem (3.7) is solved for different values of β a logarithmic number of times

22 Chapter 3 Leontief Systems and Extensions for Capacities and Profits in the
Deterministic Case

To bring (3.3) into conformity here, we move the profit objective into the constraints,

requiring a minimum profit of p:

∑
δ

(c(dδ)− c(δ)) f(δ) ≥ p. (3.11)

Note that (3.11) has all positive coefficients. This is because if a tree has negative profit

(costs exceeding revenue), we do not need to include it at all, as it will not take part

in an optimal solution. The reason we can include profit directly here (in contrast to

Koenemann’s algorithm) is that there is no objective divisor, and the cost of a column

j is defined as

c(j) := π′KK.j − π′CC.j . (3.12)

Of course we still have to do bisection to find the maximum profit p. For given p, the

problem then is finding a feasible flow f to∑
δ

(c(dδ)− c(δ)) f(δ) ≥ p,

∑
e∈δ

p(e, δ)f(δ) ≤ ū(e), e ∈ E,

f ≥ 0.

(3.13)

The minimum cost trees can be found by using the same recursion function as before

(3.9). The only difference is that instead of dividing by revenue, we subtract

πpc(dδ) (3.14)

from the tree cost, where πp is the dual weight for the profit constraint (3.11). The

mixed PLP algorithm [61] proceeds in phases during which flow increments are added

to all trees with negative cost. As before, to find these trees, essentially a pass through

the production matrix is sufficient, requiring O(|E|) operations.

3.1.2 Running Times

First we state a result about the mixed PLP feasible point problem.

Corollary 3.2. The time to obtain an approximately feasible solution to (3.13) is

O(ε−2F |E| log |E|),

where F designates the number of potential bottleneck capacities (in a time-phased for-

mulation, both F and |E| grow with the number of periods).

3.1 Solving the Capacitated Acyclic Leontief Substitution System 23

Proof. According to Young [61, Corollary 1], to solve (3.10) takes m logm iterations,

each of which requires finding a negative cost tree, which we have shown to be O(|E|). m
is the number of constraints, which in our case corresponds to the number of productions

that can become bottlenecks in some demand tree, in the sense described in the proof

of Theorem 3.1.

Whether a production capacity can be a bottleneck can be estimated roughly, for

example by looking at the highest profit demand trees and removing any capacities

that are more than three times the minimum capacity productions in those trees, with

respect to one unit of demand. Naturally, if a production has no capacity restriction, it

does not qualify as a bottleneck.

While the worst case is O(ε−2|E|2log|E|), we can usually cut corners calculating the

least cost trees (3.9). If the undirected hypergraph does not contain any cycles involving

productions on the previous least cost tree, we need to update only nodes on that tree.

Furthermore, the length of an efficient tree will not span all stages, as carry costs will

disqualify trees that are too long. Lastly, as there are many demands (usually at least

one per stage), many of them will have least cost trees that are negative, so that more

than one increment can be made during an iteration.

Note that the faster ‘phased’ approach in [61] can not be applied here: the proof of

[61, Corollary 6] relies on having all negative cost trees available during a phase, while

(3.9) only yields the least cost tree for each demand.

Note. One of the main characteristics of the PLP approach is that the sparsity of the

original problem is maintained. We mention some other approaches that also have

this property: a simple cyclic projection algorithm with a twist (going under the name

of row-action methods) by Dykstra3, for linear programs with a quadratic objective

[15, 6]. For an interesting overview, see Dax [13]. While convergence may be much

slower (no explicit guarantees) than for PLP, the quadratic objective enables one to

consider augmented Lagrangian alternatives to the bundle method approach. Similarly,

interior methods for LP allow a quadratic objective, and inner iterations to solve the

normal equations can employ a conjugate gradient method, which also maintain sparsity.

The deterministic problem (3.3) can be used in the aggregate scenario decomposition

method in chapter 4.

———————————————–

3This Dykstra is from Statistics, not the same Dijkstra of Computer Science fame, and the algorithm
is not related to Dijkstra’s algorithm for shortest paths.

24

Chapter 4

Stochastic Supply Chains using

Positive Programming and

Scenario Aggregation

So far we have only considered a deterministic view of supply chains and solution ap-

proaches. We have done this with the requirement in mind that the ideas introduced

will be of use in a stochastic formulation. We now introduce demand uncertainties into

the model.

min E
(
cxω
)

subject to

A

B1 A
... B1

. . .

BL
...

BL
.

BL . . . B1 A

xω1

xω2
...
...

...

xωT

≥

0

0
...
...

...

0

, for all ω ∈ Ω

(4.1a)

xω ≤ ūω (random demand) (4.1b)

xωi = E
(
xωi
∣∣ xω1 , . . . , xωi−1

)
(non-anticipativity) (4.1c)

Since demand is implemented as demand productions with capacities indicating the

amount of demand, we only need random coefficients in part of the right-hand side

(4.1b) of the problem. Decisions xω are now dependent on the random outcome ω ∈ Ω.

If we don’t require (4.1c), we have an independent solution xω for each outcome ω. Then

the expectation in (4.1a) is the perfect information or ‘wait and see’ solution. Instead,

25

26 Chapter 4 Stochastic Supply Chains using Positive Programming and Scenario
Aggregation

the non-anticipativity constraint (4.1c) forces xω to be a policy, also referred to as the

‘here and now’ solution.

Definition 4.1 (Policy). A policy prescribes production decisions xω such that if the

outcomes of ω(i) and ω(j) are the same, ω(i)
t = ω

(j)
t , on the initial path t = 1, . . . ,K ≤ T ,

then xω
(i)

t = xω
(j)

t along that path.

Given all current and past information, a policy tells us what decisions to make

next. At a given time t, we have available

{ūω1 , . . . , ūωt } , (4.2)

and need to decide xωt . The non-anticipativity constraints make sure that for the same

information, that is, any ω sharing the same outcome {ūω1 , . . . , ūωt } during the first t

periods , xωt is the same (xω is a filtration in probability speak, e.g. [14]).

The stochastic linear program (4.1a)–(4.1c) can be very large. If the discrete random

probability space (Ω,F , P) is made up of underlying independent random variables in

each period, say with d distinct combined outcomes, then the total number of possible

outcomes is dT for T periods. Even for a moderate number of periods, it will be

impossible to compute an optimal solution directly with a linear program solver.

We now step back to review some non-smooth optimization and problem decompo-

sition methods.

4.1 Decomposition

It often happens that a large problem has special structure, in that there are sets of

variables that more or less only appear in constraints together, and have very little con-

nection to other variables in other sets. If it wasn’t for the pesky connecting constraints

between sets, the problem could be split into the smaller sets and each subproblem

solved independently (and much faster than the larger problem of all variables). This

is the idea behind decomposition. The connecting constraints are used to communicate

information between the smaller subproblems. Let us begin with a problem of the form

max
y

g(y) subject to Ay ≤ a, By = b, (4.3)

where g is concave and separable, B = [B1B2 . . .] contains connecting constraints, and

A = diag(Aj). That is, A is ordered into blocks of mutually independent constraints.

4.1 Decomposition 27

Taking the Lagrangian dual on the connecting constraints in B results in subproblems

min
x

max
y

g(y) + 〈x,By − b〉 subject to Ay ≤ a, (4.4)

where x is the vector of Lagrange multipliers, see for example Rockafellar [42]. Let

fj(x) := max
y

gj(yj) + 〈x,Bjyj − bj〉 subject to Ajyj ≤ aj (4.5)

be the subproblems and f(x) = (fj(x)). Designating the set of all subgradients of f at

x by δf(x), called the subdifferential, we also have

Bŷ − b ∈ δf(x), (4.6)

where ŷ is an optimal solution in the definition of f(x). This directly follows from the

definition of δf(x):

f ′ ∈ δf(x) ⇐⇒ f(z) ≥ f(x) +
〈
f ′, z − x

〉
, for all z, (4.7)

and by plugging in f and substituting Bŷ − b for f ′:

max
y:Ay≤a

g(y) + 〈z,By − b〉 ≥ max
y:Ay≤a

g(y) + 〈x,By − b〉+ 〈Bŷ − b, z − x〉

= g(ŷ) + 〈x,Bŷ − b〉+ 〈Bŷ − b, z − x〉

= g(ŷ) + 〈z,Bŷ − b〉 .

(4.8)

We have in effect transformed the concave maximization problem (4.3) into a convex

minimization problem minx f(x) in the dual Lagrangian multipliers, by bringing the

coupling constraints into the objective, where they become a separable sum of linear

terms. Evaluating (4.4) at x means solving the (simpler) inner subproblems, which

in addition gives us a subgradient at x (under some constraint qualification criteria,

see e.g. [42]). It can be shown that perturbing the objective of a maximization LP

is a piecewise convex function of the objective perturbation parameter [3]. In other

words, f(x) is non-smooth and hence non-differentiable, and δf usually is a set of

subgradients instead of just a single gradient as in the smooth, differentiable case. This

takes us into the realm of non-smooth optimization. Note that our stochastic program

(4.1a)–(4.1c) can be brought into the form (4.3), where the coupling constraints are

the non-anticipativity constraints and the production PLPs for each outcome are the

decomposable subproblems. In chapter 5 the same decomposition approach is used

recursively, where the connecting constraints are the blocks in the production matrix

28 Chapter 4 Stochastic Supply Chains using Positive Programming and Scenario
Aggregation

to the left and right of the current stage. The non-anticipativity constraints in that

formulation are modeled implicitly by mapping them onto the decision variables.

4.2 Non-Smooth Optimization Using a Collection of Sub-

gradients

Assume that we can evaluate f(x) and obtain a subgradient f ′ ∈ δf(x), for any given

x of interest. f is convex and non-smooth. No more information about f can be

obtained. Looking at the subgradient definition (4.7), we see that each function value

and subgradient at x form a lower linear approximation of f , which is exact at x. This

gives rise to the piece-wise linear approximation

f̄k(x) = max
1≤i≤k

{f(xi) +
〈
f ′i , x− xi

〉
} (4.9)

with f̄ ≤ f .

4.2.1 Cutting Plane Method

The cutting plane method [28] obtains the next iterate xk+1 by minimizing the current

outer linearization of f̄ :

xk+1 := argmin f̄k(x), f̄k(x) = max
1≤i≤k

{f(xi) +
〈
f ′i , x− xi

〉
}. (4.10)

Slow convergence is the main problem with (4.10), but if the evaluations of f are rel-

atively cheap, that may not be so important. Benders decomposition (Chapter 5) is

based on the cutting plane method.

4.2.2 Bundle Methods

The main issue with the cutting plane approach is that far away from the linear support

planes, the error f(x)− f̄k(x) can be large. It would make sense to stay reasonably close

to the support points where the cutting planes were obtained. This is also borne out

by slow convergence and big jumps in the iterates xk for the cutting plane method [37].

Bundle methods try to keep the next iterate close to the current prox center, which has

its name from the proximal point method [44] that also uses the same quadratic term,

and is based on a contraction operator proof. The difference is that bundle methods

use f̄ instead of f . The quadratic term in the bundle approach is actually an approxi-

mation of an earlier investigation into using a ‘bundle’ of second-order approximations

4.2 Non-Smooth Optimization Using a Collection of Subgradients 29

xkx∗

f̄(xk+1)

xk+1

f(xk)

Figure 4.1 Cutting plane iteration

xkx∗

f(xk+1)

xk+1

f(xk)

xk − xk+1 ∈ tkδf̄(xk+1)

Figure 4.2 Bundle method

by Lemaréchal, as a historical note. It takes the form

min f̄k(x) +
1

2tk
‖x− xk‖2 , (4.11)

where tk is a parameter. A new cut is generated from the subgradient at the solution

x̄ to (4.11). If f(x̄) has sufficiently decreased from f(xk), a step is taken towards x̄,

and xk+1 is updated. Otherwise, xk+1 remains the same until sufficient cuts have been

generated around it so that the cutting plane approximation is detailed enough to result

in an appreciable decrease of f when a new x̄ is calculated from (4.11). In Lemaréchal,

Nemirovskii, and Nesterov [31] it is noted that the bundle method derives its benefit

mainly from the stabilization property of the quadratic term, and that as such other

closeness metrics or trust regions may be used.

30 Chapter 4 Stochastic Supply Chains using Positive Programming and Scenario
Aggregation

xkx∗

f(xk+1)

xk+1

f(xk)

xk − xk+1 ∈ τkδεf(xk)

Figure 4.3 Bundle ε-descent method

xkx∗xk+1

f(xk)

lk = f̄(xk+1)

Figure 4.4 Bundle method with level sets iteration

When seen from the Lagrangian dual viewpoint, (4.11) gives rise to another bundle

method, which can be shown [9] to be the same as (4.11) for a certain step size:

min
λ

∥∥∥∑λif
′
i

∥∥∥2
subject to

∑
λif
′
i ∈ δεkf(xk),

∑
λi = 1, λ ≥ 0, (4.12)

where xk is the proximal point at iteration k. ε-subgradients f ′ε(x) are defined by

f(z) ≥ f(x) +
〈
f ′ε(x), z − x

〉
− ε, for all z, (4.13)

and it follows that at any x, f ′i are εi(x)-subgradients with

εi(x) = f(x)− f(xi) +
〈
f ′i , x− xi

〉
, (4.14)

4.3 Some Stochastic Decomposition with Subgradient Optimization Algorithms 31

xi again being the point where the ith subgradient cut was obtained. The condition∑
λif
′
i ∈ δεf(xk) can then be expressed as

∑
λiεi(xk) ≤ εk. (4.15)

The solution λ to (4.12) can be seen as forming an approximate direction of steepest

descent

d = −
∑

λif
′
i . (4.16)

A step is taken in that direction using a line search, if the decrease is sufficient. We

stop when d is approximately zero, which means we are approximately optimal.

More recently, Lemaréchal et al. [31] have introduced another variant of bundle

methods, based on level sets f̄k(x) ≤ lk:

min ‖x− xk‖2 , f̄k(x) ≤ lk. (4.17)

That is, we are directly minimizing the distance to the proximal point while keeping

f̄k(x) below some level between f(xk) and min f̄k(x). In other words, xk is projected

onto the level set. This is shown in [31] to converge linearly.

4.3 Some Stochastic Decomposition with Subgradient Op-

timization Algorithms

The decomposition approach described earlier can be combined with any of the subgra-

dient methods. With multistage Benders decomposition [2] in Chapter 5, we split (4.1)

by time periods. Bundle-based scenario aggregation [35, 41] uses the ε-descent bundle

algorithm, together with a scenario aggregation approach introduced by Rockafellar and

Wets [45]. The latter uses an approximation to the augmented Lagrangian method of

multipliers (AL) [43, 38], which, while linearly convergent, is slower in practice than

the bundle-based algorithm, because of the difficulty of selecting a good sequence of

weights for the quadratic penalty, according to Robinson [41]. As a side note, the

quadratic penalty term in AL is being modified in [45] and essentially becomes the

same as the proximal quadratic term in the bundle methods. The difference however is

that the augmented quadratic term is added to the Lagrangian and is in the original

variables (and hence the subproblems), while the bundle proximity term is in the La-

grangian dual variables, and thus appears only on the outer optimization in terms of

the duals. Conversely, there is no explicit outer optimization for AL, as the new dual

values are a simple function of the subproblem solution.

32 Chapter 4 Stochastic Supply Chains using Positive Programming and Scenario
Aggregation

Robinson [41] applied the Lagrangian dual (4.4) of the decomposition method to the

bundle method (4.12), and remarked on how the latter will actually converge to an opti-

mal primal solution as well. The issue is that even if we know the optimal duals x in (4.4),

it does not follow that (4.5) will return a feasible primal solution to the original problem

(4.3). All we know is that 0 ∈ δf(x), but if maxy gi(yi)+〈x,Biyi − bi〉 subject to Aiyi ≤
ai (4.5) has multiple solutions at the optimal x, that is δf(x) contains more than only

the zero subgradient, then we can’t guarantee which one we’re getting by evaluating

f(x). The bundle method doesn’t address this question, and because it doesn’t know

about the decomposition primal problem underlying f(x), it only assumes some f ′(x)

can be obtained. Nevertheless it turns out that (in contrast to the cutting plane method)

the bundle method terminates also with an approximately feasible primal solution. To

see this, we show that approximate optimality of dual x implies approximate feasibility

of primal y. The former means ‖d‖ ≤ ε (4.16). Substituting (4.6) for f ′ in d,

ε ≥
∑

λi(Bŷi − b) = B(
∑

λiŷi)− b, (4.18)

which means that
∑
λiŷi is approximately feasible.

4.4 Degeneracy and the Cutting Plane LP

No treatise involving linear programming is complete without some notes about degen-

eracy. First we would like to express the opinion that ‘degeneracy’ is a misnomer. It

has the air of implying that we should not have to deal with it. The usual method

of avoiding degeneracy is a slight random perturbation of the data. However, usually

degeneracy is a structural property of the problem, and to discard that information by

random perturbation does not seem to be a necessarily good idea. Furthermore, there

exist Simplex-type algorithms that can work directly with degeneracy using a notion of

a basic variable set [1]. For an insightful unified approach see [51].

4.5 Scenario Aggregation with Bundle Method

We are now ready to apply bundle decomposition to scenario analysis. We start by

applying decomposition to the stochastic problem (4.1). Random scenarios ω corre-

spond to the blocks Aj in the decomposition problem (4.3), and the non-anticipativity

constraints (4.1c) to the coupling constraints B between the xω, ω ∈ Ω, which can be

4.5 Scenario Aggregation with Bundle Method 33

expressed as linear constraints

xω0
t =

∑
ω∈At(ω0)

p(ω)xωt
/∑

p(ω) , for all ω0 ∈ Ω, t = 1, . . . , T. (4.19)

At(ω) ⊂ Ω here denotes the set of scenarios that share the same path up to period t. It

can be readily seen that the expectation operator in (4.1c) is an orthogonal projection

onto the feasible policy space, but this is not relevant to our exposition.

The main problem with scenario analysis is that direct sampling schemes are not

possible in general, which is an observation omitted by the papers on scenario analysis

[45, 41, 35] (the same problem exists in Benders multistage regularization [48]). The

issue is the following: for any appreciable number of periods, the number of scenarios is

too large to solve (as it grows exponentially), even though the individual problems may

be solved rather quickly. By necessity, some form of sampling has to take place. But the

probability that any scenario has an overlap with any other sampled scenario in more

than the first few stages is close to zero. In other words, the conditional expectation

operator will not work, because for a given sampled scenario ω and period t, it most

likely is the only one in At(ω), even though in reality the distribution is (in our case) a

tree over the periods. Then the scenarios will be wrongly considered independent.

Consider a modified set

Ât(ω0) = {ω | dt(ω0, ω) ≤ r} , (4.20)

for some distance metric d. If d is the indicator function of At(ω0), we get the original

set back. If

d = 0, (4.21)

all scenarios take part in the conditional expectation, which has the effect of forcing x

to be the same for all scenarios (assuming such a solution exists). In between, there is

a tradeoff between the ability to delay decisions until an outcome occurs (the normal

case), and being a policy. Clearly, if the original At(ω0) only contains one element after

some period t, the solution to (4.1) is not a policy, as the decisions along the sample

path are taken with only that one path under consideration, corresponding to a ‘wait

and see’ approach (as if all future information were available at time t). On the other

hand, d = 0 will result in a valid policy, if it exists under these conditions. So we would

like a middle ground, an approximately valid policy, while not giving away too much

of the decision space. d also affects the size of the sample required. In case of (4.21),

the usual law of large numbers applies and expectation accuracy grows approximately

34 Chapter 4 Stochastic Supply Chains using Positive Programming and Scenario
Aggregation

by the root of the sample size. In the unmodified case, the sample size required is

intractable, which was the problem to begin with. In between, we only know it will take

more than in case (4.21), depending on which d is chosen. We add samples to the set

until almost no more changes in the solution occur, indicating a sufficient sample size

has been achieved.

Chapter 5

Stochastic Supply Chains Using

Multistage Benders

Decomposition

Benders decomposition (BD) [2] has been the main work-horse in two-stage stochastic

linear programming. This is despite slow convergence, as the subproblems are easy to

solve. What is especially nice about BD is that under certain circumstances, it scales

with the number of periods, in that exponential explosion of scenarios is not an issue,

unlike scenario analysis. This is due to sharing of cuts, as explained later. It is also

receptive to sampling techniques, which extend to multistage problems. See Infanger [24]

for importance sampling and other statistical methods applicable to BD. The Benders

algorithm is in fact equivalent to Dantzig-Wolfe decomposition (DW) [12], but the latter

usually is cited in the context of column generation, which is how the cuts appear as

when considering the master problem from the dual perspective.

5.1 Benders Decomposition

We can derive BD by using decomposition from section 4.1 combined with the cutting

plane method in section 4.2.1. We illustrate the two-stage BD case, which has the form

min c1x1 + c2x2

subject to Ax1 ≤ a,

Wx1 +Bx2 ≤ b.

(5.1)

We assume B is a block matrix of the form diag(Bj). That makes W the connecting

35

36 Chapter 5 Stochastic Supply Chains Using Multistage Benders Decomposition

constraints matrix, if we switch to the dual viewpoint:

max a′π1 + b′π2

subject to A′π1 +W ′π2 = c1,

B′π2 = c2,

π1, π2 ≤ 0.

(5.2)

Applying to this the decomposition approach in section 4.1, we get

f(x̂) = max a′π1 + b′π2 +
〈
x̂, (A′π1 +W ′π2 − c1)

〉
subject to B′π2 = c2, π1, π2 ≤ 0,

(5.3)

with subgradient

A′π1 +W ′π2 − c1. (5.4)

Now we further observe that f(x̂) is ∞ unless Ax̂+ a ≥ 0. Then π1 = 0. Since x̂ is not

restricted by sign, we can replace it with x1 = −x̂, so that Ax1 ≤ a. f(x1) is still convex

(if f(x̂) is convex in x̂, so is f(−x̂)), and only the sign of the subgradient changes. Thus

we can equivalently minimize f(x1) subject to Ax1 ≤ a, with

f(x1) = max b′π2 −
〈
x1, (W ′π2 − c1)

〉
subject to B′π2 = c2, π2 ≤ 0, (5.5)

a subgradient

f ′(x1) = −W ′π2 + c1, (5.6)

and a new lower bounding cutting plane in the variable x1:

f(x1) ≥ bπ2 −
〈
x1, (W ′π2 − c1)

〉
. (5.7)

We now have all the components to apply the cutting plane method. As f̄k(x1) takes

the maximum over all the cutting planes, we note that the term c1x1 is the same for all

planes. We can thus formulate the cutting plane problem as

min c1x1 + u

subject to Ax1 ≤ a,

π′2Wx1 + u ≥ π′2b, π2 ∈ K,

(5.8)

where K contains all the cuts’ dual variables. This is Benders decomposition; there-

5.2 Multistage Benders Decomposition 37

fore we have shown that BD is an instance of the cutting plane method applied to

decomposition.

5.2 Multistage Benders Decomposition

Benders decomposition needs to be extended for a multiperiod setting and randomness

before it can be applied to the multiperiod supply chain (4.1). The resulting algorithm

is known as Multistage Benders or Nested Benders. We refer to [5, 24] for a derivation.

There have been attempts at speeding up the relatively slow convergence of BD in

the two-case and multistage settings. In the former, bundle methods and regularization

[48, 50] have been successful. However, while Ruszczyński [49] extends his regularization

framework to the multistage case, regularization does not generalize to a shared cuts

approach with a fast-forward, fast-backward algorithm [60], which does not allow us to

stay close to a regularization point (or we would not obtain sufficient coverage). As

there is an exponential number of scenarios and thus required cuts if we cannot rely

on cut sharing, that approach does not seem promising. For a stage-wise augmented

Lagrangian-based decomposition approach for stochastic multistage linear programs,

see [46].

Parallelization approaches have been many and are usually straightforward. Most

multistage algorithms are highly parallelizable from solving many subproblems for (con-

ditional) expectations, and also because it is not necessary to follow a sequence of stages,

so that multiple subproblems can be solved in parallel. As far as generic, non-trivial

parallelization methods are concerned, where required, we recommend the classic text

by JáJá [26].

5.3 Multiperiod Cuts

Returning to our stochastic supply chain (4.1), we now cast it as a Multistage Ben-

ders (MB) problem. Contrary to the way that the non-anticipativity constraints (4.1c)

were represented for scenario decomposition, for MB we identify variables with their

equivalence class At(ω). That is, for each such set, we have only one variable in the

formulation, so that (4.1c) is automatically satisfied and does not have to be considered

further. In particular, this is simple under the assumption that the demand distribu-

tions for each ūωt are independent (we show later how to, in a certain sense, get past

that limitation). That is,

ω ∈ Ω1 × Ω2 · · · × ΩT and E
(
X(ωi)Y (ωj)

)
= E

(
X(ωi)

)
E
(
Y (ωj)

)
, (5.9)

38 Chapter 5 Stochastic Supply Chains Using Multistage Benders Decomposition

for any i 6= j and any random variables X(ωi), Y (ωj). This allows us to say in particular

that the conditional distribution, given information up to stage t, does not depend on

that information. A cut obtained at t can be shared for different path histories; that is,

it can be made to be always valid, as shown below.

We allow lags greater than one, so that production matrix P in (4.1) is a band

matrix, instead of simply staircase. The latter would be required in order to apply MB

directly. However, this is not really a problem. We refer to section 2.2 for expressing

longer lags in terms of unit lags, at the cost of extraneous dummy production variables

and constraints. We show here how to modify Benders to express non-unit lags directly.

Production decisions are assumed to be finalized during the period of the start of

productions, that is at the latest possible moment, to allow for as much information

as possible to base decisions on. This means that for a given time t, A contains all

component requirements of productions with starting time t(e) = t, as well as the output

items of productions with zero lag, if any. The subproblems are over the variables of

these productions, making decisions for the given time period. These decisions affect

the next L time periods, during which various of the started productions finish their

output item. To the left, there are all the output blocks of productions having started

up to L periods earlier, together forming the inventory constraints for period t. The

modifications are straightforward. A new cut now is dependent on the earlier path. To

see this, let us focus on the constraints at time t,

BLx
ω
t−L + · · ·+B1x

ω
t−1 +Axωt ≥ 0, xωt ≤ ūωt , xωt ≥ 0, (5.10)

for all ωt ∈ Ωt, and ωt−L, . . . , ωt−1 fixed. The variables corresponding to the latter time

periods constitute the Benders master problem (only for purpose of cut generation),

while variables associated with t appear in the Benders dual subproblems. Conditioning

on the fixed outcome ω up to t − 1 leaves us with expected cost over ωt ∈ Ωt. Each

ωt gives rise to a subproblem, which we average in case of sampling, or simply solve

for each outcome if there aren’t too many. In the usual staircase MBD, a cut does not

involve variables from the earlier path history. As we can see, a cut here involves several

stages. Let G be the matrix containing the current cut coefficients. To avoid cluttered

notation, we do not explicitly mark G’s dependency on the subproblem’s stage t, or the

5.3 Multiperiod Cuts 39

dual variables’ ω and t index.

minimize cxωt + θ, subject to (5.11a)

πA : Axωt ≥ −(BLxωt−L + · · ·+B1x
ω
t−1), (5.11b)

πū : xωt ≤ ūωt , (5.11c)

ρ : G0x
ω
t + θ ≥ g − (GLxωt−L−1 + · · ·+G1x

ω
t−1), (5.11d)

xωt ≥ 0, (5.11e)

where we denote the dual variables resulting from solving subproblem (5.11) for different

values of ωt by πA ≥ 0, πū ≤ 0, ρ ≥ 0. Given xωt−L, . . . , x
ω
t−1, the new cut is the

conditional expectation of

π′A
(
−BLxωt−L − · · · −B1x

ω
t−1

)
(5.12a)

+ π′ūū
ω
t (5.12b)

+ ρ′
(
g −GLxωt−L−1 − · · · −G1x

ω
t−1

)
, (5.12c)

and will be added to the (G, g) cut block at the previous stage t′ = t − 1, as a linear

function of xωt′−L+1, . . . , x
ω
t′ . Note the cut itself is the expression for the conditional

expectation over any such path history, for a fixed set of dual solutions. It is also a

subgradient of the conditional expectation at the path history where it was derived

from. The cut can be used with any ω as usual, as the dual feasible region of (5.11)

clearly is not affected. Although the cut stretches over L− 1 stages, it will only be used

at stage t′ = t− 1, where xωt′ is decided, as only then do we have all the variable values

over the stages that the cut contains. Other than that, we proceed exactly as for regular

MB.

Note (Feasibility Cuts). Withdrawing intermediate items or raw material from inventory

or incoming production always occurs at the time the respective production decisions are

made. Therefore, the subproblems will never have commitments from earlier periods for

inventory withdrawals, which could possibly draw inventory below zero and violate the

partial conservation constraints (4.1a). Conversely, if there is a surplus of any item for

which there is no carry-forward inventory production or other use, it is simply discarded.

Together, these provisions ensure that subproblems are feasible at all times, and thus

no feasibility cuts [24] are required.

40 Chapter 5 Stochastic Supply Chains Using Multistage Benders Decomposition

5.4 Shared Cuts

Having good coverage of future cost cuts is essential. If we had to keep a different set

of cuts for each path history, we would require an exponential number of such sets.

Instead, if the dual feasible region of (5.11) stays the same, any dual solution will form

a valid cut, if the dual objective is updated to reflect the path history. It is a valid cut

in the sense that it still provides a lower bound plane for the future expected cost at

any given x, but is weak in that it may not be a subgradient at any x.

It is certainly possible to have also matrices B with independent random coefficients.

Looking at (5.12a), we can keep accumulating B dependencies (given by πA from various

stages) for each stage. Then we evaluate the B term for the outcome given by the current

path to adjust the cut. (Once a B term has been evaluated for a given outcome, it can

also be stored for reuse, if there are not too many outcomes.) Along the same line

of thought, we can have random coefficients for A. While the dual region evidently is

affected by the random coefficients, we are saved by the conditional expectation over

the current stage scenarios that goes into a cut.

5.5 Serial Correlation of Demand Capacities

As we noted earlier, our model only has randomness in the right-hand side through

(demand) capacities. Infanger and Morton [25] showed that under these circumstances,

the random outcomes can depend on previous stages, while still allowing sharing of cuts

among outcomes. This is essential for accumulating sufficient coverage of cuts when

sampling paths (remember there is an exponential number of paths). We now derive

this result and extend it to multiplicative dependencies.

We assume the capacity vector ūωt (only the demand capacities are random) is an

easily computable function ft(et−L, . . . , et), where ei are independent random vectors.

Then (5.12b) becomes

π′ūft(et−L, . . . , et). (5.13)

t′ = t− 1 is the stage of the new cut. The conditional expectation of (5.13),

ht′(et′−L+1, . . . , et′) = E
(
π′ūft(et−L, . . . , et)

∣∣ et−L, . . . , et−1

)
, (5.14)

is a finite weighted sum, assuming the independent distributions ei are discrete, or the

expectation is a sample average statistic. ht′(et′−L+1, . . . , et′) is part of the right-hand

side of the cut (5.12), which now has a dependency on the previous L − 1 random

outcomes, that will propagate to lower cut stages through ρ (5.12c). Essentially, the

5.5 Serial Correlation of Demand Capacities 41

expectation operation and multiplication with dual variables results in a sum of f terms

in the respective cut right-hand sides.

Note. The crucial property of the conditional expectation (5.14) is that it is always

over the same outcomes and probabilities because the current stage variables et are

independent of the previous stage variables. Updating probabilities on an outcome

dependent distribution already would require an exponential effort in the number of

stages.

The effort to update all cuts based on a current path is too great without some

restrictions on f . The amount of evaluations of f would be exponential in the number

of stages (up to the number of arguments of f), with exponential base the number of

cuts times the number of outcomes involved in each expectation.

Dependencies on additive terms involving ft develop directly in (5.11d) and indi-

rectly in (5.11e).

5.5.1 Vector Autoregression and Multiplicative Dependencies

Let f be a composition (to be specified) of a finite number of elementary terms g.

Let the set of these terms be S. Each g(et1 , . . . , et2) can have a different input range

t1, . . . , t2 and is a function of some independent variable vectors et. We introduce a

‘version’ of g for each t = 1, . . . , T , by fixing all random variable parameters for periods

greater than t, at designated random outcomes ωt+1, . . . , ωt2 that are set arbitrarily in

the beginning. Thus gt is a function of et1 , . . . , et, equivalent to g, when parameters for

periods t+ 1, . . . , t2 are fixed at some ωt+1, . . . , ωt2 . Also let St be the set S with each

element g replaced by its version gt.

We show that for certain f ,

1. right-hand side dependencies of period t cuts remain simple compositions of terms

in St, and

2. the cost of adjusting a cut is of the order O(|S|) evaluations of terms in St.

Let the class of compositions f be the linear combinations of terms in St. Then the cost

clearly is of the order claimed. We prove claim 1 by induction, for two different types

of f .

Let ft be a linear function of the independent random variables up to t. This in-

cludes any kind of vector autoregression (VAR) — in the moving-average representation

— not necessarily stationary or even co-integrated (for an introduction to VAR, see e.g.

Hamilton [21]). Furthermore, the autoregression coefficients can change with each cur-

42 Chapter 5 Stochastic Supply Chains Using Multistage Benders Decomposition

rent period t. This by itself provides for a large modeling space of stochastic processes.

For example, it includes random walks, trend, and seasonal modeling.

The elementary terms are all the elements of the independent random vectors e. A

version t of a term g = eit′ is eit′ itself, if t′ ≤ t, and the constant outcome eωit′ for a

fixed ω otherwise.

The base case is creating the first cut from subproblems at some stage t. (5.12b) is

a linear combination H of elements in St. The conditional expectation of (5.12) takes a

weighted sum of H at different outcomes of the elements in H that correspond to random

variables of the current period t. It is clear that this weighted sum can be expressed in

terms of a linear combination of elements in St−1, which is the period of the new cut.

Let us now proceed with creation of a new cut from subproblems at period t when there

are existing cuts. (5.12b) again provides a linear combination of terms. By hypothesis,

(5.12c) is a linear combination of terms in St, so that by grouping coefficients of the

same terms in (5.12), we obtain the sum H again as a linear combination of terms in

St. Taking the conditional expectation of H over the current stage random variables

corresponds to taking a weighted sum of H with different fixed values for the random

variables of period t. Grouping the corresponding coefficients again, and correcting for

the fixed ‘null’ values of the constant versions, we see that again the result is a linear

combination of the distinct terms in St−1; that is, of the ‘version set’ of the cut’s period

t′ = t− 1. This completes the proof for f a linear function.

Now let us assume that the elements of ft are arbitrary polynomials in the inde-

pendent random variables up to t. This subsumes the previous case, and also allows

modeling of multiplicative serial dependencies, for example of varying coefficient regres-

sion type [22]. The elementary terms are all the monomials occurring in f , namely

those of the form

(ei1t1)n1 (ei2t2)n2 · · · (eimtm)nm . (5.15)

A version t of a term g is the shorter, scaled monomial that has the variables corre-

sponding to t′ > t replaced by some fixed ‘null’ outcome. The base case follows from

the general case. The multiplication by dual variables results in a polynomial H over

the same monomials as are contained in the capacity term (5.12b) and the existing cut

dependencies (5.12c), which by hypothesis only have monomials contained in St. The

conditional expectation affects the dual weights inside H and the monomials that in-

volve current stage variables. For each such term, the submonomial consisting of the

current stage random variables and a coefficient made up of dual variables is replaced

by its expectation. Clearly, this can again be expressed as a polynomial consisting of

terms in St−1.

5.5 Serial Correlation of Demand Capacities 43

To summarize, we can efficiently construct and update the relevant right-hand side

dependencies of cuts for a variety of serial correlations on the independent variables.

For a closed-form expression for the VAR case, see Infanger and Morton [25].

Note. Even if ft is identical for each stage, S will contain all the elements for each

ft, with their corresponding shifted time stamps. In the additive VAR model, since

the elements are the individual random variables themselves, there can only be O(T)

dependencies on any cut. But for the general multiplicative model, if ft is made up

of O(T) distinct elements, |S| = O(T 2). Then again, the possibly quadratic effort to

update a cut is not as bad as it sounds, as the number of stages that we consider will

be 20–40 at most. Typically there are also only very few lags (� T) in most time series

models.

Note. While our framework assumes a moving-average representation of VAR and other

distributions, which tends to result in polynomials stretching back to the first period,

the participating monomials are shared between different periods. Also it is not hard

to change the framework to allow full polynomials as basic terms (recursive definition

as common in time series).

5.5.2 Positive Demand

Additive, non-monotonic time series such as VAR with normal innovations have the

drawback that they can become negative. This would make the demand capacity right-

hand side negative as well. Not only is this undesirable, but it will break our model, as

productions are already required to be non-negative.

What happens if we allow the demand to go negative? We can remove the positivity

constraints for demand productions. It destroys the Leontief structure, but that is not an

issue in Benders decomposition. Negative demand then can be interpreted as customers

returning goods that they are not satisfied with. Throwing demand and returns into the

same distribution however is more of a modeling problem than any numerical concern.

First, if demand goes negative, we are saying there are more returns than actual demand

in that period, which is extremely unlikely from a practical standpoint (given that

typical returns run around 10% of total). Another undesirable property is that once

a VAR distribution goes negative, it tends to remain so for some time, which makes

even less practical sense. In statistical forecasting, this usually is not a problem even

for positive data, as the fitted series tends to remain positive when we forecast only a

few periods ahead.

The alternative is to restrict attention to positive distributions. In the additive re-

gressive model, this can be achieved by using positive innovations (typically from an

44 Chapter 5 Stochastic Supply Chains Using Multistage Benders Decomposition

exponential distribution) and positive coefficients. There are known criteria how to

render such a distribution stationary, if desired, see e.g. [20]. Multiplicative distribu-

tions are also very interesting, particularly because they can have long memory without

forcing the distribution to become more or less monotonically increasing.

5.5.3 Correlated Demand

While our modeling space described in section 5.5.1 is large, the restriction that the

polynomials remain positive either allows us to model only positive correlation between

time series polynomials, or prevents us from using the mainstream statistics tools such

as Principal Component Analysis (PCA) or Independent Component Analysis (ICA) in

developing distribution models. On the other hand, a custom approach may be called

for anyway because statistical toolsets are geared towards statistical inference or optimal

data representation, rather than creating models that are used to simulate processes.

The area of statistics research most applicable to us is positive time series, see e.g. [7].

While addition of whole times series is one way to obtain positive correlation, in gen-

eral we can say that (positive and negative) correlation is achieved by using common

or correlated sections of the stage-independent random vectors et inside the polynomi-

als for the distinct demand time series. For example, the conditional distribution of

one correlated demand with respect to another will only involve expectations over the

common components.

Lagged correlation between time series is straightforward. We first create the two

timeseries with correlated components without a lag. This results in a series of poly-

nomials p(t) that consist of sums of monomials. A lagged version pl of the time series

simply means pl(t) = p(t− l), which can be directly implemented in our framework.

Note. Lagged demand, that is demand that only depends on realizations of random vari-

ables in earlier periods, is not ‘hidden’ from the model. The stochastic linear program

knows about the future demand at the time the random variables are realized. This is

because the decision production variables, by implementation of non-anticipativity, are

distinct for each outcome of the independent random vectors, even if that outcome does

not have an effect on the current stage.

Chapter 6

Computational Results and

Comparison

We obtain results for the multistage Benders decomposition algorithm, using modified

examples from industry collected and published by Willems [59]. We would like to take

the opportunity to thank the author Willems, as we found it almost impossible to obtain

any other data sets in the supply chain space. This data appears to be highly guarded

by companies, presumably as their supply chains and contracts are regarded as trade

secrets. In particular, costing information is absolutely critical for the success of our

model, and is not something that firms like to share. Furthermore, the supply chain

examples in Willems apparently constitute real problems that the companies providing

the data were interested in solving. They are not just simple expansions of bill of

materials at the ERP database level, which can easily result in problems with tens of

thousands of productions and items and are too spurious to gain much insight from any

solution. Rather, the problems are condensed with focus on critical paths and items.

The chains are pre-sourced, so that no substitution decisions or multiple stocking

locations for the same item can be made. However, our model certainly allows for

making sourcing decisions, and simple extensions to the test chains can bring additional

sources into consideration.

6.1 Benders Implementation

As described at the end of section 5.5.1, we implemented a fully recursively specifi-

able polynomial rhs vector model on top of a multistage Benders decomposition, which

can express multiplicative VAR and ARIMA timeseries, as well as other models. Cut

rhs are computed as normalized expressions of the demand polynomials. A group of

scalar random variables sharing the same stage can assume any joint distribution. It is

left to the modeler to ensure that the polynomial timeseries don’t have negative out-

comes (although it would not be difficult to simulate the series conditioned on positive

outcomes).

45

46 Chapter 6 Computational Results and Comparison

Cuts are also allowed to span multiple stages (section 5.3), and we permit arbitrary

production lags. All cuts are shared cuts. The supply chain is specified using the

production model described in section 2.1 and expressed in (4.1).

To solve the LP subproblems, we used the commercial CPLEX solver. The program

that reads the Willems supply chain graphs and costing data and generates a corre-

sponding productions model is written in Java. The multistage Benders decomposition

program that solves the productions model is written in C. The examples were run on

a Windows PC with a single-core AMD Semprom processor at 1.79 GHz and 1.5 GB of

RAM.

Figure 6.1 Test Case 1

Figure 6.2 Test Case 3

6.2 Test Supply Chains 47

Figure 6.3 Test Case 5

6.2 Test Supply Chains

The original data is taken from the collection of supply chain examples in [59], which

specifies cost and duration for each processing point like manufacturing, distribution,

transportation and procurement. We set uniform profit margins at 40% and daily

storage costs at 0.5% of total production costs. The numerical results can be found in

Table 6.2, with descriptions of the columns in Table 6.3.

6.2.1 Demand Distributions

The distributions are chosen as explained in section 2.3.1 for the multiperiod setting,

using the method outlined in section 5.5.1.

The simple ‘triangle’ instance of (2.3) is useful because it has only two outcomes

48 Chapter 6 Computational Results and Comparison

Figure 6.4 Test Case 8

per demand and per stage, so that when we have a moderate number of demand items

within a time period, the Benders expected cuts can be calculated exactly, instead of

having to resort to sampling. It follows that the lower bound is exact. The sample

upper bound can always be made arbitrarily accurate by increasing the sample size (by

the Central Limit theorem), so that we can guarantee near optimality of a solution in

our test cases when the bounds have converged.

We also implemented (2.4), which has O(DT 2) independent random variables, where

D is the number of demand items. For example, let D = 5, T = 15, and assume, without

loss of generality, a discretized version of each random variable with 8 outcomes, then

the total number of scenarios is 85×16×15/2 = 21800. The equivalent linear program

to (4.1) is inconceivable to solve. As we can solve problems of this size in a matter

of a couple of hours on a PC using multistage Benders decomposition, this shows the

practical value of the approach, as there is no other known method that can solve such

problems to any demonstrable degree of optimality.

6.2 Test Supply Chains 49

Figure 6.5 Test Case 19

50 Chapter 6 Computational Results and Comparison

Table 6.1
Origins of the selected supply chains

Chain Description

1 Industrial organic chemicals
3 Computer peripheral equipment
5 Food preparations
7 Construction machinery and equipment
8 Electromedical and electrotherapeutic apparatus
19 Computer peripheral equipment

6.2.2 Number of Stages

If the number of stages required to accurately model the lags in the supply chain is

too large, we can increase the number of time periods per stage. The trade-off is

that decisions inside a stage are made for more than one time period, and that with

respect to time periods (not stages), the resulting policy is not non-anticipative anymore.

The solution is too optimistic. In most cases we would expect this to still be a good

approximation however, as we are relaxing only the non-anticipativity requirement for

subsets of production decisions that are close in time.

6.2.3 Lower Bound Accuracy

When we use a sampled cut, small inaccuracies may grow much larger the farther away

we move from the point where the cut was obtained. Assuming normality in the cut

errors, the chance of a large deviation for a particular cut may be small, but is bound

to happen eventually at some cut, after a large enough number of iterations. The main

problem with this is that the lower bound given by the first stage master problem is

growing monotonical. Each cut can only help to push up the bound. If a big error cut

manages to push up the bound by a large amount and overshoots the actual optimal

value, further cuts will not be able to contribute anymore as they erroneously will not

Table 6.2
Test case parameters and numerical results

Ch Stgs Deph RVs Scens Prods Its Time Conv Cuts SSz

1 12 5 96 4.2× 1077 228 240 4 < 1% 240 100
3 20 6 224 1.3× 10181 760 3370 253 14% 200 80
5 9 3 192 1.7× 10155 558 2640 154 < 1% 500 40
7 12 5 192 1.7× 10155 984 4770 95 11% 200 20
8 12 4 64 5.6× 1051 1116 2790 525 10% 1000 40

19 12 5 480 > 1.0× 10300 3924 320 70 < 1% 300 100

6.2 Test Supply Chains 51

Table 6.3
Descriptions of columns of Table 6.2

Column Description

Ch Test case number as in [59]
Stgs Number of stages in the multistage Benders decomposition
Scens Number of random scenarios resulting from the distribution model
Prods Number of productions
Its Number of fast-forward, fast-backward iterations
Time(min) Running time in minutes
Conv(%) Gap, if any, between best upper bound and lower bound
Cuts Number of expected cuts used in each stage
SSz Number of samples used to calculate expected cuts
Deph Largest number of stages required to produce an end item
RVs Number of basic independent random variables used to construct the

distribution model

be binding. The most stable approach seems to be to dispose of cuts randomly or in

a round-robin fashion, so that eventually a large error cut will disappear. This entails

a non-monotonic lower bound. The drawback is a trade-off between choosing a larger

number of cuts to allow for a large enough coverage of the cutting plane approximation,

and being able to remove cuts contributing large lower bound errors sufficiently often.

As another interesting approach to address the cut sampling error issue, we can

remove any cut that was obtained at a distance too far from the current subproblem

solution, at progressively shorter distances. In other words, as the faces of the cutting

plane approximation become more refined, we don’t need any contribution to faces from

cuts that originated too far away. For example, after computing subproblem solutions

for a new cut for stage t − 1, we can examine the supporting cuts at stage t and the

distances from their origins, and then drop the cuts that exceed a certain threshold. We

did not implement this idea, but suggest it may make a significant impact in the quest

to obtain sufficient coverage while keeping the impact of cut errors low.

Finally, we may be able to completely avoid the expected cut sampling issue by

computing exact cuts: by spreading out the independent variables (or variable vectors)

over dummy stages for a given stage t, we reduce the number of outcomes per stage to

the discrete number of outcomes of one random variable, instead of the product of these

outcomes over all the variables in that stage. Slower convergence because of more stages

and sparser coverage is the price to pay for exact lower bounds in this approach. Also

it requires that the model make use of only discrete or discretized random variables.

52 Chapter 6 Computational Results and Comparison

6.3 Redundant Solution Space

One observation we made is that production decisions tend to vary quite a bit from

stage to stage, even when the stages have equivalent independent distributions and are

far away from the finite horizon. The reason is that the solution space allows for such

variations without impacting total profit. For example, if it is optimal to allow for a

certain amount of stockouts, it is not relevant to total profit whether they occur all

in one period or are spread out evenly over stages. Clearly we would prefer a smooth

picture, if only to interpret better what the solution is telling us. One possibility is to

smooth the solution with an exponential smoother, for example, or moving average.

If productions were required to vary not too much from the previous stage, another

advantage of a smaller variance would be, most likely, faster convergence, via reduction

of the solution space. It is not clear however how this could be achieved without

distorting the problem too much. One possibility is to require productions to be close

to the previous-stage decisions (as opposed to closeness to the previous iteration, as in

regularization [49] or bundle methods). We would impose a quadratic penalty term or

trust region for all item productions (or a subset thereof, such as obtained by leaving

out the inventory productions). This is an area for future testing and research.

6.4 Conclusions

We have shown that it is feasible to use a multistage Benders decomposition approach

to calculate an approximately optimal solution of a supply chain problem formulation

that considers decisions and future outcomes over many stages into the future, and that

has an expressive demand distribution that might well be used for solving practical

problems. We solved test models ranging from 9 to 20 stages.

Bibliography

[1] H. Arsham. Initialization of the simplex algorithm: an artificial-free approach.

SIAM Rev., 39(4):736–744, 1997.

[2] J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numer. Math., 4:238–252, 1962.

[3] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[4] P. Billington, J. McClain, and L. Thomas. Mathematical programming approaches

to capacity-constrained MRP systems: Review, formulation and problem reduction.

Management Sci., 29(10):1126–1141, 1983.

[5] J. Birge. Solution Methods for Stochastic Dynamic Linear Programs. PhD thesis.

Technical Report SOL 80-29, Systems Optimization Laboratory, Stanford Univer-

sity, 1980.

[6] L. M. Bregman, Y. Censor, and S. Reich. Dykstra’s algorithm as the nonlinear

extension of Bregman’s optimization method. J. Convex Anal., 6(2):319–333, 1999.

[7] T. C. Brown, P. D. Feigin, and D. L. Pallant. Estimation for a class of positive

nonlinear time series models. Stochastic Process. Appl., 63(2):139–152, 1996.

[8] R. Cambini, G. Gallo, and M. G. Scutellà. Flows on hypergraphs. Math. Program-

ming, 78(2):195–217, 1997.

[9] R. Correa and C. Lemaréchal. Convergence of some algorithms for convex mini-

mization. Math. Programming, 62(2, Ser. B):261–275, 1993.

[10] J. Cox, J. Blackstone, and M. Spencer. APICS Dictionary. American Production

and Inventory Control Society.

[11] G. B. Dantzig. Optimal solution of a dynamic Leontief model with substitution.

Econometrica, 23:295–302, 1955.

[12] G. B. Dantzig and P. Wolfe. The decomposition algorithm for linear programs.

Econometrica, 29:767–778, 1961.

53

54 Bibliography

[13] A. Dax. The adventures of a simple algorithm. Linear Algebra Appl., 361:41–61,

2003. Ninth Conference of the International Linear Algebra Society (Haifa, 2001).

[14] R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, CA,

second edition, 1996.

[15] R. L. Dykstra. An algorithm for restricted least squares regression. J. Amer.

Statist. Assoc., 78(384):837–842, 1983.

[16] Ş. Erengüç, N. Simpson, and A. Vakharia. Integrated production/distribution plan-

ning in supply chains: An invited review. European J. Oper. Res., 115(2):219–236,

1999.

[17] D. Fogarty, J. Blackstone, Jr., and T. Hoffmann. Production & Inventory Manage-

ment. South-Western Publishing, Cincinnati, OH, second edition, 1991.

[18] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow

and other fractional packing problems. In 39th Annual Symposium on Foundations

of Computer Science (Palo Alto, 1998), pages 300–309, Los Alamitos, CA, 1998.

IEEE Comput. Soc. Press.

[19] S. C. Graves and S. P. Willems. Supply chain design: Safety stock placement

and supply chain configuration. J. of Operations Management, 25(2):219–238, Mar

2007.

[20] G. K. Grunwald, R. J. Hyndman, L. Tedesco, and R. L. Tweedie. Non-Gaussian

conditional linear AR(1) models. Aust. N. Z. J. Stat., 42(4):479–495, 2000.

[21] J. D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, NJ,

1994.

[22] T. Hastie and R. Tibshirani. Varying-coefficient models. J. of the Royal Statistical

Society. Series B. Methodological, 55(4):757–796, 1993.

[23] M. Hillman and H. Keltz. Managing risk in the supply chain – a quantitative study.

White paper, AMR Research, Inc., January 2007.

[24] G. Infanger. Planning Under Uncertainty. Boyd & Fraser Pub. Co., 1998.

[25] G. Infanger and D. P. Morton. Cut sharing for multistage stochastic linear pro-

grams with interstage dependency. Math. Programming, 75(2, Ser. B):241–256,

1996. Approximation and computation in stochastic programming.

Bibliography 55

[26] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Pub-

lishing Co., Inc. Redwood City, CA, 1992.

[27] K. Jansen. Approximation algorithm for the mixed fractional packing and covering

problem. SIAM J. Optim., 17(2):331–352 (electronic), 2006.

[28] J. E. Kelley, Jr. The cutting-plane method for solving convex programs. J. Soc.

Indust. Appl. Math., 8:703–712, 1960.

[29] G. J. Koehler, A. B. Whinston, and G. P. Wright. The solution of Leontief substi-

tution systems using matrix iterative techniques. Management Sci., 21(11):1295–

1302, 1974/75.

[30] H. Lee, V. Padmanabhan, and S. Whang. Information distortion in a supply chain:

The bullwhip effect. Management Sci., 50(13):1875–1886, 2004.

[31] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods.

Math. Programming, 69(1, Ser. B):111–147, 1995. Nondifferentiable and large-scale

optimization (Geneva, 1992).

[32] B. Lus and A. Muriel. Measuring the impact of increased product substitution on

pricing and capacity decisions under linear demand models. Accepted by: Produc-

tion and Operations Management.

[33] V. A. Mabert. The early road to materials requirement planning. J. of Operations

Management, 25(2):346–356, 2007.

[34] V. A. Mabert, A. Soni, and M. A. Venkataramanan. Enterprise resource planning:

Measuring value. Production and Inventory Management Journal, 42(3/4):46–51,

2001.

[35] D. Medhi. Parallel bundle-based decomposition for large-scale structured math-

ematical programming problems. Ann. Oper. Res., 22(1-4):101–127, 1990. Su-

percomputers and Large-scale Optimization: Algorithms, Software, Applications

(Minneapolis, MN, 1988).

[36] H. Min and G. Zhou. Supply chain modeling: past, present and future. Comput.

Ind. Eng., 43(1-2):231–249, 2002.

[37] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency

in Optimization. A Wiley-Interscience Publication. John Wiley & Sons Inc., New

York, 1983. Translated from the Russian and with a preface by E. R. Dawson,

Wiley-Interscience Series in Discrete Mathematics.

56 Bibliography

[38] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer, New York, second edition, 2006.

[39] J. Orlicky and G. Plossl. Orlicky’s Material Requirements Planning. McGraw-Hill,

1994.

[40] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for

fractional packing and covering problems. Math. Oper. Res., 20(2):257–301, 1995.

[41] S. M. Robinson. Bundle-based decomposition: description and preliminary results.

In System Modelling and Optimization (Budapest, 1985), volume 84 of Lecture

Notes in Control and Inform. Sci., pages 751–756. Springer, Berlin, 1986.

[42] R. T. Rockafellar. Convex Analysis. Princeton Mathematical Series, No. 28. Prince-

ton University Press, Princeton, NJ, 1970.

[43] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point

algorithm in convex programming. Math. Oper. Res., 1(2):97–116, 1976.

[44] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM

J. Control Optimization, 14(5):877–898, 1976.

[45] R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimiza-

tion under uncertainty. Math. Oper. Res., 16(1):119–147, 1991.

[46] C. H. Rosa and A. Ruszczyński. On augmented Lagrangian decomposition methods

for multistage stochastic programs. Ann. Oper. Res., 64:289–309, 1996. Stochastic

programming, algorithms and models (Lillehammer, 1994).

[47] R. Ruiz-Benitez. Optimal Implementation and Benefits of Rolling Inventory. PhD

thesis, University of Massachusetts at Amherst, 2003.

[48] A. Ruszczyński. A regularized decomposition method for minimizing a sum of

polyhedral functions. Math. Programming, 35(3):309–333, 1986.

[49] A. Ruszczyński. Parallel decomposition of multistage stochastic programming prob-

lems. Math. Programming, 58(2, Ser. A):201–228, 1993.

[50] A. Ruszczyński. Some advances in decomposition methods for stochastic linear

programming. Ann. Oper. Res., 85:153–172, 1999. Stochastic programming. State

of the art, 1998 (Vancouver, BC).

[51] G. Sierksma and G. A. Tijssen. Degeneracy degrees of constraint collections. Math.

Methods Oper. Res., 57(3):437–448, 2003.

Bibliography 57

[52] L. G. Sprague. Evolution of the field of operations management. J. of Operations

Management, 25(2):219–238, Mar 2007.

[53] C. Stefanescu, V. deMiguel, K. Fridgeirsdottir, and S. Zenios. Revenue management

with correlated demand forecasting.

[54] L. W. G. Strijbosch and J. J. A. Moors. Modified normal demand distributions in

(R,S)-inventory control. European J. Oper. Res., 172(1):201–212, 2006.

[55] S. Tayur. Moving beyond multi-stage inventory optimization. Supply & Demand

Chain Executive, June/July 2007.

[56] A. F. Veinott, Jr. Extreme points of Leontief substitution systems. Linear Algebra

and Appl., 1:181–194, 1968.

[57] A. F. Veinott, Jr. Minimum concave-cost solution of Leontief substitution models

of multi-facility inventory systems. Operations Research, 17(2):262–291, 1969.

[58] T. Vollmann. Manufacturing Planning and Control Systems for Supply Chain Man-

agement. McGraw-Hill, 2005.

[59] S. P. Willems. Real-world multi-echelon supply chains used for inventory optimiza-

tion. Manufacturing & Service Operations Management, 10(1):19–23, 2008.

[60] R. Wittrock. Advances in a Nested Decomposition Algorithm for Solving Staircase

Linear Programs. PhD thesis. Technical Report SOL 83-2, Systems Optimization

Laboratory, Stanford University, 1980.

[61] N. E. Young. Sequential and parallel algorithms for mixed packing and covering.

In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV,

2001), pages 538–546. IEEE Computer Soc., Los Alamitos, CA, 2001.

	List of Tables, Figures, and Algorithms
	Introduction
	Finite Horizon
	Aggregation
	Continuous Variables

	Stochastic Programming for Supply Chain Management
	Productions as a Directed Hypergraph Model
	Expressiveness of the Production Model
	Demand Distributions
	Unknown Trend Models
	Forecast Update Models

	Leontief Systems and Extensions for Capacities and Profits in the Deterministic Case
	Solving the Capacitated Acyclic Leontief Substitution System
	Minimum Cost Trees
	Running Times

	Stochastic Supply Chains using Positive Programming and Scenario Aggregation
	Decomposition
	Non-Smooth Optimization Using a Collection of Subgradients
	Cutting Plane Method
	Bundle Methods

	Some Stochastic Decomposition with Subgradient Optimization Algorithms
	Degeneracy and the Cutting Plane LP
	Scenario Aggregation with Bundle Method

	Stochastic Supply Chains Using Multistage Benders Decomposition
	Benders Decomposition
	Multistage Benders Decomposition
	Multiperiod Cuts
	Shared Cuts
	Serial Correlation of Demand Capacities
	Vector Autoregression and Multiplicative Dependencies
	Positive Demand
	Correlated Demand

	Computational Results and Comparison
	Benders Implementation
	Test Supply Chains
	Demand Distributions
	Number of Stages
	Lower Bound Accuracy

	Redundant Solution Space
	Conclusions

	Bibliography

