
PRECONDITIONING TECHNIQUES FOR SPARSE LINEAR SYSTEMS

A DISSERTATION

SUBMITTED TO THE INSTITUTE OF COMPUTATIONAL AND

MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Shaked Regev

December 2022

© 2022 by Shaked Regev. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.
http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: https://purl.stanford.edu/zc485bz0015

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
https://purl.stanford.edu/zc485bz0015

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Eric Darve, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Saunders, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mary Wootters

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Lexing Ying

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

We present two novel methods, SSAI and HyKKT, for sparse linear systems. The methods di↵er in

that SSAI is meant to be an out of the box solver that is robust on many di↵erent types of Hermitian

positive definite (HPD) linear systems and has a variant that can be used to solve general systems

(including rectangular ones), but is not necessarily the best for a given linear system. This is due

to the fact that SSAI in an e↵ort to be general, ignores domain knowledge of the problem. In

contrast, HyKKT is a specialized solver for very sparse symmetric indefinite linear systems with a

Karush-Kuhn-Tucker (KKT) structure [100, 109]. These two methods represent the main parts of

the thesis.

Chapter 2 introduces SSAI, a method for solving a Hermitian positive definite linear system

Ax = b, where A is an explicit sparse matrix (real or complex). A sparse approximate right inverse

is computed and replaced by its symmetrization M , which is used as a left-right preconditioner in

a modified version of the preconditioned conjugate-gradient method (PCG), where M is modified

occasionally, if necessary, to make it more positive definite. Before symmetrization, M is formed

column by column and can therefore be computed in parallel with no communication except at the

beginning and end. PCG requires only matrix-vector multiplications with A and M (not solving a

linear system with M), and so too can be carried out in parallel. We compare it with incomplete

Cholesky factorization (the gold standard for PCG) and with a direct Cholesky factorization and

solve on sparse matrices from various applications and show it is robust. For least-squares problems,

we implement an analogous form of preconditioned Conjugate Gradient Least-Squares (PCGLS) and

show it is also robust. The contributions of the work in Chapter 2 are summarized in Section 2.2.

Chapter 3 introduces HyKKT, a solution strategy for the large indefinite linear systems arising

in interior methods for nonlinear optimization. The method is suitable for implementation on

hardware accelerators such as graphical processing units (GPUs). The current gold standard for

sparse indefinite systems is the LBLT factorization, where L is a lower triangular matrix and B is 1⇥1
or 2⇥2 block diagonal. However, this requires pivoting, which substantially increases communication

cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving

multiple smaller positive definite systems, using an iterative solver on the Schur complement and

an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without

iv

pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We

demonstrate the practicality of our approach on large optimal power flow problems and show that it

can e�ciently utilize GPUs and outperform LBLT factorization of the full system. The contributions

of the work in Chapter 3 are summarized in Section 3.2.

v

Acknowledgments

I am fortunate to know many people who made my PhD possible, or at least substantially more

enjoyable. Although I would like to thank each and every person individually, no such list can ever

be exhaustive. That being said, it doesn’t hurt to try.

I thank my advisor, Prof Eric Darve, who is the one who got me interested in the world of

numerical linear algebra in my first year at Stanford through his course and this alone would already

be a lot. Later, as my advisor, Eric supported me throughout my research and encouraged me

to pursue the avenues that interested me most, while always providing guidance, support, and

constructive feedback.

My co-advisor Prof Michael Saunders took me on even though at the time I turned to him, his

“last” student had just graduated. Michael’s energy and optimism kept me going during di�cult

times during my PhD. His meticulous proofreading and suggestions were vital to my research and

my writing.

I would like to thank my committee members Profs MaryWooters and Lexing Ying for reading my

thesis and providing feedback and the chair of my oral defense committee Prof Daniel Tartakovsky.

I thank my mentor Dr Slaven Peleš, for believing in my at the time yet-to-be-demonstrated

software engineering capabilities to recommend that Pacific Northwest National Lab fund my PhD

research. Slaven recognized my love for numerical linear algebra and constantly pushed me to

develop the C++ skills to match. He o↵ered me an endless stream of technical advice and life

wisdom throughout the years.

I am grateful for Dr Kasia Świrydowicz who taught me how to navigate the intricacies of academia

culture and how to e�ciently debug code. Many times when I had a bug that I thought was

impossible to find, Kasia proved me wrong. I have no idea what shape my code would be without

her, but I’m sure it would not be nearly as good.

I am thankful for Christopher Oehmen, Cameron Rutherford, Asher Mancinelli, and all the folks

at Pacific Northwest National Lab, for giving me the opportunity to work on the Exascale project

and their mentorship and collaboration.

I thank my first advisor at Stanford, Prof Alison Marsden, for supporting me in my first years at

Stanford, pushing me to find research topics that interest me and ultimately advising me to make

vi

the switch to numerical linear algebra.

I thank my Master’s degree advisor, Prof Oded Farago, for introducing me to research in such a

way that made me love it so much.

Many ICME “elders” were a source of inspiration to me and provided constant technical and

administrative advice. I’d particularly like to mention Cindy, Alex, Bazyli, Nurbek, Steven, Leopold,

and Abeynaya.

I am grateful for my ICME cohort and especially appreciate cooking up a storm, going on much-

needed trips, and having seven-layer inside jokes with Dan and Martin, endlessly philosophising

with Phil, Aldo and Ruilin’s deadpan humor, and hour-long deep conversations with Amel when we

should’ve definitely been working. I also thank Izzy for being honorarily in my cohort and for being

the most bottomless source of positivity that I have ever seen.

I was incredibly lucky to get Philipp Muscher as a roommate when I first arrived at Stanford,

even though that would’ve never happened if he were honest with himself about his bonkers sleeping

habits. Philipp taught me the ins and outs of campus life, went on trips with me, and taught me

the value of spontaneity. During our time living together and even after he graduated, Philipp was

always there for me and even welcomed me along with the wonderful people at the Eyja co-op when

I needed a place to crash.

I thank Dana and Ilai Bistritz, my Israelis at Stanford family, for all the trips, laughs, dinners,

board game nights, and conversations. They truly made the campus feel more like home and were

always there to lend a helping hand or listening ear.

I thank Bernardo Casares for supporting me through my lowest lows and pushing me towards

my highest highs. Bernardo always made sure I stayed in shape, both physically and mentally. He

believed in me at times that I could not believe in myself. Bernardo and the rest of the Casares

family even gave me the perfect end to my PhD by welcoming me to their home and allowing me to

see their beautiful country Ecuador.

There are many people who but for their presence in my life, I would not have gotten into

Stanford, or perhaps not finished the PhD. However, no one was quite as directly responsible as

Frona and Ted Kahn. Frona and Ted urged me to shoot for the stars and helped me hone my

essay writing skills. During my time at Stanford they provided me constantly with emotional and

logistical support.

Growing up walking distance from my grandparents was an experience I wish for every child.

Carol and Ian, my grandparents longtime friends or my “adopted-grandparents”, provided me with

the closest thing possible in Palo Alto. They were a constant source of positivity, warmth and

inspiration.

I thank the Doitel-Dickman family for welcoming me into their home with open arms. From the

first moment when Ben came to pick me, some random son of his aunt’s neighbor, up for Shabbat,

I could tell this family was special. Shabbat dinners with them recharged me after long weeks. Noa

vii

and Ofer are parental figures to me, always there to listen and o↵er advice or help me out when I

need it most. I thank Hagar, Michael, Uri, Shai, Tal, and Ayelet for bringing me into their home

during my nomadic period and for our all of our fiercely competitive ticket to ride games and good

times. I also thank Shai for being my mentee in what was probably the most successful summer

internship for a high school student in the history of the world, or as the kids say: a massive dub.

I thank my aunts, uncles, and cousins of various degrees for their support from far and from near

and for inquiring about me and being involved in my life. My uncle Maor encouraged me to apply

for a PhD in the US and gave me a not so gentle nudge to hurry up and accept Stanford’s insultingly

late admission o↵er. He and my “I feel weird calling her my aunt” Kate talked me through endless

hardships with work and relationships, provided me with some much needed family time in the Bay,

and allowed me the privilege of being a cousin acting as an uncle to their sons Bash and Bo.

I thank my chronologically little but physically big brothers Alon and Yuval for celebrating our

di↵erences and teaching me new ways to look at the world. Alon taught me to never sell myself

short and that anything is possible if you want it enough. From Yuval I learned that nothing is

worth losing your cool over and that listening is at least twice as important as talking. Even though

we saw each other relatively infrequently over these five years, I treasure those board game matches,

hikes, and trash talk sessions and they were crucial to my sanity. Thank you for the dozens of hours

spent in transit for the sole purpose of seeing me.

I thank my grandparents Zion, Ilan, Rachel, and Eva for shaping who I am today. From Zion I

learned that family is everything and guests are always invited, even if implicitly. Ilan taught me

that humor is the best medicine, that there is no better pass time than learning more about the

world, and that you should never be ashamed of correcting course. I only regret that he is not here

to see this day as I know how much it meant to him and that in a very practical sense he was the

closest person to me who knew what a PhD entails. From Rachel I learned to count my blessings

and that cooking is an art, before I later learned that it is also a science. Eva taught me that humor

is the best coping mechanism and to listen patiently to what other people think and then do what

you think is best anyway.

My parents Shira and Dror, AKA Ima and Aba, supported me from day one, in the quite literal

sense. They gave me the love of learning and curiosity about the world that I have today and advised

me through countless challenges. They physically and emotionally helped me move to Stanford and

supported me pursuing my goals, even though it meant being far away from them. They planned

family and more intimate vacations to recharge our batteries and do what we love together. My

mom taught me that if you are not happy with your outcomes, you should reexamine your choices,

even if you think nothing is wrong with them. My dad taught me that just because you’re in the

middle of a forest or climbing a mountain, doesn’t mean you also can’t hash out the mathematics

for an interesting problem. I am always flattered by how highly he thinks of my mathematical and

technical abilities, even though he is sometimes wrong. These are just examples, though basically

viii

everything I know was taught by them directly or through the curiosity they inspired.

Last but not least, I would like to thank Ilana for being the most integral part of my life in these

5 years. Thank you for sharing our happiest moments together, for teaching me that selflessness

knows no bounds, for bringing me out of my comfort zone and teaching me to properly cohabitate,

for pushing me to learn how to cook, for pulling me through trying times at work and in the world,

for knowing me better than I know myself, and for using that knowledge to help me in ways I could

not even know to ask for. The role we play in each other’s lives has shifted over the years, but our

friendship has remained constant. It hasn’t always been easy, but it’s always been and hopefully

will be worthwhile.

ix

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Sparse Hermitian linear systems . 1

1.1.1 Direct solution methods . 2

1.1.2 Iterative solution methods . 3

1.1.3 Methods with iterative and direct components 4

1.2 Sparse least-squares problems . 5

1.2.1 Direct solution methods . 5

1.2.2 Iterative solution methods . 5

1.2.3 Methods with iterative and direct components 5

1.3 Scaling . 6

1.3.1 Max scaling . 7

1.3.2 Diagonal scaling . 7

1.3.3 Ruiz scaling . 7

1.3.4 Norm scaling . 8

1.4 Reordering . 8

1.4.1 Fill-in reduction . 8

1.4.2 Numerical stability via pivoting . 10

1.5 Preconditioning for iterative solutions of sparse HPD systems 12

1.6 Direct methods for solving sparse symmetric indefinite KKT linear systems 15

1.6.1 Motivation . 19

1.7 Parallel computing . 19

1.7.1 Bounds on speedup . 20

1.7.2 Performance limiters . 21

1.7.3 Types of parallelism . 22

x

1.8 Overview . 22

2 SSAI: A symmetric sparse approximate inverse preconditioner 23

2.1 Overview . 23

2.2 Contributions . 24

2.3 Introduction . 24

2.4 A PCG algorithm for HPD linear systems . 26

2.4.1 Approximate solution of Amj = ej . 28

2.4.2 Modified PCG . 29

2.5 Numerical results on HPD systems . 30

2.5.1 Matrices from SuiteSparse . 32

2.5.2 SDDM matrices . 33

2.5.3 Scale-up for Trefethen challenge matrices . 33

2.5.4 Scale-up for finite-element linear elasticity matrices 34

2.5.5 Scale-up for finite-volume petroleum engineering matrices 34

2.5.6 Scale-up for finite-element ice-sheet matrices 34

2.6 Least-squares problems . 34

2.7 Sparsity structure of A . 36

2.7.1 Performance of ichol vs SSAI . 37

2.8 Parallelism and complexity . 38

2.9 Discussion . 39

2.9.1 Comparison of preconditioners for iterative methods for HPD problems . . . 40

2.9.2 Indefinite A . 40

2.9.3 MINRES and preconditioners for indefinite A 40

2.9.4 Signature matrices . 41

2.10 Summary . 41

3 HyKKT: A Hybrid Method for Solving KKT Linear Systems 47

3.1 Overview . 47

3.2 Contributions . 48

3.3 Introduction . 48

3.4 Nonlinear optimization problem . 50

3.5 Solving KKT linear systems . 52

3.6 A block 2⇥ 2 system solution method . 54

3.6.1 A hybrid solver with minimal regularization 55

3.6.2 Guaranteed descent direction . 57

3.6.3 Convergence for large � . 59

3.6.4 Summary of equations solved . 60

xi

3.7 Practicality demonstration . 60

3.7.1 � selection . 61

3.7.2 Results for larger matrices . 62

3.7.3 Reordering H� . 64

3.8 Comparison with LBLT . 64

3.9 Iterative vs. direct solve with H� in Algorithm 7 . 67

3.10 Summary . 67

3.11 Appendix A: Additional OPF matrix results . 71

3.12 Appendix B: HyKKT implementation . 71

3.12.1 Classes . 71

3.12.2 Definitions . 73

3.12.3 Functions . 74

3.12.4 Utilities . 74

4 Summary 76

xii

List of Tables

2.1 Abbreviations for SuiteSparse problem fields. 31

2.2 SuiteSparse Ax = b, nnz(A) > 1M . R is the number of restarts in Algorithm 5 (PCG

+ SSAI). SSAI succeeded on all 19 problems, while ichol failed on 10, and ‘\’ failed
on 5. 43

2.3 StocF-1465 Ax = b with varying lfil and itmax. R is the number of restarts in

Algorithm 5. Obj = ⌫ [nnz(A) + nnz(M)]⇤Itns is a normalized measure of operations

in PCG. Increasing lfil and itmax helps the overall performance. 44

2.4 Comparison of ichol and SSAI with rchol on SDDM systems Ax = b from SuiteSparse.

rchol requires A to be SDDM. A was not scaled for rchol because only shallow water2

remains SDDM with scaling. Scaling was performed on ichol and SSAI for better

e�ciency. rchol performed well on these three examples (especially on ecology2), but

failed on a fourth SDDM matrix (Andrews, therefore omitted). 44

2.5 Scale-up for Combinatorics Ax = b. PCG + SSAI required no restarts. ichol and

SSAI succeeded on all 3 problems, and ‘\’ failed on the largest 2. 44

2.6 Scale-up for ordered grid structural mechanics Ax = b. PCG + SSAI required no

restarts. ichol and SSAI succeeded on all 3 problems, and ‘\’ failed on the largest 1. 45

2.7 Scale-up for finite-volume Ax = b. PCG + SSAI required no restarts. ichol and SSAI

succeeded on all 6 problems, and ‘\’ failed on the largest 4. 45

2.8 Scale-up for ‘\’ and SSAI on unordered grid structural mechanics Ax = b. SSAI

succeeded on all 4 problems, ichol failed on all 4, and ‘\’ failed on 2. 45

2.9 SuiteSparse least-squares problems min kAx� bk with A 2 Rm⇥n. SSAI and ichol are

used with PCGLS. SSAI succeeded on all 9 problems, ichol failed on 4, and ‘\’ failed
on 2. 46

xiii

2.10 Comparison of preconditioners for iterative methods on HPD problems. The rchol

and spaND methods have further restrictions. rchol requires the matrix to be SDD,

or SDDM if we don’t want to double the size of our system, and spaND requires

the interfaces between groups of variables to be relatively sparse (i.e., there are only

short range interactions between variables). Note that SAINV adds a matrix to A

during computation of M to ensure that M is positive definite. This means that

A may be modified too much or even unnecessarily unless the process is attempted

multiple times. (In contrast, SSAI modifies M , not A, and only as needed.) Sparsity

refers to the sparsity structure of the preconditioner and whether it is supplied by

the user (fixed) or calculated within the method (flexible). Parallelism refers to the

computation of the preconditioner (not its application). FSM says if it can be used

with fixed-storage iterative methods like CG and MINRES. Application refers to how

the preconditioner is applied. (Product preconditioners are more desirable because

they can be applied in embarrassingly parallel fashion, whereas triangular solves in-

volve waiting and communication between dependent equations.) The color blue is

used to indicate a desirable property, whereas the color purple is used to indicate an

undesirable property. Properties left in black are somewhere in between. 46

3.1 Notation. SP(S)D stands for symmetric positive (semi)definite. Matrix/vector norms

are 2-norms unless stated otherwise. For a symmetric matrix M , we define its

smallest eigenvalue restricted to the null space of a Jacobian J : �min(M|null(J)) ⌘
minkvk=1, v2null(J) v

TMv. 50

3.2 Summary of the methods used for solving various equations in the chapter. 60

3.3 Characteristics of the five tested optimization problems, each generating sequences of

linear systems Kk�xk = rk (3.3) of dimension N . Numbers are rounded to 3 digits.

K and M signify 103 and 106. 61

3.4 Accelerator devices and compilers used. 64

3.5 Dimensions, number of nonzeros, and factorization densities (number of nonzeros in

the factors per row) for solving (3.3) directly with LBLT (N , nnzL, ⇢L respectively)

and for solving (3.6) with Cholesky (nx, nnzC , ⇢C respectively). Numbers are rounded

to 3 digits. K and M signify 103 and 106. In all cases, ⇢C < ⇢L and nx < N/2. . . . 65

xiv

3.6 Average times (in seconds) for solving (3.3) directly on a CPU with LBLT (via

MA57 [58]) or for solving oneH� linear system with supernodal Cholesky via Cholmod

(CM) in SuiteSparse [37], or Cholesky via cuSolver [1] (CS) using the routine csrlsvchol,

each on a CPU and on a GPU. Cholesky on a GPU is quicker than LBLT on a CPU

by an increasingly large ratio. The GPU is not actually utilized for small problems

with CM, because CM has internal logic that decides what to o✏oad to the GPU,

and there is a minimum problem size for the GPU to be utilized. All runs are on

Newell [128]. 67

3.7 Average times (in seconds) for solving sequences of systems (3.3) directly on a CPU

with LBLT (via MA57 [58]) or on a GPU using our hybrid method. The latter is split

into forming (3.7)–(3.8), analysis and factorization phases, and multiple solves. (The

routines cusolverSpCreateCsrcholInfo, cusolverSpXcsrcholAnalysis, cusolver-

SpDcsrcholFactor, cusolverSpDcsrcholZeroPivot, and cusolverSpDcsrcholSolve

are used to allow for the easy solution of systems with multiple RHS.) “Forming (3.7)–

(3.8)” shows the times needed for the matrix products, not including the memory al-

location phase (which is the most expensive). However, since the nonzero structure is

constant in a given problem, this need only be done once. Symbolic analysis is needed

only once for the whole sequence. Factorization happens once for each matrix. The

solve phase is the total time for Lines 15-17 in Algorithm 7 with a CG tolerance of

10�12 on Line 16 plus the recovery of the solution to the original problem. The results

show that HyKKT, without optimization of the code and kernels, outperforms LBLT

on the largest series (US Eastern Interconnection grid) by a factor of more than 3

on a single matrix, and more than 10 on a whole series, because the cost of symbolic

analysis can be amortized over the series. All runs are on Deception [128]. 68

3.8 Densification of the problem for cases where the direct-iterative method is viable.

Numbers are rounded to 3 digits. K and M signify 103 and 106. nnzop(H�) =

nnz(eH) + 2 nnz(J) + nx is the number of multiplications when H� is applied as an

operator, and nnzfac(H�) = 2 nnz(L) is the number of multiplications for solving

systems with H�. The ratio nnzfac(H�)/nnzop(H�) is only about 2 in all cases. . . . 69

xv

List of Figures

1.1 (Left) A matrix that is completely dense when factorized. (Right) A matrix with no

fill-in when factorized. 9

2.1 Sparsity structures of some square HPD problems. Although exact Cholesky factors

would be essentially dense (within the outermost band), ichol and SSAI both perform

well. 36

2.2 Sparsity structures of A in rectangular problems, compared to the sparsity structure

of AHA. The structure makes it clear why an iterative method would outperform a

direct method on ch8-8-b, and vice versa for Hardesty. 37

2.3 Sparsity pattern entry magnitude of 1138 bus and sts4098. The larger entries are

concentrated near the diagonal. On 1138 bus, SSAI cannot choose easily among the

many entries ri of similar magnitude. 38

3.1 Optimization solver workflow showing invocation of key linear solver functions. The

top feedback loop represents the main optimization solver iteration loop. The bottom

feedback loop is the optimization solver control mechanism to regularize the underly-

ing problem when necessary. 53

3.2 Illinois grid: (a) CG iterations on Eq. (3.7) with varying �. � � 103 gives good

convergence. The mean number of iterations for � = 104 is 9.4. (b) Sorted eigenvalues

of S� ⌘ �JcH�1
�

JT

c
in (3.9) matrix 22, for � = 104. The eigenvalues are clustered

close to 1. 61

3.3 Illinois grid (3.3), with varying � in (3.6): (a) Backward error (BE) and (b) relative

residual (RR). (a) � 104 gives results close to machine precision. (b) � 104 has

RR 10�8. 62

3.4 South Carolina grid: �1 for � = 104. For other values of � the graph was similar. Ex-

cept for the first few and last few matrices, � ⇡ 1, meaning the required regularization

would make the solution too inaccurate. The value of 0 is omitted on the log-scale. . 63

xvi

3.5 US Western Interconnection grid with � = 106 in (3.6): (a) CG iterations on Eq. (3.7).

The mean number of iterations is 17. (b) BE and RR for the sequence. The BE for

(3.3) is less than 10�10, except for matrix 4. 64

3.6 US Eastern Interconnection grid with � = 106 in (3.6): (a) CG iterations on Eq. (3.7).

The mean number of iterations is 13.1. (b) BE and RR for (3.3) and (3.4). The BE

for (3.3) is less than 10�10. 65

3.7 Illinois grid matrix 22: (a) Approximate minimum degree ordering of chol(H�) is

sparser than (b) Nested dissection ordering of chol(H�). Both orderings are calculated

in Matlab. 66

3.8 Illinois grid (3.4) with varying � in (3.6): (a) BE, � 104 gives results close to

machine precision. (b) RR, � 104 has RR 10�8. 70

3.9 Texas grid with � = 104: (a) CG iterations on Eq. (3.7). The mean number of

iterations is 11.1. (b) BE and RR for (3.3) and (3.4). The BEs are roughly machine

precision and the RRs are less than 10�8. 70

3.10 A summary of the workflow of the linear solver of HyKKT 72

xvii

Chapter 1

Introduction

We say that an m ⇥ n matrix A is sparse if Aij = 0 for many pairs (i, j). Often this means that

regardless of the matrix size, the average number of nonzeros per row is O(1). The number could

grow slowly with m or n, for example O(log(n)). For purposes of solving sparse systems of equations

Ax = b or least-squares problems min kAx�bk22, the matrix A is typically stored in compressed sparse

row or column (CSR or CSC) format. CSR format is typically used in programming languages

with row major memory sorting. In CSR, the row array contains in position k the index number

of the first nonzero entry in the row k of A. The last (n+ 1-th) entry is nnz(A) in 0-index storage

and nnz(A) + 1 in 1-index storage to handle the end of array edge case. The column array contains

at index k the column number of the k-th nonzero entry of A. The value array contains at index k

the value of the k-th nonzero entry of A. Similarly for CSC, we switch rows and columns in these

definitions.

We use i : j in the indexing of A to indicate all the indices between i and j. For example A1:2,3:4

indicates the submatrix of A that includes the first and second rows of the third and fourth columns.

We use : alone as shorthand for all rows (or columns). For example, A1,: is the entire first row of A.

Typically, solving linear systems requires preprocessing, which in almost all cases includes the

scaling of A (further covered in Section 1.3) and in the case of direct solvers (or those with direct

components) includes reordering the unknowns (further covered in Section 1.4.1). The number could

grow slowly with m or n, for example O(log(n)).

1.1 Sparse Hermitian linear systems

The majority of the thesis revolves around sparse Hermitian n⇥n linear systems Ax = b. These arise

in a wide variety of scientific applications such as optimal power flow models, portfolio optimization,

computational fluid dynamics, power networks, economics, material analysis, structural analysis,

1

CHAPTER 1. INTRODUCTION 2

statistics, circuit simulation, computer vision, model reduction, electromagnetics, acoustics, combi-

natorics, undirected graphs, and heat or mass transfer. We say that a system is Hermitian if 8i, j we

have Aij = A⇤
ji
, where ⇤ denotes the complex conjugate. For real symmetric systems, the ⇤ can be

dropped. Generally speaking, these systems can be solved directly, via iterative methods, or some

combination of the two.

1.1.1 Direct solution methods

Direct solution methods are typically deployed by taking a Cholesky (A = LLH) (see Section 1.1.1

for full algorithm) or A = LBLT (see Section 1.1.1 for full algorithm) factorization, where L is a lower

triangular matrix and B is 1⇥ 1 or 2⇥ 2 block diagonal. Cholesky works only for positive definite

matrices, while LBLT is more general. Each factorization can be broken down into the symbolic

factorization and numerical factorization. The first depends only on the nonzero structure of A, and

so can be reused for problems where the structure of A (the nonzero pattern) stays the same and

only the values change (such as in HyKKT in Chapter 3). Once these factorizations are obtained,

multiple systems with the same A and di↵erent bs can be solved e�ciently using triangular solves

with L and LH (LT), and small 1⇥ 1 or 2⇥ 2 system solves with B. This method relies on the fact

that the factorizations of A remain sparse when A is permuted symmetrically in some helpful way.

For a given (i, j), when Aij = 0 but Lij 6= 0, we say that the (i, j) entry is the result of fill-in. When

there is substantial fill-in, the computation can scale cubically in the size of the system [80, 163].

For this reason, while direct solves can be made accurate to machine precision, they may not be

computationally viable. A key di↵erence between positive definite and indefinite matrices is that

the first can be factorized stably for any ordering of the rows and columns, while the second may

require pivoting (switching of rows and columns) in order to preserve stability [48]. This means that

when factorizing a positive definite matrix, one need only optimize over reducing the fill-in, whereas

numerical considerations play a part when factorizing an indefinite matrix. In an e↵ort to reduce

the amount of pivoting and avoid pivoting (which is expensive in CSR or CSC storage), sometimes

the symmetry of an indefinite matrix will be ignored and broken, so that LU factorization, where U

is an upper triangular matrix, is used instead of LBLT.

LU factorization for general matrices

Algorithm 1 produces an in-place (overwriting A) LU factorization without pivoting (covered in Sec-

tion 1.4.2). The diagonal of L is implicitly set to 1.

LBLT factorization for Hermitian matrices

The recursive relations in Eq. (1.1) produce an LBLT factorization without pivoting. It is related to

LU factorization for Hermitian matrices with U defined as DLH (DLT for real matrices).

CHAPTER 1. INTRODUCTION 3

Algorithm 1 In place LU factorization with no pivoting.

1: for i 1 to n do
2: for j 1 to i� 1 do
3: Aij (Aij �Ai,1:j�1A1:j�1,j) /Ajj

4: end for
5: Ai,i:n Ai,i:n �Ai,1:i�1A1:i�1,i:n

6: end for

Djj = Ajj �
j�1X

k=1

LjkDkkL
H

jk
(1.1a)

Lij = D�1
jj

Aij �

j�1X

k=1

LikDkkL
H

jk

!
8i < j (1.1b)

Note that blocks in D (and the corresponding ones in L) may be either 1 ⇥ 1 blocks or 2 ⇥ 2

blocks, where the latter are sometimes needed to preserve stability. This means j may stand for two

consecutive indices.

Cholesky factorization for HPD matrices

The recursive relations in Eq. (1.2) produce a Cholesky factorization. It is related to the LBLT

factorization for HPD matrices with L = L
p
D, where

p
Dii =

p
Dii. Note that in the case of an

HPD matrix, D is diagonal (has only 1 ⇥ 1 blocks) and all its entries are positive, so
p
Dii is well

defined. The recursive formula for computing the Cholesky factorization is

Ljj =

vuutAjj �
j�1X

k=1

LjkL⇤
jk
, (1.2a)

Lij =
1

Ljj

Aij �

j�1X

k=1

LikL
⇤
jk

!
8i < j. (1.2b)

1.1.2 Iterative solution methods

Conjugate gradient (CG) [92] or MINRES [122] are typical iterative solution methods for symmetric

systems. These methods require only products of the matrix A with vectors, so they can be used even

if A is not formed explicitly (for example, if it is a product of sparse matrices that would be dense if

computed). At iteration k they search for an approximate solution x(k) to the system Ax = b in the

Krylov subspace K(A, b, k) = span{b, Ab,A2b, . . . , Ak�1b}. The di↵erence is that CG minimizes the

residual r = b � Ax(k) in the A�1 norm, meaning rTA�1r, whereas MINRES minimizes rT r. If A

has negative eigenvalues, krTA�1rk is unbounded from below, so CG can only be used for positive

CHAPTER 1. INTRODUCTION 4

definite A (or positive semi-definite A when the system is consistent) [99], but MINRES can be used

with any Hermitian A. Both methods have cost O(nnz(A)) per iteration (though the constant for

MINRES is larger). While both methods are guaranteed to find a solution in exact arithmetic in n

or fewer iterations, that is usually a prohibitive cost. There are theoretical bounds on the number of

iterations to convergence in terms of both the number of distinct eigenvalues of A and the condition

number (A):

kekkA
ke0kA

 2

✓p
� 1p
+ 1

◆k

, (1.3)

where ek := x(k) � x and (A) is the ratio of the maximum and minimum absolute values of the

eigenvalues of A. However, these bounds are loose for many As. In almost all cases, preconditioning

the system, i.e., pre-multiplying it by a matrix such that the system being solved has a small

condition number or few unique eigenvalues, is essential for keeping the number of iterations down.

Both methods require the preconditioner to be HPD. This limitation sometimes leads to the use of

GMRES [147] (which is similar to MINRES but is normally used for square unsymmetric systems

and must store all Krylov vectors, not just the last three). This improves the accuracy of the method,

but the storage grows linearly and the computation time per iteration grows quadratically with the

iteration number.

Preconditioning is further covered in Section 1.5 and Section 2.3. SSAI in Chapter 2 is an

example of a purely iterative solver, as even the preconditioner is computed iteratively.

1.1.3 Methods with iterative and direct components

There are variants for solving certain systems that combine the two methods. For instance, the solver

in Chapter 3 contains an inner and outer solver. Another such variant is iterative refinement (IR),

the process of taking the residual vector r = b�Ax̃, where x̃ is the solution produced by the direct

solver, and solving A�x = r. The solution �x is added to x̃. Corrections can be repeated until krk
is smaller than some tolerance. Another version of iterative refinement takes x̃ as an initial guess

for an iterative solver. This can improve the quality of the solution but comes at the cost of more

operations. Even if the system is Hermitian, GMRES is typically used for IR due to it being more

stable because it stores all of the Krylov vectors and orthogonalizes each new vector with respect

to all preceding vectors. In contrast, CG and MINRES are able to limit their computational cost

because they orthogonalize with respect to only the last two Krylov vectors, with loss of numerical

accuracy [147]. Preconditioning can be seen as many direct solves with an inexact matrix (via an

approximate inverse or an incomplete factorization where the number of fill-in entries is limited)

that are used in the inner loop of an iterative solver. This is further detailed in Section 1.5 and

Section 2.3.

CHAPTER 1. INTRODUCTION 5

1.2 Sparse least-squares problems

Section 2.6 covers the solution of least-squares problems minx kAx�bk2 with rectangular A 2 Rm⇥n

and m > n. These problems arise, for example, in circuit simulation, computer graphics and vision,

and combinatorics. Here again there are three broad classes of solution methods.

1.2.1 Direct solution methods

Direct solution methods typically apply the methods in Section 1.1 for Hermitian matrices to the

normal equations AHAx = AHb or use QR factors of A, where Q is an orthogonal matrix and R is

upper triangular (see Section 1.2.1). The disadvantage of the normal equations is that (AHA) =

(A)2, which creates numerical issues due to ill-conditioning. Once QR factors are obtained, multiple

systems with the same A and di↵erent bs can be solved e�ciently using triangular solves with R and

products with QH. As with Hermitian problems, keeping the factors sparse is essential. A method

for doing so and obtaining an inexact factorization is detailed in [78].

QR factorization for general matrices

The QR factorization is based on computing an orthogonal basis for A, which we label as Q, and

computing an upper triangular matrix R such that A = QR. It can be computed via the Gram-

Schmidt process, Givens rotations, or Householder reflections. The reader is referred to [48, §5] for
more details about these methods.

1.2.2 Iterative solution methods

Iterative solution methods typically apply the methods in Section 1.1 for Hermitian equations to

the normal equations or use a least squares variant of CG (CGLS), which is equivalent in exact

arithmetic but is more stable than applying CG to the normal equations [123, §7.1], [24, §7.4.1].
(LSQR and LSMR [70, 123] are two further least-squares solvers that are equivalent to, but more

stable than, applying CG and MINRES to the normal equations.) The same preconditioning con-

siderations apply to CGLS, LSQR, and LSMR as for CG. Section 2.6 below is an example of the

use of PCGLS to solve least-squares problems.

1.2.3 Methods with iterative and direct components

As with Hermitian problems, there are variants that combine iterative and direct methods, such as

IR combined with QR factorization, PCGLS, or sparse QR [78].

CHAPTER 1. INTRODUCTION 6

1.3 Scaling

The advantages of scaling a matrix A to create Ã are that it provides some protection against numer-

ical round-o↵ errors, creates consistency, informs parameter selection, and can improve convergence.

We first go into detail on these advantages and then describe some methods for scaling.

Round-o↵ errors

Integers are stored on a computer as binary numbers, with one bit reserved for the sign. This means

that with k bits, a computer can store numbers between �2k�1 and 2k�1 � 1. A floating-point

number is stored on a computer as

±

1 +

p�1X

i=1

di2
�i

!
2e, (1.4)

where one bit is reserved for the sign, p is the precision, e is the exponent, and each di can be 0

or 1. While p allows for more precision, e allows for more range. If the memory allocated for each

floating-point number is fixed, then there is a precision versus range tradeo↵. Here we are primarily

concerned with the case that p is not su�ciently large to store the number. If a number requires

more digits to represent it than p, then it cannot be stored. For example, the result of 1 + 2�p is

1 on a computer. This on its own does not usually create problems. However, if we then subtract

1, we get 0, even though mathematically the correct result is 2�p. Rearranging the operations as

1�1+2�p = 2�p does give the correct answer. If we were to divide by the result in the first case we

would get undefined behavior. Furthermore, we see that addition is no longer associative, so parts

of a code that rely on this can fail to produce the right results.

Consistency and parameter selection

If we solve an HPD system �Ax = �b with very large (or small) �, we might expect a result

identical to that of the system Ax = b because mathematically they are equivalent. However, issues

arise during the selection of regularization parameters that will work consistently across di↵erent

optimization problems. If A is close to singular, a common practice is to use A+�I for a factorization,

be it complete to solve the system directly, or incomplete to use as a preconditioner. If there has

been no control over the magnitude of the entries of A, this regularization may fail to solve the

factorization issue if it is too small, or completely dominate if it is too large, resulting in factors

that are close to
p
�I with minor correction terms. In Chapter 3 we first scale our systems to enable

selection of parameters that can be reused across many di↵erent systems.

CHAPTER 1. INTRODUCTION 7

Convergence of iterative methods

Even elementary scaling before using an iterative method can vastly change convergence. For exam-

ple on the diagonal n⇥n system Ax = b with Aii = i and Aij = 0 if i 6= j, CG will take n iterations

to converge. However, if A is scaled symmetrically to have unit diagonal, convergence occurs in one

iteration. This is a pathological example, and one would not use an iterative method in this case,

but scaling decreases (A) and gives better convergence bounds according to Eq. (1.3).

1.3.1 Max scaling

The goal of max scaling is to create Ã such that |Ãij | 1. To this e↵ect we use a positive

diagonal matrix D. In row-wise max scaling, this is achieved by setting Ã = DrA, where (Dr)ii =

(max1jn |Aij |)�1. In column-wise max scaling, this is achieved by setting Ã = ADc, where

(Dc)jj = (max1in |Aij |)�1. In row-column-wise max scaling, this is achieved by setting Ã =
p
DrA

p
Dc, where (

p
D)ii :=

p
Dii. An advantage of max scaling is that it preserves symmetry in

Ã, because if A is symmetric (or Hermitian) then Dr = Dc.

1.3.2 Diagonal scaling

Diagonal scaling is typically applied to HPD A, with Ã = DAD and Dii = 1/
p
Aii, which means

Ãii = 1 8i. (For HPD matrices, Aii > 0 8i, so the scaling is guaranteed to be defined.)

Proof. If Aii 0 for some i, then eT
i
Aei = Aii 0, which contradicts A being HPD.

Note that for HPD matrices the diagonal entries are frequently the largest in magnitude in their

respective rows and columns, so max scaling and diagonal scaling are equivalent, but this is not

always true. For example, the matrix

"
1 2

2 5

#
is HPD but the maximum entry in the first row and

column is not the (1, 1) entry. Interestingly, however, an o↵-diagonal entry cannot have maximal

magnitude in both its row and its column.

Proof. Take an arbitrary Hermitian A and assume 9i, j such that |Aij | � Aii ^ |Aij | � Ajj . We

know that the HPD structure of A is una↵ected by symmetry-preserving permutations and that

A is positive definite if and only if all its principal submatrices are positive definite [48]. If we

permute the i-th row and column with the first, and the j-th row and column with the second, the

determinant of the second principal submatrix is AiiAjj � AijA⇤
ij
 0. This means A cannot be

positive definite.

1.3.3 Ruiz scaling

Ruiz scaling [146] is an iterative application of max scaling until some stopping criterion is met.

Some examples of stopping criteria are that the entries of Dr and Dc are close to 1 or a maximum

CHAPTER 1. INTRODUCTION 8

number of iterations. The advantage of Ruiz scaling is that it assures that if Aij 6= 0, then |Ãij | ⇡ 1.

In contrast, max scaling guarantees only |Ãij | 1. This is advantageous because it means the

nonzero entries of Ã are of the same magnitude, so floating-point operations between them are safer.

The disadvantage is that Ruiz scaling is necessarily more computationally intensive than max scaling

(however this is not usually the bottleneck of the computation). There is also a symmetric version

of Ruiz scaling [103], which is an iterative application of symmetric max scaling.

1.3.4 Norm scaling

The goal of norm scaling is to create Ã whose rows (or columns) have norm 1. This is achieved

similarly to max-scaling except (Dr)ii = (kAi,:k2)�1 (the norm of the i-th row of A) and (Dc)ii =

(kA:,ik)�1 (the norm of the i-th column of A). Frequently the 2-norm is used. When the infinity-

norm is used, this is equivalent to max scaling. The variant that scales both rows and columns can

also be used with norm scaling.

1.4 Reordering

The ordering of the unknowns x in the equation Ax = b is arbitrary in the sense that the solution

to the system does not depend on it. Therefore we reorder or permute x if it is advantageous. If we

define a permutation matrix P , some permuted version of the identity with PTP = I, we can write

Ax = b as PAx = Pb and factorize PA rather than A to reach a solution. If we define y = Px,

we can also write it as APTy = b, solve for y by factorizing APT and multiply by PT to reach the

solution x. If A is symmetric (or Hermitian) and we wish to preserve symmetry, we may write

PAPTy = Pb, solve for y by factorizing PAPT and multiply by PT to reach the solution x. This

is done because, during factorization, the permuted A may have less fill-in or be more numerically

stable. For Hermitian matrices, the fill-in reduction analysis is carried out on A, whereas for non-

Hermitian matrices it’s carried out on A+AH.

1.4.1 Fill-in reduction

Barring numerical cancellation, the rules for the creation of fill-in in L (the lower triangular factor

of A) can be summarized as follows [48]:

1. i > j, aij 6= 0 =) lij 6= 0

2. i > j > k, ljk 6= 0 & lik 6= 0 =) lij 6= 0

Fig. 1.1 shows a stark example of two matrices that are symbolically equivalent, but the one on

the left is completely dense when factorized, and the one on the right has no fill-in. By simply

moving the first variable to be last (permuting the first and n-th rows and columns), we can save

CHAPTER 1. INTRODUCTION 9

Figure 1.1: (Left) A matrix that is completely dense when factorized. (Right) A matrix with no
fill-in when factorized.

substantial storage and computation. In general, the objective of finding an ordering that produces

the least possible amount of fill-in poses an NP-complete problem [172]. Instead, we use heuristics

that usually work well in practice. Some examples are detailed in the following sections.

Approximate minimum degree

The minimum degree algorithm follows these steps:

1. Define the graph of a square matrix A as having n (the dimension of A) nodes with an edge

between node i and node j existing in the graph if Aij 6= 0.

2. A symbolic factorization is simulated on a graph and at each factorization step, row and

columns are permuted to minimize the number of o↵-diagonal nonzeros in the pivot row and

column.

The symmetric version of the algorithm, which permutes a given row if and only if it permutes the

corresponding column, is called symmetric minimum degree [143]. An important implementation

detail is a tie-breaking strategy when the multiple renumberings result in the same degree. In

practice, an approximate minimum degree (AMD) algorithm is used because of the exact minimum

degree algorithm’s computational cost [160].

Nested dissection

The nested dissection algorithm [76] on a matrix A consists of these steps:

1. Form an undirected graph in which nodes represent rows and columns of A, and an edge

between two nodes i, j represents a nonzero entry Aij .

2. Partition the graph recursively into subgraphs using separators, which are small subsets of

nodes such that when they are removed, the graph can be partitioned into subgraphs with at

most a constant fraction of the number of nodes.

CHAPTER 1. INTRODUCTION 10

3. An ordering of the unknowns is computed using the recursive structure of the partition: Elimi-

nate the two subgraphs formed by removing their corresponding separator node, then eliminate

the separator nodes.

Using nested dissection limits fill-in to the square of the number of separator nodes at each level of

the recursive partition. For planar graphs, which can arise from the solution of sparse linear systems

derived from 2D finite element method meshes, the resulting matrix has O(n log n) nonzeros and

is computed in O(n3/2) time. For 3D space graphs, which can arise from the solution of sparse

linear systems derived from 3D finite element method meshes, the resulting matrix has O(n log4 n)

nonzeros (though the constant can be quite large) and is computed in O(n2) time. For arbitrary

graphs there is a nested dissection that guarantees fill-in within a O(min{
p
d log4 n, nnz1/4 log3.5 n})

factor of optimal, where d is the maximum degree and nnz is the number of nonzeros [10].

Reverse Cuthill-McKee

The Cuthill–McKee algorithm (CM) [47] produces a permutation of a symmetrically structured

sparse matrix into a small-bandwidth band matrix. A level structure is computed by breadth-first

search. Then the nodes are numbered according to this structure, where in each level they are visited

in order of their predecessor’s numbering from lowest to highest. Ties are broken by node degree

(from lowest to highest). The reverse CM algorithm (RCM) reverses the resulting index numbers.

In practice RCM generally produces less fill-in than CM [75], so it is more often used.

1.4.2 Numerical stability via pivoting

The LU, LBLT, and Cholesky factorizations all require dividing by entries on the diagonal (see Sec-

tion 1.1.1). This can create numerical issues if there are very small magnitude entries on the diagonal

that arise during the factorization, and will cause breakdowns if there are 0s on the diagonal. For

this reason, during the factorization of A, pivoting, i.e., switching entries of A (and making the

corresponding switches to the system) is essential. It should be noted that all three factorizations

are stable (do not require pivoting) when performed on HPD matrices. In particular, Cholesky is

stable because it is only performed on HPD matrices [48]. In this section we detail some common

methods for pivoting. The first four pivoting methods break symmetry and can only be used with

LU factorization. The last two methods (diagonal pivoting and MC64) maintain symmetry.

Row pivoting

During row pivoting, before computing the j-th diagonal entry of U , we find the largest magnitude

entry in the j-th column of the partially factorized A (with row index at least j). We then switch

its row with the j-th row and proceed.

CHAPTER 1. INTRODUCTION 11

Column pivoting

During column pivoting, before computing the j-th diagonal entry of U , we find the largest mag-

nitude entry in the j-th row of the partially factorized A (with column index at least j). We then

switch its column with the j-th column and proceed.

Full (or complete) pivoting

During full pivoting, before computing the j-th diagonal entry of U , we find the largest magnitude

entry in the partially factorized A (with row and column indices at least j). We then switch its row

and column with the j-th row and column and proceed.

Rook pivoting

Rook pivoting is a compromise between row or column pivoting (which may not find a large enough

pivot) and full pivoting (which requires searching over the entire matrix and is computationally

intensive). Before computing the j-th diagonal entry of U , we look for the largest entry in the j-th

row of the partially factorized A (with column index at least j), then look for the largest entry in

that entry’s column of the partially factorized A (with row index at least j), and repeat alternating

between columns and rows until we find an entry that is maximal in both its row and its column.

We then switch its row and column with the j-th row and column and proceed.

Symmetric or diagonal pivoting

During symmetric pivoting, before computing the j-th diagonal entry of U , we find the largest

magnitude entry on the diagonal of the partially factorized A (for all indices at least j). We then

switch its row and column with the j-th row and column and proceed. Since the diagonal entries

always stay on the diagonal, this method preserves symmetry and is suitable for use with LBLT and

Cholesky (though recall that pivoting is unnecessary for Cholesky except to preserve sparsity).

MC64

MC64 [2] is a widely used algorithm using minimum weight perfect matchings to avoid small pivots.

It computes a column permutation P that maximizes the product of the absolute values of the

diagonal entries as well as row- and column-scaling coe�cients Dl and Dr. This creates an I-matrix

AI ⌘ DlADrP , i.e. |(AI)|ii = 1 and |(AI)ij | 1 8i, j. While the reordering is unsymmetric and

therefore not suitable for symmetric (or Hermitian) systems of equations, the scaling step remains

desirable as it reduces the condition number. Therefore MC64 provides the possibility to generate

a symmetric reordering and scaling. The scaling coe�cients have the same properties as in the

unsymmetric case but the reordering will not generally maximize the product of the diagonal entries.

CHAPTER 1. INTRODUCTION 12

1.5 Preconditioning for iterative solutions of sparse HPD

systems

Sparse HPD linear systems Ax = b arise in many science and engineering fields including computa-

tional fluid dynamics, power networks, economics, material analysis, structural analysis, statistics,

circuit simulation, computer vision, model reduction, electromagnetics, acoustics, combinatorics,

undirected graphs, and heat or mass transfer. A reliable and e�cient solution method is therefore

crucial. A direct solution via Cholesky factorization, detailed in Section 1.1, is e�cient when the

sparsity structure is such that fill-in is moderate.

Iterative solvers typically require preconditioners to limit the number of iterations for conver-

gence. One form of preconditioning requires a sparse matrix M ⇡ A�1 such that AM ⇡ I or

MA ⇡ I [19, 68]. Such an M is a sparse approximate inverse (SPAI) of A, which defines a class

of methods known as SPAI-type [86]. The transformed systems AMy = b, x = My or MAx = Mb

have the same solution as Ax = b, but ideally need fewer iterations of an iterative solver. If we have

M = CHC for some nonsingular C, then M is HPD and we can precondition Ax = b by solving the

left-right preconditioned system CACHy = Cb, x = CHy. The matrices C and CH are not needed

by PCG, just products Mv for given vectors v. Alternatively, we may have M ⇡ A (not A�1). Such

an M is applied by solving systems with it, via factorization and then triangular solves. This leads

to a class of methods known as approximate factorizations for preconditioning.

Broadly speaking, preconditioners can be split into two di↵erent types.

Problem-specific preconditioners require knowledge of the domain in which the linear system

arises and knowledge of the specific properties of the matrix A. An example of such a preconditioner

for the coupled Stokes-Darcy problem with the Darcy problem in primal form is given in [96]. These

preconditioners can be highly e↵ective in solving a given problem because they incorporate more

knowledge of the problem than a generic preconditioner, but may require substantial development

time for any new problem. Their use is therefore limited to situations in which many problems of

the same type need to be solved and the developer has su�cient understanding of both the domain

and the numerical liner algebra.

Generic preconditioners require no domain knowledge and have typically few (if any) limitations,

but may not be the most e↵ective for any given problem. For the rest of this section and in Chap-

ter 2, we limit our discussion to this type of preconditioner. A good generic preconditioner should

substantially reduce the number of iterations until convergence, while working on as large of a class

of problems as possible. However, there are multiple other properties that can make a preconditioner

more e↵ective.

1. A preconditioner must be sparse (or easy to apply) to be e↵ective, but a flexible sparsity

pattern can make it even more e↵ective. Whether the preconditioner is trying to approximate

the inverse of the matrix, or approximate its factors, it’s possible that the important (large)

CHAPTER 1. INTRODUCTION 13

entries of the preconditioner cannot be ascertained ahead of time based on generic information.

A flexible sparsity pattern allows these entries to be “captured” in the preconditioner without

a priori knowledge of the location of these entries.

2. One of the big advantages of using iterative methods is that they are inherently parallel

because they only require matrix-vector multiplications. However, if the computation of the

preconditioner is serial (or parallel in some less e�cient way), it becomes the bottle-neck in

a parallel program, no matter how e�cient the implementation is. We therefore prefer the

computation of the preconditioner to be parallel.

3. Similarly, we would like the application of the preconditioner to be embarrassingly parallel.

This means that ideally the preconditioner will be applied by matrix-vector multiplication,

rather than the solution of systems (which allows for only limited parallelism).

4. The solution of HPD systems via CG or MINRES means that the storage required by the

algorithm and the cost per iteration of the algorithm are fixed (and do not depend on the

iteration number). If the computed preconditioner is not HPD, CG and MINRES cannot

be used, meaning that GMRES must be used instead. This is undesirable as the storage of

GMRES grows linearly with the iteration number, and the computation grows quadratically.

We note that a di↵erent version of MINRES [15] can be used to solve HPD problems with

indefinite preconditioners, but since we know that the best preconditioner (the actual inverse)

is positive definite, this is not necessarily desirable. Thus, in almost all cases, we will want our

preconditioner to be HPD when solving HPD systems.

5. An ideal preconditioner should work for all problems in its target class and not break down in

certain instances.

Here we summarize some of the existing general-purpose preconditioning methods and explain

which properties they have and which they lack.

1. Sparsified Nested Dissection (spaND) [32] is a method that computes an approximate factor-

ization and uses it as a preconditioner. The spaND algorithm computes a nested dissection

ordering, sparsifies the resulting factors by zeroing out certain entries (that would cause a

lot of fill-in were they not ignored), and then uses these factors as a preconditioner for PCG.

Though the spaND algorithm is highly e↵ective, its downsides are that it requires the interfaces

between groups of variables to be relatively sparse (i.e., there are only short-range interactions

between variables) and that it is has only some parallelism in its computation and is applied

by solving systems (rather than via matrix-vector multiplication).

2. Methods based on A-orthogonalization such as [22], which compute the factors of the orthog-

onalized A, are e↵ective even on highly ill-conditioned systems and do not have a risk of

CHAPTER 1. INTRODUCTION 14

breakdown. However, their sparsity structure is fixed and they do not exhibit parallelism in

the computation of the preconditioner or its application.

3. Factorized sparse approximate inverse (or FSAI) methods [104, 105, 110] calculate C such

that fM = CHC directly. Their computation can use shared memory parallelism and they

are applied via products with C and CH. However, they have a risk of breakdown and their

sparsity pattern is fixed.

4. Incomplete Cholesky factorization (ichol) [116, 117] is a popular method for computing a sparse

triangular matrix L such that LLH⇡ A (and C = L�1). In this case, PCG requires triangular

solves with L and LH each iteration. A typical choice for the sparsity structure of L is that of

the lower triangular part of A. The sparsity pattern can be made more flexible by setting a

drop tolerance and leaving only entries with magnitudes larger than this tolerance. However,

this means that the sparsity of the preconditioner (and therefore allocation) cannot be done

ahead of time. ichol can be applied to any HPD system, but it is at the risk of breakdowns

and it is applied as a triangular solve. There is a version of ichol that is computed with fine

grained parallelism [42], which still requires communication between iterations.

5. Randomized Cholesky factorization (rchol) works only on symmetric diagonally dominant

(SDD) matrices (meaning 8i, Aii �
P

i 6=j
|Aij |) and may require doubling the size of the

system if the matrix is not SDDM (an SDD matrix with non-positive o↵-diagonal entries: Aij
0 if i 6= j). While rchol is restricted to a smaller class of matrices, it has been shown to work

better than ichol in some cases [36]. Similarly to ichol, it computes an incomplete factorization

of A and has the same properties in terms of sparsity and parallelism. Theoretically it cannot

break down, but Section 2.5.2 shows a practical example where it does.

6. Sparse approximate inverse (SPAI) methods [86] are highly flexible and can be used for any

type of nonsingular A. They work by computing M ⇡ A�1 such that AM ⇡ I or MA ⇡ I

and applying M in preconditioned GMRES. This is done even in cases where A is HPD

because the resulting M is typically not Hermitian and sometimes not positive definite (unless

prohibitively many nonzero entries are allowed). Symmetry can be dealt with easily by taking
fM = (M +MH)/2, but getting a positive definite preconditioner is not so easy. This is their

main disadvantage, as they have all the other desirable properties.

7. SAINV [21] is a stabilized version of SPAI (also known as AINV) for HPD matrices. SAINV

works similarly to SPAI except it adds a matrix to A during computation of M to ensure that

M is positive definite. This means that A may be modified too much or even unnecessarily

unless the process is attempted multiple times. Its advantage over SPAI is that it allows the

use of PCG or MINRES, which saves substantial computation time and memory.

CHAPTER 1. INTRODUCTION 15

8. Algebraic multigrid (AMG) methods are useful for a wide range of problems resulting from

discretization of partial di↵erential equations [27]. They attempt to solve the linear systems

resulting from the finely discretized grid by using the solution of the coarsely discretized grid.

AMG methods can also work well on matrices that have a specific structure such as Laplacian

matrices [106]. AMG is more e↵ective when used on matrices with a specific structure, and

thus fulfil our requirement of a broad preconditioner. AMG can be used in conjunction with

other preconditioners by computing them on the coarser systems and then using AMG to

extrapolate them onto the finer systems. Thus AMG methods can inherit the properties of

the other preconditioners.

In Chapter 2 we propose SSAI, a method most closely related to SPAI, which tries to provide

the advantages of SAINV without the disadvantage of modifying A a priori and possibly incurring

an unnecessary loss of accuracy, or waiting before modifying it and possibly getting a breakdown.

SSAI does not work on modifying A in the computation of M , but rather first computes M and then

modifies it if it sees it is not positive definite within the PCG (or MINRES) solve. Its application is

extended to least squares problems in Section 2.6.

1.6 Direct methods for solving sparse symmetric indefinite

KKT linear systems

This section contains partial text of our work in Swirydowicz et al. [157] originally published in

Parallel Computing (2020). Reprinted with permission. All rights reserved.

Interior-point methods [168, 169] provide an important tool for nonlinear optimization and are

used widely for engineering design [23] and discovery from experimental data [57]. Most of the

computational cost for interior methods comes from solving underlying linear equations. Indeed,

interior methods came to prominence with the emergence of robust sparse linear solving techniques.

For a general nonconvex optimization problem, the linear systems are sparse symmetric indefinite and

typically ill-conditioned. Furthermore, many implementations require the linear solver to provide

matrix inertia information (the number of positive, zero, and negative eigenvalues).

There is a vast body of research on benchmarking optimization solvers for their e↵ectiveness

and performance [54, 55]. However, not much attention has been devoted to the linear solvers

employed within interior methods for optimization. The literature can be divided into three major

categories: (a) papers that compare di↵erent optimization solvers without isolating the linear solver

performance, including parameters and algorithm selection, (b) literature focusing on linear solver

selection and performance, and (c) papers focusing on linear solvers for symmetric indefinite systems.

In papers from category (a), the CUTE, CUTEr, or CUTEst [82] frameworks are often employed.

For example, Schenk et al. [149] applies a combinatorial (symmetric weighted matching based) pre-

processing step to lower the condition number of the matrices arising in Ipopt [170], followed by a

CHAPTER 1. INTRODUCTION 16

direct solver that uses supernodal static pivoting. The authors test this approach with CUTEr.

For category (b), authors are primarily concerned with finding suitable preconditioners [33, 121,

132] for solving the linear systems iteratively. We cannot take advantage of these results, however,

because the problems described herein are extremely ill-conditioned and thus require a direct linear

solver, possibly with IR, to achieve acceptable backward error levels.

For category (c), there is a long lineage of research available because the scientific community

has been interested in e�cient numerical linear solvers for (dense and sparse) symmetric indefinite

systems dating back to the 1970s [28, 69]. Bunch and Kaufman [30] introduced the pivoting strategy

currently used in LAPACK for dense symmetric indefinite systems. This scheme was later improved

in [14], where the more stable bounded Bunch-Kaufman pivoting is proposed. Du↵ et al. pioneered

much of the field with a series of papers focused on symmetric indefinite systems [58, 62, 63, 65, 66].

Gould et al. [83] reviewed the sparse symmetric solvers that are part of the mathematical software

library HSL (formerly the Harwell Subroutine Library) and concluded that MA57 [58] is currently

the best general-purpose package in HSL. Hogg et al. [94] improved the pivoting strategy of [62] for

challenging matrices. Du↵ et al. [64] focused on pivoting strategies and new approaches designed for

parallel computers. Similarly, several recent papers [59, 93, 95] have considered improved algorithms

targeting modern multicore processors and GPUs. Becker et al. [17] proposed a supernode-Bunch-

Kaufman pivoting strategy that enables high-performance implementations on modern multicore

processors. For a survey of the literature on sparse symmetric systems, see Davis et al. [52]. For a

benchmark of several sparse symmetric direct solvers, see Gould et al. [84].

Our goal in Chapter 3 is to develop a GPU-accelerated linear solver for these types of highly

ill-conditioned linear systems arising from interior point methods. Here we summarize the state-

of-the-art software packages that meet these criteria, along with MA57, which is considered the

one of the best performing solvers for symmetric indefinite systems, even though it is currently not

GPU-accelerated.

SuperLU

SuperLU is the most mature and established of the five packages evaluated. For the purpose of

generating results presented in this study we used SuperLU dist, which is accelerated by MPI and

CUDA.

SuperLU is a direct linear solver for large, sparse unsymmetric systems. It employs Gaussian

elimination (super-nodal) to compute the factorization

PrDrADcPc = LU,

where Dr and Dc are diagonal matrices used to equilibrate (scale) the matrix A, and Pc, Pr are

column/row permutation matrices. If the solution is not accurate enough, it follows with an IR

CHAPTER 1. INTRODUCTION 17

phase based on the Richardson iteration.

Unlike the serial version of SuperLU (which uses partial pivoting), the distributed version uses

static pivoting based on graph matching [112], which has better scaling properties [142]. The pivoting

strategy determines the choice of Pr. Distributed SuperLU employs an (AT + A)-based sparsity

ordering, which determines Pc. SuperLU reorders both columns and rows; however, the user does

not have the freedom to select a particular algorithm.

STRUMPACK

STRUMPACK (STRUctured Matrix PACKage was developed by Pieter Ghysels, Xiaoye Li, Yang

Liu, Lisa Claus and other contributors at Lawrence Berkeley National Laboratory. STRUMPACK is

intended to solve sparse and dense systems. STRUMPACK is targeted toward matrices that exhibit

an underlying low-rank structure (such as block structure) that is exploited to construct the L and

U factors. Unlike in SuperLU, the computed factors can be used as a preconditioner within an

iterative linear solver. A multifrontal factorization is employed.

STRUMPACK uses MC64 [61] to permute and scale matrix columns (as does SuperLU). It follows

the MC64 step with a nested dissection reordering [76], which controls the amount of fill-in. The third

pre-processing step is a reordering that helps reduce the ranks used for the HSS (hierarchically semi-

separable) compression steps. After the pre-processing, there is a symbolic factorization phase to

construct the elimination tree, and then actual multifrontal factorization. During the factorization,

HSS is used to numerically compress the fronts. This strategy is typically only applied to large fronts

(near the end of the factorization). Depending on the settings and the matrix, the solve can be done

through back substitution combined with either IR or an iterative solver (GMRES or BiCGStab).

STRUMPACK is parallelized through MPI and CUDA. It uses cuBLAS and cuSolver, and relies

on SLATE for LAPACK functions.

cuSolver

cuSolver is a library provided by NVIDIA and distributed with CUDA Toolkit The functions

provided by the library allow the user to solve a system (or multiple systems) of linear equations

Ax = b, where A does not have to be square. It computes a QR, LU, or LBLT factorization of A,

then performs upper and lower triangular solves. The library consists of three main components:

cuSolverDN (for dense matrices), cuSolverSP (for sparse matrices) and cuSolverRF (for matrix

series in which the matrix values change but the nonzero pattern stays the same). The library

comes with many helper functions and provides several algorithms for solving linear systems (using

LU, QR, Cholesky, or least squares).

We focus on cuSolverSP because our matrices are sparse. However, the sparse interface appears

to be less mature and to have limited functionality. For example, some of the functions are not

implemented to run on GPUs, and LBLT is available only through the dense interface.

CHAPTER 1. INTRODUCTION 18

cuSolver is proprietary software and its source code is not available. The user supplies the matrix

and right-hand side and the functions return a solution along with the error. The only parameter that

can be chosen is the reordering with options: RCM (reverse Cuthill–McKee), AMD (approximate

minimum degree), MeTiS, or none.

SSIDS

SSIDS is part of a large library known as SPRAL (Sparse Parallel Robust Algorithms Library).

SPRAL was developed by the Computational Mathematics Group at Rutherford Appleton Labora-

tory in the UK.

Unlike SuperLU and STRUMPACK, SSIDS uses an LBLT factorization to solve Ax = b with

A symmetric but indefinite. In a first pass, SSIDS computes the decomposition A = PLD (PL)T ,

where P is a permutation matrix, L is unit lower triangular, and D is either diagonal or block

diagonal with 1⇥ 1 or 2⇥ 2 blocks. A clear advantage of the LBLT factorization is that it requires

less storage, as only one triangular factor needs to be stored. SSIDS applies an a posteriori threshold

pivoting [59] to implement a scalable GPU pivoting strategy.

PaStiX

PaStiX (Parallel Sparse matriX package) [91], a scientific library that provides a direct parallel linear

solver for large sparse linear systems, was developed at Bordeaux University and Inria.

PaStiX uses numerical algorithms implemented in single or double precision (real or complex)

using Cholesky, LBLT, and LU with static pivoting (for nonsymmetric matrices having a symmetric

pattern). It later refines the solutions computed by the direct method using GMRES preconditioned

with the computed factors. Additionally, PaStiX provides low-rank compression methods to reduce

the memory footprint and save time. For our purpose, the LBLT factorization is used and it has a

similar structure to the one used by SSIDS.

MA57

The MA57 package is part of HSL [3]. It was written and developed by the Computational Math-

ematics Group at the Science and Technology Facilities Council Rutherford Appleton Laboratory

and other experts.

Similarly to SSIDS, MA57 uses the multifrontal LBLT method developed in [65] for symmetric

indefinite systems. The matrix can be optionally symmetrically prescaled using the MC64 subroutine

and ordered using MeTiS. The user can avoid fill-in beyond that predicted by the analysis by using

static pivoting, though this can cause numerical issues and breakdowns. It is currently not GPU-

capable and any GPU capabilities would be substantially inhibited by pivoting.

CHAPTER 1. INTRODUCTION 19

1.6.1 Motivation

We show in Swirydowicz et al. [157] that the GPU-accelerated solvers do not work well on our highly

ill-conditioned problems. All of them, except cuSolver, perform worse when a GPU is used and also

perform worse than MA57 with or without a GPU. cuSolver is able to achieve some speedup on a

GPU and outperforms MA57 by a factor of ⇡ 1.6 when a GPU is used [38]. cuSolver is proprietary, so

our goal in Chapter 3 is to build an open source code that is able to utilize GPUs better by avoiding

pivoting and unnecessary operations. To this end it is crucial to avoid unstable factorizations (and

stick with Cholesky) and to view the systems arising from an interior-point method applied to a

given problem as a whole, rather than as separate systems of the form Ax = b. This means that

the operations that are shared by these systems because they share a sparsity structure will only

be performed once. Furthermore, our method should provide a certificate of the correctness of the

inertia.

1.7 Parallel computing

In serial programming, an algorithm is constructed and implemented as a serial list of instructions.

The instructions are executed on a central processing unit (CPU) of a single computer. Only when

an instruction is finished can the next instruction be executed.

Conversely, parallel computing simultaneously employs multiple processing elements to execute

a program. The algorithm is broken down into parts that can each be executed simultaneously on

di↵erent processing elements. The processing elements can include resources such as one computer

with several processors, multiple networked computers, hardware accelerators such as graphical pro-

cessing units (GPUs), or a combination of them. Parallel computing is used for scientific computing

applications where the problem sizes grow very large, such as fluid or structural mechanics simu-

lations, weather simulations, or any program that requires the solving of linear systems or matrix

products, which is true for almost any scientific computing application [131].

Until 2004, improvements in the frequency of instructions executed by a computer, i.e., the

number of instructions executed in a given unit of time, were the main source of improvements in

run time [90]. However, as the power consumption of a processor scales linearly with its frequency

and hardware constraints limit the frequency of any given processor, parallel computing is necessary

to solve large problems [130].

Parallel computing first became available to the masses in 1994 with the publication of message

passing interface (MPI) 1.0 [46], but it has taken some time to become fully adopted. GPU pro-

gramming is a specific type of parallel programming that uses GPUs. Initially GPUs were designed

for use in computer graphics, but they have since been adopted for general-purpose (and specifically

scientific) computing. This is because GPUs can perform simple operations such as multiplications

or additions at a higher frequency than CPUs. The downside to GPU use is that memory allocation

CHAPTER 1. INTRODUCTION 20

and management are typically costly and that the cache size is small. This means that more care

must be taken in the design of algorithms that utilize GPUs, otherwise they may perform worse

than even on a single CPU.

This thesis does not employ MPI programming. Chapter 2 details an algorithm that is shown

to be embarrassingly parallel (see Section 1.7.3) but is implemented in serial fashion to limit scope.

Chapter 3 suggests an algorithm that can utilize hardware accelerators such as GPUs in parallel and

this implementation is provided.

AMD (Advanced Micro Devices) [160] and Intel [4] have two common frameworks for GPU

coding. In this thesis we use the CUDA framework by NVIDIA, which is more mature than the

two previously mentioned frameworks, including the cuBLAS [5], cuSPARSE [6], and cuSolver [1]

libraries because it is more mature and has the linear algebra operations required by our algorithms.

We have wrapper functions around this proprietary code so that if the kernels are developed in an

open source library, they can easily be replaced. We also write some custom GPU kernels (functions)

when needed.

1.7.1 Bounds on speedup

Ideally the speedup using multiple processors would be linear, i.e., doubling the number of processors

and keeping the problem size constant (known as strong scaling) would halve the run time, and

doubling the number of processors and the problem size (known as weak scaling) would leave the

run time constant. In practice, parallel programs can at best achieve nearly linear strong scaling up

to a certain number of processors and then level o↵. However, the bound for weak scaling is more

optimistic and can stay nearly linear even for a large number of processors. We define Rt to be the

relative run time of the parallel program (with the serial equivalent fixed to 1), 0 s 1 is the

fraction of time spent on the serial part of the program, and p the number of processors. Using these

definitions, Amdahl’s law and Gustafson’s law provide simplified models for understanding strong

and weak scaling respectively.

Amdahl’s law

In 1967 Gene Amdahl showed that the run time of a program is lower bounded by the part of it

that must be executed serially [11]. The bound is given as

Rt = s+
1� s

p
. (1.5)

Eq. (1.5) provides a grim view of parallelism. First we notice that even if p ! 1, the run time

cannot fall below s. If we want to achieve some run time R̃t > s, we require p =
l
(1� s)/(R̃t � s)

m

processors. This may be very limiting unless s ⌧ 1. The solution to this issue is to not blindly

increase computing resources for small problems and instead save them for large ones.

CHAPTER 1. INTRODUCTION 21

Gustafson’s law

Gustafson’s law assumes that the serial part of a program does not increase along with the problem

size and its parallel part scales linearly with the number of processors [87] and gives the bound for

weak scaling in Eq. (1.6). This assumption holds for an embarrassingly parallel program (see Sec-

tion 1.7.3), but does not hold in general because of communication between processors and increased

costs to the serial part due to setting them up and managing memory. However, usually a well

designed program can keep communication down and have the serial part scale slowly with the

problem size (such as O(log n)) and the parallel part scale nearly linear with the problem size (such

as O(n log n)). The equation

Rt =
1

s+ (1� s)p
(1.6)

shows that in the regime p� s/(1� s), with double the processors, problems of double the size can

be solved in close to the same amount of time. In practice, Gustafson’s assumptions hold for few

problems so the weak scaling is not ideal, but his law is still instructive with regard to the proper

way to use parallel computing resources.

1.7.2 Performance limiters

There are three types of limits on performance of a parallel code:

Compute bound A code is compute bound if its computations finish in a given time frame or at

the expected maximum based on the architecture.

Memory bound A code is memory bound if its memory bus is frequently saturated.

Latency bound A code is latency bound if neither of the above is true. In this case the run time

is dominated by the communication time between the processors.

Typically the number of computations can be easily approximated by analyzing an algorithm, so

they can be minimized at the design stage. GPUs are highly e�cient at arithmetic operations and

thus there are few e�cient algorithms that would give rise to a compute bound GPU code. Managing

memory e�ciently and not allocating it more frequently than necessary is essential for code design.

An example of this is given in Chapter 3. Minimizing latency requires minimizing communication

between processors and frequently dictates the number of processors that should be used. An

example of this is Algorithm 4, where columns of a preconditioner are computed independently of

each other and communication occurs only at the beginning to disperse the information and at the

end to aggregate it.

CHAPTER 1. INTRODUCTION 22

1.7.3 Types of parallelism

Algorithms that exhibit some level or parallelism can be classified according to how often their

subtasks synchronize or communicate with each other. An algorithm exhibits fine-grained paral-

lelism if its subtasks communicate many times in comparison to the amount of computation; it

exhibits coarse-grained parallelism if they communicate a few times in comparison to the amount of

computation, and it exhibits embarrassing parallelism if they rarely or never have to communicate.

Embarrassingly parallel algorithms are considered the easiest to parallelize in practice. A classic

example of a parallel algorithm is a matrix-vector multiplication. Each entry in the product Ab is

computed using only one row of A (and all of b) and is independent of the other entries. Thus,

roughly speaking, if A has n rows, it can use n processors to cut down the run time by a factor

of n (minus fixed costs of memory movement before and after each product). Or in general, with

p < n processors, the run time can be cut by a factor of dn/pe by sending dn/pe or bn/pc rows of

A to each processor. Additionally, parallelism may require shared memory between the processors.

In the example of the matrix-vector products, b can be sent to all processors, or they can all access

the same b if that is more e�cient on the available hardware. However, only the relevant rows of A

need to be sent to each processor (and no advantage is gained by sending more of them or accessing

rows on other processors). This analysis holds true if b is small enough to be stored and transferred

in memory. If b is too large, it may need to be split between multiple processors. In this case, all

processors computing a given entry of Ab must communicate between them to aggregate the result

and the process becomes less parallel.

1.8 Overview

The rest of the thesis is organized as follows. Chapter 2 details SSAI, a symmetric sparse ap-

proximate inverse preconditioner for the iterative solvers CG, MINRES, CGLS, LSQR, and LSMR.

Chapter 3 details HyKKT, A Hybrid Direct-Iterative Method for Solving KKT Linear Systems.

Finally, Chapter 4 summarizes the contributions of the thesis, discusses possible future work, and

discusses the tradeo↵ between specialized and generic solvers.

Chapter 2

SSAI: A symmetric sparse

approximate inverse preconditioner

for the conjugate gradient methods

PCG and PCGLS

This chapter contains a modified version of the text in [139]. This work is currently in review. All

rights reserved.

2.1 Overview

We propose a method for solving a Hermitian positive definite linear system Ax = b, where A is an

explicit sparse matrix (real or complex). A sparse approximate right inverse is computed and replaced

by its symmetrization M , which is used as a left-right preconditioner in a modified version of the

preconditioned conjugate-gradient method (PCG), where M is modified occasionally, if necessary,

to make it more positive definite. Before symmetrization, M is formed column by column and can

therefore be computed in parallel with no communication except at the beginning and end. PCG

requires only matrix-vector multiplications with A and M (not solving a linear system with M),

and so too can be carried out in parallel. We compare it with may factorization (the gold standard

for PCG) and with a direct Cholesky factorization on sparse matrices from various applications and

show it is robust. For least-squares problems, we implement an analogous form of preconditioned

Conjugate Gradient Least-Squares (PCGLS) and show it is also robust.

23

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER24

2.2 Contributions

• We improved upon an existing algorithm for computing a sparse approximate inverse to an

SPD matrix to use as a preconditioner.

• We developed a novel method to ensure the resulting preconditioner is positive definite and

showed that it is robust in practice.

• We proved a theoretical result showing that symmetric indefinite systems cannot be precondi-

tioned with an indefinite preconditioner using fixed storage methods.

• We developed software implementing the algorithm and it is freely available at [134].

2.3 Introduction

We consider linear systems Ax = b, where A 2 Cn⇥n is a Hermitian positive definite (HPD) matrix

(real or complex), and x, b 2 Cn. We also consider least-squares problems min kAx � bk2, where
A 2 Cm⇥n. In both cases, we assume A is an explicit, sparse matrix.

HPD systems are common in many fields including computational fluid dynamics, power net-

works, economics, material analysis, structural analysis, statistics, circuit simulation, computer vi-

sion, model reduction, electromagnetics, acoustics, combinatorics, undirected graphs, and heat or

mass transfer. A reliable and e�cient solution method is therefore crucial. Solving directly (for

example with sparse Cholesky factorization) may be computationally prohibitive. Iterative methods

are then preferred, especially when they use the sparsity structure of the matrix [80, 163]. For HPD

systems, the conjugate gradient method (CG) [92] and preconditioned CG (PCG) are such methods.

In general, the rate of convergence of iterative methods for solving Ax = b depends on the

condition number of A and the clustering of its eigenvalues. These bounds are more descriptive

when A is normal, as in our case [67]. Preconditioning requires a matrix M ⇡ A�1 such that

AM ⇡ I or MA ⇡ I [19]. The transformed systems AMy = b, x = My or MAx = Mb have the

same solution as Ax = b but are typically better conditioned. One strategy for approximating A�1

is to choose a sparse M to minimize the Frobenius norm of AM � I or MA� I [16].

As noted by Chow and Saad [43] for general square A,

kAM � Ik2
F
⌘

nX

j=1

kAmj � ejk22 (2.1)

(where mj and ej are column j of M and I) and each mj can be computed separately by solving

n least-squares problems min kAmj � ejk22, ideally in parallel. For HPD A, our algorithm SSAI

approximately solves Amj = ej by a Jacobi-like method that changes one element of mj at a time.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER25

We also study algorithm SSAI LS for approximately solving each least-squares problem; it is the

same as SSAI except for one line in the inner loop.

If we have fM = CHC for some nonsingular C, then fM is HPD and we can precondition Ax = b

by solving the left-right preconditioned system

CACHy = Cb, x = CHy. (2.2)

The matrices C and CH are not needed by PCG, just products fMv for given vectors v.

Incomplete Cholesky factorization [116, 117] is a popular method for computing a sparse tri-

angular matrix L such that LLH ⇡ A (and C = L�1 in Eq. (2.2)). In this case, PCG requires

triangular solves with L and LH each iteration. A typical choice for the sparsity structure of L is

that of the lower triangular part of A. The cost of each PCG iteration with LLH preconditioner

is then about twice that of CG (assuming serial computation). Choosing a denser L is undesirable

unless it substantially decreases the number of iterations. There are some methods such as [32] that

successfully use a denser L, which SSAI also allows, but to limit the scope of the chapter, we focus

on nnz(L) ⇡ nnz(A)/2 (with the exception of Table 2.3). Choosing a sparser L will generally lead to

more iterations, while not changing the asymptotic cost of each iteration (decreasing it by at most a

factor of 2). Therefore, we restrict our discussion to the ichol factorization [116, 117] with no fill-in

(sometimes referred to as IC(0)), its modified version (michol), and a randomized version (rchol) [36].

All three versions omit elements of the exact L. michol compensates the diagonal for the dropped

elements by ensuring Ae = LLHe, where e is an n-vector of 1s. rchol works only on symmetric

diagonally dominant (SDD) matrices (meaning 8i, Aii �
P

i 6=j
|Aij |) and may require doubling the

size of the system if the matrix is not SDDM (an SDD matrix with non-positive o↵-diagonal entries:

Aij 0 if i 6= j). While rchol is restricted to a smaller class of matrices, it (theoretically) cannot

break down, and has been shown to work better than ichol in some cases [36].

Alternatives to incomplete Cholesky factorization include sparse approximate inverse precon-

ditioning (SAINV in Benzi et al. [21] and SPAI in Grote and Huckle [86]) and factorized sparse

approximate inverse preconditioning (FSAI in Kolotilina and Yeremin [104] and implemented for

example in FSAIPACK [97]). For sparse HPD systems we propose SSAI, a symmetric sparse ap-

proximate inverse preconditioner. It is an inherently parallel SPAI algorithm adapted from the

left-preconditioner described for GMRES [147] in [148]. Some other SPAI algorithms such as those

described in [41, 43] were implemented, but they were not as fast in preliminary tests because they

require matrix-vector products at each iteration, as well as a dropping scheme. In contrast, SSAI has

scalar-vector products in its iterations, does not compute quantities that are dropped, and does not

require the pre-selection of a sparsity pattern or dropping tolerance. However, it can only be used

with SPD matrices. To this end, we ensure that the resulting preconditioner is SPD in Algorithm 5

(by changing M to M + �I for some positive �) so that it can be used with PCG as opposed to

only with GMRES. It’s worth noting that this adjustment for an SPD preconditioner can be used

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER26

with any symmetric preconditioner, including those from [41, 43]. SSAI improves on SPAI by using

the symmetry and positive definiteness of A and allowing the solver to be PCG. Its advantages

over FSAI are that it does not need prescription of a sparsity pattern, requires communication only

twice: at the beginning and end of the algorithm (like SPAI), and like GSPAI-Adaptive [53] is

not at risk of breakdowns. We note that one can implement SSAI in a manner that preconditions

the system being solved with the approximate M computed until that iteration and still solves for

the columns in parallel, but this requires communication at each iteration and under- performs the

unpreconditioned version of SPAI-type methods for SPD matrices [43].

The chapter is organized as follows. Section 2.4 details the algorithms for computing our pre-

conditioner fM ⇡ A�1 and solving Ax = b with a modified version of PCG. Section 2.5 compares

a MATLAB implementation of fM with ichol, michol, rchol and sparse Cholesky (via MATLAB’s

‘\’ operator) on a wide variety of square matrices from di↵erent applications from the SuiteSparse

Matrix Collection [49, 50] and other sources. We focus on MATLAB comparisons because the main

goal of this chapter is to suggest a new algorithm and not focus on di↵erences in implementation.

We note that a parallel ichol factorization was developed by Chow and Patel [42], but our focus

here is on serial experiments, with some discussions of parallelism. SSAI is computed in an embar-

rassingly parallel fashion, i.e., completely without communication except once at the beginning and

the end, whereas the fine-grained parallel ichol in [42] requires communication between iterations.

Section 2.5.2 compares ichol and SSAI with rchol, a method specific to SDDM matrices. For least-

squares problems, Section 2.6 develops a modified version of preconditioned Conjugate Gradient

Least-Squares (PCGLS), to solve some examples from SuiteSparse. Matrices in Section 2.5, 2.6 are

chosen to cover a wide array of fields and problem sizes, and several scale-up tests. Section 2.7 ex-

amines sparsity structures of square and rectangular systems and their impact on choosing solution

methods. Section 2.8 discusses complexity and parallel implementation. Section 2.9 discusses results

and future directions. Section 2.9.1 summarizes the similarities and di↵erences of preconditioners

for HPD problems. For symmetric indefinite systems, Section 2.9.3 shows that an indefinite precon-

ditioner M = CTC can be used if and only if C is available separately. Thus, SSAI is not useful in

this situation (because it exists as M , not as CTC).

2.4 A PCG algorithm for HPD linear systems

For SSAI and comparisons with existing methods, we start by diagonally scaling A using Algorithm 2

(unless otherwise noted). Each o↵-diagonal entry is scaled by the square root of the product of the

diagonal entries in its row and column. Thus, Aii = 1 and |Aij | . 1. The symmetry and unit diagonal

of the scaled A are not a↵ected by round-o↵. Algorithm 2 takes O(k) time, where k ⌘ nnz(A) is

the number of nonzeros in A. It could be parallelized (less trivially than the rest of SSAI) but its

cost is negligible. The system to be solved becomes DADy = Db, x = Dy. From now on we assume

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER27

Algorithm 2 Diagonal scaling of A

1: Define a diagonal matrix D with Dii = 1/
p
Aii

2: A D⇤tril(A)⇤D (the strictly lower triangular part of A)
3: A A+AH+ I

Algorithm 3 Algorithm 3 [148] Parameters (typical values not mentioned): lfil , itmax

1: M 0n⇥n

2: for j 1 to n do
3: mj M ⇤ ej
4: for k 1 to itmax do
5: r = ej �Amj

6: i = indmax(|r|) (index of maximum element-wise absolute value)
7: ↵ = ri/ai,i
8: mj mj + ↵ei
9: if nnz(m) � lfil then

10: break
11: end if
12: end for
13: end for

Ax = b has been scaled in this way.

The outer loop of Algorithm 4 (SSAI) computes a sparse vector mj as an approximate solution

of Amj = ej for each j. The main di↵erences between Algorithm 4 and the method of [148] are

application to PCG (not GMRES), simplification of the for loops, parameter selection (lfil and

itmax), and the fact that the symmetrization on line 16 is mandatory instead of optional. The inner

loop of Algorithm 3 in [148] computes the residual rj = ej � Amj , but Algorithm 4 here updates

r r � � ⇤ ai very cheaply.

Theorem 1. The two algorithms are equivalent in exact arithmetic, assuming A is diagonally scaled.

(If not, � r[i]/aii in SSAI instead of line 7 makes them equivalent.)

Proof. Both algorithms initialize r to ej when working on column j. If we denote the value of a

variable z at iteration k by z(k), [148] sets r(k+1) = ej �Am(k+1)
j

= ej �A(m(k)
j

+m(k+1)
j

�m(k)
j

) =

ej �A(m(k)
j

)�A(ei�(k)) = r(k) � �(k)ai as in Algorithm 4 line 12.

The inner loop of Algorithm 4 changes one entry of mj by the amount � = r[i], the largest

element of the residual vector r = ej �Amj , and limits the number of nonzeros per column to lfil.

Note that line 12 sets r[i] = 0, so the next i will be di↵erent.

We must choose itmax � lfil for SSAI to work, but not so large that the preconditioner is too

expensive to compute. (In our experiments, we set itmax = 2*lfil.) We construct M column by

column (not row by row) because this leads to e�cient memory access in MATLAB.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER28

Algorithm 4 SSAI: left-right HPD preconditioner lfil = ceil(nnz(A)/n), itmax = 2⇤lfil
1: M 0n⇥n

2: for j 1 to n do
3: m 0n⇥1

4: r ej (n⇥ 1)
5: for k 1 to itmax do
6: i = indmax(|r|) (index of maximum element-wise absolute value)
7: � r[i]
8: m[i] m[i] + �
9: if nnz(m) � lfil then

10: break
11: end if
12: r r � �⇤ai
13: end for
14: mj m
15: end for
16: fM (M +MH)/2

Lines 6–8 of Algorithm 4 generate the entries of mj with the largest magnitude. M itself has

previously been used with GMRES, but PCG requires a Hermitian preconditioner. If M is a good

right preconditioner, i.e., it minimizes Eq. (2.1) in some subspace, we know that MH minimizes

kMHA � IkF in the same subspace, and so is a good left preconditioner. Thus, the Hermitian

matrix fM = (M +MH)/2 should be a good left-right preconditioner.

If M is PD, it follows that MH is PD and fM is HPD. However, M may not be PD. Grote and

Huckle [86] prove that if krjk2 ⌘ kAmj � ejk2 < ✏ and p denotes the maximum number of nonzeros

in any column of the residual, the eigenvalues of AM lie inside a disk of radius
p
p✏, centered around

1. As p n, taking ✏ = 1/
p
n, changing line 5 of Algorithm 4 to “While krjk2 � ✏ do”, and

removing lines 9–11, guarantees M will be PD [86], but would substantially increase computation

time. Fortunately, Algorithm 4 usually produces an HPD fM . In Algorithm 5 we use an alternative

and less expensive way of ensuring fM is HPD, and this has proved e↵ective in the numerical tests.

If fM = CHC, it is natural to ask whether CACH ⇡ I. The eigensystem of fM proves there is

a unique HPD eC such that fM = eC2. Further, for a Hermitian A, A eC2 = I) eCA eC = I. By

continuity, we can expect that minimizing kAfM � Ik2
F
tends to minimize k eCA eC � Ik2

F
.

For simplicity, the rest of the chapter uses M in place of fM .

2.4.1 Approximate solution of Amj = ej

Jacobi’s method [80] applies to HPD systems. Algorithm 4 applies up to itmax iterations of a Jacobi-

like method to the jth linear system Amj = ej (with Aii assumed to be 1 after scaling). Instead

of updating all elements of the solution at each iteration (like Jacobi), Algorithm 4 computes only

one element at each iteration and limits the number of iterations to keep mj sparse. A bound

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER29

on the size of the residual r after k steps of the inner loop follows from Theorem 4.1 in [148]:

krkkA�1 (1� 1
n(A))

k/2kejkA�1 , where (A) is the condition number of A and kxkA ⌘ xHAx. This

provides a weak theoretical bound for convergence, but in practice the algorithm performs much

better.

A variation on SSAI is to apply coordinate descent to the function 1
2krk

2
2 within the inner loop.

For eack k, this leads to the 1-variable least-squares problem min� kai�� rk, which changes line 7 of

Algorithm 4 from � r[i] to � aT
i
r/kaik2. We name this method SSAI LS. The squared norms

can be precomputed from A, but the new line of code is significantly more expensive than line 7 of

SSAI, and safeguards are needed to choose a di↵erent i in the next inner loop (because the largest

r[i] may be for the same i, but aT
i
r will now be zero). Salkuyeh and Toutounian [148] prove that

each iteration of SSAI reduces the quantity krkA�1 , whereas SSAI LS reduces krk itself. Numerical

comparisons are therefore of interest. We found in [137] that SSAI LS tends to produce an M that

is closer to being SPD but requires more iterations by the Ax = b solver (in this case preconditioned

MINRES).

In [136] we give MATLAB code for both versions of SSAI and for several other precondition-

ers, along with drivers that use MINRES with each preconditioner to solve a given HPD system

Ax = b. Two of the preconditioners apply 2 and 3 iterations of MINRES (respectively) to the

problem min kAmj � ejk for each j. (These preconditioners and their drivers allow A to be definite

or indefinite.) On HPD systems we find that SSAI in Algorithm 4 is usually the most e↵ective

preconditioner. The numerical results below therefore focus on SSAI, but the other preconditioners

in [136] may be useful in specific cases.

2.4.2 Modified PCG

Algorithm 5 makes use of the computed preconditioner fM (now M) in a modified form of PCG.

We use a matrix-vector multiplication instead of a linear system solve because M ⇡ A�1 (not A

itself). The algorithm is equivalent to applying CG to system Eq. (2.2) with M = CHC. In exact

arithmetic, PCG is guaranteed to converge in at most n iterations, but this number is usually much

less than n with any reasonable preconditioner. We can safely set the stop condition of the loop to

n, knowing that the break conditions will usually stop the loop. We store our initial guess as x0 and

use PCG to solve Adx = r0, ending with x = x0 + dx. If x0 is a very good guess, the small steps

defining dx won’t be lost to round-o↵ error.

A further modification is to detect indefiniteness or near-singularity in M (lines 18–20) and

restart PCG with an updated x0 and a more HPD M . The normalized inner product of r with M

is ⇢̂ ⌘ (rHMr)/krk22. If ⇢̂ is small or negative, M must be close to singular or indefinite. With tolM

defined to be the minimal ⇢̂ that we accept, we modify M in a linear fashion to increase ⇢̂, update

x0, and restart PCG. The parameters tolM and � were chosen experimentally, but the same values

were used for all problems.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER30

Algorithm 5 Modified PCG Typical parameters: tolM = 10�2, � = 10

1: r b�A⇤x0, dx 0n⇥1

2: p z M ⇤r
3: ⇢new real(zH⇤r)
4: for j 1 to n do
5: q A⇤p
6: � real(pH⇤q)
7: if � 0 then
8: break; (A is not PD)
9: end if

10: ⇢ ⇢new, ↵ ⇢/�
11: dx dx+ ↵⇤p
12: r r � ↵⇤q
13: if krk2/kbk2 < tol then
14: break
15: end if
16: z M ⇤r
17: ⇢new real(zH⇤r), ⇢̂ = ⇢new/krk22
18: if ⇢̂ < tolM then
19: Restart at line 1 with x0 x0 + dx, � = �⇤(tolM� ⇢̂), M M + �⇤I
20: end if
21: p z + (⇢new/⇢)⇤p
22: end for
23: x = x0 + dx

The matrix-vector product in line 16 can be parallelized. Benzi et al. [21] introduce a sparse

approximate inverse of the Cholesky factor, again allowing a parallel product. However, their method

does not parallelize the computation of the preconditioner, and should not be expected to work

when Cholesky fails. (SSAI does not depend on Cholesky factorization.) Benzi and T
�
uma [22] later

introduce a method that does not depend on the Cholesky factors, but rather on A-orthogonalization

(A-orth.). This method has the advantage of always succeeding, but it cannot be computed or applied

in parallel. Some known methods such as [148] aim to compute a preconditioner to an HPD matrix,

but use it on the left or right with more general methods such as GMRES, because the resulting

matrix AM or MA is not guaranteed to be Hermitian. These methods are far less e�cient than

PCG, which is tailored for HPD matrices and has fixed storage.

2.5 Numerical results on HPD systems

We compare the performance of SSAI (Algorithm 4) with the ichol, michol, and rchol (in Section 2.5.2

only) preconditioners and the intrinsic backslash (\) solver , using MATLAB on a serial PC. For all

methods except rchol, we apply Algorithm 2 to HPD matrices A to obtain a scaled matrix A with

unit diagonal. We then attempt to solve Ax = b, where b = Aw and wT = [1, 2, . . . , n]/n. The first

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER31

Table 2.1: Abbreviations for SuiteSparse problem fields.

Field Name Abbreviation Field Name Abbreviation

Acoustics ACO Combinatorial problems COMB
Circuit Simulation CS Computational Fluid Dynamics CFD
Computer Graphics and Vision CGV Electromagentics EM
General Least-Squares GLS Geomechanics GM
Power Network PN Structural Mechanics SM
Thermal Problem TP Undirected Graph UG

two sections use matrices from the SuiteSparse collection, and the other sections contain scale-up

tests for problems submitted to SuiteSparse and also available in [135].

Note that the MATLAB implementation of SSAI handles both real and complex systems (without

change), but SuiteSparse contains only one complex HPD matrix mhd1280. Timing results were not

included because of the matrix’s size, but all methods worked.

ichol and michol are computed by the built-in function ichol(A) with opts.type = ’nofill’

and opts.michol = ’off’ and ’on’ respectively. rchol is computed with the package from [35].

We implement SSAI as in Algorithm 4 and use it with PCG as in Algorithm 5. For ichol, michol, and

rchol, a simpler form of PCG replaces the product with M by two triangular solves (corresponding

to the ichol factors). Backslash computes the Cholesky factors of A if possible, and then two

triangular solves. Otherwise, it tries MATLAB’s ldl function (LDLH with possibly indefinite D)

or sparse LU factorization. Note that decompositions take far more time than triangular solves.

If there are multiple right-hand sides, it is best to compute the decomposition explicitly using

Ã = decomposition(A,’chol’) and x = Ã\b for each b.

In Algorithm 4 (SSAI) we use itmax = 2⇤lfil and lfil = ceil(nnz(A)/n), giving nnz(M) ⇡
nnz(A). These values were chosen to be roughly consistent with ichol, and for the same reason of

not substantially a↵ecting the run-time of each PCG iteration. It is possible that di↵erent values

would give better results, including selecting lfil on a column by column basis, but here we focus

on the method itself and not optimizing on the edges.

In Algorithm 5 (modified PCG) we use tol = 10�8, tolM = 10�2, � = 10. Final relative residuals

kb�Axk2/kbk2 were verified to be below tol.

In the tables of results, michol is omitted because when it worked, the number of iterations was

very similar to that of ichol, but it was less robust, frequently encountering a non-positive pivot

even when ichol worked seamlessly. ichol and ‘\’ are also omitted if they failed. rchol is omitted

for non-SDD matrices. T1 and T2 are the times (in seconds) for algorithms 4 and 5. For ‘\’, only
total time is reported as T2. For readability, Table 2.1 stores a key for the fields of the matrices.

Additionally, both n and nnz are rounded after 3 digits, with K denoting thousands and M denoting

millions. Here and in the other tables, nnz(M) refers to 2 ⇤ nnz(L) for ichol and rchol.

The MATLAB code for algorithms 4 and 5 is available from [134].

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER32

2.5.1 Matrices from SuiteSparse

Results are presented in order of increasing nnz(A) as a proxy for problem di�culty. The number of

iterations reported includes iterations before and after M was changed. The number of changes to M

is labeled R. Evidently with very few corrections to M , SSAI gives an e↵ective HPD preconditioner.

Table 2.2 gives results for matrices where nnz(A) > 1M. Only SSAI succeeded on all 19 problems

(ichol fails on 10 and ‘\’ fails on 5) and it is the most easily parallelized method. Here and in other

cases, when ichol failed it was because it encountered a non-negative pivot, and when ‘\’ failed it was

because it ran out of memory. The memory capacity could be increased, but the point is for a given

memory size, and increasing problem size, ‘\’ will (almost) always run out of memory long before any

iterative method. Along with the scale-up tests in the following sections, this table illustrates that

for large matrices that are not bandwidth-limited, SSAI is the most robust of the methods. There is

a way to ensure that ichol succeeded with the ‘diagcomp’ option with parameter ↵, which calculates

ichol on A +↵*diag(diag(A)). (For scaled A, this is equivalent to A +↵*speye(n).) However, there

is no foolproof way for selecting ↵. On the matrices tested, ↵ = 0.1 did not work but ↵ = 1 did. In

the latter case, the PCG time T2 was substantially larger than with SSAI. MATLAB advises that

↵ = max(sum(abs(A))./diag(A)) - 2 guarantees A +↵*diag(diag(A)) is diagonally dominant—a

su�cient condition for ichol to succeed, but a too conservative one. It led to ↵ ⇡ 10 and even more

iterations. We recommend ichol be used only when it works with ↵ = 0.

We see also that the cost per iteration of PCG + SSAI is always less than PCG + ichol. Addi-

tionally, the SSAI preconditioner is applied as a product and can be parallelized more e�ciently. It

follows that if the number of PCG + ichol iterations is comparable to PCG + SSAI, which indeed

occurs frequently, SSAI would be preferred even when the other methods work. Note that ichol

and ‘\’ are intrinsic MATLAB functions coded in C and can be expected to outperform M-files such

as algorithms 4 and 5, or PCG with ichol. The disparity between run times of intrinsic and .m

functions in MATLAB can be 3 orders of magnitude [12, 107]. Thus, although T1 is often significant

for SSAI, if e�ciently implemented it could outperform ichol on large systems (given that usually

nnz(M) < 2⇤nnz(L)). Also, the T1 cost is less significant when there are multiple bs.

The three largest SuiteSparse matrices are Queen 44147, Bump 2911, and Flan 1565, with n =

4M, 2.9M, and 1.6M. A comparison with FSAIE-Comm [110] showed SSAI taking about a third as

many iterations (1504:4755, 784:2206, 1425:4578). The FSAIE preconditioner is guaranteed to be

SPD, but PCG/SSAI restarted only once on Queen 44147 to obtain an SPD M + �I, and the other

two problems required no restarts. This motivates a more optimized (and parallel) implementation

of SSAI.

For StocF-1465 (which took many PCG iterations and had a very sparse M), Table 2.3 tests

if larger values of lfil and itmax give a better M . Monitoring nnz(M) shows that Algorithm 4

terminates mostly because of itmax and not lfil. To avoid discrepancies in run-time unrelated

to the algorithm, we define a measure Obj = ⌫ [nnz(A) + nnz(M)]⇤Itns that roughly represents

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER33

the number of operations completed by PCG, where ⌫ is a constant chosen such that Obj = 1 for

lfil = ceil(nnz(A)/n) = 15. We see that the number of iterations is monotonically decreasing

and Obj has a downward trend. We conclude that for some applications, tweaking the parameters

lfil and itmax can be advantageous.

2.5.2 SDDM matrices

There are only four SDDM matrices in our SuiteSparse test set (table 2.2 and smaller problems),

and only one remained SDDM after scaling (shallow water2). Table 2.4 compares ichol and SSAI

with rchol on three of the matrices, using b = Aw before A and b were scaled for ichol and SSAI.

(This is di↵erent from Table 2.2, where we assume the scaled matrix DAD is the actual “A”, and

b = Aw is defined from the scaled A.) Note that scaling A to DAD does not a↵ect definiteness, but

it can destroy or create the SDDM property required by rchol. Thus, the units of A and x must be

chosen carefully before rchol is applied. Also, rchol forms the Laplacian matrix

A �Ae
�eTA eTAe

!
,

factorizes it, and takes the top-left n⇥n block of the (n+1)⇥(n+1) factor. On the matrix Andrews,

rchol failed because the n ⇥ n block was singular to machine precision. (This is an example of a

theoretical property not holding up numerically.) As the goal of Table 2.4 is to make comparisons

with rchol, we omit Andrews from the table. We tuned ichol and SSAI to have nnz(M) similar to

rchol, though this does not optimize their performance. ichol and rchol performed well on all three

problems. SSAI was comparable on the first two problems, but needed more PCG iterations on

ecology2.

2.5.3 Scale-up for Trefethen challenge matrices

Table 2.5 shows scale-up results for a challenge matrix [161, 162] with increasing prime numbers

on the main diagonal and 1s wherever |i � j| = 2N for some non-negative integer N . The original

matrix has n = 20, 000, and the challenge is to compute eT1 A
�1e1. SuiteSparse contains case

n = 2, 0000. We generated two much larger matrices of the same form. They remind us that

iterative methods are essential for systems that have substantial fill-in in their Cholesky factors.

For ichol and SSAI, T2 scales linearly with n (with SSAI being twice as fast as ichol). On these

problems, ‘\’ scales poorly because the bandwidth grows linearly with n. It failed on even the

moderately sized Trefethen 200000. The PCG iterations remain roughly constant because the matrix

becomes more diagonally dominant near the bottom right corner, and the solution vector is also

concentrated at the bottom. We checked all methods on the original Trefethen problem by solving

with b = e1. Their performance was similar. For each n we recovered the first ten digits of

the solution: 0.7250783462, 0.7250809785, 0.7250812561 (found by all methods that worked). The

n = 20, 000 value agrees with [161]. A later publication by some of the challenge participants [26]

found the same values with PCG + a diagonal preconditioner for the largest three problems. We

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER34

note that PCG with tol = 10�11 took 14 iterations with a diagonal preconditioner [26], but only 6

with SSAI. The relatively high cost of calculating M suggests that for one b, it may not be worth

the trouble. However, if we were interested in multiple bs, such as finding A�1, we would only need

to find M once, making it negligible in the overall cost. The number of iterations needed to solve

each system b = ej is constant empirically and analytically [26]. In fact, with the matrix becoming

more diagonally dominant near the bottom, the number of iterations decreases with j (for example:

n = 20, 000, j = 20, 000 converged in 2 iterations). nnz(A) = O(n log(n)) means that PCG with

any of the three preconditioners can find A�1 in O(n2 log(n)) time, as matrix-vector products with

A (or M) take up most of the computation. SSAI has the smallest constant.

2.5.4 Scale-up for finite-element linear elasticity matrices

Table 2.6 shows scale-up results for a structural mechanics problem that results from discretizing

a cube using quadratic hexahedral finite elements. All elements are cubes, leading to a relatively

well-conditioned A. We show results for 8, 16, 32 elements per direction. As in Table 2.5, ‘\’ failed,
though later because the bandwidth of A grows less rapidly with n compared to the Trefethen

problems. Both iterative methods work well. SSAI needs more PCG iterations but less PCG time.

The PCG iterations roughly double as the number of elements increases—a small price for 2X the

resolution in all three directions.

2.5.5 Scale-up for finite-volume petroleum engineering matrices

Table 2.7 shows scale-up results for SPE10, an important benchmark for testing solver methods in

petroleum engineering [44]. Examples were constructed by Klockiewicz [102] using the methods in

[115] for a petroleum reservoir simulation. Here again, ‘\’ failed for the larger problems, while both

iterative methods work well. As with the preceding finite-element matrices, ichol needs fewer PCG

iterations but more PCG time. For ichol, nnz(M) = 2 ⇤ nnz(L). For SSAI, nnz(M) ⇡ 1.1 ⇤ nnz(A).

2.5.6 Scale-up for finite-element ice-sheet matrices

Table 2.8 shows scale-up results for a model of ice flow in Antarctica [32, 159]. SSAI is the only

method that works on all cases, with ‘\’ failing for the larger ones and ichol failing on all of them.

For SSAI, nnz(M) ⇡ 0.3–0.4 nnz(A), leaving room for a denser M .

2.6 Least-squares problems

We consider least-squares problems minx kAx � bk2 with rectangular A 2 Rm⇥n and m > n. If A

is sparse and Ã ⌘ AHA is not too dense, a naive approach is to apply PCG + SSAI to the normal

equation AHAx = AHb ⌘ Ãx = b̃. The system is HPD i↵ A has full column rank. Otherwise, Ã

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER35

Algorithm 6 Modified PCGLS Typical parameters: tolM = 10�2, � = 10

1: r b�A⇤x0, dx 0n⇥1

2: t AH⇤r
3: u w M ⇤t
4: �new = tH⇤w
5: for j 1 to n do
6: q A⇤u, � �new
7: ↵ �/kqk22
8: dx dx+ ↵⇤u
9: r r � ↵⇤q

10: t AH⇤r
11: if ktk2/kbk2 < tol then
12: break
13: end if
14: w M ⇤t
15: �new = tH⇤w, �̂ = �new/ktk22
16: if �̂ < tolM then
17: Restart at line 1 with x0 x0 + dx, M M + (�⇤(tolM� �̂))⇤I
18: end if
19: u w + (�new/�)⇤u
20: end for
21: x = x0 + dx

is Hermitian positive semi-definite (and singular) but a solution always exists, i.e., the system is

compatible.

For the normal equations, Hestenes and Stiefel [92, §10] gave a special form of CG now known

as CGLS [123, §7.1], [24, §7.4.1]. If a preconditioner M ⇡ (AHA)�1 is known, preconditioned CGLS

can be implemented as shown in Algorithm 6 (modified PCGLS), with operators A and M . Some

previous implementations of PCGLS work in this way (e.g., Regularization Tools [88] and IRtools

[74]), excluding the restarts in lines 16–18. We note that when M is available in factored form

([74, 88] use M = L�TL�1 with L triangular), it should be preferable numerically to work with

CGLS and operator AL�1, rather than with PCGLS. This is done with ichol in [173] and for SSAI

and ichol in Table 2.9.

When A is rectangular and sparse, ‘\’ uses a sparse QR factorization AP = QR to solve Ax ⇡ b

directly without forming AHA (where P is a column permutation to preserve sparsity, QHQ = I, and

R is upper triangular). In general, if Ã is sparse, the high e�ciency of sparse Cholesky compared

to sparse QR makes x = Ã\b̃ outperform x = A\b, as in the examples here. Thus, we use Ã and b̃

for all methods.

Using the same methods and comparisons as in Section 2.5, we compile results for SSAI on

least-squares problems. Normalizing each column of A gives Ã a unit diagonal, and then we can

apply algorithms 4 and 5. We set b = AT e and use b̃ = AHb, which is scaled with the same diagonal

matrix used to normalize A.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER36

Figure 2.1: Sparsity structures of some square HPD problems. Although exact Cholesky factors
would be essentially dense (within the outermost band), ichol and SSAI both perform well.

Table 2.9 shows results for matrices [49] ordered by increasing nnz(AHA), but keeps problems of

the same type together. As in Section 2.5, when a method failed, it is omitted from the table for

that matrix.

We see that SSAI is again the most robust of the three methods. It is the only method to work on

ch8-8-b5, and it outperforms the other methods sometimes even when they work. ichol and SSAI’s

T2 scales linearly on ch8-8-b-type problems. SSAI was twice as fast as ichol until ichol failed.

Section 2.7 explains the seemingly surprising result of ‘\’ working well on the large Hardesty3,

but not at all on the substantially smaller ch8-8-b4 and ch8-8-b5.

Our experiments with PCGLS have obtained their preconditioner M by applying Algorithm 4

to AHA. When A contains some relatively dense rows, special methods are needed to avoid forming

AHA (and SSAI is not practical). Several such methods have been given by Scott and T
�
uma [150–

152].

2.7 Sparsity structure of A

We examine the sparsity structure of some of our matrices in figures 2.1–2.2, where for rectangular

matrices (last two) we look at the sparsity of AHA in addition to A. We look at the largest matrix in

each of four classes. The sparsity structure of smaller matrices is essentially identical. The banded

structure of AHA is apparent in Hardesty, allowing a dense band solver (or sparse Cholesky) to

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER37

Figure 2.2: Sparsity structures of A in rectangular problems, compared to the sparsity structure of
AHA. The structure makes it clear why an iterative method would outperform a direct method on
ch8-8-b, and vice versa for Hardesty.

solve the problem easily. PCGLS+SSAI iterations scale as ⇠ 50n0.3, which could be reasonable

were it not for the superiority of direct methods on banded problems. Trefethen and ch8-8-b are

di�cult for direct solvers because of the substantial fill-in. However, the low magnitude of most of

the omitted entries allows PCG + SSAI to converge with a constant number of iterations on these

problems. FEM3D has the classic sparsity structure of finite-element matrices. It is less banded than

Hardesty, but substantially more banded than Trefethen and ch8-8-b. It is a middle ground of

sorts, with ‘\’ scaling poorly but not quite as poorly as for Trefethen and ch8-8-b. PCG + SSAI

iterations scale as ⇠ n0.3 (very low), making it a good choice on these problems, while leaving room

for a di↵erent iterative solver to do better.

In Fig. 2.2, note that the Hardesty3 matrix A appears to have a significant number of relatively

dense rows, suggesting that the special methods of Scott and T
�
uma [150–152] might be needed to

avoid a dense AHA. However, the nonzeros in A are integers and there must be exact cancellation

when AHA is formed, as it proves to be banded as shown. Hardesty3 is a deceptive test matrix.

2.7.1 Performance of ichol vs SSAI

To gain understanding of how ichol and SSAI compare, we examine two small matrices: 1138 bus

(where ichol substantially outperformed SSAI) and sts4098 (where SSAI worked well but ichol

failed). Timing results are not included because of the matrices’ small size. The inverses of both

matrices are fully dense.

For complete Cholesky factorization of 1138 bus, nnz(L) ⇡ 38.3K means that the factor stays

relatively sparse and the error introduced by ichol in dropping the fill-in does not create a negative

pivot to break the factorization. Fig. 2.3 shows the sparsity pattern. As the entries are similar in

magnitude, SSAI introduces significant error when ignoring many somewhat small ones.

For complete Cholesky factorization of sts4098, nnz(L) ⇡ 4.68M means the factor is essentially

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER38

Figure 2.3: Sparsity pattern entry magnitude of 1138 bus and sts4098. The larger entries are
concentrated near the diagonal. On 1138 bus, SSAI cannot choose easily among the many entries
ri of similar magnitude.

dense (about half of the entries are nonzero). ichol fails on this matrix because it throws away

almost all entries of the complete factor, and eventually enough error is introduced to make a pivot

negative. SSAI is able to find the larger entries and prioritize them in the factorization. This can

be done with ichol with fill-in as well, but an entry must be calculated before the decision is made

to remove it from the factorization, and this is very costly.

2.8 Parallelism and complexity

Parallelism requires examination of run-time dependence on n, k ⌘ nnz(A), and number of processors

p. We can assume that communication between processors is negligible for p ⌧ n, but verification

of this assumption and the following idealized analysis remains for future work. For a nonsingular

A, n k n2. The outer loop of Algorithm 4 is trivially parallelizable on up to n machines because

each column is computed separately. Symmetrization of M (Line 16) could be parallelized with

greater e↵ort, but it is only an O(k) operation occurring once. Lines 6–12 are executed O(k) times,

requiring O(k/n) arithmetic operations each time. Line 14 runs n times with O(k/n) operations

each time. The time to compute M is therefore T (A) ⌘ O(k2/(np)).

Algorithm 5 is dominated by matrix-vector products that require O(k) operations. In exact

arithmetic, the loop runs at most n times and at least once. It must happen sequentially. On

parallel machines, matrix-vector products can be done row by row, so with p machines they take

O(k/p) time. The norm on line 13 is an O(n/p) operation because the contribution of each processor

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER39

must be summed. Therefore, the run-time for PCG on p machines is ⌧(A) ⌘ O(kn/p). The analysis

of Algorithm 6 is similar with A replaced by AHA.

When ⌧ & T it could help to use larger lfil and itmax in SSAI. This was true on StocF-1465

(which needed the most PCG iterations among the SuiteSparse matrices).

The complexities T (A) and ⌧(A) should be taken into account when we construct M and when

we try to bound the size of A itself (e.g., if it comes from finite-element discretization). An extensive

study such as for FSAI [105] is needed to verify how these theoretical results for parallel machines

hold up in practice.

2.9 Discussion

The numerical results show that even on serial machines, SSAI is competitive with ichol precondi-

tioners and direct methods for large HPD linear systems whose Cholesky factors are denser than

A. The total PCG + SSAI iterations scales sublinearly with n for all problems, and for some prob-

lem classes of increasing dimension is even constant. Moreover, PCG + SSAI is the most robust

of the four methods, and guarantees a solution in a wider range of cases. For small systems, the

overhead of computing the preconditioner is considerable, although this is partly due to ine�cient

implementation compared to built-in functions. The overhead for computing M is less significant

when there are several right-hand sides or several similar matrices, such that the preconditioner

M can be reused. Although there is no ‘one size fits all’ preconditioner, our results suggest that

SSAI for HPD systems is suitable if some of the following criteria are met: n or k ⌘ nnz(A) is

large, A arises from finite-element schemes, A is not banded and factors of A would be too dense,

or parallelization is essential. For general systems or least-squares problems, PCGLS + SSAI can

be e↵ective methods. Further considerations then are the dimensions m,n and the sparsity of AHA.

CG normally terminates when the residual norm is su�ciently small (line 13 of Algorithm 5), which

means the conjugate residual method (CR [92]) and MINRES can always terminate sooner than CG

[71]. Thus, CR + SSAI or MINRES + SSAI are viable alternatives to PCG + SSAI if precautions

are added to increase the positive definiteness of M and restart (lines 17–20 of Algorithm 5), as has

been done in the MINRES drivers of [136].

A future research direction would be to find a more e�cient SSAI-type algorithm to derive a

preconditioner for more general matrices; for example, a SSAI-type preconditioner for LSQR and

LSMR [70, 123] on square or rectangular systems, where AHA is not explicitly formed. For symmetric

indefinite systems, we can hope to do better.

Another direction is to make parallel implementations of SSAI for CPUs and GPUs. A recent

work on GSAI-Adaptive [73] found that SPAI algorithms for unsymmetric Ax = b can be e↵ectively

implemented on GPUs. A natural continuation of that work and ours would be to implement SSAI in

a similar way, in order to take advantage of the symmetry and positive definiteness of SPD problems.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER40

2.9.1 Comparison of preconditioners for iterative methods for HPD prob-

lems

Table 2.10 gives a high-level comparison of di↵erent preconditioners for solving HPD systems. This

table motivates an optimized implementation of SSAI because it is an otherwise competitive method.

Naturally, di↵erent methods will work better for di↵erent problems, so there is no clear winner.

Rather, this table should be used as a guide to which methods to try when attempting to solve a

given problem based on the available matrix data and hardware.

2.9.2 Indefinite A

Any Hermitian A has a decomposition PAPT = LDLT for some permutation P , where L is lower-

triangular and D is block-diagonal [29]. If Ã ⇡ A and a sparse decomposition PÃPT = LDLT

is available (when factorizing A would be too expensive), we can obtain an HPD preconditioner

M = L|D|LT by setting Dii = |Dii| for 1⇥ 1 blocks and replacing each 2⇥ 2 block B by V |⇤|V H,

where B = V ⇤V H is the eigensystem of B [77]. Greif, et al. [85] give a comprehensive C++ package

SYM-ILDL for computing such preconditioners for indefinite and skew-symmetric A, for use with

MINRES and SQMR.

If Ã is quasidefinite [165], a sparse Cholesky-type factorization PÃPT = LDLT exists for any

permutation P with D diagonal and indefinite, and we would use M = L|D|LT .

These “incomplete LDL” methods can be very e↵ective, but are unlike the SSAI approach.

2.9.3 MINRES and preconditioners for indefinite A

Theorem 2. An indefinite left-right preconditioner cannot be used with MINRES-type methods

[40, 122] on indefinite A without explicit knowledge of the preconditioner’s factors. (Note that if the

factors are known explicitly, QMR [72] can be used.)

Proof. MINRES solves Ax = b with Hermitian A. As real symmetric (RS) matrices are a subset

of both Hermitian matrices and complex symmetric (CS) matrices, we restrict our attention to

RS nonsingular A. Suppose we have an RS nonsingular preconditioner M with eigensystem M =

QDQT = Q
p
D
p
DQT = Q

p
DQTQ

p
DQT = CC, where QTQ = I,

p
Dii =

p
Dii, and C =

Q
p
DQT . If M is SPD,

p
D is real-valued, C = CH = CT , and the system can be rewritten as in

Eq. (2.2). However, if M is indefinite,
p
D has some pure real and pure imaginary diagonal entries,

and C = CT 6= CH. We therefore rewrite Ax = b as

CACT y = Cb, x = CT y, (2.3)

where Eq. (2.3) is not Hermitian but rather CS(!).

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER41

Hence, an (indefinite) approximate inverse for indefinite A is not usable as a preconditioner. We

note that an indefinite M can be used as a preconditioner if A is HPD [15], but as we know that

the actual inverse is HPD, an approximate inverse preconditioner of this form is not necessarily

desirable.

We conclude that for SSAI on indefinite A, knowing an indefinite M = CTC (where C is

complex) such that CACT ⇡ I is insu�cient to precondition the problem. We must obtain the

factor C explicitly and solve Eq. (2.3), or abandon the left-right approximate inverse method as a

preconditioner for a symmetric indefinite system.

2.9.4 Signature matrices

A nonsingular matrix A is Hermitian quasidefinite (HQD) if for any permutation P , the factorization

PAPT = LDLH exists with L lower triangular and D nonsingular, indefinite, and diagonal (as

opposed to D being block-diagonal).

Theorem 3. If A is symmetric and indefinite, the existence of an HPD fM = THT such that

TATH = S, where S is a signature matrix (a diagonal matrix with entries ±1), is equivalent to A

being HQD.

Proof. If A is HQD, then for any permutation P we have PAPT ⌘ Ã = LDLH) L�1ÃL�H = D.

If we define eD such that eDii = 1/
p

|Dii|, we have eDL�1ÃL�HeD = eDD eD) TATH = S, where

T ⌘ eDL�1P and S ⌘ eDD eD.

Conversely, TATH = S) PAPT = L eD�1S eD�1LH = LDLH. As L is lower triangular and
eD�1S eD is diagonal, this means A is HQD.

Thus, the strategy of finding fM = THT such that TATH = S is useful for quasidefinite matrices,

and only for them. While SSAI is e↵ective for HPD systems, finding an analogous HPD precondi-

tioner for indefinite systems for use with MINRES remains an open question, but the Algorithm 5

approach of restarting PCG with M M + �I has already proved helpful for MINRES in the

MINRES drivers of [136].

2.10 Summary

SSAI is a new method for obtaining an HPD preconditioner for HPD systems Ax = b. The pre-

conditioner M does not require a prescription of sparsity patterns or reordering of the unknowns,

its computation and application are embarrassingly parallel, it can be made as sparse or dense as

we wish via a few parameters, and PCG and MINRES can easily request diagonal modification to

ensure that M is HPD. We show how SSAI compares with MATLAB’s A\b and ichol on many

matrices from SuiteSparse. On the largest examples, SSAI is the only successful method. Out

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER42

of the 65 problems tested, SSAI succeeded on all of them, while ichol failed on 26 and ‘\’ failed
on 17. We also show how the method can be used with PCGLS to solve general rectangular sys-

tems min kAx� bk. Section 2.9 includes new theoretical results about methods for preconditioning

indefinite and quasidefinite systems.

MATLAB code for algorithms 4–6 (SSAI, PCG, PCGLS) is available from [134]. The imple-

mentations are like ichol in being applicable to a wide range of problems without careful choice of

parameters for each problem. Analogous preconditioners for MINRES (SSAI, Mminres2, Mminres3,

Mchol, Mldl) are given in [136], including drivers that restart MINRES with M M + �I when

necessary, as we do here within PCG.

Acknowledgements

We thank Eric Darve, Bazyli Klockiewicz, and Leopold Cambier for consultation and data regarding

the SPE10 and Antarctica matrices. We also recognize the invaluable resource that the SuiteSparse

collection [49] represents.

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER43

Table 2.2: SuiteSparse Ax = b, nnz(A) > 1M . R is the number of restarts in Algorithm 5 (PCG +
SSAI). SSAI succeeded on all 19 problems, while ichol failed on 10, and ‘\’ failed on 5.

Field Matrix n nnz(A) nnz(M) Method Itns R T1 T2

EM 2cubes sphere 102K 1.65M 1.75M ichol 9 - 3.00e�2 9.39e�2
- \ - - - 2.86e+0

1.98M SSAI 10 0 1.82e+1 7.36e�2
ACO qa8fm 66K 1.66M 1.73M ichol 6 0 1.20e�2 4.34e�2

- \ - - - 1.08e+0
1.71M SSAI 11 0 3.07e+1 6.59e�2

CFD cfd2 123K 3.09M - \ - - 2.15e+0
3.24M SSAI 1235 1 5.32e+1 1.38e+1

CFD parabolic fem 526K 3.67M 4.2M ichol 697 - 3.61e�2 1.76e+1
- \ - - - 1.57e+0

3.69M SSAI 892 0 3.63e+1 1.95e+1
UG pdb1HYS 36.4K 4.34M 4.38M ichol 276 - 1.26e�1 3.57e+0

- \ - - 7.40e�1
4.8M SSAI 511 2 7.75e+1 6.46e+0

PN ecology2 1M 5M 6M ichol 1717 - 3.94e�2 7.44e+1
- \ - - - 1.94e+0

5M SSAI 3248 0 4.58e+1 7.15e+1
EM tmt sym 727K 5.08M 5.81M ichol 1043 - 4.87e�2 39.9e+1

- \ - - - 2.49e+0
5.38M SSAI 1976 0 4.90e+1 5.95e+1

SM boneS01 127K 5.52M - \ - - - 1.81e+0
6.31M SSAI 651 0 8.17e+1 8.69e+0

CS G3 circuit 1.59M 7.66M 9.25M ichol 564 - 9.44e�2 3.91e+1
- \ - - - 8.41e+0

8.39M SSAI 1128 0 8.48e+1 5.47e+1
TP thermal2 1.23M 8.58M 9.81M ichol 1814 - 1.68e�1 1.49e+2

- \ - - - 4.24e+0
9.22M SSAI 2417 0 8.66e+1 1.25e+2

SM hood 221K 9.9M - \ - - 1.03e+0
8.98M SSAI 568 1 1.88e+2 1.82E+1

SM crankseg 2 63.8K 14.1M - \ - - 2.52e+0
13.1M SSAI 161 3 4.21e+2 8.36e+0

CFD StocF-1465 1.47M 21M 9.66M SSAI 7822 1 3.85e+2 5.20e+2
SM Fault 639 639K 27.2M 21.6M SSAI 660 1 5.03e+2 5.27e+1
SM boneS10 915K 40.9M - \ - - - 1.45e+1

46.1M SSAI 9351 0 5.72e+2 9.60e+2
SM bone010 987K 47.9M - \ - - - 1.93e+2
SM 52.4M SSAI 3146 0 6.95e+2 3.69e+2
SM Flan 1565 1.56M 114M 116M ichol 1947 - 2.28e+0 7.23e+2

124M SSAI 1425 0 1.88e+3 3.75e+2
GM Bump 2911 2.91M 128M 89.9M SSAI 784 0 2.35e+2 2.32e+2
SM Queen 4147 4.15M 317M 142M SSAI 1504 1 7.10e+3 8.36e+2

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER44

Table 2.3: StocF-1465 Ax = b with varying lfil and itmax. R is the number of restarts in
Algorithm 5. Obj = ⌫ [nnz(A) + nnz(M)]⇤Itns is a normalized measure of operations in PCG.
Increasing lfil and itmax helps the overall performance.

lfil itmax nnz(M) nnz(M) + nnz(A) Itns R Obj

20 40 11M 32M 7690 1 1.03
30 60 13.3M 34.3M 6766 1 0.97
40 80 15.3M 36.3M 6072 1 0.92
50 100 17M 38M 5487 1 0.87
60 120 18.5M 39.5M 5263 1 0.87
70 140 20M 41M 5156 1 0.88
80 160 21.3M 42.3M 4660 2 0.82
90 180 22.6M 43.6M 4631 1 0.84

100 200 23.8M 44.8M 4315 1 0.81

Table 2.4: Comparison of ichol and SSAI with rchol on SDDM systems Ax = b from SuiteSparse.
rchol requires A to be SDDM. A was not scaled for rchol because only shallow water2 remains SDDM
with scaling. Scaling was performed on ichol and SSAI for better e�ciency. rchol performed well
on these three examples (especially on ecology2), but failed on a fourth SDDM matrix (Andrews,
therefore omitted).

Field Matrix n nnz(A) nnz(M) Method Itns T1 T2

OPT torsion1 40K 198K 395K ichol 9 3.60e�3 2.00e�2
386K rchol 23 6.44e�2 4.78e�2
362K SSAI 29 3.57e+0 2.78e�2

CFD shallow water2 81.9K 328K 491K ichol 8 5.91e�3 2.71e�2
491K rchol 16 9.88e�2 6.03e�2
472K SSAI 15 4.46e+0 2.85e�2

PN ecology2 1M 5M 20.9M ichol 455 2.84e�1 3.25e+1
19.8M rchol 52 2.00e+0 3.98e+0
20.9M SSAI 2311 3.68e+2 8.78e+1

Table 2.5: Scale-up for Combinatorics Ax = b. PCG + SSAI required no restarts. ichol and SSAI
succeeded on all 3 problems, and ‘\’ failed on the largest 2.

Matrix n nnz(A) nnz(M) Method Itns T1 T2

Trefethen 20000 20K 554K 574K ichol 5 5.73e�3 1.60e�2
- \ - - 5.95e+0

575K SSAI 3 5.27e+0 1.03e�2
Trefethen 200000 200K 6.88M 7.08M ichol 4 9.97e�2 1.94e�1

7.14M SSAI 3 7.62e+1 9.90e�2
Trefethen 2000000 2M 81.8M 83.8M ichol 3 2.21e+0 2.80e+0

83.9M SSAI 2 9.58e+2 1.02e+0

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER45

Table 2.6: Scale-up for ordered grid structural mechanics Ax = b. PCG + SSAI required no restarts.
ichol and SSAI succeeded on all 3 problems, and ‘\’ failed on the largest 1.

Matrix n nnz(A) nnz(M) Method Itns T1 T2

FEM3D 3 10.1K 1.02M 1.12M ichol 19 4.79e�2 6.03e�2
- \ - - 5.46e�1

1.2M SSAI 25 2.00e+1 6.15e�2
FEM3D 4 89.3K 10.5M 10.6M ichol 35 5.00e�1 1.17e+0

- \ - - 1.03e+2
12.3M SSAI 45 2.29e+2 9.65e�1

FEM3D 5 750K 94.9M 95.6M ichol 67 4.52e+0 1.97e+1
110M SSAI 81 2.35e+3 1.61e+1

Table 2.7: Scale-up for finite-volume Ax = b. PCG + SSAI required no restarts. ichol and SSAI
succeeded on all 6 problems, and ‘\’ failed on the largest 4.

Matrix n nnz(A) nnz(M) Method Itns T1 T2

lin4E5 422K 2.91M 3.33M ichol 445 2.33e�2 1.12e+1
- \ - - 8.76e+0

3.23M SSAI 661 3.77e+1 7.71e+0
lin1E6 1.12M 7.78M 8.9M ichol 1138 8.54e�2 7.58e+1

- \ - - 1.03e+2
8.76M SSAI 1742 1.01e+2 6.18e+1

lin2E6 2.1M 14.6M 16.7M ichol 1793 187e�1 2.24e+2
16.3M SSAI 2716 1.89e+2 1.82e+2

lin4E6 4.1M 28.5M 32.6M ichol 2007 2.66e�1 5.06e+2
31.8M SSAI 2942 3.66e+2 3.78e+2

lin8E6 8M 55.8M 63.8M ichol 2957 5.88e�1 2.75e+3
61.9M SSAI 4176 7.25e+2 1.18e+3

lin1E7 16M 112M 128M ichol 2934 1.11e+0 4.48e+4
124M SSAI 4205 1.45e+3 2.34e+4

Table 2.8: Scale-up for ‘\’ and SSAI on unordered grid structural mechanics Ax = b. SSAI succeeded
on all 4 problems, ichol failed on all 4, and ‘\’ failed on 2.

Matrix n nnz(A) nnz(M) Method Itns R T1 T2

ant16 5 630K 29.7M - \ - - - 1.33e+1
8.7M SSAI 5307 1 5.65e+2 2.78e+2

ant16 10 1.15M 57.5M - \ - - - 1.22e+2
21.9M SSAI 8969 2 1.11e+3 8.77e+2

ant8 5 2.52M 120M 52.9M SSAI 6328 3 2.33e+2 1.36e+3
ant8 10 4.62M 232M 92.4M SSAI 12055 2 4.66e+3 4.99e+3

CHAPTER 2. SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER46

Table 2.9: SuiteSparse least-squares problems min kAx � bk with A 2 Rm⇥n. SSAI and ichol are
used with PCGLS. SSAI succeeded on all 9 problems, ichol failed on 4, and ‘\’ failed on 2.

Matrix Field m n nnz(A) nnz(AH
A) nnz(M) Method Itns R T1 T2

image interp CGV 240K 120K 712K 1.56M - \ - - 5.18e�1
1.54M SSAI 5941 0 2.77e+1 2.29e+1

sls GLS 1.75M 62.7K 6.8M 4.72M 4.78M ichol 43 - 4.97e�1 2.68e�1
- \ - - - 1.81e+1

7.3M SSAI 75 2 3.36e+2 3.84e+0
LargeRegFile CS 2.11M 801K 4.94M 6.38M 7.18M ichol 24 - 1.45e+2 1.66e+0

- \ - - - 4.01e+0
7.38M SSAI 33 0 76.3e+1 1.23e+0

Rucci1 GLS 1.98M 110K 7.79M 9.75M 9.86M ichol 90 - 3.99e�1 5.26e+0
- \ - - - 9.53e+0

4.13M SSAI 3557 2 2.06e+2 1.19e+2
ch8-8-b3 COMB 118K 18.8K 470K 1.43M 1.45M ichol 8 - 4.39e�2 6.76e�2

- \ - - - 1.09e+2
995K SSAI 7 0 3.30e+1 2.61e�2

ch8-8-b4 COMB 376K 118K 1.88M 7.64M 7.76M ichol 9 - 2.45e�1 3.22e�1
4.59M SSAI 9 0 1.70e+2 1.21e�1

ch8-8-b5 COMB 564K 376K 3.39M 17.3M 17.3M SSAI 5 1 2.30e+2 3.26e�1
Hardesty2 CGV 930K 304K 4.02M 3.94M - \ - - 1.37e+0

3.96M SSAI 2871 0 6.91e+1 4.39e+1
Hardesty3 CGV 8.22M 7.59M 40.4M 98.6M - \ - - 4.81e+1

98.4M SSAI 7226 0 1.82e+3 2.13e+3

Table 2.10: Comparison of preconditioners for iterative methods on HPD problems. The rchol and
spaND methods have further restrictions. rchol requires the matrix to be SDD, or SDDM if we don’t
want to double the size of our system, and spaND requires the interfaces between groups of variables
to be relatively sparse (i.e., there are only short range interactions between variables). Note that
SAINV adds a matrix to A during computation of M to ensure that M is positive definite. This
means that A may be modified too much or even unnecessarily unless the process is attempted
multiple times. (In contrast, SSAI modifies M , not A, and only as needed.) Sparsity refers to the
sparsity structure of the preconditioner and whether it is supplied by the user (fixed) or calculated
within the method (flexible). Parallelism refers to the computation of the preconditioner (not its
application). FSM says if it can be used with fixed-storage iterative methods like CG and MINRES.
Application refers to how the preconditioner is applied. (Product preconditioners are more desirable
because they can be applied in embarrassingly parallel fashion, whereas triangular solves involve
waiting and communication between dependent equations.) The color blue is used to indicate a
desirable property, whereas the color purple is used to indicate an undesirable property. Properties
left in black are somewhere in between.

Method Sparsity Parallelism FSM Breakdown risk Application

A-orth. Fixed No Yes No Solve
FSAI Fixed shared memory Yes Yes Product
ichol Fixed fine-grained Yes Yes Solve
rchol Random shared memory Yes Yes Solve

SAINV Flexible embarrassing Yes No Product
SPAI Flexible embarrassing No No Product
spaND Flexible shared memory Yes No Solve
SSAI Flexible embarrassing Yes No Product

Chapter 3

HyKKT: A Hybrid Direct-Iterative

Method for Solving KKT Linear

Systems

This chapter contains the full text of [138]. This work was originally published by Optimizations

Methods and Software. Reprinted with permission. All rights reserved.

3.1 Overview

We propose a solution strategy for the large indefinite linear systems arising in interior methods

for nonlinear optimization. The method is suitable for implementation on hardware accelerators

such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems

is the LBLT factorization , where L is a lower triangular matrix and B is 1 ⇥ 1 or 2 ⇥ 2 block

diagonal. However, this requires pivoting, which substantially increases communication cost and

degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple

smaller positive definite systems, using an iterative solver on the Schur complement and an inner

direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting,

thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate

the practicality of our approach on large optimal power flow problems and show that it can e�ciently

utilize GPUs and outperform LBLT factorization of the full system.

47

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 48

3.2 Contributions

• We introduced an approach of solving linear systems arising from optimization problems that

solves the set of linear systems as a whole, rather than focusing on each system individually.

• We developed a new GPU-capable hybrid direct-iterative algorithm to solve KKT linear sys-

tems which outperforms LBLT by a factor of 10 on the largest matrices tested.

• We proved important convergence theorems regarding the algorithm.

• We developed software implementing the algorithm and it is freely available online.

3.3 Introduction

Interior methods for nonlinear optimization [31, 81, 166, 170] are essential in many areas of science

and engineering. They are commonly used in model predictive control with applications to robotics

[155], autonomous cars [171], aerial vehicles [98], combustion engines [101], and heating, ventilation

and air-conditioning systems [113], to name a few. Interior methods are also used in public health

policy strategy development [9, 154], data fitting in physics [140], genome science [13, 167], and

many other areas.

Most of the computational cost within interior methods is in solving linear systems of Karush-

Kuhn-Tucker (KKT) type [120]. The linear systems are sparse, symmetric indefinite, and usually

ill-conditioned and di�cult to solve. Furthermore, implementations of interior methods for nonlinear

optimization, such as the filter-line-search approach in Ipopt [170] and HiOp [126], typically expect

the linear solver to provide the matrix inertia (number of positive, negative and zero eigenvalues)

to determine if the system should be regularized. (Otherwise, interior methods perform curvature

tests to ensure descent in a certain merit function [39].) Relatively few linear solvers are equipped

to solve KKT systems, and even fewer to run those computations on hardware accelerators such as

graphic processing units (GPUs) [157].

At the time of writing, six out of the ten most powerful computers in the world have more

than 90% of their compute power in hardware accelerators [8]. Hardware accelerator technologies

are becoming ubiquitous in o↵-the-shelf products, as well. In order to take advantage of these

emerging technologies, it is necessary to develop fine-grain parallelization techniques tailored for

high-throughput devices such as GPUs.

For the sparse systems of the interest of this manuscript, pivoting becomes extremely expen-

sive, as data management takes a large fraction of the total time compared to computation [60].

Unfortunately, LBLT factorization is unstable without pivoting. This is why LBLT approaches, typ-

ically used by interior methods for nonlinear problems on CPU-based platforms [158], have not

performed as well on hardware accelerators [157]. Some iterative methods such as MINRES and

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 49

SYMMLQ [122] for general symmetric matrices can make e�cient (albeit memory bandwidth lim-

ited) use of GPUs because they only require matrix-vector multiplications at each iteration, which

can be highly optimized [18], but they are not e�cient when the number of iterations to converged

solution becomes large. Another approach for better-conditioned KKT systems is using a modified

version of the preconditioned conjugate gradient (PCG) with implicit-factorization precondition-

ing [56]. The ill-conditioned nature of our linear systems means that iterative methods alone are

not practical [122, 129].

We propose a hybrid direct-iterative method for solving KKT systems that is suitable for execu-

tion on hardware accelerators. The method only requires direct solves using a Cholesky factorization,

as opposed to LBLT, which means it avoids pivoting. We provide preliminary test results that show

the practicality of our approach. Our test cases are generated by optimal power flow analysis

[34, 108, 118] applied to realistic power grid models that resemble actual grids, but do not contain

any proprietary data [114]. These systems are extracted from optimal power flow analysis using

Ipopt [170] with MA57 as its linear solver. Solving such sequences of linear problems gives us an

insight in how our linear solver behaves within an interior method. Using these test cases allowed

us to assess the practicality of our hybrid approach without interfacing the linear solver with an

optimization solver. We want to point out that our method is not specific to power grids. Rather,

power grids are representative of very sparse and irregular systems commonly found in engineering

disciplines[133].

The chapter is organized as follows. Table 3.1 defines our notation. Section 3.4 describes the

optimization problem being solved. Section 3.5 defines the linear systems that arise when an interior

method is applied to the optimization problem. In Section 3.6, we derive HyKKT, a novel hybrid

direct-iterative algorithm that utilizes the block structure of the KKT linear systems, and prove

convergence properties for the algorithm. Numerical tests in Section 3.7 show the accuracy of

HyKKT on realistic systems, using a range of algorithmic parameter values. Section 3.8 compares

our C++ and CUDA implementation to MA57 [58]. Section 3.9 explains our decision to use a direct

solver in the inner loop of our algorithm. In Section 3.10, we summarize our main contributions and

results. Section 3.11 provides supplemental figures for Section 3.7.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 50

Table 3.1: Notation. SP(S)D stands for symmetric positive (semi)definite. Matrix/vector norms
are 2-norms unless stated otherwise. For a symmetric matrix M , we define its smallest eigenvalue
restricted to the null space of a Jacobian J : �min(M|null(J)) ⌘ minkvk=1, v2null(J) v

TMv.

Variable Properties Functions Meaning

M symmetric matrix �max(M), �min(M) largest, smallest (most negative) eigenvalues
M SPSD matrix �min ⇤(M) smallest nonzero eigenvalue
M SPD matrix (M) = �max(M)/�min(M) condition number
J rectangular matrix null(J) nullspace
M,J symmetric, rectangular �min(M|null(J)) smallest eigenvalue value restricted to null(J)
x vector, x > 0 X ⌘ diag(x) diagonal matrix X with Xii = xi

ep vector p-vector of 1s

3.4 Nonlinear optimization problem

We consider constrained nonlinear optimization problems of the form

min
x2Rnx

f(x) (3.1a)

s.t. c(x) = 0, (3.1b)

d(x) � 0, (3.1c)

x � 0, (3.1d)

where x is an nx-vector of optimization parameters, f : Rnx ! R is a possibly nonconvex objective

function, c : Rnx ! Rmc defines mc equality constraints, and d : Rnx ! Rmd defines md inequality

constraints. (Problems with more general inequalities can be treated in the same way.) Functions

f(x), c(x) and d(x) are assumed to be twice continuously di↵erentiable. Interior methods enforce

bound constraints (3.1d) by adding barrier functions to the objective (3.1a):

min
x2Rnx , s2Rmd

f(x)� µ
nxX

j=1

lnxj � µ
mdX

i=1

ln si,

where the inequality constraints (3.1c) are treated as equality constraints d(x) � s = 0 with slack

variables s � 0. The barrier parameter µ > 0 is reduced toward zero using a continuation method

to obtain a solution x that is close to the solution of (3.1) to within a solver tolerance.

Interior methods are most e↵ective when exact first and second derivatives are available, as

we assume for f(x), c(x), and d(x). We define Jc(x) = rc(x) and Jd(x) = rd(x) as the sparse

Jacobians for the constraints. The solution of a barrier subproblem satisfies the nonlinear equations

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 51

rf(x) + JT

c
yc + JT

d
yd � zx = 0 (3.2a)

�yd � zs = 0 (3.2b)

c(x) = 0 (3.2c)

d(x)� s = 0 (3.2d)

Xzx = µenx (3.2e)

Sszs = µemd , (3.2f)

where x and s are primal variables, yc and yd are Lagrange multipliers (dual variables) for constraints

(3.2c)–(3.2d), and zx and zs are Lagrange multipliers for the bounds x � 0 and s � 0. The conditions

x > 0, s > 0, zx > 0, and zs > 0 are maintained throughout, and the matrices X ⌘ diag(x) and

Ss ⌘ diag(s) are SPD.

Analogously to [170], at each continuation step in µ we solve nonlinear equations (3.2) using a

variant of Newton’s method. Typically zx and zs are eliminated from the linearized version of (3.2)

by substituting the linearized versions of (3.2e) and (3.2f) into the linearized versions of (3.2a) and

(3.2b), respectively, to obtain a smaller symmetric problem. Newton’s method then calls the linear

solver to solve a series of linearized systems Kk�xk = rk, k = 1, 2, . . . , of block 4⇥ 4 form

Kkz }| {2

66664

H +Dx 0 JT

c
JT

d

0 Ds 0 �I
Jc 0 0 0

Jd �I 0 0

3

77775

�xkz }| {2

66664

�x

�s

�yc

�yd

3

77775
=

rkz }| {2

66664

r̃x

rs

rc

rd

3

77775
, (3.3)

where index k denotes optimization solver iteration (including continuation step in µ and Newton

iterations), each Kk is a KKT-type matrix (with saddle-point structure), vector �xk is a search

direction1 for the primal and dual variables, and rk is derived from the residual vector for (3.2)

evaluated at the current value of the primal and dual variables (with krkk ! 0 as the method

converges):

r̃x = �(rf(x) + JT

c
yc + JT

d
yd � µX�1enx),

rs = yd + µS�1
s

emd , rc = �c(x), rd = s� d(x).

1Search directions are defined such that xk+1 = xk + ↵�x for some linesearch steplength ↵ > 0.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 52

With Zx ⌘ diag(zx) and Zs ⌘ diag(zs), the sparse Hessian

H ⌘ r2f(x) +
mcX

i=1

yc,ir2ci(x) +
mdX

i=1

yd,ir2di(x),

Dx ⌘ X�1Zx is a diagonal nx⇥nx matrix, Ds ⌘ S�1
s

Zs is a diagonal md⇥md matrix, Jc is a sparse

mc ⇥ nx matrix, and Jd is a sparse md ⇥ nx matrix. We define m ⌘ mc +md, n ⌘ nx +md, and

N ⌘ m+ n.

Interior methods may take hundreds of iterations (but typically not thousands) before they

converge to a solution. All Kk matrices have the same sparsity pattern, and their nonzero entries

change slowly with k. An interior method can exploit this by reusing output from linear solver

functions across multiple iterations k:

• Ordering and symbolic factorization are needed only once because the sparsity pattern is the

same for all Kk.

• Numerical factorizations can be reused over several adjacent Newton’s iterations, e.g., when

an inexact Newton solver is used within the optimization algorithm.

Operations such as triangular solves have to be executed at each iteration k.

The workflow of the optimization solver with calls to di↵erent linear solver functions is shown

in Fig. 3.1 (where Kk�xk = rk denotes the linear system to be solved at each iteration). The main

optimization solver loop is the top feedback loop in Fig. 3.1. It is repeated until the solution is

optimal or a limit on optimization iterations is reached. At each iteration, the residual vector rk

is updated. Advanced implementations have control features to ensure stability and convergence of

the optimization solver. The lower feedback loop in Fig. 3.1 shows linear system regularization by

adding a diagonal perturbation to the KKT matrix. One such perturbation removes singularity [170,

Sec. 3.1], which happens if there are redundant constraints. The linear solver could take advantage

of algorithm control like this and request matrix perturbation when beneficial.

3.5 Solving KKT linear systems

LBLT factorization via MA57 [58] has been used e↵ectively for sparse symmetric systems on tradi-

tional CPU-based platforms. Parallel and GPU-accelerated direct solvers such as SuperLU [7, 111],

STRUMPACK [144, 156], and PaStiX [91, 124] exist for general symmetric indefinite systems (al-

though the first two are designed for general systems). However, these software packages on GPU are

designed to take advantage of dense blocks of the matrices in denser problems and do not perform

well on our systems of interest, which do not yield these dense blocks [89, 157].

The fundamental issue with using GPUs for LBLT is that this factorization is not stable without

pivoting [80]. Pivoting requires considerable data movement and, as a result, a substantial part of the

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 53

Figure 3.1: Optimization solver workflow showing invocation of key linear solver functions. The top
feedback loop represents the main optimization solver iteration loop. The bottom feedback loop is
the optimization solver control mechanism to regularize the underlying problem when necessary.

run time is devoted to memory access and communication. Any gains from the hardware acceleration

of floating-point operations are usually outweighed by the overhead associated with permuting the

system matrix during the pivoting. This is especially burdensome because both rows and columns

need to be permuted in order to preserve symmetry [60]. While any of the two permutations can be

performed e�ciently on its own with an appropriate data structure for the system’s sparse matrix

(e.g., compressed sparse row storage for row permutations and compressed sparse column storage

for column permutations), swapping rows and columns simultaneously is necessarily costly.

Here we propose HyKKT, a method that uses sparse Cholesky factorization on the (1,1) block

(suitably modified) and an iterative solver on the Schur complement. Cholesky factorization is advan-

tageous because it is stable without pivoting and can use GPUs e�ciently compared to LBLT [141].

In addition, the symmetric ordering to retain sparsity in the factors (also known as symbolic fac-

torization) can be established at the beginning of the optimization without considering numerical

values, and hence its cost is amortized over the optimization iterations.

To make the problem smaller, we eliminate �s = Jd�x � rd and �yd = Ds�s � rs from (3.3)

to obtain the 2⇥ 2 system [125, Sec. 3.1]

"
eH JT

c

Jc 0

#"
�x

�yc

#
=

"
rx

rc

#
, eH ⌘ H +Dx + JT

d
DsJd, (3.4)

where rx = r̃x + JT

d
(Dsrd + rs). This reduction requires block-wise Gaussian elimination with block

pivot

"
Ds �I

�I

#
, which is ill-conditioned when Ds has large elements, as it ultimately does. Thus,

system (3.4) is smaller but more ill-conditioned. After solving (3.4), we compute �s and �yd in

turn to obtain the solution of (3.3).

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 54

3.6 A block 2⇥ 2 system solution method

Let Q be any SPD matrix. Multiplying the second row of (3.4) by JT

c
Q and adding it to the first

row gives a system of the form

"
H� JT

c

Jc 0

#"
�x

�yc

#
=

"
r̂x

rc

#
, H� = eH + JT

c
QJ, (3.5)

where r̂x = rx + JT

c
Qrc. The simplest choice is Q = �I with � > 0:

H� = eH + � JT

c
Jc. (3.6)

When H� is SPD, its Schur complement S ⌘ JcH�1
�

JT

c
is well defined, and (3.5) is equivalent to

S�yc = JcH
�1
�

r̂x � rc, (3.7)

H��x = r̂x � JT

c
�yc. (3.8)

This is the approach of Golub and Greif [79] for saddle-point systems (which have the structure

of the 2 ⇥ 2 system in (3.4)). Golub and Greif found experimentally that � = k eHk/kJck2 made

H� SPD and better conditioned than smaller or larger values. We show in Theorems 5 and 7 that

for large �, the condition number (H�) increases as � ! 1, but (S) converges to 1 as � ! 1.

Corollary 1 shows there is a finite value of � that minimizes (H�). This value is probably close to

� = k eHk/kJck2.
Our contribution is to combine the system reduction in [125] (from (3.3) to (3.4)) with the

method of [79] for changing (3.4) to (3.5) to solve an optimization problem consisting of a series of

block 4 ⇥ 4 systems using a GPU implementation of sparse Cholesky factorization applied to H� .

A method for regularizing is suggested (though it has not been needed in practice), and practical

choices for parameters are given based on scaled systems. Also, important convergence properties

of the method are proven in Theorems 4–7.

If (3.5) or H� are poorly conditioned, the only viable option may be to ignore the block structure

in (3.5) and solve (3.3) with an LBLT factorization such as MA57 (likely without help from GPUs).

This is the fail-safe option. Otherwise, we require H� to be SPD (for large enough �) and use its

Cholesky factorization to apply the conjugate gradient method (CG) [92] or MINRES to (3.7) with

or without a preconditioner. We note that TriCG and TriMR [119] could be used on (3.5), but

TriCG requires that the (2,2) block be made slightly negative definite, and such regularization is

typically not otherwise needed in practice. If the R part of QR factors of JT

c
is not too dense, we

could use

M ⌘ (JcJ
T

c
)�1JcH�J

T

c
(JcJ

T

c
)�1

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 55

as a multiplicative preconditioner for CG on (3.7). This gives the exact solution if the RHS is

orthogonal to null(Jc) or Jc is square, which is not possible in our case. In our experiments, solutions

with the preconditioner M lagged slightly behind those without it, but both take O(1) iterations.

We proceed without preconditioning (3.7).

3.6.1 A hybrid solver with minimal regularization

Typically, (3.4) starts with an SPD eH and full-rank Jc. As the optimization iterations progress,
eH may become indefinite and Jc’s rank may shrink (at least numerically). This means the system

becomes singular and must be regularized. We seek a small regularization to avoid changing too

much the solution of the equivalent system (3.5).

An SPD H� guarantees that eH is SPD on null(Jc), a requirement at the solution of the opti-

mization problem.

Theorem 4. Assume Jc has full row rank. Then for large enough � (� � �min for some finite �min),

H� = eH + �JT

c
Jc is uniformly SPD (i.e., �min(H�) � ✏ > 0) if and only if eH is positive definite on

null(Jc) (i.e., �min(eH|null(Jc)) > 0).

Proof. Assume eH is positive definite on null(Jc). Consider a unit vector v; we decompose v as

v = v0 + v1 with v0 in null(Jc) and v1 orthogonal to null(Jc). Consider

vTH�v = vT eHv + vT1 (�J
T

c
Jc)v1

When v1 = 0 then vTH�v = vT0 eHv0 � �min(eH|null(Jc)). Since vTH�v is continuous with respect to

v1, there exists some ↵ such that if kv1k ↵ then

vTH�v �
1

2
�min(eH|null(Jc))

Assume now that kv1k > ↵. Then:

vTH�v = vT eHv + vT1 (�J
T

c
Jc)v1 �

�min(eH) + �kv1k2�min ⇤(J
T

c
Jc) > �min(eH) + �↵�min ⇤(J

T

c
Jc)

Since ↵�min ⇤(JT

c
Jc) > 0, the lower bound goes to +1 when � !1. So we can find �min such that

if � � �min then

vTH�v �
1

2
�min(eH|null(Jc))

In summary, in all cases, we guarantee that

vTH�v �
1

2
�min(eH|null(Jc))

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 56

if � � �min.

Conversely, assume H� is SPD. For any nonzero vector v0 in null(Jc), we have vT0 eHv0 =

vT0 H�v0 > 0. This direction does not require Jc to have full row rank.

In practice one would use � � 0. In our application we set � = 104–106. However, � cannot be

made arbitrarily large without increasing (H�) when Jc is rectangular, as in our case. There must

be an ideal intermediate value of �. We use H� SPD as a proxy for eH being SPSD on null(Jc),

keeping in mind that if it does not hold even for a very large � in (3.6), H� is singular and needs to

be modified.

Theorem 5. If Jc has full row rank with more columns than rows, eH is symmetric and positive

definite on null(Jc), and H� = eH+�JT

c
Jc, there exists �max � max(�min, 0) such that for � � �max,

(H�) increases linearly with �.

Proof.

�max(H�) ⌘ max
kvk2=1

vTH�v max
kvk2=1

vT eHv + max
kvk2=1

vT (�JT

c
Jc)v

= �max(eH) + ��max(J
T

c
Jc),

�max(H�) � min
kvk2=1

vT eHv + max
kvk2=1

vT (�JT

c
Jc)v = �min(eH) + ��max(J

T

c
Jc).

Hence �min(eH) + ��max(JT

c
Jc) �max(H�) �max(eH) + ��max(JT

c
Jc), meaning �max(H�) / � for

large enough � (defined as � � �max � max(�min, 0)). Similarly,

�min(H�) ⌘ min
kvk2=1

vTH�v max
kvk2=1

vT eHv + min
kvk2=1

vT (�JT

c
Jc)v.

Since Jc has a nontrivial null-space, there exists v 6= 0 such that vT (�JT

c
Jc)v = 0 and therefore if

� � 0 then

min
kvk2=1

vT (�JT

c
Jc)v = 0.

Therefore

�min(H�) max
kvk2=1

vT eHv = �max(eH).

Recall from Theorem 4 that if � � �min, �min(H�) � ✏ > 0. Thus ✏ �min(H�) �max(eH)

independent of �. So (H�) = �max(H�)/�min(H�) / � for � � �max.

Corollary 1. Among �s such that H� is SPD (� � �min), (H�) is minimized for some � 2
[�min, �max].

In practice, the optimizer may provide systems where eH is not SPD on null(Jc). In this case

we can regularize H� by using H� = H� + �1I instead. Unlike �, the introduction of �1 changes

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 57

the solution of the system, so it is essential to keep �1 as small as possible. If H� is not SPD, we

set �1 = �min, a parameter for some minimum value of regularization. If H� is still not SPD, we

double �1 until it is. This ensures we use the minimal value of regularization (to within a factor of

2) needed to make H� SPD.

If �1 proves to be large, which can happen before we are close to a solution, it is essential for the

optimizer to be informed to allow it to modify the next linear system. When the optimizer nears a

solution, �1 will not need to be large.

In our tests, �1 starts at 0 for the next matrix in the sequence, but is set back to its previous

value if the factorization fails.

We also set �max, the maximum allowed �1 before we resort to LBLT factorization of Kk or return

to the optimization solver.

If Jc has low row rank, S in (3.7) is SPSD. In this case, CG will succeed if (3.7) is consistent.

Otherwise, it will encounter a near-zero quadratic form. We then restart CG on the regularized

system (JcH
�1
�

JT

c
+�2I)�y = Jcw�rc. In this way, �1 regularizes the (1, 1) block and �2 regularizes

the (2, 2) block.

To ensure we can judge the size of parameters � and �min relative to system (3.5), we first scale

(3.4) with a symmetrized version of Ruiz scaling [146].

Algorithm 7 is a generalization of the Uzawa iteration [164] for KKT systems with a (1,1) block

that is not necessarily positive definite. It gives a method for solving a sequence of systems (3.7)–

(3.8) with Q = �I used in the calculation of H� . The workflow is similar to Fig. 3.1 except only H�

is factorized. On lines 16–19, H�1
�

is applied by direct triangular solves with the Cholesky factors

L, LT of H�. Each iteration of the CG solve on line 17 requires multiplication by JT

c
, applying

H�1
�

, multiplying by Jc, and adding a scalar multiple of the original vector. Section 3.9 shows why

complete Cholesky factorization of H� was chosen.

The rest of the section discusses other important bounds that � must obey. However, selecting

an ideal � in practice is di�cult and requires problem heuristics (like � = k eHk/kJk2 in [80]) or trial

and error.

3.6.2 Guaranteed descent direction

Optimization solvers typically use an LBLT factorization to solve the N ⇥ N system (3.3) at each

step because (with minimal extra computation) it supplies the inertia of the matrix. A typical

optimization approach treats each of the four 2 ⇥ 2 block of (3.3) as one block, accounting for the

possible regularization applied to H� . We mean that the (1,1) block HK ⌘
"
H +Dx + �1I

Ds

#
is a

Hessian of dimension n, and the (2,1) block JK ⌘
"
Jc

Jd �I

#
represents the constraint Jacobian and

has dimensions m⇥n. The inertia being (n,m, 0) implies that (a) HK is uniformly SPD on null(JK)

for all k, meaning vTHKv � ✏ > 0 for all vectors v satisfying JKv = 0, iterations k, and some

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 58

Algorithm 7 Using CG on Schur complement to solve the block system (3.5) by solving (3.7)–
(3.8). H� is a nonsingular perturbation of H� = eH + �JT

c
Jc. Typical parameters: � = 104,

�min = �2 = 10�9, �max = 10�6.

1: for each matrix in the sequence such as in (3.5) do
2: �1 0
3: H� = H� (� used in the calculation of H�)
4: Try LLT = chol(H�) (Fail False if factorized, True otherwise)
5: while Fail and �1 <= �max/2 do
6: if �1 == 0 then
7: �1 �min

8: else
9: �1 = �min 2�min

10: end if
11: H� = H� + �1I
12: Try LLT = chol(H�) (Fail False if factorized, True otherwise)
13: end while
14: if Fail==False then
15: Direct solve H�w = r̂x
16: if CG on (JcH

�1
�

JT

c
)�yc = Jcw � rc produces a small quadratic form then

17: CG solve (JcH
�1
�

JT

c
+ �2I)�yc = Jcw � rc (perturbed (3.7))

18: end if
19: Direct solve H��x = r̂x � JT

c
�yc (perturbed (3.8))

20: else
21: Use LBLT to solve (3.3) or return problem to optimization solver
22: end if
23: end for

positive constant ✏; (b) KKT matrix in (3.3) is nonsingular. Together these conditions are su�cient

to ensure a descent direction and fast convergence in the optimization algorithm [120, 170]. We show

that Algorithm 7 ensures properties (a) and (b) without computing the inertia of the KKT matrix.

Theorem 6. If Algorithm 7 succeeds with �2 = 0, it provides a descent direction for the interior

method for large enough �.

Proof. By construction, H� is uniformly SPD (because the Cholesky factorization was successful for

all iterations of the solver until this point) and the KKT system in (3.5) is nonsingular (because Jc has

full row rank, or �2I was added to S to shift it from SPSD to SPD). Therefore, Algorithm 7 provides

a descent direction for (3.5) even if regularization is added. The rest of the proof assumes �2 = 0,

and we return to the other case later. Since Jc has full row rank, H +Dx + �1I is nonsingular by

assumption, all block rows in (3.3) have full rank internally, and Gaussian elimination cannot cause

cancellation of an entire block row, we conclude that (3.3) is nonsingular. Let HK� ⌘ HK+�KJT

K
JK

(for �K � � used in Algorithm 7). For any nonzero vector uT = (uT

1 , u
T

2) with u1 and u2 of

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 59

dimensions nx and md,

uTHK�u = uT

1 (H +Dx + �KJT

c
Jc)u1 + uT

2 Dsu2 + �KwTw,

where w = Jdu1 � u2. If w = 0, then u2 = Jdu1, which means uTHK�u � uT

1 H�u1 � ✏ > 0 and

the proof is complete (with �K = �). Otherwise, �w ⌘ �KwTw > 0. So for large enough �K ,

uTHK�u � ✏ > 0. Applying Theorem 4 to (3.3) with HK and JK replacing eH and Jc shows that

HK is positive definite on null(JK).

We note that �1 corresponds to the so-called primal regularization of the filter line-search algo-

rithm [170]. Under this algorithm, whenever �1 becomes too large, one can invoke the feasibility

restoration phase of the filter line-search algorithm [170] as an alternative to performing the LBLT

factorization on the CPU. Feasibility restoration “restarts” the optimization at a point with more

favorable numerical properties. We also note that when �1 is su�ciently large, the curvature test

used in [39] should be satisfied. Hence, inertia-free interior methods have the global convergence

property without introduction of other regularization from the outer loop.

The �2 regularization is a numerical remedy for low-rank Jc, caused by redundant equality

constraints. This regularization is similar to the so-called dual regularization used in Ipopt [170]

and specifically addresses the issue of rank deficiency; however, there is no direct analogue from a

�2 regularization in (3.5) to Ipopt’s dual regularization in (3.3) and neither of the two heuristics

guarantees a descent direction for (3.3). Given the similarity between the two heuristics, we believe

that the �2 regularization can be e↵ective within the filter line-search algorithm.

When Algorithm 7 is integrated with a nonlinear optimization solver such as [168] and [127], the

while loop (Line 5) in Algorithm 7 can be removed and the computation of �1 and �2 can be decided

by the optimization algorithm. The development of robust heuristics that allow Algorithm 7’s �1

and �2 regularization within the filter line-search algorithm will be subject of future work.

3.6.3 Convergence for large �

In Section 3.6.1 we showed that H� is SPD for large enough �, and that � should not be so large

that the low-rank term �(JT

c
Jc) makes H� ill-conditioned. Here we show that in order to decrease

the number of CG iterations, it is beneficial to increase � beyond what is needed for H� to be SPD.

Theorem 7. In exact arithmetic, for � � 1, the eigenvalues of S� ⌘ �S converge to 1 with an

error term that decays as 1/�.

Proof. By definition,

S� = �J(eH + �JT

c
Jc)

�1JT

c
= Jc

✓
1

�
eH + JT

c
Jc

◆�1

JT

c
. (3.9)

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 60

Table 3.2: Summary of the methods used for solving various equations in the chapter.

Equation Method Comments

(3.3) MA57 (LBLT) Practical, but not for GPU
(3.3) HyKKT Solved via subsystems (3.7) and (3.8)
(3.7) CG S applied as an operator
(3.8) Cholesky Also used for inner solves in (3.7)

Since eH is nonsingular and Jc has full row rank by assumption, the Searle identity (A+BBT)�1BT =

A�1B(I +BTA�1B)�1 [153] with A ⌘ eH/� and B ⌘ JT

c
gives

S� = �Jc eH�1JT

c
(I + �Jc eH�1JT

c
)�1 = (I + C)�1 , C ⌘ 1

�

⇣
Jc eH�1JT

c

⌘�1
.

For � !1, |�i(C)|⌧ 1 8i. The identity (I +C)�1 = �1
k=0(�1)kCk, which applies when |�i(C)| <

1 8i, gives

S� =
1X

k=0

(�1)kCk = I � C +O

✓
1

�2

◆
. (3.10)

A di↵erent proof of an equivalent result is given by Benzi and Liu [20, Lemma 3.1].

Corollary 2. The eigenvalues of S are well clustered for � � 1, and the iterative solve in Algo-

rithm 7 line 16 converges quickly.

In Section 3.7, we show that our choices of � = 104–106 are large enough for the arguments to

hold. This explains the rapid convergence of CG. We also show that our transformation from (3.3)

to (3.5) and our scaling choice are stable on our test cases, by measuring the error for the original

system (3.3).

3.6.4 Summary of equations solved

Table 3.2 details various equations solved and the methods used to solve them.

3.7 Practicality demonstration

We demonstrate the practicality of Algorithm 7 using five series of linear problems [114] generated

by the Ipopt solver performing optimal power flow analysis on the power grid models summarized

in Table 3.3. We compare our results with a direct solve of (3.3)via MA57’s LBLT factorization [58].

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 61

Table 3.3: Characteristics of the five tested optimization problems, each generating sequences of
linear systems Kk�xk = rk (3.3) of dimension N . Numbers are rounded to 3 digits. K and M
signify 103 and 106.

Name N(Kk) nnz(Kk)

South Carolina grid 56K 411K
Illinois grid 4.64K 21.6K
Texas grid 55.7K 268K
US Western Interconnection grid 238K 1.11M
US Eastern Interconnection grid 1.64M 7.67M

Figure 3.2: Illinois grid: (a) CG iterations on Eq. (3.7) with varying �. � � 103 gives good
convergence. The mean number of iterations for � = 104 is 9.4. (b) Sorted eigenvalues of S� ⌘
�JcH�1

�
JT

c
in (3.9) matrix 22, for � = 104. The eigenvalues are clustered close to 1.

3.7.1 � selection

We use Algorithm 7 with CG as the iterative method on line 16. A larger � in H� = eH+�JT

c
Jc may

improve CG convergence but make H� more ill-conditioned and increase the error in the solution

of (3.3). We therefore run some preliminary tests to find a suitable � before selecting �min and

testing other problems, and we require CG to solve accurately (stopping tolerance 10�12 for the

relative residual norm). We start with one of the smaller problems, the Illinois grid, to eliminate

some values of � and see if the condition number of Kk for each matrix in the sequence a↵ects the

needed iterations or regularization. We run these tests with �min = 10�10.

Figure 3.2(a) shows that for the Illinois grid sequence, values of � � 104 give CG convergence

in approximately 10 iterations for every matrix in the sequence. For the last matrix we found that

eigenvalues of S in (3.7) are very well clustered and the condition number of S is ⇡ 1.04, as shown

in Fig. 3.2(b). This guarantees and explains the rapid convergence because for CG applied to a

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 62

Figure 3.3: Illinois grid (3.3), with varying � in (3.6): (a) Backward error (BE) and (b) relative
residual (RR). (a) � 104 gives results close to machine precision. (b) � 104 has RR 10�8.

general SPD system Ax = b,

kekkA
ke0kA

 2

✓p
� 1p
+ 1

◆k

, (3.11)

where ek = x� xk is the error in an approximate solution xk at iteration k [80].

For the last few matrices, � = 108 is the only value requiring �1 > 0. The final value of �1 was

16�min = 1.6 · 10�9. No important information was gleaned from cond(Kk). For all other values of

�, �1 = 0 for the whole sequence. For a system Ax = b and an approximate solution x̃ ⇡ x, we define

the backward error BE as kAx̃� bk/(kAk kx̃k+ kbk) and the relative residual RR as kAx̃� bk/kbk.
As is common practice, we use kAk1 to estimate kAk2, which is too expensive to calculate directly.

kAk1 always provides an upper bound for kAk2, but in practice is quite close to the actual value.

Note that MA57 always has a BE of order machine precision. Figure 3.3 shows the (a) BE and (b)

RR for system (3.3) for varying �. Results for the BE and RR of system (3.4) are not qualitatively

di↵erent and are given in Section 3.11. One conclusion is that increasing � to reduce CG iterations

can be costly for the accuracy of the solution of the full system. Based on the results of this section,

� in the range 102–106 gives reasonable CG iterations and final accuracy. For other matrices, we

present a selected � in this range that produced the best results.

3.7.2 Results for larger matrices

Solving larger (and perhaps more poorly conditioned) problems brings about new computational

challenges and limits the amount of time any particular task can take. We wish to set �min small

enough to avoid over-regularizing the problem, and large enough to eliminate wasteful iterations and

numerical issues. We want �max small enough to recognize that we have over-regularized (and should

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 63

Figure 3.4: South Carolina grid: �1 for � = 104. For other values of � the graph was similar. Except
for the first few and last few matrices, � ⇡ 1, meaning the required regularization would make the
solution too inaccurate. The value of 0 is omitted on the log-scale.

try a di↵erent method), but large enough to allow for reasonable regularization. In our numerical

tests, we use �min = 10�10 and �max large enough so that �1 can increase until H� = eH+�1I is SPD.

This informs the parameter selection for the next system.

Figure 3.4 shows that the South Carolina grid matrices as currently constructed cannot benefit

from this method. They need �1 > 1 to make H� + �1I SPD, which on a scaled problem means as

much weight is given to regularization as to the actual problem. Algorithm 7 succeeds on the other

matrix sequences, at least for certain �s, and needs no regularization (�1 = �2 = 0).

For the US Western Interconnection grid, Fig. 3.5(a) shows a CG convergence graph and (b)

shows several types of error. For the US Eastern Interconnection grid, Fig. 3.6(a) shows a CG

convergence graph and (b) shows several types of error. Figures for the Texas grid are given in

Section 3.11, as they do not provide more qualitative insight. Convergence occurs for all matrix

sequences in less than 20 iterations on average. The BE for (3.3) is consistently less than 10�8 and,

with two exceptions in the US Western Interconnection grid, is close to machine precision. Results

for the US Eastern Interconnection grid show that the method does not deteriorate with problem

size, but rather there are some irregular matrices in the US Western Interconnection grid.

The results in this section suggest that �min in the range 10�8 down to 10�10 is reasonable for any

� 108. There is no clear choice for �max, but a plausible value would be �max = 210�min ⇡ 1000�min.

This way we are guaranteed that the regularization doesn’t take over the problem, and the number

of failed factorizations is limited to 10, which should be negligible in the total solution times for a

series of ⇡ 100 problems.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 64

Figure 3.5: US Western Interconnection grid with � = 106 in (3.6): (a) CG iterations on Eq. (3.7).
The mean number of iterations is 17. (b) BE and RR for the sequence. The BE for (3.3) is less than
10�10, except for matrix 4.

Table 3.4: Accelerator devices and compilers used.

Machine name Host processor Accelerator device Host compiler Device compiler

Newell IBM Power9 NVIDIA Volta 100 GCC 7.4.0 CUDA 10.2
Deception AMD EPYC 7502 NVIDIA Ampere 100 GCC 7.5.0 CUDA 11.1

3.7.3 Reordering H�

The e�ciency of sparse Cholesky factorization PH�PT = LLT depends greatly on the row/column

ordering defined by permutation P . Figure 3.7 compares the sparsity of L, corresponding to H�

of matrix 22 in the Illinois grid sequence, obtained from two choices of P : approximate minimum

degree (AMD) and nested dissection. (The data in this section are generated via Matlab.) We

see that AMD produces a sparser L (17, 413 nonzeros vs. 20, 064).

Reverse Cuthill-McKee and no ordering gave 46, 527 and 759, 805 nonzeros respectively. Recall

that the sparsity structure is identical for matrices from the same family and similar for other matrix

families. As expected, AMD was the sparsest ordering tested for other matrix families. Thus, AMD

is our reordering of choice. Ordering is a one-time cost performed during the optimization problem

setup.

3.8 Comparison with LBLT

We compare HyKKT with a direct solve of (3.3) using MA57’s LBLT factorization [58] with default

settings. All testing in this section is done using a prototype C++/CUDA code on a single GPU

device. Reference MA57 solutions were computed on a CPU. Further details on computational

platforms used are given in Table 3.4.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 65

Figure 3.6: US Eastern Interconnection grid with � = 106 in (3.6): (a) CG iterations on Eq. (3.7).
The mean number of iterations is 13.1. (b) BE and RR for (3.3) and (3.4). The BE for (3.3) is less
than 10�10.

Table 3.5: Dimensions, number of nonzeros, and factorization densities (number of nonzeros in the
factors per row) for solving (3.3) directly with LBLT (N , nnzL, ⇢L respectively) and for solving (3.6)
with Cholesky (nx, nnzC , ⇢C respectively). Numbers are rounded to 3 digits. K and M signify 103

and 106. In all cases, ⇢C < ⇢L and nx < N/2.

Abbreviation N nnzL ⇢L nx nnzC ⇢C

Illinois 4.64K 94.7K 20.4 2.28K 34.9K 15.3
Texas 55.7K 2.95M 52.9 25.9K 645K 24.9
Western US 238K 10.7M 44.8 116K 2.23M 19.2
Eastern US 1.64M 85.4M 52.1 794K 17.7M 22.3

The factorization density is ⇢L = (2 nnz(L) + nnz(D)) /N . We define ⇢C analogously for the

Cholesky factors of H� in (3.5), with nnz(D) = 0 and dimension nx. Note that ⇢ gives the average

number of nonzeros in the factorization per row or column. Table 3.5 shows that the Cholesky factor

of H� is usually less dense than the LBLT factor for (3.3), even though (3.3) is sparser than (3.5).

Table 3.6 shows the solve times on the Newell computing cluster [128]. The main trend is that as

the problem size increases, GPUs using cuSolver [1] increasingly outperform equivalent computations

on a CPU.

Supernodal Cholesky via Cholmod in Suitesparse [37] does not perform well on GPUs for these

test cases, but performs better than cuSolver on CPUs. This matches literature showing that multi-

frontal or supernodal approaches are not suitable for very sparse and irregular systems, where the

dense blocks become too small, leading to an unfavorable ratio of communication versus computa-

tion [25, 51, 89]. This issue is exacerbated when supernodal or multifrontal approaches are used

for fine-grain parallelization on GPUs [157]. HyKKT becomes better when the ratio of LBLT to

Cholesky factorization time grows, because factorization is the most costly part of linear solvers

and HyKKT has more (but smaller and less costly) system solves.We note that Cholmod runs on

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 66

Figure 3.7: Illinois grid matrix 22: (a) Approximate minimum degree ordering of chol(H�) is sparser
than (b) Nested dissection ordering of chol(H�). Both orderings are calculated in Matlab.

the CPU and o✏oads computation to the GPU. In contrast, HyKKT can run completely on the

GPU after one time (per optimization problem) costs of memory allocation, nonzero structure of

matrix-matrix products computation, AMD, and symbolic analysis for Cholesky factorization.

Table 3.7 compares a direct solve of (3.3) using MA57’s LBLT factorization [58] and HyKKT,

broken down into forming (3.7)–(3.8), symbolic analysis of H�, factorization of H�, CG on (3.7),

and the subsequent full solution recovery on Deception [128]. The times for regularization (which

was not needed in our case but timed nonetheless) were 3 orders of magnitude smaller than forming

(3.7)–(3.8) and were therefore not included in the table.

When Cholesky is used, symbolic analysis is needed only for the first matrix in the sequence

because pivoting is not a concern. As problems grow larger, the solve phase becomes a smaller part

of the total run time. Also, HyKKT increasingly outperforms MA57. The run time is reduced by a

factor of more than 3 on one matrix from the US Eastern Interconnection grid and more than 10 on

the whole series, because the analysis cost can be amortized over the entire optimization problem.

Furthermore, although only one GPU is used for all computations, we see that the computation costs

increases sublinearly with the problem size. This occurs because the GPU is being under utilized

and will naturally be limited at some point. This motivates using HyKKT for even larger problems.

Another advantage of HyKKT is that it solves systems that are less than half the size of the

original one, though it does have to solve more of them. Notably, the LBLT factorization may require

pivoting during the factorization, whereas Cholesky does not. With MA57, all our test cases required

substantial permutations even with a lax pivot tolerance of 0.01 (and a tolerance as large as 0.5 may

be required to keep the factorization stable). This means that for our systems, LBLT factorization

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 67

Table 3.6: Average times (in seconds) for solving (3.3) directly on a CPU with LBLT (via MA57 [58])
or for solving one H� linear system with supernodal Cholesky via Cholmod (CM) in SuiteSparse [37],
or Cholesky via cuSolver [1] (CS) using the routine csrlsvchol, each on a CPU and on a GPU.
Cholesky on a GPU is quicker than LBLT on a CPU by an increasingly large ratio. The GPU is not
actually utilized for small problems with CM, because CM has internal logic that decides what to
o✏oad to the GPU, and there is a minimum problem size for the GPU to be utilized. All runs are
on Newell [128].

Name MA57 CM CPU CM GPU CS CPU CS GPU

Illinois 7.35 · 10�3 1.74 · 10�3 2.25 · 10�3 5.80 · 10�3

Texas 1.24 · 10�1 3.42 · 10�2 5.67 · 10�2 4.79 · 10�2

Western US 4.30 · 10�1 1.02 · 10�1 1.89 · 10�1 1.59 · 10�1

Eastern US 4.34 · 100 1.08 · 100 3.65 · 100 2.52 · 100 6.12 · 10�1

requires considerable communication and presents a major barrier for GPU programming. On the

other hand, the direct solve is generally more accurate by 2–3 orders of magnitude.

3.9 Iterative vs. direct solve with H� in Algorithm 7

We may ask if forming H� ⌘ H + Dx + JT

d
DsJd + �JT

c
Jc + �1I and its Cholesky factorization

H� = LLT is worthwhile when it could be avoided by iterative solves with H�. Systems (3.7)–(3.8)

require two solves with H� and an iterative solve with S = JcH
�1
�

JT

c
+ �2I, which includes “inner”

solves with H� until CG converges. As we see in Section 3.7, between 6 and 92 solves with H� are

needed in our cases (and possibly more in other cases). Further, the inner iterative solves with H�

would degrade the accuracy compared to inner direct solves or would require an excessive number of

iterations. Therefore, for iterative solves with H� to be viable, the direct solve would have to cause

substantial densification of the problem (i.e., the Cholesky factor L would have to be very dense).

Let nnzop(H�) = nnz(eH) + 2 nnz(J) + nx be the number of multiplications when H� is applied as

an operator, and nnzfac(H�) = 2 nnz(L) be the number of multiplications for solving systems with

H�. These values (generated in Matlab) and their ratio are given in Table 3.8. The ratio is always

small and does not grow with problem size, meaning L remains very sparse and the factorization

is e�cient. As the factorization dominates the total time of a direct solve with multiple right-hand

sides, this suggests that performing multiple inner iterative solves is not worthwhile.

3.10 Summary

Following the approach of Golub and Greif [79], we have developed a novel direct-iterative method

for solving saddle point systems, and shown that it scales better with problem size than LBLT on

systems arising from optimal power flow [114]. The method is tailored for execution on hardware

accelerators where pivoting is di�cult to implement and degrades solver performance dramatically.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 68

Table 3.7: Average times (in seconds) for solving sequences of systems (3.3) directly on a
CPU with LBLT (via MA57 [58]) or on a GPU using our hybrid method. The latter is split
into forming (3.7)–(3.8), analysis and factorization phases, and multiple solves. (The routines
cusolverSpCreateCsrcholInfo, cusolverSpXcsrcholAnalysis, cusolverSpDcsrcholFactor,
cusolverSpDcsrcholZeroPivot, and cusolverSpDcsrcholSolve are used to allow for the easy
solution of systems with multiple RHS.) “Forming (3.7)–(3.8)” shows the times needed for the ma-
trix products, not including the memory allocation phase (which is the most expensive). However,
since the nonzero structure is constant in a given problem, this need only be done once. Symbolic
analysis is needed only once for the whole sequence. Factorization happens once for each matrix.
The solve phase is the total time for Lines 15-17 in Algorithm 7 with a CG tolerance of 10�12 on
Line 16 plus the recovery of the solution to the original problem. The results show that HyKKT,
without optimization of the code and kernels, outperforms LBLT on the largest series (US East-
ern Interconnection grid) by a factor of more than 3 on a single matrix, and more than 10 on a
whole series, because the cost of symbolic analysis can be amortized over the series. All runs are on
Deception [128].

Name MA57 Hybrid Direct-Iterative Solver

Forming (3.7),(3.8) Analysis Factorization Total solves

Illinois 6.24 · 10�3 1.07 · 10�3 4.32 · 10�3 3.67 · 10�4 8.70 · 10�3

Texas 1.00 · 10�1 1.52 · 10�3 3.29 · 10�2 8.53 · 10�4 1.02 · 10�1

Western US 3.38 · 10�1 1.98 · 10�3 1.76 · 10�1 7.76 · 10�4 1.43 · 10�1

Eastern US 3.48 · 100 5.58 · 10�3 7.79 · 10�1 8.83 · 10�4 3.25 · 10�1

To solve KKT systems of the form (3.3), Algorithm 7 presents a method with an outer iterative solve

and inner direct solve. The method assumes H� = H +Dx + JT

d
DsJd + �JT

c
Jc is SPD (or almost)

for some � � 0, and if necessary, uses the minimal amount of regularization �1 � 0 (to within a

factor of 2) to ensure H� = H� +�1I is SPD. We proved that as � grows large, the condition number

of H� grows linearly with �, and the eigenvalues of the iteration matrix S converge to 1/� ((3.10)).

These results provide some heuristics for choosing �, and explain why CG on the Schur complement

system (3.7) converges rapidly.

On several sequences of systems arising from applying an interior method to OPF problems, the

number of CG iterations for solving (3.7) was less than 20 iterations on average, even though no

preconditioning was used.

Four of the five matrix series were solved with �1 = �2 = 0, and the BE for the original system

(3.3) was always less than 10�8. The e�ciency gained by using a Cholesky factorization (instead

of LBLT) and avoiding pivoting is demonstrated in Table 3.5. Even though H� in (3.5) is denser

than Kk in (3.3), its factors are sparser. Table 3.7 shows that HyKKT, when it succeeds, has better

scalability than LBLT and is able to utilize GPUs. This is the most substantial result of our chapter.

For the fifth series (smaller than 2 of the others) �2 = 0 worked, but �1 had to be of order 1 and no

accurate solution could be obtained. The development of robust heuristics to select �1 and �2, and

to integrate with the filter line-search algorithm, will be subject of future work.

The fact that the Cholesky factors are scarcely denser than the original matrix suggests that

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 69

Table 3.8: Densification of the problem for cases where the direct-iterative method is viable. Num-
bers are rounded to 3 digits. K and M signify 103 and 106. nnzop(H�) = nnz(eH) + 2 nnz(J) + nx

is the number of multiplications when H� is applied as an operator, and nnzfac(H�) = 2 nnz(L) is
the number of multiplications for solving systems with H�. The ratio nnzfac(H�)/nnzop(H�) is only
about 2 in all cases.

Name nnzop(H�) nnzfac(H�) ratio

Illinois 20.5K 34.9K 1.70
Texas 249K 646K 2.59
Western US 1.05M 2.23M 2.11
Eastern US 7.23M 17.7M 2.45

not much could be gained by using nullspace methods [145] for the four sequences we were able to

solve, as those require sparse LU or QR factorization of JT

c
, which is typically less e�cient than

sparse Cholesky factorization of H�. For the fifth sequence, and sequences similar to it, an e�cient

nullspace method may be better than the current fail-safe LBLT factorization of the 4 ⇥ 4 system

(3.3).

We limit the scope of the chapter to the development and implementation of the linear solver

and do not include integrating it into an optimization solver such as HiOp. This requires features

such as dealing with a rank-deficient Jc via regularization, and balancing the internal linear solver

regularization with that of the optimization solver. We note that the linear systems being solved

in iterations after the first one depend on the linear solver used in previous iterations and that this

could impact the convergence of the optimization solver. Additionally, developing a better method

of parameter selection, especially for �, is essential for reaching HyKKT’s full potential.

Acknowledgements

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-

20-SC, a collaborative e↵ort of two DOE organizations (the O�ce of Science and the National

Nuclear Security Administration) responsible for the planning and preparation of a capable exas-

cale ecosystem—including software, applications, hardware, advanced system engineering, and early

testbed platforms—to support the nation’s exascale computing imperative.

We thank Research Computing at Pacific Northwest National Laboratory (PNNL) for computing

support. We are also grateful to Christopher Oehmen and Lori Ross O’Neil of PNNL for critical

reading of the manuscript and for providing helpful feedback. Finally, we would like to express our

gratitude to Stephen Thomas of National Renewable Energy Laboratory for initiating discussion

that motivated Section 3.9.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 70

Figure 3.8: Illinois grid (3.4) with varying � in (3.6): (a) BE, � 104 gives results close to machine
precision. (b) RR, � 104 has RR 10�8.

Figure 3.9: Texas grid with � = 104: (a) CG iterations on Eq. (3.7). The mean number of iterations
is 11.1. (b) BE and RR for (3.3) and (3.4). The BEs are roughly machine precision and the RRs
are less than 10�8.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 71

3.11 Appendix A: Additional OPF matrix results

Figure 3.8 shows BE and RR in (3.4) for varying � for the Illinois grid. For 1 � 104 the results

are accurate.

CG convergence for the Texas grid with � = 104 is given in Fig. 3.9(a), while (b) shows that the

solution is very accurate and all errors are smaller than 10�8.

3.12 Appendix B: HyKKT implementation

Figure 3.10 details the steps of the HyKKT algorithm. This workflow assumes that � is selected

once and kept constant for di↵erent problems because choosing the ideal � is di�cult and requires

access to the eigenvalues which are prohibitive to compute. To deal with this, the regularization

parameters �1 and �2 are used as described in Algorithm 7. The code will become open-sourced

in 2023. Several custom classes and function files were created to allow for the full functionality

of HyKKT. The code was developed with the guiding principles of object-oriented programming,

removing details unnecessary for the user to be familiar with from their control (simplifying the

CUDA API, which sometimes requires a long list of inputs), and modularizing the code so that

no operations are repeated unnecessarily (such as anything related to the nonzero structure of the

matrix). The following subsections give an overview of each file, for specific details about given

functions see [provide open source link when it’s published].

3.12.1 Classes

CholeskyClass

This class computes and stores the symbolic (cusolverSpXcsrcholAnalysis) and numeric

(cusolverSpDcsrcholFactor) factorization of H� (or H� when regularized). The factorization is

then used to solve systems of the form H�x = b such as the inner solve of the Schur Complement

conjugate gradient solve or the system H��x = r̂x � JT

c
�yc with (cusolverSpDcsrcholSolve).

The numeric factorization is reused for all these systems, such that only a triangular solve is per-

formed each time a system is solved. The symbolic factorization is reused between iterations of

the optimization solver, since the sparsity structure is maintained. In this fashion, no operation is

performed more times than it need be. All actions are performed on the device.

HyKKTSolver

This class contains all the other classes and the relevant data to use HyKKT to solve Eq. (3.3).

Additionally, it contains methods to set up the linear systems being solved Eq. (3.7) and Eq. (3.8),

to recover the solution of system Eq. (3.3) from the solution of Eq. (3.5). Allocation operations are

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 72

Figure 3.10: A summary of the workflow of the linear solver of HyKKT

performed during the first optimization solver iteration on the host. Subsequently, all computations

are performed on the device including in the first iteration.

MMatrix

This structure can store a matrix in both COO and CSR format. It is useful to HyKKT because

Matrix Market matrices are in COO format, so this is the format to read them into. If the matrix

is symmetric, its upper triangular part is stored implicitly. This is all unpacked into the full explicit

CSR format necessary for storing permuted matrices (permutation is done to reduce fill-in) and

using them e�ciently. The structure is on the host.

PermClass

This class computes and stores the permutation for the system Eq. (3.5). The permutation is calcu-

lated based on minimizing the fill-in of the Cholesky factorization of H� with symmetric approximate

minimum degree. The equivalent permutations to the row and column arrays of the sparse blocks

are calculated and the column permutation is stored to use on the value array. These actions are per-

formed on the host and only during the first iteration of the optimization solver. At each iteration,

only the value arrays of the block matrices are permuted, since the other arrays are unchanged due

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 73

to a constant sparsity pattern. This is performed on the device. Permutation is essential to reduce

fill-in of the Cholesky factorization, which reduces the time and storage required for its computation.

RuizClass

This class performs Ruiz scaling of the system Eq. (3.5) on the device using the custom kernels

defined in Section 3.12.3. This is done to ensure all entries in the matrix are O(1) to aid in parameter

selection portability between di↵erent problems. It also includes a method to get max d, a variable

that stores the applied scaling so that the solution to the scaled system can be scaled back to the

solution of the original system.

SchurComplementConjugateGradient

This class calculates the solution to the system Eq. (3.7) via Chronopoulos-Gear CG [45]. This

method is used because it allows for more parallelization and synchronization than standard CG [45].

S is applied by multiplying by JT

c
, solving a system with H� (using its precomputed Cholesky

factorization), and finally multiplying by Jc. Operations are performed on the device.

SpgemmClass

This class allocates the memory necessary for matrix-matrix sums and products, which are used

at various stages of the HyKKT algorithm. The sparsity structure is repeated between optimiza-

tion solver iterations so the symbolic sum or product is computed only once and then reused. The

numerical sums and products are computed at each iteration on the device using functions in ma-

trix matrix ops.

3.12.2 Definitions

constants

Defines floating-point numerical constants 0, 1, and �1, which are useful in matrix and vector

operations..

cusparse params

Defines parameters used by cusparse in function calls such as data, index, and algorithm types.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 74

3.12.3 Functions

matrix vector ops

Defines wrappers to CUDA functions for matrix-vector products, and adds kernels (GPU functions)

used by RuizClass, for finding maximum row entries in a block matrix, and performing the appro-

priate Ruiz scaling. Additionally, it has custom kernels for scaling a matrix by a diagonal matrix,

regularizing it, or multiplying by a constant. All calculations are performed on the device.

matrix matrix ops

Defines matrix-matrix functions for products and sums used by SpGEMM class. The functions

are wrappers for SpGEMM and cusparseDcsrgeam2 functions for matrix-matrix multiplies and sums

respectively. The wrapper functions simplify away the CUDA API from the user and provide the

same output with fewer inputs than the original function. Additionally, the memory allocation

and symbolic sums and products are carried out only during the first optimization solver iteration

(or first linear solve of Eq. (3.3)) and are used during subsequent iterations. It should be noted

that SpGEMM in CUDA does have the ability to perform the operation C = ↵AB + �C, but this

requires C to be of the same sparsity structure as AB or else an all 0 matrix. This would e↵ectively

mean that the symbolic product would have to be computed and C appropriately padded before

the function were called. We decided to use the cusparseDcsrgeam2 functions to work around this.

These operations are carried out on the device (GPU).

permcheck

Contains custom kernels implementing the methods of PermClass to permute block matrices (by

row, column, or both simultaneously) in order to reduce fill-in during factorization and to limit

storage usage and compute time. It also contains a custom kernel to map an existing permutation

of a sparse matrix to a matrix of values. This is done so that the previous permutations can be used

between optimization solver iterations and only the value array need be recalculated.

vector vector ops

Contains wrappers for methods to sum two vectors, take their dot product, or scale a vector on the

device. All these operations are essential at various stages of the HyKKT solver.

3.12.4 Utilities

cuda check errors

Defines a wrapper function for CUDA calls to check they are successful before continuing with the

program.

CHAPTER 3. HYKKT: A HYBRID METHOD FOR SOLVING KKT LINEAR SYSTEMS 75

cuda memory utils

Contains wrapper functions to allocate, copy, or display matrices and vectors to supply the user

with a more convenient API than CUDA.

cusparse utils

Defines functions to create native cusparse handle, vector, and matrix objects and ones to transpose

or display cusparseSpMatDescr t matrices.

input functions

Defines functions used to populate an MMatrix from a Matrix Market file. It can read a matrix

stored in COO format in a Matrix Market file, and move a matrix stored in COO storage to CSR

storage, with the option of filling in the implicitly stored symmetric entries if applicable. This is

done because when reordering the unknowns, we can no longer count on the fact that the lower

triangular part stores all the nonzero entries, unless they were all stored explicitly (in the upper

triangular part) to begin with. This reading and populating is performed on the host.

Chapter 4

Summary

In this thesis we develop and implement two methods, SSAI and HyKKT, that combine elements

of both iterative and direct solvers for linear equations. SSAI was left as a high-level language

(Matlab) solver because low-level software development, including GPU capabilities, was prioritized

on HyKKT due to the more promising nature of the preliminary results and the direct applicability

to a problem at hand. However, as we detail in Section 2.8 and elsewhere in Chapter 2, there is no

fundamental algorithmic di�culty with implementing SSAI in an embarrassingly parallel fashion.

The main takeaway of this thesis is the extent to which a solver designed specifically for a given

application such as HyKKT can greatly outperform a solver that has to deal with di↵erent types of

systems, such as MA57, and save both time and computational resources. The associated cost is in

the development of the specialized algorithm and writing the corresponding code.

In the case of HyKKT, the development of the specialized software required knowledge of the

specific block structure of the matrices arising from optimal power flow models, the high level of

sparsity, and the fact that the sparsity structure is unchanged between iterations of the optimization

solver. The last point is crucial because it is a paradigm in the solution of linear systems that when

there are multiple systems Ax = b, if A changes then the systems are treated completely disjointly.

HyKKT shifts away from this paradigm by exploiting the fact that the entirety of the memory

allocation, reordering, and symbolic analysis can be done only once in the entire solution of an

optimization problem, instead of ⇡ 50–100 times, once for each iteration until convergence of the

optimization solver. This brings substantial computational savings because these operations are the

more costly ones and the other operations can be e�ciently o✏oaded onto a GPU. It is possible that

with more specialized kernels, larger problems, and better GPUs, HyKKT will outperform LBLT

by even larger margins. Furthermore, if for a given class of optimization problems the existence

or non-existence of dependencies between two variables does not change, even if the nature of the

dependency does, the more expensive parts of the HyKKT solver can be used over this entire class.

In certain industrial applications where thousands of these problems are solved on a rolling basis,

76

CHAPTER 4. SUMMARY 77

the memory allocation and symbolic analysis time can e↵ectively be washed out.

In contrast, a solver like SSAI is mainly useful if one is trying to solve only one problem at a

time, or multiple problems without a clear through line between them. In these cases, the time

and resources required for software development may far outweigh any gains made in computational

time. Its strength is not necessarily on any given problem, but rather in that any (HPD) problem

can be solved with it and usually quite competitively.

Future directions of research include developing a C++ version of SSAI with GPU and parallel

computing capabilities. For HyKKT, the current version may be improved by creating more tailored

kernels, expanding the code to allow the use of multiple CPUs and GPUs, and fully integrating it

into an optimization solver in a way that cuts down on the extraneous memory allocation in the

optimization software in addition to what’s been done in the linear solver. Furthermore, both SSAI

and HyKKT have parameters that might be set in a more e�cient or accurate way than what we

did here, which was experimentally coming up with one value that worked well for all problems.

Bibliography

[1] https://docs.nvidia.com/cuda/cusolver/index.html.

[2] https://www.hsl.rl.ac.uk/catalogue/ma57.html.

[3] https://www.hsl.rl.ac.uk/catalogue/ma57.html.

[4] https://intel.github.io/clGPU/docs/iclBLAS/html/.

[5] https://docs.nvidia.com/cuda/cublas/index.htmll.

[6] https://docs.nvidia.com/cuda/cusparse/index.html.

[7] https://portal.nersc.gov/project/sparse/superlu/.

[8] Top500 List, June 2021. https://www.top500.org/lists/top500/2021/06/.

[9] D. Acemoglu, V. Chernozhukov, I. Werning, and M. D. Whinston. Optimal

targeted lockdowns in a multi-group sir model (working paper no. 27102).

National Bureau of Economic Research, 10:w27102, 2020. Retrieved from

http://www.nber.org/papers/w27102doi.

[10] Ajit Agrawal, Philip Klein, and R. Ravi. Cutting down on fill using nested dis-

section: Provably good elimination orderings. In Alan George, John R. Gilbert,

and Joseph W. H. Liu, editors, Graph Theory and Sparse Matrix Computation,

pages 31–55, New York, NY, 1993. Springer New York.

[11] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. AFIPS ’67 (Spring), page 483–485, New York,

NY, USA, 1967. Association for Computing Machinery.

78

https://docs.nvidia.com/cuda/cusolver/index.html
https://www.hsl.rl.ac.uk/catalogue/ma57.html
https://www.hsl.rl.ac.uk/catalogue/ma57.html
https://intel.github.io/clGPU/docs/iclBLAS/html/
https://docs.nvidia.com/cuda/cublas/index.htmll
https://docs.nvidia.com/cuda/cusparse/index.html
https://portal.nersc.gov/project/sparse/superlu/
https://www.top500.org/lists/top500/2021/06/
http://www.nber.org/papers/w27102%20doi

BIBLIOGRAPHY 79

[12] T. Andrews. Computation time comparison between MATLAB and C++ using

launch windows, 2012.

[13] Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, and

Kevin P. Murphy. Computational approaches for RNA energy parameter esti-

mation. RNA, 16(12):2304–2318, 2010.

[14] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric

indefinite linear equation solvers. SIAM J. Matrix Anal. Appl., 20(2):513–561,

1998.

[15] H. Avron, A. Gupta, and S. Toledo. Solving Hermitian positive definite systems

using indefinite incomplete factorizations. J. Comput. Appl. Math., 243:126–138,

2012.

[16] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-

bridge, 1994.

[17] Dulceneia Becker, Marc Baboulin, and Jack Dongarra. Reducing the amount

of pivoting in symmetric indefinite systems. Technical report, INRIA, 2011.

[18] Nathan Bell and Michael Garland. E�cient sparse matrix-vector multiplication

on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation,

December 2008.

[19] M. Benzi. Preconditioning techniques for large linear systems: A survey. J.

Comput. Phys., 182:418–447, 2002.

[20] M. Benzi and J. Liu. Block preconditioning for saddle point systems with

indefinite (1,1) block. Intern. J. of Computer Mathematics, 84(8):1117–1129,

2007.

[21] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse precondi-

tioner for the conjugate gradient method. SIAM J. Sci. Comput., 17:1135–1149,

1996.

[22] M. Benzi and M. Tuma. A robust incomplete factorization preconditioner for

positive definite matrices. Numer. Algor., 10(5):385–400, 2003.

BIBLIOGRAPHY 80

[23] Lorenz T. Biegler. A survey on sensitivity-based nonlinear model predictive

control. IFAC Proceedings Volumes, 46(32):499–510, 2013.

[24] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,

1996.

[25] Joshua Dennis Booth, Sivasankaran Rajamanickam, and Heidi Thornquist.

Basker: A threaded sparse LU factorization utilizing hierarchical parallelism

and data layouts. In 2016 IEEE International Parallel and Distributed Process-

ing Symposium Workshops (IPDPSW), pages 673–682. IEEE, 2016.

[26] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel. The SIAM 100-Digit

Challenge. SIAM, Philadelphia, PA, 2004.

[27] Brandt. Multi-level adaptive solutions to boundary-value problems. 31(138),

May 1977.

[28] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite

systems of linear equations. SIAM J. Numer. Anal., 8(4):639–655, 1971.

[29] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite

systems of linear equations. SIAM J. Numer. Anal., 8(4):639–655, 1971.

[30] James R. Bunch and Linda Kaufman. Some stable methods for calculating

inertia and solving symmetric linear systems. Math. Comp., pages 163–179,

1977.

[31] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. KNITRO: An Inte-

grated Package for Nonlinear Optimization, pages 35–59. Springer US, Boston,

MA, 2006.

[32] L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro, and

E. Darve. An algebraic sparsified nested dissection algorithm using low-rank

approximations. SIAM J. Matrix Anal. Appl., 41(2):715–746, 2020.

[33] Luciana Casacio, Christiano Lyra, Aurelio Ribeiro Leite Oliveira, and Ce-

cilia Orellana Castro. Improving the preconditioning of linear systems from

interior point methods. Computers and Operations Research, 85:129–138, 2017.

BIBLIOGRAPHY 81

[34] Sambuddha Chakrabarti, Matt Kraning, Eric Chu, Ross Baldick, and Stephen

Boyd. Security constrained optimal power flow via proximal message passing.

In 2014 Clemson University Power Systems Conference, pages 1–8. IEEE, 2014.

[35] C. Chen, T. Liang, and G. Biros, 2020. https://github.com/ut-padas/rchol.

[36] C. Chen, T. Liang, and G. Biros. RCHOL: Randomized Cholesky factorization

for solving SDD linear systems. arXiv preprint arXiv:2011.07769, 2020.

[37] Y. Chen, T.A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:

CHOLMOD, supernodal sparse Cholesky factorization and update/downdate.

ACM Trans. Math. Softw., 35(3):22:1–22:14, 2008.

[38] N. Chiang, S. Peles, C. G. Petra, S. Regev, K. Swirydowicz, and J. Wang.

Exasgd: 2021 kernel thrust activities. Technical Report LLNL-TR-828464,

Lawrence Livermore National Lab, 2021.

[39] Nai-Yuan Chiang and Victor M. Zavala. An inertia-free filter line-search algo-

rithm for large-scale nonlinear programming. Comput. Optim. Appl., 64(2):327–

354, 2016.

[40] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: a Krylov

subspace method for indefinite or singular symmetric systems. SIAM J. Sci.

Comput., 33:1810–1836, 2011.

[41] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse

preconditioners. SIAM J. Sci. Comput., 21:1804–1822, 2000.

[42] E. Chow and A. Patel. Fine-grained parallel incomplete LU factorization. SIAM

J. Sci. Comput., 37(2):C169–C193, 2015.

[43] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse

iterations. SIAM J. Sci. Comput., 19:995–1023, 1998.

[44] M. Christie and M. Blunt, et al. Tenth SPE comparative solution project: A

comparison of upscaling techniques. Soc. Petrol. Eng. J., 4, 2001.

https://github.com/ut-padas/rchol

BIBLIOGRAPHY 82

[45] A.T. Chronopoulos and C.W. Gear. s-step iterative methods for symmetric

linear systems. Journal of Computational and Applied Mathematics, 25(2):153–

168, 1989.

[46] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI message passing

interface standard. In Karsten M. Decker and René M. Rehmann, editors,

Programming Environments for Massively Parallel Distributed Systems, pages

213–218, Basel, 1994. Birkhäuser Basel.

[47] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

ACM ’69, page 157–172, New York, NY, USA, 1969. Association for Computing

Machinery.

[48] E. Darve and M. Wootters. Numerical Linear Algebra with Julia. Other Titles

in Applied Mathematics Series. SIAM, Philadelphia, 2021.

[49] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection.

ACM Trans. Math. Softw., 38, 2011.

[50] T. A. Davis, Y. Hu, and S. Kolodziej. SuiteSparse matrix collection. https:

//sparse.tamu.edu/, 2015–present.

[51] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, a direct sparse

solver for circuit simulation problems. ACM Trans. Math. Softw., 37(3):1–17,

2010.

[52] Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar.

A survey of direct methods for sparse linear systems. Acta Numerica, 25:383–

566, 2016.

[53] M. M. Dehnavi, D. M. Fernández, J. Gaudiot, and D. D. Giannacopoulos. Par-

allel sparse approximate inverse preconditioning on graphic processing units.

IEEE Trans. on Parallel and Distributed Systems, 24(9):1852–1862, 2013.

[54] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software

with performance profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

https://sparse.tamu.edu/
https://sparse.tamu.edu/

BIBLIOGRAPHY 83

[55] Elizabeth D. Dolan, Jorge J. Moré, and Todd S. Munson. Benchmarking opti-

mization software with COPS 3.0. Technical report, Argonne National Labora-

tory, 2004.

[56] H. Sue Dollar, Nicholas Gould, Wil Schilders, and Andrew Wathen. Implicit-

factorization preconditioning and iterative solvers for regularized saddle-point

systems. SIAM J. Matrix Anal. Appl., 28:170–189, 01 2006.

[57] Zhijun Duan, Mirela Andronescu, Kevin Schutz, Sean McIlwain, Yoo Jung Kim,

Choli Lee, Jay Shendure, Stanley Fields, C Anthony Blau, and William S Noble.

A three-dimensional model of the yeast genome. Nature, 465(7296):363–367,

2010.

[58] I. S. Du↵. MA57—a code for the solution of sparse symmetric definite and

indefinite systems. ACM Trans. Math. Softw., 30(2):118–144, 2004.

[59] Iain Du↵, Jonathan Hogg, and Florent Lopez. A new sparse symmetric indefinite

solver using a posteriori threshold pivoting. NLAFET Working Note, 2018.

[60] Iain Du↵, Jonathan Hogg, and Florent Lopez. A new sparse LBLT solver using

a posteriori threshold pivoting. SIAM J. Optim., 42(2):C23–C42, 2019.

[61] Iain Du↵ and Jacko Koster. On algorithms for permuting large entries to the

diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl., 22:973–996, 2001.

[62] Iain S. Du↵, Nick I. M. Gould, John K. Reid, Jennifer A. Scott, and Kathryn

Turner. The factorization of sparse symmetric indefinite matrices. IMA J.

Numer. Anal., 11(2):181–204, 1991.

[63] Iain S. Du↵ and Stéphane Pralet. Strategies for scaling and pivoting for sparse

symmetric indefinite problems. SIAM J. Matrix Anal. Appl., 27(2):313–340,

2005.

[64] Iain S. Du↵ and Stéphane Pralet. Towards stable mixed pivoting strategies

for the sequential and parallel solution of sparse symmetric indefinite systems.

SIAM J. Matrix Anal. Appl., 29(3):1007–1024, 2007.

[65] Iain S. Du↵ and John K. Reid. The multifrontal solution of indefinite sparse

symmetric linear. ACM Trans. Math. Softw., 9(3):302–325, 1983.

BIBLIOGRAPHY 84

[66] Iain S. Du↵, John K. Reid, N. Munksgaard, and Hans B. Nielsen. Direct solution

of sets of linear equations whose matrix is sparse, symmetric and indefinite. IMA

J. Numer. Anal., 23(2):235–250, 1979.

[67] M. Embree. How descriptive are GMRES convergence bounds? Technical

report, Oxford University Computing Laboratory, 1999.

[68] Massimiliano Ferronato. Preconditioning for sparse linear systems at the dawn

of the 21st century: History, current developments, and future perspectives.

ISRN Applied Mathematics, 2012, 12 2012.

[69] R. Fletcher. Factorizing symmetric indefinite matrices. Linear Algebra and its

Applications, 14(3):257–272, 1976.

[70] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for least-

squares problems. SIAM J. Sci. Comput., 33(5):2950–2971, 2011.

[71] D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical com-

parison. SQU J. Sci., 17(1):44–62, 2012. http://stanford.edu/group/SOL/

reports/SOL-2011-2R.pdf.

[72] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for sym-

metric indefinite linear systems. IMACS, pages 1253–1256, 1994.

[73] J. Gao, Q. Chen, and G. He. A thread-adaptive sparse approximate

inverse preconditioning algorithm on multi-GPUs. Parallel Computing,

101:102724, 2021. http://www.sciencedirect.com/science/article/pii/

S0167819120301083.

[74] S. Gazzola, P. C. Hansen, and J. G. Nagy. IR Tools: a MATLAB package of

iterative regularization methods and large-scale test problems. Numer. Algor.,

81(3):773–811, 2019.

[75] A. George, G. Alan, and J.W.H. Liu. Computer Solution of Large Sparse

Positive Definite Systems. Prentice-Hall series in computational mathematics.

Prentice-Hall, 1981.

[76] Alan George. Nested dissection of a regular finite element mesh. SIAM J.

Numer. Anal., 10(2):345–363, 1973.

http://stanford.edu/group/SOL/reports/SOL-2011-2R.pdf
http://stanford.edu/group/SOL/reports/SOL-2011-2R.pdf
http://www.sciencedirect.com/science/article/pii/S0167819120301083
http://www.sciencedirect.com/science/article/pii/S0167819120301083

BIBLIOGRAPHY 85

[77] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Preconditioners

for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl.,

13:292–311, 1992.

[78] Abeynaya Gnanasekaran and Eric Darve. Hierarchical orthogonal factorization:

Sparse square matrices. SIAM J. Matrix Anal. Appl., 43(1):94–123, 2022.

[79] G. H. Golub and C. Greif. On solving block-structured indefinite linear systems.

SIAM J. Sci. Comput., 6(24):2076–2092, 2003.

[80] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies

in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore,

fourth edition, 2013.

[81] Jacek Gondzio. HOPDM (version 2.12) – a fast LP solver based on a primal-dual

interior point method. European Journal of Operational Research, 85(1):221–

225, 1995.

[82] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEst: a

constrained and unconstrained testing environment with safe threads for math-

ematical optimization. Comput. Optim. Appl., 60(3):545–557, 2015.

[83] Nicholas I. M. Gould and Jennifer A. Scott. A numerical evaluation of HSL

packages for the direct solution of large sparse, symmetric linear systems of

equations. ACM Trans. Math. Softw., 30(3):300–325, 2004.

[84] Nicholas I. M. Gould, Jennifer A. Scott, and Yifan Hu. A numerical evaluation

of sparse direct solvers for the solution of large sparse symmetric linear systems

of equations. ACM Trans. Math. Softw., 33(2):10–es, 2007.

[85] C. Greif, S. He, and P. Liu. SYM-ILDL: Incomplete LDLT factoriza-

tion of symmetric indefinite and skew-symmetric matrices. arXiv preprint

arxiv.org/abs/1505.07589, 2016.

[86] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate

inverses. SIAM J. Sci. Comput., 18:838–853, 1997.

[87] John L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–533,

may 1988.

BIBLIOGRAPHY 86

[88] P. C. Hansen. Regularization Tools version 4.0 for MATLAB 7.3. Numer.

Algor., 46:189–194, 2007.

[89] Kai He, Sheldon X-D Tan, Hai Wang, and Guoyong Shi. GPU-accelerated par-

allel sparse LU factorization method for fast circuit analysis. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 24(3):1140–1150, 2015.

[90] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. The Morgan Kaufmann Series in Computer Architecture and Design.

Elsevier Science, 2006.

[91] Pascal Hénon, Pierre Ramet, and Jean Roman. PaStiX: A high-performance

parallel direct solver for sparse symmetric definite systems. Parallel Computing,

28(2):301–321, 2002.

[92] M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving

linear systems. J. Res. Nat. Bureau Standards, 49:409–436, 1952.

[93] J. D. Hogg and J. A. Scott. An indefinite sparse direct solver for large prob-

lems on multicore machines. Technical Report RAL-TR-2010-011, Rutherford

Appleton Laboratory, Chilton, 2010.

[94] Jonathan D. Hogg and Jennifer A. Scott. Pivoting strategies for tough sparse

indefinite systems. ACM Trans. Math. Softw., 40(1):1–19, 2013.

[95] Jonathan D. Hogg and Jennifer A. Scott. Compressed threshold pivoting for

sparse symmetric indefinite systems. SIAM J. Matrix Anal. Appl., 35(2):783–

817, 2014.

[96] Karl Erik Holter, Miroslav Kuchta, and Kent-Andre Mardal. Robust precondi-

tioning for coupled Stokes–Darcy problems with the Darcy problem in primal

form. Computers and Mathematics with Applications, 91:53–66, 2021. Robust

and Reliable Finite Element Methods in Poromechanics.

[97] C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati. FSAIPACK: A

software package for high-performance Factored Sparse Approximate Inverse

preconditioning. ACM Trans. Math. Softw., 41(2):10:1–10:26, 2015.

BIBLIOGRAPHY 87

[98] Juan Jerez, Sandro Merkli, Samir Bennani, and Hans Strauch. FORCES-RTTO:

A tool for on-board real-time autonomous trajectory planning. In 10th Inter-

national ESA Conference on Guidance, Navigation and Control Systems, pages

1–22. ESA Salzburg, Austria, 2017.

[99] E. F. Kaasschieter. A practical termination criterion for the conjugate gradient

method. BIT, 28(2):308–322, jun 1988.

[100] William Karush. Minima of functions of several variables with inequalities as

side conditions, 1939.

[101] Martin Keller, Severin Geiger, Marco Günther, Stefan Pischinger, Dirk Abel,

and Thivaharan Albin. Model predictive air path control for a two-stage tur-

bocharged spark-ignition engine with low pressure exhaust gas recirculation.

International Journal of Engine Research, 21(10):1835–1845, 2020.

[102] B. Klockiewicz and E. Darve. Sparse hierarchical preconditioners us-

ing piecewise smooth approximations of eigenvectors. arXiv preprint

arXiv:1907.03406v1, 2019.

[103] Philip A. Knight, Daniel Ruiz, and Bora Uçar. A symmetry preserving algo-

rithm for matrix scaling. SIAM J. Matrix Anal. Appl., 35(3):931–955, 2014.

[104] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse

preconditionings. I: Theory. SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

[105] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse

preconditioning II: Solution of 3D FE systems on massively parallel computers.

Int. J. High Speed Comput., 7:191–215, 1995.

[106] Tristan Konolige and Jed Brown. A parallel solver for graph laplacians. In Pro-

ceedings of the Platform for Advanced Scientific Computing Conference, PASC

’18, New York, NY, USA, 2018. Association for Computing Machinery.

[107] J. Kouatchou. Basic comparison of Python, Julia, R, MATLAB and IDL, 2016.

https://modelingguru.nasa.gov/docs/DOC-2625.

https://modelingguru.nasa.gov/docs/DOC-2625

BIBLIOGRAPHY 88

[108] Drosos Kourounis, Alexander Fuchs, and Olaf Schenk. Toward the next gener-

ation of multiperiod optimal power flow solvers. IEEE Transactions on Power

Systems, 33(4):4005–4014, 2018.

[109] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, 1950,

pages 481–492, Berkeley and Los Angeles, 1951. University of California Press.

[110] S. Laut, M. Casas, and R. Borrel. Communication-aware sparse patterns for the

factorized approximate inverse preconditioner, https://dl.acm.org/doi/abs/

10.1145/3502181.3531472, 2022. Presented at the 31st International Sympo-

sium on High-Performance Parallel and Distributed Computing.

[111] Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user

interface. ACM Trans. Math. Softw., 31(3):302–325, September 2005.

[112] Xiaoye S. Li and James W. Demmel. A scalable sparse direct solver using static

pivoting. In Proceedings of the Ninth SIAM Conference on Parallel Processing

for Scientific Computing 1999 (San Antonio, TX), page 10. SIAM, Philadelphia,

1999.

[113] Yudong Ma, Jadranko Matuško, and Francesco Borrelli. Stochastic model pre-

dictive control for building HVAC systems: Complexity and conservatism. IEEE

Transactions on Control Systems Technology, 23(1):101–116, 2014.

[114] J. Maack and S. Abhyankar. ACOPF sparse linear solver test suite, 2020.

github.com/NREL/opf_matrices.

[115] A. M. Manea, J. Sewall, H. A. Tchelepi, et al. Parallel multiscale linear solver

for highly detailed reservoir models. Soc. Petrol. Eng. J., 21:2–62, 2016.

[116] T. A. Manteufel. An incomplete factorization technique for positive definite

linear systems. Math. Comp., 34:473–497, 1980.

[117] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear

systems of which the coe�cient matrix is a symmetric M-matrix. Math. Comp.,

31:148–162, 1977.

https://dl.acm.org/doi/abs/10.1145/3502181.3531472
https://dl.acm.org/doi/abs/10.1145/3502181.3531472
github.com/NREL/opf_matrices

BIBLIOGRAPHY 89

[118] Daniel K Molzahn, Florian Dörfler, Henrik Sandberg, Steven H Low, Sambud-

dha Chakrabarti, Ross Baldick, and Javad Lavaei. A survey of distributed opti-

mization and control algorithms for electric power systems. IEEE Transactions

on Smart Grid, 8(6):2941–2962, 2017.

[119] Alexis Montoison and Dominque Orban. TriCG and TriMR: Two iterative meth-

ods for symmetric quasi-definite systems. SIAM J. Sci. Comput., 43(4):302–325,

2021.

[120] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Oper-

ations Research. Springer Verlag, New York, second edition, 2006.

[121] Jerome W. O’Neal. The Use of Preconditioned Iterative Linear Solvers in

Interior-Point Methods and Related Topics. PhD dissertation, Georgia Insti-

tute of Technology, 2005.

[122] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear

equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[123] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations

and sparse least squares. ACM Trans. Math. Softw., 8:43–71, 1982.

[124] http://pastix.gforge.inria.fr/files/README-txt.html.

[125] C. Petra, B. Gavrea, M. Anitescu, and F. Potra. A computational study of the

use of an optimization-based method for simulating large multibody systems.

Optimization Methods & Software, 24(6):871–894, 2009.

[126] Cosmin G. Petra and Nai-Yuan Chiang. HiOp – User Guide. Technical

Report LLNL-SM-743591, Lawrence Livermore National Laboratory. https:

//github.com/LLNL/hiop/blob/develop/doc/hiop_usermanual.pdf.

[127] Cosmin G. Petra, Nai-Yuan Chiang, Slaven Peles, Asher Mancinelli, Cameron

Rutherford, Jake K. Ryan, and Michel Schanen. HPC solver for nonlinear

optimization problems, 2017. https://github.com/LLNL/hiop/tree/master.

[128] PNNL machines. https://www.pnnl.gov/capabilities/

advanced-computer-science-visualization-data.

http://pastix.gforge.inria.fr/files/README-txt.html
https://github.com/LLNL/hiop/blob/develop/doc/hiop_usermanual.pdf
https://github.com/LLNL/hiop/blob/develop/doc/hiop_usermanual.pdf
https://github.com/LLNL/hiop/tree/master
https://www.pnnl.gov/capabilities/advanced-computer-science-visualization-data
https://www.pnnl.gov/capabilities/advanced-computer-science-visualization-data

BIBLIOGRAPHY 90

[129] Anna Pyzara, Beata Bylina, and Jaros law Bylina. The influence of a matrix

condition number on iterative methods’ convergence. In Proceedings of the

Federated Conference on Computer Science and Information System, pages 459–

464. IEEE, 2011.

[130] Jan M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice-

Hall, Inc., USA, 1996.

[131] T. Rauber and G. Rünger. Parallel Programming: for Multicore and Cluster

Systems. Springer Berlin Heidelberg, 2013.

[132] Tim Rees and Chen Greif. A preconditioner for linear systems arising from

interior point optimization methods. SIAM J. Sci. Comput., 29:1992–2007,

2007.

[133] Tyrone Rees and Jennifer Scott. A comparative study of null-space factoriza-

tions for sparse symmetric saddle point systems: A comparative study of null-

space factorizations. Numerical Linear Algebra with Applications, 25:e2103, 06

2017.

[134] S. Regev, 2019. https://github.com/shakedregev/SSAI.

[135] S. Regev, 2019. https://tinyurl.com/matfiles.

[136] S. Regev and M. A. Saunders. minres20: MATLAB software for MINRES and

several preconditioners, 2020. http://stanford.edu/group/SOL/software/

minres.

[137] S. Regev and M. A. Saunders. SSAI and SSAI LS: Sparse approximate in-

verse preconditioners for CG and MINRES, http://stanford.edu/group/

SOL/talks/22householder-saunders.pdf, 2022. Presented at the XXI House-

holder Symposium on Numerical Linear Algebra, Selva di Fasano (Br), Italy.

[138] Shaked Regev, Nai-Yuan Chiang, Eric Darve, Cosmin G. Petra, Michael A.

Saunders, Kasia Świrydowicz, and Slaven Peleš. HyKKT: a hybrid direct-

iterative method for solving KKT linear systems. Optimization Methods &

Software, xx:24pp, 2022.

https://github.com/shakedregev/SSAI
https://tinyurl.com/matfiles
http://stanford.edu/group/SOL/software/minres
http://stanford.edu/group/SOL/software/minres
http://stanford.edu/group/SOL/talks/22householder-saunders.pdf
http://stanford.edu/group/SOL/talks/22householder-saunders.pdf

BIBLIOGRAPHY 91

[139] Shaked Regev and Michael Saunders. SSAI: A symmetric sparse approximate

inverse preconditioner for the conjugate gradient method. Working paper, 2019.

[140] P. Reinert, Hermann Krebs, and Evgeny Epelbaum. Semilocal momentum-

space regularized chiral two-nucleon potentials up to fifth order. The European

Physical Journal A, 54(5):1–49, 2018.

[141] Steven C. Rennich, Darko Stosic, and Timothy A. Davis. Accelerating sparse

Cholesky factorization on GPUs. Parallel Computing, 59:140–150, 2016. Theory

and Practice of Irregular Applications.

[142] Edward Jason Riedy. Making Static Pivoting Scalable and Dependable. PhD

thesis, University of California, Berkeley, 2010.

[143] Donald J. Rose. A graph-theoretic study of the numerical solution of sparse

positive definite systems of linear equations. In Ronald C. Read, editor, Graph

Theory and Computing, pages 183–217. Academic Press, 1972.

[144] François-Henry Rouet, Xiaoye S. Li, Pieter Ghysels, and Artem Napov. A

distributed-memory package for dense hierarchically semi-separable matrix com-

putations using randomization. ACM Trans. Math. Softw., 42(4), 2016.

[145] J. Rozložńık. Saddle-point Problems and Their Iterative Solution. Cham:

Birkhäuser, 2018.

[146] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in ma-

trices. Technical Report RAL-TR-2001-034, Rutherford Appleton Laboratory,

2001.

[147] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm

for nonsymmetric linear systems. SIAM J. Sci. and Statist. Comput., 7:856–869,

1986.

[148] D. K. Salkuyeh and F. Toutounian. A new approach to compute sparse approx-

imate inverse of an SPD matrix. IUST - Int. J. Eng. Sci., 15:87–95, 2004.

[149] Olaf Schenk, Andreas Wächter, and Michael Hagemann. Matching-based pre-

processing algorithms to the solution of saddle-point problems in large-scale

BIBLIOGRAPHY 92

nonconvex interior-point optimization. Comput. Optim. Appl., 36(2-3):321–341,

April 2007.

[150] J. Scott and M. Tuma. Solving mixed sparse-dense linear least squares by

preconditioned iterative methods. SIAM J. Sci. Comput., 39(6):A2422–A2437,

2017.

[151] J. Scott and M. Tuma. A Schur complement approach to preconditioning sparse

linear least-squares problems with some dense rows. Numer. Algor., 79(1):1147–

1168, 2018.

[152] J. Scott and M. Tuma. Sparse stretching for solving sparse-dense linear least-

squares problems. SIAM J. Sci. Comput., 41(3):A1604–A1625, 2019.

[153] S. R. Searle. Matrix Algebra Useful for Statistics. John Wiley and Sons, Hobo-

ken, NJ, 1982.

[154] Cristiana J Silva and Delfim FM Torres. Optimal control for a tuberculo-

sis model with reinfection and post-exposure interventions. Mathematical Bio-

sciences, 244(2):154–164, 2013.

[155] Jean-Pierre Sleiman, Jan Carius, Ruben Grandia, Martin Wermelinger, and

Marco Hutter. Contact-implicit trajectory optimization for dynamic object ma-

nipulation. In 2019 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6814–6821. IEEE, 2019.

[156] https://portal.nersc.gov/project/sparse/strumpack/.

[157] K. Świrydowicz, E. Darve, J. Maack, S. Regev, M. A. Saunders, S. J. Thomas,

and S. Peleš. Linear solvers for power grid optimization problems: a review of

GPU-accelerated linear solvers. Parallel Computing, (submitted), 2020.

[158] Byron Tasse↵, Carleton Co↵rin, Andreas Wächter, and Carl Laird. Exploring

benefits of linear solver parallelism on modern nonlinear optimization applica-

tions, 2019.

[159] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price.

Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes

https://portal.nersc.gov/project/sparse/strumpack/

BIBLIOGRAPHY 93

approximation ice sheet solver built for advanced analysis. Geosci. Model. Dev.,

8:1197–1220, 2015.

[160] Rue Toulouse, Patrick Amestoy, Tim Davis, Iain Du↵, and Patrick Amestoy.

An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal.

Appl., 17, 01 1998.

[161] L. N. Trefethen. A hundred-dollar, hundred-digit challenge. SIAM News, 35:65,

2002.

[162] L. N. Trefethen. The SIAM 100-dollar, 100-digit challenge, 2002. https://

people.maths.ox.ac.uk/trefethen/hundred.html.

[163] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia,

1983.

[164] H. Uzawa. Iterative Methods for Concave Programming. Johns Hopkins Studies

in the Mathematical Sciences. Stanford University Press, Stanford, CA, 1958.

[165] R. J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. Optim., 5:100–113,

1995.

[166] Robert J. Vanderbei. LOQO: An interior point code for quadratic programming.

Optimization Methods & Software, 11(1):451–484, 1999.

[167] Nelle Varoquaux, Ferhat Ay, William Sta↵ord Noble, and Jean-Philippe Vert.

A statistical approach for inferring the 3D structure of the genome. Bioinfor-

matics, 30(12):i26–i33, 2014.

[168] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear pro-

gramming: Motivation and global convergence. SIAM J. Optim., 16(1):1–31,

2005.

[169] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear

programming: Local convergence. SIAM J. Optim., 16(1):32–48, 2005.

[170] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming. Math.

Program., 106(1):25–57, 2006.

https://people.maths.ox.ac.uk/trefethen/hundred.html
https://people.maths.ox.ac.uk/trefethen/hundred.html

BIBLIOGRAPHY 94

[171] Allen Wang, Ashkan Jasour, and Brian C Williams. Non-Gaussian chance-

constrained trajectory planning for autonomous vehicles under agent uncer-

tainty. IEEE Robotics and Automation Letters, 5(4):6041–6048, 2020.

[172] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.

Alg. Discr. Meth., 2, 03 1981.

[173] J. Zhang and T. Xiao. A multilevel block incomplete Cholesky preconditioner

for solving normal equations in linear least squares problems. J. Appl. Math.

and Comput., 11(1):59–80, 2003.

	Abstract
	Acknowledgments
	Introduction
	Sparse Hermitian linear systems
	Direct solution methods
	Iterative solution methods
	Methods with iterative and direct components

	Sparse least-squares problems
	Direct solution methods
	Iterative solution methods
	Methods with iterative and direct components

	Scaling
	Max scaling
	Diagonal scaling
	Ruiz scaling
	Norm scaling

	Reordering
	Fill-in reduction
	Numerical stability via pivoting

	Preconditioning for iterative solutions of sparse HPD systems
	Direct methods for solving sparse symmetric indefinite KKT linear systems
	Motivation

	Parallel computing
	Bounds on speedup
	Performance limiters
	Types of parallelism

	Overview

	SSAI: A symmetric sparse approximate inverse preconditioner
	Overview
	Contributions
	Introduction
	A PCG algorithm for HPD linear systems
	Approximate solution of Amj = ej
	Modified PCG

	Numerical results on HPD systems
	Matrices from SuiteSparse
	SDDM matrices
	Scale-up for Trefethen challenge matrices
	Scale-up for finite-element linear elasticity matrices
	Scale-up for finite-volume petroleum engineering matrices
	Scale-up for finite-element ice-sheet matrices

	Least-squares problems
	Sparsity structure of A
	Performance of ichol vs SSAI

	Parallelism and complexity
	Discussion
	Comparison of preconditioners for iterative methods for HPD problems
	Indefinite A
	MINRES and preconditioners for indefinite A
	Signature matrices

	Summary

	HyKKT: A Hybrid Method for Solving KKT Linear Systems
	Overview
	Contributions
	Introduction
	Nonlinear optimization problem
	Solving KKT linear systems
	A block 22 system solution method
	A hybrid solver with minimal regularization
	Guaranteed descent direction
	Convergence for large
	Summary of equations solved

	Practicality demonstration
	 selection
	Results for larger matrices
	Reordering H

	Comparison with LBLT
	Iterative vs. direct solve with H in alg:CGschur
	Summary
	Appendix A: Additional OPF matrix results
	Appendix B: HyKKT implementation
	Classes
	Definitions
	Functions
	Utilities

	Summary

