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Abstract

Distributed photovoltaic (PV) generation is growing rapidly due to renewable-energy
policies, business innovation, and new technology. The variability and volatility of
solar generation causes challenges when operating the grid. Given the current phys-
ical infrastructure and operational policies this results in limits on distributed PV
generation. What the limit is to the penetration of PV is studied by analyzing the
behavior of distributed PV generation and a model of the load.

We investigate how to represent the power output from distributed PV generation.
We propose a reduced-form approach for constructing maximum PV power curves,
which describe the maximum power from a group of PV systems at any time instance.
Unlike a structural approach used typically by PV providers, the reduced-form ap-
proach requires no information about configuration or specification of each PV system
in the group. We show how a grid operator can use maximum power curves in vari-
ous applications such as finding a simple limit to PV installation, defining volatility
distinctly from variability, and constructing a short-term PV power forecast system.

A key requirement is a model of the load. Analogous to the maximum power
curve, a load reference curve is proposed with a simple definition and shown to im-
prove the performance of a short-term load forecast. Lastly, a simulation of the grid
operation using our forecast systems and a typical set of existing infrastructures is
performed to measure the risk of demand-supply imbalance. The maximum level of
distributed PV installation given an acceptable level of risk is established. Options
of adding additional ancillary services and implementing PV curtailment to increase
the maximum level of distributed PV installation are also investigated.
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Preface

The grid

Electricity has been an essential commodity to deliver energy driving a modern civi-
lization for more than a century. It is the backbone of all domestic, commercial, and
industrial activities. Electricity transmission is not a simple task. Energy in the form
of electricity is expensive to store, and the precise rate of the electric energy flow
called power is required to operate electric appliances. Electricity transmission is
not simply sending a portion of energy from a supplier to a consumer at an arbitrary
instance like most other resources. The electricity transmission must match demand
and supply at all instances. That is, at all times, the generating power from all gen-
eration units must equal to the consuming power, called load, from all consumers
in the transmission network called the electric grid, or for short the grid. The grid
can comprise a significant number of traditional power plants known as generators
that supply a majority of energy, a large number of power consuming units known as
loads from several sectors in the economy, and a small number of fast reacting reserves
known as ancillary services that can match the power difference between generators
and loads. The procedure to match demand and supply at any instance starts with
the day-ahead energy scheduling where the load profile of the operating day is
predicted and generators are scheduled to match their power with the predicted load
profile. On the operating day, there is an hour-ahead energy scheduling, in which
the load profile of the operating hour is predicted and additional generators are sched-
uled so that the combined power matches the updated predicted profile. At some time
before the operating instance, the scheduling is no longer applied. In a nutshell, the
collection of responsive generators and loads known as ancillary service is called to
match the load at the operating instance. 1 Furthermore, the operation is complex
due to the fact that these entities are distributed within a web of transmission lines.
The problem is not just about matching the net demand and supply in the grid, but

1In fact, the prediction and scheduling in the sub-hour level are still running but limited to
ancillary services. More detail of the grid operation procedure is described later in Chapter 9.
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also about satisfying physical constraints of transmission. The mathematical formu-
lation of balancing the grid under these constraints is called the power flow problem.
An additional complication is that, even though the grid is large and interconnected,
the grid is a dynamical system and sensitive to disturbances. It means that after a
sudden change in a constraint, such as a transmission line is cut, the state of the
grid might not evolve to a feasible steady state under a new set of constraints even
though it exists. The mathematical formulation to solve this problem is known as
stability analysis. Despite these challenges, the task of balancing demand and supply
in the grid has been executed with only relatively few failures because both power
consumption and generation are predictable and controllable.

The load

Understanding the behavior of the power consumption or the load in the grid is critical
in the grid operation and planning. There are two key characteristics of the demand
contributing to the higher cost of the grid operation: variability and volatility.
The variability of the load can be found in the daily, weekly and seasonal basis. An
extra load beyond the average load requires extra power supply, which is economically
inefficient since the generator to serve the extra load is less often used. Furthermore,
the highly variable load requires a power source with a higher rate of change in power
known as ramp rate, which adds to the cost. If the load was deterministically
known, matching the demand would be simple if generators with sufficient capacities
and ramp rates are installed and the transmission constraints are satisfied. The cost
of these generators depends solely on the variability of the load. In reality, there is
uncertainty about when and how much power is consumed by different users in the
grid. This causes the volatility of the load. Extra cost of ancillary services deployment
comes from the volatility. However, the volatility of the load is small. The prediction
error by existing forecast systems is also small.2 The variability of the load emerges
from dependent actions of consumers in the grid, while the volatility arises from
independent decisions. The variation in the load pattern comes from daily variation
in activity at roughly the same time such as opening a refrigerator to cook a dinner.
However, since a large amount of people have slight variations for when to take an
action, the variation in demand is smooth and the occurrences of a sudden significant
change is negligible. Historically the load behavior has been well understood. The
infrastructure and operational policies have been designed to match the needs of this
type of behavior.

2The detail of the prediction accuracy is described in Chapter 7.
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The distributed PV generation

In the last few decades, the threat of unsustainable and even harmful energy resources
that supply electricity has been a growing concern. Many entities from scientists to
policy makers have been seeking new ways to use clean and renewable resources. Pho-
tovoltaic (PV) technology is one of the candidates. A photovoltaic (PV) system
comprises a semiconductor panel converting sunlight into direct current electricity
and an inverter converting direct current to alternative current used in the grid. The
deployment of PV systems has been increasing significantly due to supportive policies
in many countries and several states in US. In 2015, more than one third of yearly
PV installations is distributed PV generation, the PV deployment in which the
PV systems are installed geographically near consumers scattered throughout the
grid [11]. Business innovations and favorable regulatory policies attract homeowners
and commercial entities to install PV systems on their roofs. Distributed PV has
become the poster child of renewables providing not only clean energy but avoiding
both the infrastructure to convert energy to electricity (no more eye sores such as
cooling towers) and perhaps avoiding the need for large-scale transmission and its
giant transmission towers. Since the distributed PV generation takes place where the
power is consumed, one may view that the power supplied by distributed PV gener-
ation as a negative load. Hence, the net load in the demand side decreases, which
may result in less use of unsustainable and harmful energy resources in the supply
side. It seems that the problem of the current method of generation can be solved by
introducing a certain amount of distributed PV generation.

The problem, nonetheless, cannot be solved easily as a new problem arises from the
variable and intermittent nature of solar power. Even if we assume the most optimistic
situation in which the weather and the panels always have an uninterrupted view of
the sun, the power generated from the PV system changes drastically throughout
a day. When the sunlight is blocked by clouds or shading from surroundings, the
power from the PV system can sharply drop. Unlike mechanical based electricity
generation, PV generation has no inertia that smooths the power output. As a result,
any PV generation, including the distributed one, provides more volatile power than
the current load from consumers and power from generators. If there is a high level
of distributed PV generation in the grid, the characteristic of the net load will be
significantly distorted from the normal load. Then the grid operator may not be able
to balance with the current set of supply infrastructures. The current level of PV
generation is not yet sufficient to cause grid operators a problem. With the high rate
of increase of distributed PV deployment, clearly what the limits are to PV generation
needs to be understood.

It is useful to have a model of the power output from a group of PV systems in
the grid, which we term the PV model. An accurate PV model can help us to
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answer critical questions: what is the limit on distributed PV generation under the
current physical infrastructures and operational policies and how the grid operator
can modify the infrastructure and policies to allow more distributed PV generation.
The commonly used PV model for each individual PV system comprises multiple
steps including finding solar irradiance in the sky, projecting solar irradiance to the
panel, determining DC power output from the panel, and converting the power output
compatible to the grid. 3 This structural model is not practical for the grid operators
since it is difficult to keep track of so many factors for all PV systems in the grid.
A more tractable model of the power output from a group of PV systems can be
built based on historical PV power outputs from a sample of currently operating PV
systems. We call this a reduced-form approach. In this work, we use this approach
to build the maximum power curve, which describes the highest possible power
output from a group of PV systems at any instance. Using the resulting maximum
power curve as the core idea, we are able to answer critical questions regarding the
impact of distributed PV generation on the operation of the grid.

Contributions

Contributions from this work are as follows:
In order to model the distributed PV generation of a large number of PV systems,

it is not tractable for a grid operator to collect all factors to model each individual
system. A reduced-form approach to model the distributed PV generation of a large
number of PV systems requires no specific information of each PV system and is for-
mulated using historical PV power output. A maximum PV power curve constructed
from this approach is shown to be consistent and useful in many applications. One
of the critical applications is to establish a limit on PV installation on the grid, given
an assumption that the PV power cannot be larger than the load at any instance.

Using the maximum PV power curve, we are able to improve the definition of
volatility and distinguish the difference between variability and volatility rigorously.
It is worth noting that defining volatility to be relevant with the grid operation is not
a trivial task. The volatility should be defined against a consistent reference at the
correct sampling frequency.4 These desirable properties are inherent in our definition.
The notion of volatility is also shown to be closely linked with a short-term PV power
output performance and the hour-ahead grid operation, while the notion of variability
is embedded in the expected PV power curve derived from the maximum PV power
curve and used in the day-ahead grid operation.

3More detail of the PV model is in Chapter 2.
4More detail on the consistency and correctness is in Chapter 6.

viii



We show how using the maximum power curve as a reference improves the short-
term forecast of the power output of a group of distributed PV systems. We have
shown that a similar prediction technique can also be used in the short-term load
forecast. Using a daily load curve of a previous day and a daily load curve of a
previous week as references, we are able to improve the prediction performance of the
load in the grid as well.

The last contribution is that we establish the limit of PV installation onto the grid,
given an assumption that the grid can tolerate up to a certain level of risk of demand-
supply imbalance. By day-ahead scheduling based on expected PV power curves and
hour-ahead based on our forecast system, we are able to simulate the grid operation,
assess the risk of demand-supply imbalance under different levels of PV installation,
and identify the limit of PV installation. We are able to show that the current limiting
factor to the level of PV installation is in the ancillary services, rather than generators
in energy scheduling. From this, we are able to measure possible extra PV installation
by adding ancillary services and adopting PV curtailment without modification on
generators in energy scheduling.

Organization

The contents are organized as follows: Chapter 1 provides an in-depth explanation of
how distributed PV generation can potentially impact the grid operation significantly.
The key lesson is that the growth of PV generation is not solely by innate desire of
consumers, but it is driven heavily by state policies. Then the rest of the contents
are organized into three parts.

The first part, including Chapters 2-6, focuses on the distributed PV generation.
Chapter 2 shows how the power output from a PV system can be modeled with
numerous factors. The key issue is that the model here requires so many factors that
it is not practical for a grid operator to track. Chapter 3 shows how one can apply
the current model of the power output from a PV system to answer some problems
of interest to PV owners and grid operators. The critical lesson here is that the
optimal solutions for the optimization problems of interest to PV owners and grid
operators are not necessarily aligned. Chapter 4 illustrates how we construct the
maximum PV power curves, which describe the maximum power from a group of PV
systems at any time instance. What distinguishes this approach from the model in
Chapter 2 is that our reduced-form approach provides the consistent curve based on
historical power output data from a relatively small sample of PV systems without
additional numerous factors. Chapter 5 demonstrates some applications of maximum
PV power curves from Chapter 4. Here we are able to establish the first bound on PV
installation based on the fact that the PV power output should not be larger than the
power consumption at any instance. Chapter 6 completes the first part and provides
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a forecast system for distributed PV generation. Here the maximum PV power curve
is shown to be useful in defining volatility isolated from variability. It also improves
the prediction performance of the PV power forecast as well.

The second part, including Chapter 7 and 8, focuses on load modeling. Chapter
7 explains the nature of power consumption and how it can be accurately predicted.
Without significant distributed PV generation added to the demand side, the load
has relatively small variability and volatility. Chapter 8 provides an example of a
short-term forecast system for load. We illustrate that the load can be predicted with
a small error using daily load curves, which describe the power consumption in
the grid at any time instance, from the previous day and the previous week. The
prediction technique is similar to what we used in Chapter 6.

The third part, including Chapters 9 and 10, focuses on the grid with high dis-
tributed PV generation. Chapter 9 provides an overview of typical grid operations.
Two critical components of the grid operations: energy scheduling and ancillary ser-
vices are explained and linked to the concept of variability and volatility. In Chapter
10, the simulation of grid operations integrated with forecast systems in Chapters
6 and 8 is conducted to assess the risk of demand-supply imbalance. We estimate
the limit of PV installation to the grid, and identify additional ancillary services and
policies to improve the limit. The summary and remaining research questions are
presented in Conclusions.
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Chapter 1

Introduction

Highlights:

• Solar photovoltaic (PV) deployment, particularly distributed PV deployment
in the United States, is growing and has yet to reach its maximum potential.

• The emergence of renewable-energy policies, business innovation, and technol-
ogy drives the growth of distributed PV deployment.

• Although distributed PV deployment may give some benefits to Utilities, Util-
ities encounters challenges to control the grid caused by the variability and
volatility of solar generation.

• Utilities should modify their physical infrastructure and operational policies to
handle this growing distributed PV generation.

Energy is an essential resource to drive a modern civilization toward a better world
for humanity. However, a threat of unsustainable and even harmful energy resources
become apparent. Pollution can be in a local scale such as leaked radiation from
nuclear fuels or smokes from kerosene, and be in a global scale such as greenhouse gas
emission from fossil fuels. It is not difficult to project that these resources is going to
depleted as well. Innovators from various sector from scientists to policy makers are
working hard to find new ways to supply clean and renewable energy.

Solar photovoltaic (PV) is a clean and renewable energy resource with high growth
and potential in recent years. While a scientific technology for PV is improving, sev-
eral innovations in other sectors for supporting the PV deployment emerge. Glob-
alization and verticalization of PV supply chains drives the cost of PV deployment
down, while business models and policies facilitates the PV deployment. Recently,
there are some business models and policies favoring a certain type of PV deployment
called a distributed PV deployment, where PV systems are geographically distributed
within the same area as the energy consumption.

1
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Although solar PV deployment is a promising choice of clean and renewable energy
resources, it is difficult to manage because of its nature of variability and volatility.
A distributed fashion of generation adds more difficulty since distributed PV systems
are generally not controlled by Utilities or grid operators. Utilities or grid operators
need to modify their infrastructures and operational policies to handle the challenges
from distributed generation.

In this chapter, we first review PV growth and potential with a focus on dis-
tributed PV deployment in the US. Next, we highlight key drivers for distributed PV
deployment. Finally, we disseminate challenges from distributed PV generation to
guide a further discussion in this study.

1.1 PV deployment growth and potential

1.1.1 Growth over time

Figure 1.1: Worldwide exponential growth of PV deployment from 1992- 2014

PV deployment has grown significantly over time since 1992 as shown in Figure
1.1. By the end of 2014, the installed PV capacity was more than 177 GW, enough
to supply 1% of the world’s electricity consumption of 18,400 TWh [58]. As a quick
reference of the rate of installation, in 2015, new PV systems are being installed in the
United States at a rate of one every two minutes [48]. Note that a typical residential
system size is 3-5 kW [27].
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1.1.2 Growth over location

PV deployment growth is a global phenomenon. Leading nations in renewable energy
adoption, including China, US, Germany, Japan and India, are now deploying PV at
a fast pace. Even the Gulf States where fossil fuels are abundant, and countries in
Africa, where the economy is relatively small, are following this trend. Environmental
concerns from the use of fossil fuels, radioactive materials, and kerosene make PV
deployment in these unlikely places preferable. In addition, in a large number of
countries near the equator, the solar resource is relatively high, yet the PV adoption
rate is low as shown in Figure 1.2. Therefore, the current global PV deployment is
still far from the maximum potential.

Figure 1.2: Installed PV in watts per capita in 2014

In the US, PV deployment is spreading throughout different geographical loca-
tions. Table 1.1 shows the solar capacity installed by January 2015 for the top 10
States. Two implications can be derived from this data. First, States on the list such
as New Jersey and Massachusetts do not have ideal weather for solar PV generation
compared to other states in the US. Their ranking must be due to extra financial
incentives and legislation, which we explore in the next section. Second, there is high
potential for new PV installations in many States. Many States with a large popula-
tion and favorable weather such as Florida and Georgia are not leading users of PV
generation.
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Rank States
Installed PV

capacity (MW)[9]
Population (M)[14]

Installed PV
in Watts per Capita

1 California 9,977 39.14 255
2 Arizona 2,609 6.83 382
3 New Jersey 1,451 8.96 162
4 North Carolina 953 10.04 95
5 Nevada 789 2.89 273
6 Massachusetts 751 6.79 111
7 Hawaii 447 1.43 313
8 Colorado 398 5.46 73
9 New York 397 19.80 20
10 Texas 330 27.47 12

Table 1.1: Top 10 US states by cumulative solar capacity installed in January 2015

1.1.3 Growth over sectors

It is common to define sectors in the PV market as residential, non-residential (includ-
ing commercial, industrial, government and nonprofit) and Utility. Here we define
distributed or rooftop PV generation as PV generations that not controlled by Util-
ities or grid operators. The common characteristic of distributed PV generation is
that it is geographically distributed within the same area as the energy consumption.
According to the 2014 SEIA and GTM US Solar Market Insight report, in 2014, the
distributed PV installation was more than 2 GW and almost 40% of the overall PV
market as shown in Figure 1.3. Note that the growth rates between distributed and
non-distributed PV generation are different due to various reasons. One of favorable
aspects toward the distributed PV generation, especially residential PV generation,
is that it does not require a lengthy administrative process and decision making. The
next section covers how other factors drive the growth in distributed PV deployment.

Note: Sectors as discussed here are all PV deployments connected to an electric
grid. In fact, there is an additional sector called an off-grid PV deployment where
the PV is not connected to an electric grid, likely because there is no electric grid
there. The idea of an off-grid PV deployment is similar a use of mobile phones over
land line phones which are associated with a high infrastructure cost. However, we
do not discuss it in this study.

1.1.4 Estimate of the maximum potential in the US

The estimates of future distributed PV deployment and renewable resources vary
depending on different methods and assumptions. Lopez et al. [30] had discussed
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Figure 1.3: US PV installation forecast 2010-2016 from 2014 US Solar Market Insight
report

four different types of assumptions: resource, technical, economic and market. Pro-
vided the assumptions are correct it may be this approach will give accurate results.
However, their approach is itself based on prediction of other quantities such as the
growth of suitable rooftops. Clearly if such prediction prove inaccurate so will the
conclusion about PV growth estimate.

Lopez et al [30] estimates distributed PV deployment potential to be 664 GW
by assessing rooftop area and assuming some technical specifications of PV panels.
Denholm, Drury and Margolis [56] adds economic and market assumptions including
the growth of roof’s area and estimates distributed PV deployment potential to be
583 GW in 2030. In perspective, these are estimates are about 75 % of current peak
load, which is about 750 GW [26]. These estimates exceed the US distributed PV
deployment by 2014, which is less than 10 GW [12].

For California, Lopez et al [30] estimates PV distributed potential to be 76 GW.
In 2012 Energy and Environment Economics Inc. adds a technical constraint from the
electric grid called ”no back flow” criterion and estimates distributed PV deployment
potential to be 15 GW [28]. The estimate can be larger if we allow curtailment or
storage technologies. In perspective, the peak load from 1998 to 2014 is about the
order of 50 GW [16]. These estimates exceed the distributed PV deployment by 2014,
which is less than 5 GW [12].

While the distributed PV generation in 2014 is relatively small, distributed PV
generation in California and the US can play a significant role in power generation if
the distributed PV generation keeps growing and reaches its full estimated potential.
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1.2 Drivers for distributed PV deployment in the

US

1.2.1 Policy

Federal policy, solar Investment Tax Credit (ITC) is one of the most important mecha-
nisms for distributed PV deployment. The ITC allows a tax credit equal to 30 percent
of a distributed PV projects costs. Starting in 2006, ITC is a tool for solar developers
to attract tax equity investors and develop their financing models. Under a bill in De-
cember 2015, 30% Solar Investment Tax Credits for both residential and commercial
projects was extended through the end of 2019, and then drops the credit to 26% in
2020, and 22% in 2021 before dropping permanently to 10% for commercial projects
and 0% for residential projects [10].

In the State-level policy, Renewable Portfolio Standard (RPS) is a mechanism that
obligates electricity supply companies to produce specified fraction of their energy
from renewable energy sources. 33 States and DC have adopted RPS. RPS leads to
Renewable Energy Certificates (RECs) - tradable, non-tangible energy commodities
that represent proof that 1 MWh of electricity was generated from eligible renewable
energy resource. Distributed PV providers may sell their credits to non-renewable
electric supply companies and makes additional profit from RPS.

In California, the first highest cumulative PV capacity installed state in 2014, the
state mandates a RPS of 33% by 2020. Figure 1.4 shows the mix of renewable power in
California RPS includes wind, solar thermal, solar PV, small hydro, geothermal, and
biopower. In 2013, three large Investor-Owned Utilities (IOUs) collectively served
22.7% of their 2013 retail electricity sales with renewable power. Note that here
biopower is defined as biomass and biogas technologies. In 2014 California Public
Utilities Commission (CPU) reports that solar PV is about 15% of total renewable
resource mix and expected to contribute 40% of total renewable resource mix by 2020
[19].

In Arizona, the second highest cumulative PV capacity installed state in 2014,
the state mandates a RPS of 15% by 2025 and 30% of renewable to be distributed
generation. [17].

In New Jersey, the third highest cumulative PV capacity installed state in 2014,
the State mandates a RPS of 22.5% by 2021 and 4.1% specifically for solar electric
generation by 2028. [18].

Other than federal and state-level financial incentive-based policies, the adminis-
tration policies for distributed PV generation are also crucial. Speer [66] discussed
this issue extensively. A favorable technical and procedural processes for connecting
a distributed generation system to the grid would facilitate the growth of distributed
PV deployment. One of the successful practices is a net energy metering as shown
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Figure 1.4: Renewable energy resource mix in California renewable portfolio

in Figure 1.5. Net energy metering is a billing procedure that allows a customer to
give a surplus energy to the grid and consume energy from the grid when it is needed.
A review of current and year-to-date charges and credits is sent monthly, and a bill
of the net charges and credits is cleared annually. Note that the calculation of net
charges and credits is simple with a fixed price of electricity. Under time-of-use pricing
plan, the calculation of net charges and credits is complicated. This complex scheme
is more preferable since it gives more benefit for distributed PV owners who want to
help reducing the net load in a period with high demand. In 2015, 41 states have
some level of mandatory net-metering policies, which allow solar and other generating
customers to sell excess power back to the grid [48]. In California, the compensation
rate for surplus power under the net energy monitoring program is fixed and based
on a 12-month average of the market rate of energy, or roughly 3 or 4 cents per
kilowatt-hour [35]. Note that a customer still needs to pay minimum service charge
regardless of the amount of the net energy.

There are some legal and regulatory questions that we need clear answers in
order to establish a strong ground for distributed PV generation practice. Such
question include whether third-party PV entities should be regulated as a wholesale
electric Utilities and whether customers who receives benefits from the net energy
metering program should pay an extra fee. Legal and regulatory clarity would help
the sustainability of this new industry.
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Figure 1.5: Net energy metering: the system that enables distributed PV surplus for
energy credit or even cash for generating electricity

1.2.2 Business innovation

Direct investment by a home owner in PV installation requires a high upfront cost
and the risk of high maintenance costs. Two recent business business innovations
have been developed to address these issues and drive distributed PV deployment.

The first business innovation is third-party solar financing. Third-party solar
financing companies usually offer two financing options over a term of about 20 years.
The first option is a solar lease: a customer pays a fixed amount to rent a PV system
regardless of the amount of electricity generated. Another option is a Power Purchase
Agreement (PPA): a customer pays for all amount of electricity generated by a PV
system with a rate competitive to local retail electricity prices. From the perspective
of customers, these options reduce the high upfront cost and reduce risk. Note that
operations and maintenance service may not be included in a solar lease option while
such service is included in a PPA [66]. Hence, customers under a PPA option are
relieved of possible system failures. From the perspective of solar financing companies,
even though the companies pay the upfront cost of PV installation, a bundle of solar
contracts becomes reliable assets. Tax credits and RECs from these credits can be
traded with tax equity investors and Utilities.

Another business innovation is called “verticalizations”. Some solar companies go
beyond their current roles in the solar PV industry and take over the whole chain. For
example, SolarCity, previously focusing on the lower chain including financing and
installation, has acquired a PV manufacturer named Silevo and aimed to build a large
PV plant in Buffalo in 2014 [44]. On the other hand, Panasonic, which previously
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focused on the upper chain including panels and electronics manufacturing, now pro-
vides end-to-end solution including financing along with operations and management
[54]. In many ways this follows similar development in the auto industry where the
finance arm become a major source of profit. The verticalization reduces the cost of
a PV system by removing middleman commission and ensures solutions for possible
system failures after installation as a part of service in the chain.

1.2.3 Technology

The SunShot vision study [68] illustrates that several efforts in research and de-
velopment has reduced the PV system price. On the module side, technology and
manufacturing process improvements have dramatically reduced the module price per
watt over the last 30 years as shown in Figure 1.6. There are two ways to continue the
improvement: increase the efficiency of the module and decrease the production cost.
One opportunity to increase PV module efficiency would be to close the gaps between
production, laboratory and theoretical (maximum) PV module efficiencies as shown
in Figure 1.7. We expect to see further innovations to decrease the production cost
when new PV technologies in laboratories are put in a production. Such examples in
the past have included silicon slicing and large-scale thin film deposition.

Figure 1.6: Decline in factory-gate PV module prices with increasing cumulative
module shipments 1976-2010

In the balance-of-system (BOS) side, there is some room for improvement in re-
search and development. Goodrich et al. [3] reported that the BOS price is higher
than the module price for benchmarked 2010 distributed PV systems. Whereas
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Figure 1.7: Production, laboratory, and theoretical (maximum) PV module efficien-
cies

blended average module pricing has dropped 79% between 2007 and 2014, BOS costs
have been slower to respond, averaging between a 39% - 64% drop depending on the
market sector and geography [50]. For the hardware component, the most expensive
component is the inverter. Traditional inverters, also known as string inverters, have
very high conversion efficiency but no capability of single panel power optimization.
Recently, a new type of an inverter called a micro-inverter is adopted. Micro-inverters
have single panel power optimization and allow for independent operation of the panel.
However, micro-inverters have relatively low conversion efficiency and a high price.
Research and development are needed to bring the cost of micro-inverters down. New
technologies for racking and mounting materials are also important. Regarding the
non-hardware component, some reduction in the BOS cost has been achieved by the
verticalization in business innovation. Once the industry has matured, we expect that
installation costs and supply chain costs will become cheaper and standardized as in
other service industries.
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1.3 Challenges in distributed PV generation

1.3.1 Difficulties for grid control

In traditional electric generation, distributed generation relieves line stress in the grid
because the location of generation is near the location of consumption. Yet distributed
generation is difficult for grid control. As there are more physical adjustments in
the system, more computations and resources are required to control the grid. In
distributed PV generation, the situation is even more challenging. First, distributed
PV generation does not relieve line stress when sunlight is not available. The grid
still needs to have lines of large capacity to provide back up unless there is generation
or storage on site. Second, most current distributed PV generations do not have
a centralized adjustment system. The grid control needs to view distributed PV
generations as given parameters, not adjustable variables in planning and operation.
Smart inverters, that is, inverters with bidirectional communications may partially
solve the problem since a grid operator may take control over a group of PV systems
when the curtailment of over-generation is necessary. Yet the deployment of smart
inverters as ancillary services in grid operation is still small.

1.3.2 Coping with high variability and volatility

PV generation has high variability due to the character of available sunlight through
a day and a year. Because this variability comes from the earth’s self-orbit and its
orbit around the sun, it has a consistent pattern and can be taken into account in
regular planning such as day-ahead energy scheduling. A daily load profile can be
estimated by counting PV generation as a negative load. Because the PV generation
is highly variable and its peak generation is not aligned with peak load in general, it
creates an irregular-shaped load profile where the net load rises steeply. In California,
such a shape is known as a “duck curve” (Figure 1.8)[15]. This steep change of the net
load requires complementary energy generation with a high ramp rate, which implies
a higher generation cost.

Furthermore, PV generation has high volatility due to the weather. Cloud, fog,
rain, and snow directly block sunlight from PV panels. Temperature, pressure, hu-
midity and wind speed affect the performance of PV systems. Because this volatility
comes from weather condition, it is difficult to predict and take into account in day-
ahead energy scheduling. In 15-minute ahead energy dispatch, the grid operator
needs to dispatch energy generation in accordance with uncertain PV production.
Unlike the difficulty from variability, the rise and fall in PV generation may occur
more sharply and more frequently. Utilities need to pay extra cost to counteract this
volatile PV generation by adding more fast response energy generators and storage.
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Figure 1.8: An example of net load (MW) in CA with projected solar and wind
penetration from 2012 to 2020 according to CAISO. In this figure, a steep load rise
occurs at around 5 pm

The worst case is to disconnect PV panels in a controlled manner and ramp traditional
generators up and down to meet load demand instead.

The outlook is optimistic for improvement in distributed PV generation. Signif-
icant amount of energy storage can solve problems caused by high variability and
volatility from PV generation. It also relieves line stress when sunlight is not avail-
able. This energy storage can be in the form of energy storage at a distribution
substation, home energy storage, or even electric car batteries. For example, in 2014,
PG&E started deploying energy storage at a distribution substation in compliance
with the goal of California state of 1.3 GW by 2020 [60]. Several distributed PV
providers started selling storage from their energy storage alliances or even building
their own storage. Moreover, many researchers are investigating the concept of using
fleets of electric cars as temporary storage, namely, vehicle-to-grid (V2G). It is worth
noting that energy storage can serve as ancillary services in grid control as it is more
reactive to signals from a power dispatcher compared to power turbine generators [8].
Yet the deployment of small energy storage as ancillary services may not be feasible
in the near future because it requires hardware deployment, regulatory legislation,
and multi-party commitment to share costs and benefits.

1.3.3 Relationship with Utilities

Distributed PV generation is beneficial to Utilities in three ways. First, as addressed
above, distributed PV generation partially reduces line stress, which reduces the need
for extra expensive transmission lines. Second, PV generation reduces power stress
on summer days when demand is high and Utilities need to pay a high cost for extra
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supply, which reduces the need for extra expensive power plants. Third, it helps
Utilities to meet the Renewable Portfolio Standard (RPS) by trading Renewable
Energy Credits (RECs). As a result, Utilities may avoid the cost of building new
infrastructures.

However, distributed PV generation is also a threat to Utilities. First, it reduces
Utilities sells less retail electricity as people use power from their own PV systems. In
some sense, PV providers are “free-riding” Utilities infrastructure for their own profit.
In addition, distributed PV owners can earn energy credit or even cash for the surplus
energy they produce via a net energy metering. This means net energy metering
customers are “free-riding” the infrastructure of the Utilities as well. Second, Utilities
need to be responsible for coping with the variability and volatility of distributed PV
generation, as explained above. This unfairness causes Utilities in many states to
fight against current laws favorable to the distributed PV industry [42].

Weighing these costs and benefits, how should Utilities make a fair compromise
with a distributed PV sector? One solution would be to add a surcharge to distributed
PV providers and customers with net energy metering. Another solution would be
to charge an additional infrastructure cost to every customer on the grid as every
customer has shared infrastructure costs in the past. In 2015, more than 60 Utilities
in the US proposed an increase of these fixed charges [48]. However, Utilities still
need to solve an operational challenge: how to modify current physical instruments
and operational policies so that customers can still meet their electricity needs given
the issue of variability and volatility. These costs of physical and operational changes
to accommodate high distributed PV generation in turn shapes how grid operators
or Utilities do a cost-benefit analysis as well. In any event, distributed PV generation
will be a significant part of a modern grid in many regions of the world. The grid
operator will inevitably face challenges resulting from the variability and volatility of
distributed PV generation.

1.4 Conclusion

Distributed PV generation is growing fast due to government policy, technology, and
finance innovation, and it is still far from the upper bound. However, despite its
benefits, distributed PV generation introduces challenges to the grid operator by the
particular nature of distributed and solar aspects of the generation. After all, dis-
tributed PV generation will have a limited but non-trivial role in an electric grid. A
grid operator must know the maximum value of distributed PV generation, in which
the current physical instruments and operational policy can still provide electricity to
customers. Furthermore, the grid operator needs to understand how to modify phys-
ical instruments and operational policies to accommodate distributed PV generation
beyond the capacity of the current system.
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Distributed PV generation
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Chapter 2

Overview of a PV System Model

Highlights:

• A model of power output from PV cells, modules, or arrays comprises multiple
steps including finding solar irradiance in the sky, projecting solar irradiance
on a plane, determining DC power output from panels, and converting power
output from the PV system compatible to the grid.

• Modeling clear-sky solar irradiance is quite simple, while modeling actual solar
irradiance is complicated. The process of data measurement from the ground
or satellites is expensive, and the data from the two sources are significantly
different.

• Projecting solar irradiance on a plane is quite straightforward unless we consider
shading, soiling and, reflection loss.

• Determining DC power output from panels is difficult. The DC power output
is not necessarily proportional to solar irradiance on a plane. The PV cell
temperature plays a significant role in the power output as well. As we consider
the system at the array level, module wiring is another significant factor to
consider.

• Converting AC power output from DC power output is not straightforward
when power loss in direct current wires is accounted.

Modeling the power output of a PV system is a complicated process as it involves
a large number of factors. Some of them are well documented (e.g. system config-
uration) or consistent (e.g. the sun’s position). However, many factors are poorly
documented (e.g. the surrounding shading environment) and inconsistent (e.g. the
weather pattern). Here we give an overview of the current model of a PV system.
This overview demonstrates why a data-driven model is necessary in our problem.

15
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2.1 Clear-sky solar irradiance models

Note: Most of the material in this section is derived from “Global Horizontal Irradi-
ance Clear Sky models” by Reno, Hansen, and Stein (2012) [49].

Clear-sky solar irradiance is power received by sunlight per unit area on the earth,
assuming there is nothing obscuring the sunlight such as clouds, haze, and smoke in
the atmosphere. One can measure clear-sky solar irradiance in three ways: global
horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal
irradiance (DHI). There is a geometric relationship among these 3 kinds of irradiances:

GHI = DNI cos(z) +DHI, (2.1)

where z is the elevation angle of the sun. Several kinds of irradiance are necessary to
derive the power received by an arbitrarily oriented plane known as a plane of array
(POA) irradiance. There are several numbers of models for each kind of irradiance.
The simplest model, as discussed by Reno, Hansen, and Stein (2012) [49], requires
only the elevation angle of the sun z, which can be determined with two-dimensional
geographical location and the time of year. The more complicated models allow the
extraterrestrial radiation, I0, to vary throughout the year. Yet these models still
require only the two-dimensional geographic location and the time of year.

More complicated models consider the third geographic coordinate called elevation
(h). Extra parameters representing optical atmospheric properties including air mass
(AM) and the Linke Turbidity coefficient (TL) can be introduced. Since by definition
air mass is the optical path length through the atmosphere where light is scattered
and absorbed, it depends only on geometric parameters such as the elevation angle of
the sun and the radius of the earth. However, since the Linke Turbidity coefficient is
a property of a cloudless atmosphere relative to a water-and aerosol-free atmosphere,
this coefficient depends on the climate of the location. The Linke Turbidity coefficient
varies significantly throughout the year but the variation across years is negligible
[23]. Note that there are even more complex models considering the variable Linke
Turbidity coefficient which we did not discuss here.

Up to this point, we can model clear-sky solar irradiance at a location as a function
of time of year only. Extra quantities including altitude (h) and monthly values of the
Linke Turbidity coefficient (TL) at a given location can be used for more complicated
models. Those quantities can be provided by a solar energy service provider such as
Solar Energy Services for Professionals (SoDa) [33].
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2.2 Actual solar irradiance

2.2.1 Data: ground measurement

The ground measurement data of actual solar irradiance can be represented in differ-
ent ways. A collection of raw data spanning some years can be reported as is, which
gives an opportunity for further investigation. However, the amount of data may be
too large to comprehend for simple applications. Another way to report such data
is to average the measurements at different points during of a year. This condensed
measurement is called average year data. Even though this data is now easily un-
derstood, it diminishes the volatility of data. One other common practice to report
such data is to select some data to present weather phenomena in a year while giv-
ing annual averages consistent with the overall data. This practice is called typical
meteorological year (TMY) data. Procedures for developing the TMY data can be
found in Wilcox and Marion (2008) [72]. According to their report, this data format
is widely used by building designers and others for modeling renewable energy con-
version systems but it should not be used for evaluating real-time of solar conversion
systems as it is not designed to provide extreme values. Hence, this representation is
not particularly useful for daily grid operation either.

Unfortunately, most publicly available and easily accessible datasets for ground
measurement are in the form of either average or TMY data. In the United States,
the National Solar Resource Data Center (NSRDB) run by NREL has two standard
TMY data: TMY2 derived from 1961-1990 for 237 ground sites and TMY3 derived
from 1991-2005 for 1454 sites. In Euporean countries, ESRA and PVGIS provide
average and TMY data. The World Radiation Data Centre (WRDC), supposedly the
central depository for solar irradiance data from ground measurement of the world,
has incomplete data even for TMY data. The Measurement and Instrumentation Data
Center (MIDC), slso run by NREL, provides historical raw data at 1-minute intervals,
but there are records for only about 40 sites. Cooperation between organizations and
transparency of raw data are necessary for grid operation study.

2.2.2 Data: satellite measurement

Data of actual solar irradiance measured by satellites is used in real time with more
locations relative to ground measurement. For example, in the United States, So-
larAnywhere, a satellite-based weather data service provides the 1-km resolution data
for the NREL National Solar Radiation Database (NSDRB) [59]. Note that there are
about 10 million square meters in the United States. Hence, satellite measurement is
much more scalable than ground measurement.

One question to consider is how well satellite measurement and ground measure-
ment agree. Bing et al. [41] compared SolarAnywhere datasets and ground datasets
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over 7 solar monitoring sites with Rotating Shadowband Radiometers (RSR), mea-
suring both GHI and DNI in Sacramento, Cailfornia, with 6 months of data. For
a half of hour timeframe, the mean absloute error (MAE) in GHI is 6 − 11%. For
DNI, MAE is 17 − 22%. Examining 8 years of data, Ineichen (2013) [40] conducted
a comparison of both GHI and DNI from 18 solar monitoring sites across Europe.
The best satellite irradiance product in the study called SolarGis gives the standard
deviation in GHI of 17%. For DNI, the standard deviation is 34%.

Here one can see that even though actual solar irradiance from satellite measure-
ment exhibits higher accuracy in terms of location, it yields more than 10 percent error
compared to ground measurement. The use of satellite measurement consequently is
a source of error when we try to complete the picture of a PV model.

2.3 Solar irradiance on a plane

In a PV model, once either clear-sky solar irradiance or actual solar irradiance is
registered, it can be projected on a plane in order to compute the power output of
a PV system. Such irradiance is called a plane of array (POA) irradiance. POA
irradiance consists of three components:

IPOA = Ibeam + Iground + Idiffuse (2.2)

Ibeam, irradiance from the direct normal irradiance, is the most straightforward to
compute. It equals DNI multiplied by cosine of angle of incidence. Iground, irradiance
from ground reflection, is more complicated than Ibeam. It involves GHI, cosine of tilt
angle of the surface, and a quantity of the ground called albedo. Albedo is close to
0 when the ground is dark and close to 1 when the ground is bright or reflective, as
with metal. For example, the estimate of albedo is about 0.2 for an urban area and
0.8 for snow covered ground.

Idiffuse is the most complex component of IPOA. There are several models based
on three types of diffused irradiance: isotropic, circumsolar and horizon brightening.
An isotropic component is an explicit function of DHI. A circumsolar component
involves DNI, while a horizon brightening component is a function of GHI as well.
Models for Idiffuse may take several types into account. Some models add empirical
correction and additional assumptions.

It is also worth noting that IPOA does not necessarily equal the power entering a
light-to-electricity unit since there are possible shading, soiling, and reflection losses
that block radiation.

Up to this point, we can model solar irradiance on a plane, but we need more
information about our PV system and surrounding environment. Some quantities,
including the panel orientations, may be known by solar service providers but not grid
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operators. Other quantities, including ground quantity, shading and soiling, may not
be known even by solar service providers. Without proper maintenance, the power
quality from a PV system may decrease significantly. Incomplete knowledge of these
factors contributes to error in a PV system model.

2.4 Conversion from light to DC power output

An object that converts light to electricity exhibits the following hierarchy: a cell,
a module, and an array. The smallest unit, the cell, generates direct current (DC)
electricity when photons excite electrons in the cell. The power generated can be
derived from a characteristic IV curve of the cell as shown in Figure 2.1 [47]. The
IV curve comes from a characteristic equation of an equivalent circuit of a solar cell.
This is known as the 5-parameter model equation:

I = IL − I0{exp[
q(V + IRS)

nkT
]− 1} − V + IRS

RSH

, (2.3)

where IL is a photogenerated current which is proportional to the input irradiance of
the PV cell.

Figure 2.1: Characteristic IV curve of a solar cell.

There are 3 important points on the IV curve. The first point is the x-intercept
(VOC , 0), where VOC is defined as open-circuit voltage. The second point is the y-
intercept (0, ISC), where ISC is defined as short-circuit current. The last point is the
maximum-power point (Vmp, Imp). This is where P = IV , the power generated by the
cell, reaches maximum. In practice, the load is controlled in the circuit so that the
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system reaches the maximum-power point. Such control is called Maximum-Power
Point Tracking (MPPT). There is no closed form for the power output under MPPT.

The effect of input irradiance on the power output under MPPT is not linear.
The effect of cell temperature, T , on the power output under MPPT is not linear
either. In addition, the temperature significantly affects the diode saturation current
I0. Empirically, we describe the temperature effect using temperature coefficients
for Vmp and Imp which are constant for a range of 10 − 50◦C. The effect of the cell
temperature to the power output under MPPT can then be described as

dPmp

dT
= Vmp

dImp

dT
+ Imp

dVmp

dT
, (2.4)

where dImp

dT
and dVmp

dT
are temperature coefficients. Numerical values of temperature

coefficients for different commercial modules at a standard condition are reported by
King, Kratochvil, and Boyson [21].

It is common to model the power generated by a larger unit, a module, in simi-
lar fashion even though there are complicated issues including partial shading on a
module and wiring of cells in a module. Modeling the biggest unit, an array, requires
knowledge of a partial shading pattern. The wiring of modules in an array, that is,
how many modules are connected in series and how many modules are connected in
parallel, must be known. A model and simulation scheme is needed to provide an IV
curve and to perform MPPT for an entire system [55]. Micro-inverters may increase
the power output and reduce the optimization issue by individually optimizing each
module. It is worth noting that even a small fraction of shading on an array may
cause a large fraction of power loss. In other words, the power output from a PV
system is fragile and sensitive to the shading environment.

Up to this point, we can model DC power output from a cell, a module, and an ar-
ray, but we need more information about our PV system and its environment. Some
quantities, including the module specifications and the wiring of modules, may be
known by solar service providers but not grid operators. Some quantities, including
the cell temperature and partial shading pattern, may not be known by even solar
service providers. Even though one may know a weather condition such as air tem-
perature, wind speed, humidity, and pressure, it is not straightforward to predict the
cell temperature since the cell heating is not an instantaneous process. Incomplete
knowledge of these quantities contributes to error in a PV system model.
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2.5 DC-DC converters, DC-AC converters, and PV

power output

Once we have DC power output from PV panels, a DC-DC converter boosts DC
electricity to match voltage in the grid. Then DC-AC converter, namely inverter,
converts DC electricity to Alternative Current (AC) electricity to match current type
in the grid. During these processes, there is possible power loss. There is no formula
to determine such loss. While DC-DC converter has very high peak efficiency of more
than 99%, DC-AC converter has peak efficiency of 96%-98% and average efficiency of
95%-97%. There is also possible power loss as heat due to high DC currents in wires
before the inverter. Such loss is difficult to estimate since it depends on modules
wiring.

The use of micro-inverters play a role at this step as well. Micro-inverters do not
only optimize the DC power output from individual modules but also convert power
output from DC to AC right at individual modules as well. As a result, the power loss
in wires are lower since power is now transported around the systems as AC rather
than DC. The peak efficiency of micro-inverters is close to regular inverters but it is
not clear if micro-inverters is cost efficient or not.

Up to this point, we can model the actual PV power output, but we need more
information about electronics associated with the PV system. Some quantities in-
cluding the converter efficiency may be known by solar service providers but not grid
operators. Some quantities including the wiring loss may not be known by even solar
service providers. Incomplete knowledge of these quantities contribute to the error in
a PV system model.

2.6 Conclusion

Modeling the power output of a PV system is not simple. Even though most part of
model is from well-grounded scientific theories and well-developed commercial soft-
ware including PVsyst [62] and open source software including PV LIB PV Perfor-
mance Modeling collaborative (PVPMC) [61] have been made, it requires large num-
ber of factors. Some of them may be known by solar service providers but not grid
operators. Even worse, some factors are not even known by solar service providers.
The current PV system model is not practical in the view of grid operators since it
is difficult to collect all factors for all PV systems in the grid. Since grid operators
at the transmission level are only interested in the sum of power output from PV
systems, we will build a data-driven model based on the power output data and well
known factors instead.



Chapter 3

Applications of PV system
modeling

Highlights:

• A structural approach in a PV system modeling has been used to address some
questions on optimal layouts and orientations of PV systems, especially those
of interest to PV owners.

• A simple example of an optimization problem of interest to PV owners is illus-
trated. The goal is to maximize energy generation in a year.

• Several examples of optimization problems of interest to grid operators are
illustrated. The goals are to minimize a peak net load, to minimize a quadratic
cost of net loads, and to minimize a quadratic cost of ramp rates from net loads.

• Solutions of interest to PV owners and grid operators are not necessarily the
same. A feature that makes PV generation not appealing to grid operators is a
high variability.

In previous chapters, we have seen the necessity to a reduced form approach to
model power outputs from a group of PV systems in the form of maximum PV
power curves. We also see some basic applications of maximum PV power curves.
However, it does not mean a structural approach is not helpful for a grid operator.
The structural approach has been used heavily by PV providers and PV owners to
configure PV system layouts and orientations to achieve their goal, which is mainly
maximizing PV energy generation. However, Utilities and grid operators have a
different goal, which is minimizing a cost of serving a net load. This goal is not
necessarily aligned with PV providers and owners.

Here we discuss several optimization problems structured from a structural ap-
proach of a PV system modeling. In the first section, we focus on problems of interest

22
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to PV owners and PV providers. We show how to solve one of the problems in this
category. In the second section, we focus on problems of interest to grid operators and
Utilities. We solve a similar problem to the first section but with different objectives
and see how optimal solutions differ.

3.1 Problems of interest to PV owners

In a simple term, PV owners and PV providers would like to generate as much en-
ergy from their PV systems as possible. Yet variables, constraints and objectives of
optimization problems vary under different circumstances.

For variables, one can vary orientations including tilt angles and azimuth angles of
panels to optimize some objective functions. If one consider more than a single panel,
horizontal positions of panels can be another variable to consider, especially problems
related to a piece of land with boundaries. To understand why positions of panels
are important, imagine a problem of putting out PV panels on a very large piece of
land. One can just lay all PV panels side by side on the ground without any tilt to
maximize their energy generation. However, it is no longer obvious that such solution
works for a piece of land with boundaries. One can tilt PV panels to get a similar
amount of energy and let some shadow cast beyond the boundaries. However, one
needs to be careful about shading from one panel to another. Horizontal positions of
panels then becomes another variable to consider. Vertical positions of panels are also
variables to consider as we put PV panels on the roof or high buildings. For example,
putting panels at a high elevation may avoid shading from their surroundings.

For constraints, orientations and spacings can be limited especially in rooftop
settings. In practice, one may rebuild a house roof to optimize tilt angles of panels
but one may not renovate the whole house to optimize azimuth angles of panels.
Locations of panels can be limited since some area may have some shading and some
area may be reserved for other purposes including wiring materials and skylights.

For objectives, a simple objective of PV owners is to maximize a PV energy gener-
ation. However, the objective becomes more complex if we do a cost-benefit analysis.
For example, one might add a cost of renovating roofs and a cost of maintenance
into an objective function. An interaction with their house load and an electric rate
structure can lead to a new objective function as well. Instead of maximizing a PV
energy generation, one may minimize an electricity bill. This objective will be more
appealing if the electric rate structure is dynamic and highly variable. As PV panels
may replace other artifacts such as glass windows in a building, roofs in a parking lot,
and even a surface on a road, we may need to convert a PV energy generation into a
monetary value and add it into a bigger objective function, for example, minimizing
the cost of a house renovation project.
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With that said, an essential part in all optimization problems of interest to PV
owners involves a calculation of PV power output that needs variables as discussed
above in the calculation. Unlike a reduced form approach, a structural form approach
allows us to describe the PV power output as a function of those variables, which
will be a part of an optimization problem. Here we illustrate an example of how
the structural approach of a PV system modeling can answer one of the simplest
questions of interest to PV owners: given a single PV panel of a fixed size without
any constraints on its orientation under a clear sky condition, what is the orientation
such that the energy generation in a year is maximized?

In order to compute the power generation by a single PV panel under a clear sky
condition, one can follow procedures as described in Chapter 2. First, we compute
clear-sky solar irradiance and project it on a plane. This is where the information
of the panel’s orientation takes place. Then one can undergo an electronic process
turning solar irradiance into DC and AC power output under the MPPT condition.
An example of such calculation is shown in a PV LIB PV documentation [73].

However, we cannot compute all steps without knowing a specification of a PV
panel and the panel’s temperature. We then assume that proportionality of irradiance
values on a plane and the power outputs of a system to avoid complication from
those unknown factors. As a result, an equivalent problem is to maximize the total
insolation in a year on a single PV panel under a clear sky condition by varying an
orientation of the panel.

As discussed earlier in the first section of Chapter 2, there are several choices of
models for three components of irradiances: DNI,DHI and GHI. We decide to use
a simple model called the Daneshyar-Paltridge-Proctor (DPP) model:

DNI = 950.2(1− exp(−0.075(90◦ − z))) (3.1a)

DHI = 14.29 + 21.04(
π

2
− z π

180
) (3.1b)

GHI = DNI cos(z) +DHI, (3.1c)

where z = 90− altitude is a zenith angle in degrees.
We compute a plane of array (POA) irradiance with three components.

IPOA = Ibeam + Iground + Idiffuse. (3.2)

Ibeam, irradiance from the direct normal irradiance, can be computed from

Ibeam = DNI cos(AOI), (3.3)



CHAPTER 3. APPLICATIONS OF PV SYSTEM MODELING 25

where AOI is an angle of incidence. By trigonometry, the cosine value equals

cos(AOI) = cos(90− altitude) cos(array tilt)+

sin(90− altitude) sin(array tilt) cos(azimuth− array azimuth),

where ‘altitude’ and ‘azimuth’ here refer to the sun’s altitude and azimuth angles.
Iground, irradiance from ground reflection, can be computed from

Iground = GHI · albedo · 1− cos(array tilt)

2
, (3.4)

where albedo is a reflection property of the ground. To represent an urban area, we
use albedo equal to 0.2. Idiffuse, diffused irradiance, can be easily computed if we
select on an isotropic diffused irradiance. We use

Idiffuse = DHI · 1 + cos(array tilt)

2
. (3.5)

Up to this point, we can find solar irradiance and solar insolation in a year on
a plane. As examples, we choose one geographic coordinate in California and one
geographic coordinate in New Jersey. Figure 3.1 shows the insolation as a function of
a panel orientation corresponding to those locations. The function, which is a large
composition of functions, is too complicated to derive analytically. Yet the function
are quite smooth with a single peak. Hence, we can find the optimal solution by
a simple search. It turns out that for the location in CA, the optimal solution is
(azimuth, tilt) = (0± 0.5, 31.3± 0.1). For the location in NJ, the optimal solution is
at (azimuth, tilt) = (0± 0.5, 37.1± 0.1).

It is worthwhile comparing optimal insolations with insolations obtained from a
typical heuristic: turn the panel facing south (array azimuth = 0) with a tilt angle
equal to the latitude of the panel’s location. It turns out that for the location in CA,
the insolation from the orientation according to the heuristic differs from the optimal
insolation by 0.06 %. For the location in NJ, the insolation from the orientation
according to the heuristic differs from the optimal insolation by 0.13 %. These results
suggest that the rule of thumb gives an accurate way to assess the optimal orientation
to maximize insolation in a year.

3.2 Problems of interest to grid operators

Here we explore a problem of minimizing a cost of serving net loads. At the surface,
maximizing PV generation is minimizing net loads so the optimal solution of interest
to grid operators should be the same. However, the cost of serving a net load is
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(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 3.1: Maximum insolations in locations corresponding to our data set. The
unit of the insolation is kilowatt-hours per year

not a simple linear function of a total net load consumption in a year. It turns out
that the cost of serving a net load is complicated even though we ignore transmission
constraints. Even at the level of a day-ahead planning, not a real-time operation
where volatility plays a role in analysis, the cost associated with each daily load curve
is a solution of an economic dispatches problem, where resources with different
capacities, ramp rates, and costs are chosen to meet the daily load curve while keeping
the total cost minimum. Resources with higher costs per generated power unit or
per ramp rate unit will be chosen after resources with lower costs in the economics
dispatches problem. Hence, the cost of serving a net load at each instance is a convex
function of the load and the ramp rate at that instance where the derivative of a
function is increasing.

Here we look at some simple problems that reflect some aspects of this cost of
serving net loads. First, we try to minimize a peak net load of a year. Even though it
sounds simplistic, it is one of the first goals for grid operators. We demystify the myth
that the PV generation reduces a peak net load in this problem. Second, we try to
minimize a quadratic cost function of instantaneous net loads. A quadratic function
is chosen because it is a simple convex function where its derivative is increasing.
Third, we try to minimize a quadratic cost function of instantaneous ramp rates of
net loads.

3.2.1 Minimizing a peak net load

To illustrate our point, we consider the daily load curves of the whole grid for a year
from the electric grid in California called CAISO and the electric grid in New Jersey
called PJM in 2014. We observed that the original peak load is 43.48 GW in CAISO
and 141.7 GW in PJM. We consider PV power curves generated by daily clear-sky
irradiance curves generated by the structural approach described in the previous
section. We assume that all PV systems have the same configurations operating
at the STC. The differences between latitudes and longitudes within a geographical
region of the grid are negligible. To keep the problem similar to the example in
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(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 3.2: Net peak load in locations corresponding to our data set. The unit of the
load is gigawatt

the previous section, we choose configuration angles as variables and keep installed
capacities constant at 15% of the original peak load. This percentage is used in 2012
California’s Rule 21 interconnection tariffs for distributed generations [20].

As in the previous problem, we can find an optimal solution by a simple search.
Figure 3.2 shows the peak net load as a function of a panel orientation corresponding
to the locations in CA and NJ. It turns out that an optimal solution is not unique.
In addition, the optimal solution in the insolation optimization problem is also an
optimal solution of this problem.

Note that the optimal net peak load differs from the original peak load by (43.48-
41.5)/43.48 = 4.55 % in CAISO and (141.7-140.5)/141.7 = 0.8 % in PJM. These
numbers are small given that we choose an installed PV capacity in the grid to be 15 %
of the original peak load. Hence, there is nothing much one can do with configurations
of PV panels to bring down the net peak load. This is because the occurrence of peak
PV generation differs significantly from the peak load, which occurs in the evening.
That is, the myth that PV generation reduces a peak load is not true in general.

3.2.2 Minimizing a quadratic function of net loads

Here we use the same set up as in the problem of minimizing a peak net load. However,
the objective function is now a quadratic function of net loads. To be precise, we
minimize

N∑
i=0

p2i ,

where pi is an instantaneous net load and a time index i runs for all instances separated
by 15 minutes interval starting from January 1st, 2014 00:00 to December 31st, 2014
23:45.

As in the previous problem, we can find the optimal solution by a simple search.
Figure 3.3 shows the quadratic function of net loads as a function of a panel orientation
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(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 3.3: A quadratic function of net loads in locations corresponding to our data
set.

corresponding to the areas in CA and NJ. It turns out that for the location in CA,
the optimal solution is (azimuth, tilt) = (−9.5± 0.5, 29.1± 0.1). For the location in
NJ, the optimal solution is at (azimuth, tilt) = (−5.5± 0.5, 36.9± 0.1).

These optimal solutions have similar trends: the azimuth angles are slightly nega-
tive (facing east) and the tilt angles are slightly lower than the optimal tilt angles in
the problem of maximizing insolation in a year. Note that the insolation here differs
from the optimal insolation by 1-2413/2420 = 0.3 % in CA and 1-2351/2354 = 0.1
% in NJ.

3.2.3 Minimizing a quadratic function of ramp rates

Here we use the same set up as in the problem of minimizing a peak net load. However,
the objective function is now a quadratic function of ramp rates of net loads. To be
precise, we minimize

N∑
i=1

(pi − pi−1)2,

where pi is an instantaneous net load and a time index i runs for all instances separated
by 15 minutes interval starting from January 1st, 2014 00:00 to December 31st, 2014
23:45.

As in the previous problem, we can find the optimal solution by a simple search.
Figure 3.4 shows the quadratic function of ramp rates of net loads as a function of a
panel orientation corresponding to the areas in CA and NJ. It turns out that for the
location in CA, the optimal solution is (azimuth, tilt) = (−178± 0.5, 36.8± 0.1). For
the location in NJ, the optimal solution is at (azimuth, tilt) = (180± 0.5, 33.8± 0.1).

These optimal solutions have a similar trend: the azimuth angles are close to
±180 degrees (facing north). Note that the insolation here differs from the optimal
insolation by 1-1148/2420 = 52.6 % in CA and 1-1050/2344 = 55.2 % in NJ.
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(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 3.4: A quadratic function of ramp rates in locations corresponding to our data
set.

Scenarios for CA Azimuth Tilt % insolation difference
Max insolation 0 31.3 0

Heuristic 0 33.6 0.06
Min peak net load 0 31.3 0

Min quadratic net load -9.5 29.1 0.3
Min quadratic ramp rate -178 36.8 52.6

Scenarios for NJ Azimuth Tilt % insolation difference
Max insolation 0 37.1 0

Heuristic 0 40.0 0.13
Min peak net load 0 37.1 0

Min quadratic net load -5.5 36.9 0.1
Min quadratic ramp rate 180 33.8 55.2

Table 3.1: Comparison of orientations and difference relative to the maximum inso-
lation from different scenarios in 2014

3.2.4 Comments

Table 3.1 summarizes tilt angles, azimuths angles, and differences relative to the
maximum insolation from different scenarios.

From the table, one can see that the solutions of problems of interest to grid
operators are close to the solution of a problem of interest to PV owners. The heuristic
that a tilt angle of a solar panel should be equal to the latitude of its location and
that a solar panel should face south works reasonably well. Note that there is no need
to optimize the peak net load since the peak generation does not align the original
peak load well. In order to optimize the quadratic cost of net loads, facing the panel
slightly to the east is beneficial. Even though the load is generally higher in the
evening, PV generation with slightly east facing helps reducing the cost of serving
the net load during a smaller peak load in the morning.
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The only problem that gives a solution against the interest to PV owners is the
problem of minimizing the quadratic cost of ramp rates. Facing directions of PV
panels are opposite and the total insolation in a year differ by a half. It means that
PV generation severely increases ramp rates of net loads. Hence, the optimal solution
of minimizing the quadratic cost of ramp rates is to avoid high PV generation. This
shows a tension of adding PV generation into the grid even if we have not introduced
the volatility in the discussion. While PV generation reduces the cost of net loads, it
increases the cost of ramp rates due to its variability.

To be more realistic, for a grid operator’s perspective, one should optimize a linear
combination of both quadratic functions: net loads and its ramp rates. In general, we
can look into a broader class of convex functions f(pi, |pi− pi−1|). In order to specify
parameters and choices of functions, one need to have substantial amount of daily
load curves and the associated cost of operation. Then one can use regression and
construct a more reasonable cost function as an objective of a grid operator. Such
task is left as a future work.

3.3 Conclusion

In this chapter, we illustrate some basic applications of a structural approach in a
PV system modeling. As we have adjustable physical variables such as orientations
and positions of PV panels, we may use a structural approach to derive optimization
problems of interest to PV owners or the grid operators. From simple examples, we
see that solutions of different interests may not be aligned. One can refine and extend
the optimization problems to compromise benefits of both parties.

Here we conclude our discussion on a structural approach in a PV system mod-
eling. In the next chapter we use the maximum PV power curve from the reduced
form approach to build a short-term PV power forecast system.



Chapter 4

Maximum PV power curves

Highlights:

• A maximum power curve for a group of PV systems informs the grid operator of
the maximum generated power at each time instance. It can be used to assess
the maximum PV generation and the variability of a net load curve.

• Two approaches to find a maximum power curve are the structural approach
and the reduced form approach. The reduced form approach is more practical
and scalable. The concept that makes our model of a maximum power curve
robust and scalable is a normalized maximum power curve. The normalized
maximum power curve is essentially an envelope of a normalized power curve
generated from actual power output measurements.

• To ensure that the definition of a normalized maximum power curve is con-
sistent, we perform consistency checks under different circumstances for a nor-
malized power curve, which is a precursor of a normalized maximum power
curve.

• We illustrate how to construct maximum normalized power curves from nor-
malized power curves using selection techniques and regressions.

• We show that the resultant maximum normalized power curves are consistent.

4.1 A maximum power curve for a group of PV

systems

The maximum power curve for a group of PV systems is a graphical illustration of
the variation in maximum power generation from the group to the grid. From a

31
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grid operator’s perspective, the maximum power curve for a group of PV systems in
a substation can be used in a number of ways. The grid operator can estimate the
maximum PV installation such that the generating power of a group of PV systems at
any time does not exceed a certain limit. The grid operator can also assess variability
in the PV generation from the maximum power curve.

The grid operator may construct the maximum power curve for a group of PV
systems consisting of panels, an inverter, and other electronics to the grid if their
factors is known. As seen in Chapter xx, the power output from a PV system can
be modeled based on those factors. One may start with a clear-sky solar irradiance
model, followed by an irradiance projection on a plane, a conversion to a DC power
output, and a conversion to an AC power output to the grid. The result of using a
clear-sky solar irradiance model over time yields a maximum power curve for a PV
system. The sum of such maximum power curves represents the maximum power
curve for a group of PV systems. We call this the structural approach. The prob-
lem with the structural approach is that it requires a large number of factors to be
identified. As the PV generation grows in a distributed fashion, the grid operator is
likely to have difficulty in monitoring all factors for each PV system in the grid.

An alternative approach is to construct a maximum power curve for a group of PV
systems. We aggregate power outputs from each PV system and build the maximum
power curve by selecting several curves with a high power generation and perform-
ing regression. We call this a reduced-form approach. A grid operator may track
power outputs for each PV system with help from solar PV providers or monitor-
ing companies. Then the grid operator can use the reduced form approach without
worrying about numerous unknown factors. A comparison between the structural
approach and the reduced-form approach of the maximum power curve construction
is illustrated in Figure 4.1.

Scalability by the capacity of the PV installation is an essential feature of a max-
imum power curve model. The current PV generation capacity is low compared to
both the total load and the potential for new PV installations. Consequently, it is
possible that the maximum power curve for a current group of current PV systems
may not be applicable to a system with high PV penetration. However, comparing the
power curve for increasing subsets of current installations, we show that the power
curve quickly converges. This establishes the consistency in defining a normalized
power curve. With this normalized power curve, we can scale it in order to estimate
future limitations on the capacity of PV installations.
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Figure 4.1: Comparison between the structural approach and the reduced-form ap-
proach of a maximum power curve construction

4.2 Issues with normalized maximum power curves

for a group of PV systems

The normalized maximum power curve from the reduced form approach is attractive
since it requires only power output data from a sample of PV systems. It also requires
only the total installed capacity to scale for a bigger group of PV systems in the
same geographical region. Some issues to consider when constructing the normalized
maximum power curve are addressed below:

• The idea of linear scalability relies on the assumption that the power generation
from a group of distributed PV systems is proportional to its total installed
capacity. Such assumption must be justified. We justify the assumption in
Section 4.5

• The precursor of a normalized maximum power curve is a normalized power
curve derived from actual power outputs from an existing group of PV systems.
We need to ensure that the normalized power curve is consistent as we apply our
model to predict what will happen in the future. To be precise, we would like
to ensure that data from different installation years gives consistent normalized
power curves. Furthermore, we would like to ensure that data from different
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installation dates give consistent normalized power curves. We perform these
tasks in Section 4.6

• A number of PV systems in a group required to produce a consistent normalized
power curve is not immediately known. This issue is therefore addressed in
Section 4.7.

• As the actual power output is not always at the maximum, it is not straight-
forward to find a normalized maximum power curve from a normalized power
curve. Simple smoothing and regression do not work. Therefore we perform
methods of selection, regression, and adjustment on normalized power curves
to obtain maximum power curves as described in Section 4.9.

• To validate our approach, we checked the consistency of normalized maximum
power curves generated from two random samples of power outputs of PV sys-
tems in a same geographical area. This is described in Section 4.10.

4.3 Definition of consistency measurement

In this section, we examine the concept of consistency. An issue that needs to be
addressed is how to measure consistency between normalized power curves. First,
we can focus at each time instance and compare the power readings from different
curves. Then we must determine a statistic of all time instances in a time interval
including the mean of an average absolute deviation and the maximum of an average
absolute deviation, where the average absolute deviation at a time instance from C
normalized power curves is defined as

C∑
j=1

|pj −
p1 + ...pC

C
|.

If C = 2, the average absolute deviation equals to one half of the average absolute
difference |p1 − p2|. Since normalized power curves have values of the order of 1.00,
we may concretely define that normalized power curves are consistent if the mean of
an average absolute deviation in power outputs is less than 0.05.

The current measure has a pitfall when we want a measure of consistency over
a long period of time, for example, the consistency of normalized power curves for
different years. Given that weather patterns from various years may differ substan-
tially, the previous measure on power readings may give a large value even though the
normalized power curves are consistent. Hence, we propose a second way to measure
consistency between normalized power curves. One can focus on the total energy



CHAPTER 4. MAXIMUM PV POWER CURVES 35

generation from different curves. Then we report the percent of the average absolute
deviation in an energy generation over a time period, which is defined as∑C

j=1 |Ej − E1+...EC

C
|

E1+...EC

C

× 100%.

Note that an energy generation E refers to the area under the normalized power
curve. The concept of a percentage is needed for an easy comparison because the
energy generation depends on the length of the time interval. We may define that
normalized power curves are consistent if the percentage of the average absolute
deviation in an energy generation is less than 5%.

4.4 PV output data

4.4.1 Data set

The data set for building a normalized maximum power curve model for a group
of PV systems has two components: the installed capacity of each PV system in a
group and the actual power outputs from each PV system in the group. We received
data from 2 groups of PV systems collected by a solar PV monitoring company. The
locations of PV systems in each group are from the same zip code. The grid operator’s
perspective may concern a group of PV systems under the same substation rather
than the same zip code. Still we assume the same characteristics. One data set is
collected from PV systems in one particular zip code in CA. Another data set is
collected from PV systems in one particular zip code in NJ.

Each data set contains two parts:
1. metadata consists of information including the installed capacity of each PV

system. Each row of the metadata contains information about each PV system includ-
ing its ID, latitude, longitude, zip code, timezone, and installed capacity in kilowatts
(kW). Since the installed capacity is confidential information, it is reported as a range
of 0-1 kW, 1-2 kW, 2-3 kW, 3-5 kW, 5-10 kW, 10-20 kW, 20-50 kW, 50-100 kW, or
NaN. This makes normalization of power curves difficult. We address how to estimate
the installed capacity of each PV system in the data set in Subsection 4.4.3.

2. timeseriesdata consists of time series of power outputs from each PV sys-
tem. Each time series contains information about an instance of power reading for
a PV system at a given Universal Time Coordinated (UTC) time with a frequency
of 15 minutes. Each system appearing in metadata corresponds with a time series
in timeseriesdata. As the data collection has a 15-minute frequency, we expect to
have a continuous stream of data every 15 minutes starting from the installation date.
However, this may not be the case as the monitoring system is sometimes inactive.
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The time series of power output from each PV system starts on either January 1st,
2013 or the PV system’s installation date. All these time series end on December
31st, 2014.

4.4.2 Data cleaning

In order to process data and construct normalized maximum power curves correctly
in an organized manner, we clean data as follows:

1. We remove data from systems with an installed capacity greater than 20 kW
as we are only interested in residential-size PV systems.

2. We convert the UTC time stamps in timeseriesdata to be local time stamps.

3. Since time stamps in raw data may not end with 00:00, 15:00, 30:00, or 45:00
minutes, we adjust time stamps so that all time stamps end with these incre-
ments. We do such rounding in order to ensure there are enough power readings
at each time stamp.

4. For each PV system, we record the first time stamp that appears in timeseriesdata

in metadata as the first monitoring time of a system.

5. In timeseriesdata, we only select entries registered after sun rises and before
sun sets. We bundle multiple time series into a single table where each row
represents a time stamp from January 1st, 2013 to December 31st, 2014 with
a 15-minute frequency, and each column represents each PV system. Since we
have identified the first monitoring time of each PV system, we are able to sort
columns based on this value. We assign NaN to cells with no power output.

At this point, it may appear that we can generate normalized power curves for a
group of PV systems. The value of normalized power curves at each time stamp is
simply the row sum of timeseriesdata divided by the sum of the installed capacities
of PV systems that have power outputs at that time stamp. The difficulty in this
calculation is that we do not know the exact value of the installed capacity of each
component. In the next subsection, we show how to calculate an estimate for the
installed capacity.

4.4.3 Installed capacity estimates

As addressed above, metadata does not contain the exact value of an installed ca-
pacity of each PV system due to a confidentiality constraint. Instead, the installed
capacity of a PV system is given as a range. If we assume that the installed capacity
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Range Midpoint CA estimate NJ estimate
0-1 0.5 0.64 0.60
1-2 1.5 1.56 1.55
2-3 2.5 2.49 2.52
3-5 4 3.96 4.10
5-10 7.5 6.76 7.49
10-20 15 12.81 12.94

Table 4.1: Ranges, midpoints, and estimates for the installed capacity for bins as
appeared in metadata. All values are in kW.

is uniformly distributed in a range, then we can estimate any installed capacities in
the range to be equal to the midpoint of the range. For example, each PV system
with a 10-20 kW range has an installed capacity of (10+20)/2 = 15 kW.

In order to find a better estimate of the installed capacity, we may look into
other sources of data where information about installed capacities of PV systems is
available. NREL’s Open PV project [46] has a data set of installed capacities of
PV systems over time and region. To obtain large enough yet relevant samples, we
selected data of PV systems in each state of interest from 2008 to 2012, which is the
most recent year of data. Histograms of installed capacities up to 20 kW in CA and
NJ are shown below.

It is worth noting that the installed capacities of distributed PV systems in CA
are smaller than the installed capacities in NJ. This is likely due to the fact that the
weather in CA is more favorable to the use of PV systems than in NJ. As a result, a
PV system with a smaller installed capacity is sufficient in CA.

Next we divide the queried data into bins corresponding to ranges in metadata

and compute the mean of the installed capacity in each bin. The mean value will be
used as an estimate for the installed capacity in our analysis. Ranges, midpoints of
the ranges, and estimates of the installed capacity for each state are summarized in
Table 4.1.

With this estimate, we can compute normalized power curves for a group of PV
systems. In the next section we see that this estimate is at least as compatible as a
midpoint when we test the assumption on linear scalability.

4.5 A test of a linear scalability assumption

We solve the first issue regarding the assumption of linear scalability. We illustrate
by our data that the power generated by a group of PV systems is proportional to
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(a) CA

(b) NJ

Figure 4.2: Histograms of installed capacities up to 20 kW in two states in 2008-2012
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its total installed capacity. From timeseriesdata, we construct a new table for PV
systems with a size of 5-10 kW and another table for PV systems with a size of 10-20
kW. For each table, one can compute a time series of the mean power by the number
of components. If the assumption on linear scalability is true, when we plot values of
time series from the two tables against each other, we expect to see a proportional
relationship in the graph. Note that such a proportional relationship occurs when
there is a sufficient number of components in each table. For the data set in CA, we
plot a data point for each instance only when there are more than 10 power readings
in each table. For the data set in NJ, we plot a data point for each instance only
when there are more than 100 power readings in each table. The required number
for the data set in CA is fairly low due to small number of systems with size of 10-20
kW in the data set. Still, we see proportional relationships from both data sets in
CA (Figure 4.3a) and NJ (Figure 4.3b).

The plot of the data set in CA demonstrates that the y-intercept from a linear
regression is equal to -0.002, in other words, very close to zero. The slope is equal
to 0.61. The ratio of our installed capacity estimates for PV systems in a 5-10 kW
bin and a 10-20 kW bin is equal to 6.76/12.81 = 0.53, while the ratio of midpoints
between two bins is equal to 0.5.

The plot of the data set in NJ shows that the y-intercept from a linear regression
is equal to 0.07, in other words, very close to zero. The slope is equal to 0.54. The
ratio of our installed capacity estimates for PV systems in a 5-10 kW bin and a 10-20
kW bin is equal to 7.49/12.94 = 0.58, while the ratio of midpoints between these two
bins is equal to 0.5.

These results confirm that our assumption is reasonable. In addition, they also
imply that our installed capacity estimates in each bin are the same or even more
accurate relative to the midpoints.

4.6 Consistency checks for normalized power curves

As addressed in the list of issues with normalized maximum power curves for a group
of PV systems, we first need consistent normalized power curves. We need to ensure
that the normalized power curves are consistent as we apply our model to indicate
what will happen in the future. Two questions must be answered in order to ensure
that our model will work for the future, at least for a following few years. First, if
data are collected from different years, are the normalized power curves still consis-
tent? Second, if data are from PV systems with different installation dates, are the
normalized power curves still consistent? There are two factors to consider: the year
of data collection and the installation date of PV systems.
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(a) CA

(b) NJ

Figure 4.3: Scatter plots of the mean power by PV systems from 2 bins: 10-20 kW
and 5-10 kW
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(a) Monthly (b) Quarterly

(c) Yearly

Figure 4.4: Energy generation from normalized power curves from the data set in CA
for 2013 and 2014

4.6.1 Consistency of data from different years

In order to investigate consistency of data from different years, we construct normal-
ized power curves for different years. In order to control another factor, we build all
normalized power curves from the same group of PV systems. In our data set, we
constructed normalized power curves for 2013 and 2014 from the PV systems with
the first monitoring dates before January 1st, 2013.

When we compare normalized power curves from 2013 and 2014, we immediately
see that they are different since the weather varies from year to year. Hence the mean
of the average absolute deviation in power is not a good measure for the consistency
in this situation. The better measure is the percentage of an average absolute devia-
tion in energy generation. First, we compare monthly energy generations, quarterly
generations, and yearly energy generations between 2 years as shown in Figure 4.4
and 4.5.

Note: we reject daily normalized power curves in this analysis if some readings of
power outputs on the curves are missing.

For the data set in CA, we build normalized power curves and calculate energy
generations from 2 systems that pass our condition. From the data set in CA shown
in Figure 4.4, one can calculate that the average absolute deviation in monthly energy
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(a) Monthly (b) Quarterly

(c) Yearly

Figure 4.5: Energy generation from normalized power curves from the data set in NJ
for 2013 and 2014

generations in 2013 and 2014 can be as large as 34 percent in January. The average
absolute deviation in quarterly energy generations can be as large as 8 percent in the
first quarter. The average absolute deviation in yearly energy generations is about 2
percent.

For the data set in NJ, we build normalized power curves and calculate energy
generations from 5 systems that pass our condition. From the data set in NJ as shown
in Figure 4.5, one can calculate that the average absolute deviation in monthly energy
generations in 2013 and 2014 can be as large as 9 percent in September. The average
absolute deviation in quarterly energy generations can be as large as 2 percent in the
second quarter. The average absolute deviation in yearly energy generations is about
1 percent.

It is worth noting that, even though the number of systems in this investigation
is relatively small, the deviation of energy generation from year to year is low from
the perspective of yearly generation. From two independent data sets, we see that
there is no particular direction of change from one year to another. Hence, we have
consistency over different years of data collection. This result also implies that the
degradation of PV systems is negligible when considered year by year.
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(a) Quarterly (b) Yearly

Figure 4.6: Energy generation from normalized power curves from the data set in CA
for 5 groups of PV systems categorized by installation dates

4.6.2 Consistency of data from different installation dates

In order to investigate consistency of data from different installation dates, we build
and compare normalized power curves from PV systems with different installation
dates. In order to control the date of data collection, we build all normalized power
curves from data gathered during the same time period. In our data set, we can build
and compare normalized power curves for 2014 from 5 groups of PV systems based
on their first monitoring dates: before 2013, the first quarter of 2013 (Q1 2013), Q2
2013, Q3 2013 and Q4 2013.

As in the previous subsection, we compare energy generations to verify the con-
sistency. To avoid overwhelming visual representation of the data, we consider only
quarterly and yearly energy generations.

For the data set in CA, we build normalized power curves and calculate energy
generations from 5 groups categorized by installation dates (pre-2013: 2 components,
Q1 2013: 3 components, Q2 2013: 4 components, Q3 2013: 8 components, Q4: 65
components. From the data set in CA shown in Figure 4.6, one can calculate that the
average absolute deviation in quarterly energy generations can be as large as 5 percent
in the second quarter. The average absolute deviation in yearly energy generations is
about 4 percent.

For the data set in NJ, we build normalized power curves and calculate energy
generations from 5 groups categorized by installation dates (pre-2013: 5 components,
Q1 2013: 40 components, Q2 2013: 11 components, Q3 2013: 81 components, Q4:
99 components. From the data set in NJ as shown in Figure 4.7, one can calculate
that the average absolute deviation in quarterly energy generations can be as large
as 11 percent in the fourth quarter. The average absolute deviation in yearly energy
generations is about 8 percent.

It is worth noting that the deviation of energy generation from PV systems with
different installation dates is quite high. This result might be influenced by the low
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(a) Quarterly (b) Yearly

Figure 4.7: Energy generation from normalized power curves from the data set in NJ
for 5 groups of PV systems categorized by installation dates

number of components. While the data set in CA does not suggest any particular
trend, the data set in NJ reveals a downward trend of energy generation. Both the
concept of learning-by-doing and the process of deterioration of a PV system suggest
that more recently installed PV systems should have higher energy generation per an
installed capacity over time. On the other hand, one might argue that PV should
be installed in a place with a higher yield first and a place with a lower yield later.
This concept known as “taking low hanging fruit first” suggests that more recently
installed PV systems should have lower energy generation per an installed capacity
over time. The result from the data set in NJ provides evidence for the last argument.

Due to the low number of components in the data set, it makes sense to combine
data with different years of data collection and different PV system installation dates.
As a consequence, we need to accept that the normalized power curves generated by
such data may exhibit an inherited deviation. In the future, if data over several years
is collected and there is a higher number of PV systems at various time periods, we
should re-investigate this issue.

4.7 The number of PV systems needed for normal-

ized power curves to be consistent

One of the issues from our model for maximum power curves is about a sufficient
number of PV systems to produce consistent normalized power curves. If too few PV
systems are used to construct a normalized power curve, the normalized power curve
will be not be a good representative of current and future collections of PV systems
in a region. We need to find a minimum number of PV systems to produce a consis-
tent normalized power curve within the average absolute deviation in yearly energy
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generation of one percent. Note that such the minimum number is not necessarily
universal for all regions.

From each data set, we sample 10 independent subsets of data from a chosen
number of PV systems. We construct normalized power curves for each subset and
calculate the yearly energy generation for each power curve. We then measure the
average absolute deviation in yearly energy generations of those 10 subsets. As we
increase the chosen number of PV systems, we expect to see a smaller deviation. In
order to control this experiment, we build all normalized power curves from data
collected in the same time period and sampled from systems installed before the
starting point of the time frame. In our data set, we select that time period to be
the entire year of 2014.

For the data set in CA, 82 PV systems pass the criteria. For the data set in NJ,
237 PV systems pass our criteria. Figure 4.8 shows yearly energy generations of 10
samples for each number of PV systems. It is clear that as the number of PV systems
used to generate a normalized power curve increases, the difference of yearly energy
generations among samples decreases.

Table 7.1 shows the percentage of the average absolute deviation in yearly energy
generations from a different number of PV systems. We need only 49 systems to
achieve the deviation of less than 1 percent for the data set in CA while we need 100
systems to obtain the deviation of less than 1 percent for the data set in NJ. The
data set in NJ requires a larger minimum number of systems for two reasons. First,
PV systems in the data set in CA may be more homogeneous than PV systems in the
data in NJ. To achieve the same level of accuracy, we need a higher number of PV
systems to produce consistent normalized power curves from a less homogeneous area.
Second, the weather associated with the data set in CA may be more volatile than
the weather associated with the data set in NJ set. To achieve the same degree of
accuracy, we require a higher number of PV systems to produce consistent normalized
power curves for more volatile weather.

4.8 Heuristics to produce consistent normalized

power curves

From previous sections, we have seen how to construct normalized power curves of
a group of PV systems. We have analyzed several issues that might affect the con-
sistency of normalized power curves. We now determine the heuristics to produce
consistent normalized power curves as follows:

1. Clean the data so that time series of power outputs from PV systems are aligned.
Select a part of the time series associated with daylight times only. Make sure
that the installed capacity of each PV system is known or well estimated.
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(a) CA

(b) NJ

Figure 4.8: Yearly energy generation derived from a different number of PV systems.
Each number has 10 samples. The horizontal axis shows the square root of the number
of PV systems.
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The number of components CA NJ
4 5.3 6.1
9 4.2 7.5
16 3.9 1.8
25 2.4 3.1
36 2.0 1.7
49 0.8 1.5
64 0.9 1.3
81 0.2 1.3
100 - 0.9
225 - 0.3

Table 4.2: The percentages of the average absolute deviation in yearly energy gener-
ation from different numbers of PV systems.

2. Determine a point on a normalized power curve by summing all power outputs
and dividing them by the sum of installed capacities associated with the power
readings at that instance. As a rule of thumb, the number of PV systems should
be at least 50 to achieve the possible deviation of about 2 %.

3. Check if there is a need to distinguish data from different years of collection
or from PV systems with various installation dates. However, due to a limited
amount of data, we may treat them equally and accept a possible deviation of
about 8 %.

4.9 Maximum normalized power curve construc-

tion

We construct maximum normalized power curves from normalized power curves de-
rived from power outputs from a group of PV systems. To get an insight of how to
construct them, we consider several daily normalized power curves generated from
the data set in CA and the data set in NJ using heuristics described in the previous
section. Some examples are shown in Figure 4.9 and Figure 4.10.

After examining a number of daily normalized power curves, we found that for
most of the days in a year, a normalized power curve is not likely a maximum nor-
malized curve since there are some spikes on the curve. However, on some days, a
normalized power curve resembles a simple bell shape with a high daily energy gener-
ation relative to neighboring days. The simple bell shape may not be generally true
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(a) Well-behaved normalized power
curve, on 2014/6/24

(b) Typical normalized power curve,
on 2014/6/21

Figure 4.9: Daily normalized power curves generated from the data set in CA

(a) Well-behaved normalized power
curve, on 2014/6/24

(b) Typical normalized power curve,
on 2014/6/21

Figure 4.10: Daily normalized power curves generated from the data set in NJ
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for power curves from a single PV system, but it is common for power curves from
a large number of PV systems. Note that we are interested only in power outputs
between sun rise and sun set. Hence we make an assumption:

Assumption: A daily maximum normalized power curve resembles a simple bell-
shape curve with a high daily energy generation relative to neighboring days. The
domain of a maximum normalized power curve should be a time interval between
sun rise and sun set. The range of a maximum normalized power curve should be
non-negative.

We call actual power curves that resembles daily maximum normalized power
curves as well-behaved normalized power curves. A candidate function that fits
the assumption of the daily maximum normalized power curve is a linear combination
of B-splines. If all normalized power curves constructed from the data are maximum
normalized power curves, we can use a regression to find such a linear combination
of B-splines for all the days in a year. The problem is that most normalized power
curves are not ideal.

Still, there is a way to construct maximum normalized power curves for all the days
in a year. First, we select some well-behaved daily normalized power curves, which
are likely to be maximum normalized power curves. Then we may use a regression
to find a linear combination of B-splines that fit a well-behaved daily normalized
power curve. Once we obtain regression coefficients for well-behaved days, we can
extrapolate regression coefficients to neighboring days as well. With this process, we
have linear combinations of B-splines as maximum normalized power curves for all
the days. Lastly, we may need to scale or shift B-splines to ensure that the resulting
linear combinations are indeed higher than normalized power curves from the data.

Note: One may model a normalized power curve before sun rise and after sun set,
then augment it with our model that focuses on power readings between sun rise and
sun set. However, we do not consider such an issue in this study.

Before we proceed to the selection process of well-behaved daily normalized power
curves, a regression of B-splines, and an extension of regression coefficients. There
is a problem of generalization under different domains. As the season changes, the
sun rises and sets progressive different times. As a result, B-splines generated from
different days are not compatible to each other. This makes the extrapolation of
regression coefficients impossible unless we transform the domain of a PV power
curve and find a systematic way to bridge models between various days.

4.9.1 Transformation of the domain of a daily power curve

In order to make a model of daily maximum power curves generalizable, transforma-
tion of its domain is necessary. From sun rise and sun set each day, we need a domain
common to all days. We define s as a negative cosine of an angle on a facial plane
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of an observer facing the south. For each time instance between a sun rise and a sun
set, one may find a Cartesian coordinate of the sun on the unit sphere. One may then
find an associated s using trigonometry:

s =
y

y2 + z2
, (4.1)

where (x, y, z) is a Cartesian coordinate of the sun where the positive x-axis points
to the south and the positive y-axis points to the east. It turns out that s = −1
corresponds to a sun rise and s = 1 corresponds to a sun set regardless of the day of
the year. This gives the same domain for all daily power curves.

4.9.2 Regression of daily normalized power curves with B-
splines

With the transformation addressed above, we can run a regression on daily normalized
power curves with B-splines. We first construct B-splines by specifying the degree
of basis functions, the number of inner knots, and the locations of knots. Next we
see how the constructed curve fits with well-behaved daily power curves selected by a
human. The coefficient of determination (R2) is utilized to measure the fitness. We
experiment with several degrees of basis functions, numbers and locations of inner
knots. It turns out that a set of basis functions of the degree 3 with 8 inner knots
distributed as shown in Figure 4.11 gives the best fit.

Figure 4.11: Basis functions for a regression including B-splines of the degree 3 with
8 inner knots. There are 11 basis functions in total.
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(a) A well-behaved normalized
power curve, on 2014/6/24. R2 =
0.9998

(b) A typical normalized power
curve, on 2014/6/21. R2 = 0.997

Figure 4.12: Actual (blue) and fitted (black) daily normalized power curves generated
from the data set in CA

(a) A well-behaved maximum nor-
malized power curve, on 2014/6/24.
R2 = 0.998

(b) A typical normalized power
curve, on 2014/6/21. R2 = 0.959

Figure 4.13: Actual (blue) and fitted (black) daily normalized power curves generated
from the data set in NJ

Figures 4.12 and 4.13 below compare actual power curves and fitted power curves
along with 95% confidence intervals. For well-behaved power curves, R2 can be as
high as 0.995. Linear combinations of B-splines for well-behaved power curves are
indeed similar to each other and resemble bell shapes. However, linear combinations
of B-splines for other power curves tend to have low values of R2 and do not exhibit
bell shapes. These clues lead to an automatic process for selecting well-behaved
maximum power curves.
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4.9.3 Automation of a well-behaved power curve selection

One of the key steps in modeling maximum normalized power curves for all days in
a year is to find select well-behaved power curves from all normalized power curves
generated from the power output data. Such a task can be tedious if done by a
human. However, one can develop an algorithm to select well-behaved power curves.
The selection process consists of two stages. The first stage is based on the information
of the B-splines regression in the previous subsection. The second stage is based on
a comparison of daily energy generations with neighboring days.

The first stage

From the B-splines regression, we propose two criteria to filter out power curves that
are not well behaved as follows:

The first criterion is that, if the goodness of the fit of a daily power curve is low,
the power curve is not a well-behaved maximum power curve. Here we use R2 = 0.95
as a cut-off. This criterion comes from the assumption of maximum normalized power
curves.

The second criterion is that, if a daily power curve does not have only one crit-
ical point, which is also the local maximum, the power curve is not a well-behaved
maximum power curve. This criterion comes from the assumption of a bell-shaped
curve.

In order to determine critical points, finding a derivative of a linear combination of
B-splines of the degree 3 is helpful. Since finding derivatives directly from a recursion
relation is a tedious task, we discovered a way to find a derivative of such functions
based on numerical tryouts. We know that a function defined between two knots
x ∈ [ki, ki+1) has a form:

f(x) = aix
3 + bix

2 + cix+ di.

We may use a regression function to predict values for 4 distinct points, say {ki, 23ki +
1
3
ki+1,

1
3
ki + 2

3
ki+1, ki+1}. Next, one can solve a system of 4 linear equations with 4

unknowns {ai, bi, ci, di}. Then the derivative of the function is

f ′(x) = 3aix
2 + 2bix+ ci

This leads to a simple algorithm:
Note: since our construction of splines has non-negative coefficients and zero value

at endpoints, if there is one critical point then such a critical point is the maximum.
There is no need to evaluate the second derivative.

One may propose another rule: if the peak of a daily power curve is an outlier
compared to the peaks of daily power curves from neighbor days, then the power
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Algorithm 1 The first stage filtering algorithm

1: For each interval [ki, ki+1) between knots of B-splines, predict values for {ki, 23ki+
1
3
ki+1,

1
3
ki + 2

3
ki+1, ki+1}.

2: Use the values to construct a system of 4 linear equations and solve for
{ai, bi, ci, di}.

3: Find roots of the quadratic equation: f ′(x) = 3aix
2 + 2bix + ci = 0. Count the

number of roots that lie inside the interval. This value is the number of critical
points in the interval.

4: Count the total number of critical points of the function. If the total number
does not equal 1, we filter the daily power curve out.

curve is not a well-behaved power curve. However, this criterion is not practical as
the daily power curves after a domain transformation do not have sharp peaks. Hence
we do not apply this criterion.

After applying the algorithm explained above, we found that, for the data set in
CA, 35% of daily power curves remained. For the data set in NJ, 20% of daily power
curves remained.

After the first stage, we filtered out some of the daily power curves that are not
well-behaved power curves. However, the remaining daily power curves in the data
set were not necessarily well-behaved power curves. For example, a daily power curve
with a low energy generation due to uniform cloud cover may exhibit a bell shape and
may pass the first stage. We need a more elaborate procedure to continue filtering.

The second stage

To start the second stage, it is useful to look at daily energy generations from all
daily power curves that pass the first stage. Figure 4.14 shows those curves. Note
that there were not many points before 2014 since too few PV systems existed to
generate sufficient data at that time.

Since we have justified that the variation between years is negligible, we can overlay
the data from multiple years into a single year window. We convert the date into a
variable called Day Before a Winter solstice (DBW ). We set the Winter solstice of
each year to be 0 and assign the other days with negative integers. Figure 4.15 shows
the daily energy generations with the overlay. The plot shows seasonal variation from
the Winter Solstice (DBW = -365) to the Summer Solstice in the middle of the plot,
and back to the Winter Solstic (DBW = 0). In this representation, it is clear that
there is an envelope contributed from well-behaved daily power curves and there are
outliers below the envelope of each data set.
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(a) CA

(b) NJ

Figure 4.14: The daily energy generations of all daily power curves that pass the first
stage.
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(a) CA

(b) NJ

Figure 4.15: The daily energy generations of all daily power curves that pass the first
stage with a new variable DBW and overlay.
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In order to filter out those outliers, we introduce the concept of the “excessive
downhill”. A data point in the plot is in an excessive downhill if there exists a higher
point in the plot such that the line segment connecting them has a slope higher than
a selected threshold. We filter out a power curve if it is associated with a point with
an excessive downhill in the daily energy generation plot. Using the data plotted
in Figure 4.15, we select a threshold to be the highest slope on the envelope, which
is about (8 − 6)/(360/8) = 2/45 ≈ 0.05, at the first half of any given spring. This
condition guarantees that any point that we eliminate deviates excessively from the
envelope. The filter at this stage can be summarized as follow:

Algorithm 2 The second stage filtering algorithm

1: Calculate daily energy generation for each normalized daily power curve and plot
it as function of a Day Before Winter solstice (DBW).

2: For each point i in the plot, compute the slope of the line segment connecting it
with a higher point j.

3: If the slope is higher than the threshold 0.05, filter the daily power curve associ-
ated with the point i out. If not, repeat for all higher points j.

Figure 4.16 shows the daily energy generations after the second stage selection.
After the second stage, we found that, for the data set in CA, 9% of daily power
curves remained. In the data set in NJ, 3% of daily power curves remained. The
daily power curves after the second stage are used to generalize the maximum power
curves for all the days in a year.

4.9.4 Generalization of models from well-behaved power curves

Now that we have a set of well-behaved normalized power curves, we may extrapo-
late the regression functions from well-behaved power curves as maximum normalized
power curves for all the days examined. To be exact, for each selected power curve,
one can extract the regression coefficients of its linear combination of B-splines. Each
coefficient can be treated as a function of DBW as shown in Figure 4.17 and Fig-
ure 4.18. We run the regression and use the regression function on coefficients to
determine the coefficients for all maximum normalized power curves.

In Figure 4.17 and Figure 4.18, even though we have a sophisticated selection
process for well-behaved normalized power curves, there are some outliers with low
values in coefficients. One way to decrease the significance of outliers in the regression
is to weigh outliers differently. A quantile regression can be used. While the method
of least squares aims for a conditional mean of a response variable given the value of
a predictor variable, a quantile regression aims for a quantile of the response variable
given a value of a predictor variable. Since we want to use the quantile regression
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(a) ‘CA’ data set

(b) ‘NJ’ data set

Figure 4.16: The daily energy generations of all daily power curves that pass the
second stage with a new variable DBW and overlay.
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function as a maximum power curve, we seek the τth quantile, where τ is close to
1. However, the quantile regression with a high value of τ is usually too sensitive to
anomalous high data points. Another way to remove the outliers from the regression
is to select points using the excessive downhill technique to data points first, then
perform the quantile regression with τ = 0.5.

Various choices of regression functions on the coefficients can be applied. In this
case, we use splines again. Periodic splines are appropriate because our domain is
a set of all the days in a year, and therefore periodic. However, another family of
periodic functions, Fourier series, may be employed. After some experiments we found
that the Fourier series up to the third harmonic gives a good fit. The black lines in
Figure 4.17 and Figure 4.18 show the quantile regression of coefficients and predicted
coefficients for all the days using the Fourier series. With these coefficients, we can
now generalize B-spline models to construct maximum power curves for all the days.

4.9.5 A correction for maximum normalized power curves

After obtaining coefficients of B-splines, we are able to build maximum normalized
power curves for all the days. Figure 4.19 and Figure 4.20 are examples of daily
maximum normalize power curves from the data sets in CA and NJ. Figure 4.21
shows the daily energy generations of maximum power curves in comparison with all
daily power curves. In some instances from both plots of power readings and daily
energy generations, our proposed maximum values are lower than the actual values
from the data. Further investigation shows that, for the data set in CA, 17% of
points are higher than the corresponding points in the daily maximum normalized
power curves. For the data set in NJ, there are 11% of such points.

In order to get a true maximum power curve, one can modify a proposed maximum
power curve by scaling and shifting. The modification should make the change as
small as possible. We may write this as an optimization problem:

minimize
a≥1,b≥0

N∑
i=1

[ami + b−mi]

subject to pi ≤ ami + b; i = 1, . . . ,M,

where a is a scaling factor, b is a vertical shift, mi is a value on an original maximum
power curve, pi is a value of on a normalized power curve, N is the number of points
in all maximum power curves, and M is the number of points where the value in the
original maximum power curves is lower than the value in the actual power curves.
The optimal solution of such a problem is also the optimal solution of
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Figure 4.17: Quantile regression for coefficients of maximum power curves of the data
set in CA

minimize
a≥1,b≥0

a

N∑
i=1

mi +Nb

subject to ami + b ≥ pi; i = 1, . . . ,M,

This is a linear programming problem with the optimal solution of a = 1 for
all data sets. It turns out that the optimal solution for all data sets has a = 1.
That is, the least perturbation is done by shifting only. For the data set in CA, the
optimal solution is to shift maximum power curves up by 0.0862 without scaling. For
the data set in NJ, the optimal solution is to shift up by 0.1458 without scaling.
Once these shifts are applied, all points of maximum power curves become higher
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Figure 4.18: Quantile regression for coefficients of maximum power curves of the data
set in NJ

than corresponding points in power curves from our data set. That is, we obtain
legitimate maximum normalized power curves.

It should be noted that the correction by shifting has a downside as it implies that
there is a sharp rise and drop in power occur at a sun rise and a sun set. In order to
solve this issue, we can impose a non-uniform but smooth shifting and scaling to the
power curve. However, we do not pursue the task in this study.
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(a) A well-behaved normalized
power curve, on 2014/6/24

(b) A typical normalized power
curve, on 2014/6/21

Figure 4.19: Daily normalized power curves and proposed maximum power curves
from the data set in CA

(a) A well-behaved normalized
power curve, on 2014/6/24

(b) A typical normalized power
curve, on 2014/6/21

Figure 4.20: Daily normalized power curves and proposed maximum power curves
from the data set in NJ
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(a) CA

(b) NJ

Figure 4.21: Daily energy generations of proposed maximum power curves in com-
parison with all daily power curves
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4.10 Consistency of maximum normalized power

curves

To complete our work on maximum normalized power curves, we investigate the con-
sistency of our end product. We test if maximum normalized power curves generated
from two samples of PV systems in the same geographical area are different.

We randomly split PV systems in the data set into two groups. Next we generate
normalized power curves from power output data, select well-behaved power curves
and construct maximum normalized power curves as described in the previous sec-
tions. Finally, we compare maximum normalized power curves from two sets using
both consistent measures: the mean of the average absolute deviation in power and
the average absolute deviation in yearly energy generation. Since the number of PV
systems in the data set in CA is low, we perform the test for the data set in NJ only.

For the data set in NJ, we split the PV systems into two sets and generate two
maximum normalized power curves. We found that the mean of the average absolute
deviation in power equals 0.0135. The average absolute deviation in yearly energy
generation equals 1.6 percent. Hence we may conclude that maximum normalized
power curves constructed by our method are consistent.

4.11 Conclusion

We define what a maximum power curve for a group of PV systems is and how it is
useful for grid operators. We propose a reduced form approach to construct maximum
power curves for a group of PV systems based on time series of power outputs and
its total installed capacity only. We show the detail of the construction process
and consistency checks from the initial product, which is a set of daily normalized
power curves produced from actual data, to the final product, which is a set of daily
maximum normalized power curves for all the days in a year.

In the next chapter, we show how a grid operator may use the maximum PV power
curves to estimate the maximum PV penetration into the grid. In a subsequent
chapter, we show that the use of the maximum PV power curves can improve an
accuracy of a PV power forecast.



Chapter 5

Applications of maximum PV
power curves

Highlights:

• Maximum PV power curves give a clarification on different notions of a PV
capacity.

• Maximum PV power curves lead to a useful concept of a performance ratio, a
key variable in an hour-ahead forecast.

• Expected PV power curves can be constructed from maximum PV power curves
and the mean of performance ratios. Such curves are useful in a day-ahead
energy scheduling.

• A maximum PV penetration to a grid can be computed from maximum PV
power curves based on a set of simple assumptions. A more realistic estimate
requires further investigation of power flow constraints and a system to cope
with a demand-supply mismatch.

In Chapter 4, we have constructed maximum PV power curves, which illustrate a
variation in the maximum power generation from a group of PV systems. Instead of a
structural approach, we used a reduced form approach, where we construct consistent
daily normalized power curves from power output data of PV systems and build
the maximum normalized power curves without a need of extra information except
the installed capacities of a group of PV systems. In this chapter, we show some
basic applications of maximum PV power curves. First, we show how maximum PV
power curves clarify a distinction between an installed capacity, a maximum generated
capacity, and an expected generated capacity. Second, we introduce a performance
ratio and an expected PV power curve derived from maximum PV curves. Finally,

64



CHAPTER 5. APPLICATIONS OF MAXIMUM PV POWER CURVES 65

we show how maximum PV power curves establish a maximum installed capacity of
PV systems in correspondence with a load pattern.

5.1 Different notions of PV capacity

There are number of ways to report how much power a group of PV systems can be
generated. The most common way to report is an installed capacity, also known as
a nameplate capacity, a rated capacity, or a nominal capacity. An installed capacity
of an individual PV cell is rated under a Standard Test Condition (STC) [34]. That
is, the panel is under a light intensity of 1000 W/m2, with a spectrum similar to
sunlight hitting the earth’s surface at the latitude 35◦ N in the summer (airmass 1.5),
and the temperature of the cell being 25◦ C. The highest measurement while varying
the resistive load on the module between a maximum and a minimum resistance is
the installed capacity. This installed capacity divided by the incident light power
defines the panel’s efficiency. For a group of PV systems, one may define an installed
capacity as a sum of installed capacities from each panel in the group.

Even though the installed capacity is useful to compare efficiencies of PV panels
fairly, it is not quite useful by itself in term of an actual power generation. The
immediate drawback of the installed capacity is that it does not match the actual
power generated by a group of PV systems since each panel operates in an environment
different from the STC. In a grid operator’s point of view, the maximum or the average
power are useful than the power measured at a certain condition. In fact, the word
‘installed’ used in the PV industry can be misleading since the generator installed
capacity typically refers to the maximum power from a generator in the grid operation
[2]. Hence, we define more useful ways to report the power including a peak capacity,
an maximum average power production, and an average power production.

A peak capacity of a group of PV systems is the maximum power a group of PV
systems can generate. Given a set of maximum normalized power curves of a year,
the peak capacity can be written as

peak capacity = C max
d=1,..,365

max
i=1,..,96

Pmax
d (i)

where C is the installed capacity of a group of PV systems and Pmax
d (i) is the value

of the maximum normalized power curve of the day d at the time instance i. Since
the time interval is 15 minutes, there are 96 instances in a day. For a group of PV
systems with an installed capacity of 1 kW, the peak capacity is not necessarily equal
to 1 kW. This number is more informative for the grid operator than the installed
capacity since it gives a more accurate picture of the maximum power that a group of
PV systems can generate at an instance in a year. If we know all information about
each PV system in the group, we may use a structural approach to compute the
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peak capacity. However, as addressed in the previous chapter, it is easier to obtain
the maximum PV power curve along with the peak capacity using a reduced form
approach. Table 5.1 shows two peak capacities from two groups of PV systems in the
data sets from CA and NJ. Note that both of them are slightly higher than 1 kW.

An maximum average power production of a group of PV systems is an
average of an ideal power from a group of PV systems over a year. Given a set of
maximum normalized power curves of a year, the average maximum capacity can be
written as

maximum average power production =
C

365× 96

365∑
d=1

96∑
i=1

Pmax
d (i)

where C is the installed capacity of a group of PV systems and Pmax
d (i) is the value

of the maximum normalized power curve of the day d at the time instance i. Since
the time interval is 15 minutes, there are 96 instances in a day. This number is more
informative for the grid operator than the installed capacity since it gives a more
accurate picture of the maximum power that a group of PV systems can generate
over a year. Table 5.1 shows two maximum average power production values from
two groups of PV systems in the data set from CA and NJ. Note that both of them are
significantly less than 0.5 kW. This is because we also count time instances without
sunlight in the average in order to give a fair comparison if compared with other
conventional energy generators.

An average typical capacity of a group of PV systems is an average of an actual
power from a group of PV systems over a year. Given a set of actual normalized power
curves of a year, the average typical capacity can be written as

average power production =
C

365× 96

365∑
d=1

96∑
i=1

Pd(i)

where C is the installed capacity of a group of PV systems and Pd(i) is the value of
the actual normalized power curve of the day d at the time instance i. Since the time
interval is 15 minutes, there are 96 instances in a day. While an average maximum
capacity is informative in extreme case problems such as a maximum penetration
assessment, an average typical capacity is informative in general behavior problems
such as a PV generation’s value assessment. Table 5.1 shows two average power
production values from two groups of PV systems in the data sets from CA and NJ
in 2014 only. Note that the average power production is significantly less than the
maximum average power production
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Power measure (kW) CA NJ
Installed capacity 1.0000 1.0000

Peak capacity 1.0431 1.1494
Maximum average power production 0.3346 0.3600

Average power production (2014) 0.2641 0.1979

Table 5.1: Different power measures for a group of PV systems from two data sets

(a) Actual output (b) Maximum output (c) Performance ratio

Figure 5.1: Actual power outputs, maximum power curves, and performance ratios
for the data set in CA in 2014

5.2 Performance ratios and expected PV power

curves

In order to find how well a group of PV systems generate at a given instance or a
time period, it makes sense to have a definition relative to the maximum value. This
leads to the definition of performance ratios. A performance ratio at an instance
is defined as an actual power output divided by a value on maximum power curve at
that instance. Figure 5.1 and 5.2 show actual power outputs, maximum power curves,
and performance ratios in two dimensional grids for the data sets in CA and NJ in
2014. The horizontal axis represents a time of a day, and the vertical axis represents
a day of a year.

An immediate application of the performance ratio is expected PV power curves.
In a long-term planning or a day-ahead energy scheduling, suppose that a grid op-
erator does not have any prior about recent PV output data and weather data, how
would the grid operator construct an expected PV power curve, which describes an
average power output from a group of PV systems over a day? The expected PV
power curve should reflect a PV power’s variability but not a volatility. One may
construct a simple expected PV power curve by scaling a maximum PV power curve
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(a) Actual output (b) Maximum output (c) Performance ratio

Figure 5.2: Actual power outputs, maximum power curves, and performance ratios
for the data set in NJ 2014

by a factor. A suitable factor is the mean of performance ratios. From the data set
in CA in 2014, the mean performance ratio equals 0.7641. From the data set in NJ
in 2014, the mean performance ratio equals 0.5282.

However, if one look closely to the two dimensional grid of performance ratios,
there is a non-homogeneity in values by average. Performance ratios near sun rises and
sun sets tend to be lower than performance ratios in the middle of day. Performance
ratios in a winter tend to be lower than performance ratios in a summer. Figure
5.3 shows the mean performance ratio for different buckets of (s,DBW ) where s is
a parameter associated with a time of a day from a sun rise (s = −1) to a sun set
(s = 1), while DBW is a parameter associated with a day of a year from a day after
a winter solstice (DBW = −364) to the next winter solstice (DBW = 0).

With this set of mean values, one can refine an expected PV power curve by
scaling each part of a maximum PV power curve with a different factor depends on
a time of a day and a day of a year. Such factor is the mean value on each bucket.
In order to avoid a discontinuity, one can use an interpolation from mid points in the
(s,DBW ) grid to define a continuous function of (s,DBW ). A simple interpolation
is a linear piecewise function on triangular meshes. We also impose periodic boundary
conditions on the domain. Once we have such a continuous function, we multiply it
with the maximum PV power curve to obtain the expected PV power curve. Figure
5.4 and 5.5 show examples of daily expected power curves (dashed green lines) in a
comparison with maximum power curves (solid green lines) and actual power curves
(blue lines). Such refinement makes an expected PV power curve to have a different
shape from its corresponding maximum PV power curve, but to be consistent with
the actual PV power pattern by average.

Another application of performance ratios is a hour-ahead PV power forecast.
In a hour-ahead energy scheduling, a grid operator needs to predict the actual PV
power an hour ahead. It turns out that predicting performance ratios first, instead
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(a) CA (b) NJ

Figure 5.3: Mean performance ratios for each bucket of (s,DBW ) in 2014

(a) Well-behaved normalized power
curve, on 2014/6/24

(b) Typical normalized power curve,
on 2014/6/21

Figure 5.4: Daily normalized power curves generated from the data set in CA

(a) Well-behaved normalized power
curve, on 2014/6/24

(b) Typical normalized power curve,
on 2014/6/21

Figure 5.5: Daily normalized power curves generated from the data set in NJ
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of predicting power outputs directly, gives a higher prediction accuracy. The detail
of a forecast system utilizing performance ratios is given in a subsequent chapter.

5.3 A maximum PV penetration

One of basic questions about a PV penetration is that how much an installed capacity
of PV systems one can put into a grid. It sounds simple, but such question requires
more details in order to give a meaningful answer. In this section, we will dissect this
question by configuring details on the scope and assumptions of the problem until we
have a reasonable answer.

5.3.1 Limitation of data

Throughout the grid integration analysis in this study, we assume that all PV systems
in the grid behave similarly to the PV systems as we have in our data set. The data
on PV generation comes from a particular area in a state where the data on power
consumption comes from the whole grid which may cover more than a single state.
Hence, our approach to combine two sets of data in the grid integration analysis is
significantly different from what the grid operator should do in practice. This is due
to the limitation of data. In this study, the focus is to show the procedures rather
than the absolute results. To highlight the distinction between the example and the
real operation, we call the combination of the PV data from a zip code in CA and the
load data of a whole grid where the zip code is located as the western example.
We call the combination of the PV data from a zip code in NJ and the load data of
a whole grid where the zip code is located as the eastern example.

5.3.2 The first scenario

In the first scenario, suppose that the whole grid has infinite storage capacity with
a complete control on a ramp rate. Suppose that the grid operator can transfer the
power from one point to another in the grid without any constraints. Then one can
serve a whole energy consumption in the grid using an energy generation by PV
systems. Hence, one can install from zero up to the point where the total energy
generation by PV systems matches the total energy consumption in the grid. To
balance both demand and supply in a yearly basis, we consider the total energy
consumption and the PV generation for a year.

Let’s consider the total energy consumption for a year. The grid of California is
operated by a grid operator called CAlifornia Independent System Operator (CAISO).
From hourly load data of the whole grid in 2014 under CAISO, one can sum all
values over time and get the total energy consumption of 228.1 TWh. This energy
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consumption is equivalent to have a constant load of 26.04 GW for a year. A grid
of New Jersey is a part of bigger grid operated by a grid operator called PJM. From
hourly load data of the whole grid in 2014 under PJM, one can undergo a similar
process and get the total energy consumption of 797.0 TWh. This energy consumption
is equivalent to have a constant load of 90.98 GW for a year.

Now consider the total PV generation for a year. We use our maximum normalized
PV power curves and our expected normalized PV power curves to represent the total
PV generation in the grid. In an ideal case, we would be able to generate the total
energy equal to the area under maximum normalized PV power curves for a year,
multiplied by an installed capacity. In a realistic case, we should be able to generate
the total energy equal to the area under expected normalized PV power curves for a
year, multiplied by an installed capacity. For the data set in CA in 2014, the area
under maximum power curves over a year equals 2.931 MWh and the area under
expected power curves over a year equals 2.287 MWh. For the data set in NJ in 2014,
the area under maximum power curves over a year equals 3.153 MWh and the area
under expected power curves over a year equals 1.707 MWh.

Since we know both information, we can establish the maximum installed capacity
for the first scenario by dividing the total energy consumption by the area under nor-
malized PV power curves. For the western example, the maximum installed capacity
equals to 77.82 GW in the ideal case and 99.74 GW the realistic case. For the eastern
example, the maximum installed capacity equals to 252.8 GW in the ideal case and
466.9 GW in the realistic case.

5.3.3 The second scenario

In the second scenario, suppose that the whole grid has no storage capacity at all. We
still suppose that the grid operator can transfer the power from one point to another
in the grid without any constraints. Then at any time, the total power generated PV
systems cannot be larger than the total load in the grid. Hence, one can install from
zero up to the point where there exists an instance where the total power from PV
systems equals to the total load of the grid. In other words, if a PV generation is
interpreted as a negative load, one can install from zero up to the point where there
exists an instance where the net load reaches zero.

In order to find the maximum installed capacity, we need to compare maximum
normalized PV curves and load curves for a whole year. The maximum installed ca-
pacity is just the minimum of ratios of load values and normalized PV power values.
Figure 5.6 and show two dimensional representation of normalized PV power curves,
load curves, and net load curves at the maximum penetration. For the western exam-
ple, the maximum installed capacity equals to 21.62 GW. For the eastern example,
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(a) Normalized max PV (b) Load in GW (c) Net load in GW

Figure 5.6: The maximum normalized PV power, the load, and the net load at the
maximum penetration for the western example in 2014

(a) Normalized max PV (b) Load in GW (c) Net load in GW

Figure 5.7: The maximum normalized PV power, the load, and the net load at the
maximum penetration for the eastern example in 2014

the maximum installed capacity equals to 60.53 GW. With this amount of installa-
tion, PV systems contributes only a fraction of the total energy consumption. For
the western example, the maximum PV installed capacity contributes 27.8 % of the
yearly energy consumption, and for the eastern example, the maximum PV installed
capacity contributes 23.9 % of the yearly energy consumption. The maximum pene-
tration of PV systems in the second scenario drop significantly from the first scenario
because the surface of the two dimensional PV generation curve do not completely
align with the surface of the two dimensional load curve. From the net load color
map in Figure 5.6 and 5.7, one can see that the load in the evening and the summer
is so high that the PV generation cannot accommodate. Figure 5.8 shows the load,
PV power, and net load curves on the date that determines the limit, which is April
20, 2014 in both cases.

It is worth noting that using maximum power curves is too stringent as we cur-
rently have a system to cope with a mismatch between a demand and a supply at
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(a) Western (b) Eastern

Figure 5.8: Load, PV power and the net load curves under the maximum penetration
limit on 2014/4/20

Power measure (GW) Western Eastern
Average load 26.04 90.98

Peak load 43.48 141.7
Max PV capacity - 1st scenario (ideal) 77.82 252.8

Max PV capacity - 1st scenario (realistic) 99.74 466.9
Max PV capacity - 2nd scenario 21.62 60.53

Yearly energy measure (TWh) Western Eastern
Total demand 228.1 797.0

PV generation - 1st scenario (both cases) 228.1 797.0
PV generation - 2nd scenario 63.41 190.5

Table 5.2: A comparison of the power and the energy of the load demand and the
PV generation from different scenarios in 2014

any instance. Hence, the more optimistic maximum installed capacity can be higher
if the system to cope with the mismatch has a high capacity.

5.3.4 Comments

Table 5.2 summarizes key figures from the hourly load demand in 2014 in the west-
ern and the eastern examples, along with the power and the energy generation of
PV systems under two scenarios. It is worth noting that the first scenario is very
unlikely in both western and eastern examples. However, such scenario analysis may
be applicable to isolated and small grids.

There are some disagreements with the future grid and the second scenarios.
On the one hand, the second scenario holds an overly optimistic assumption that
the power can be transferred from one point to another in the grid without any
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constraints. The old power distribution infrastructures are not suitable for power
flows back to substations. Even though an update is made so that the back flow
is possible, the power flow must follow specific rules. The problem of matching a
demand and a supply under constraints is called a power flow problem. Hence, it
is too optimistic to claim such a high installed capacity limit based on the second
scenario since the system may violate the power flow constraints in the grid. However,
we will not address this issue in the study.

On the other hand, the second scenario holds an overly pessimistic assumption
that mismatches between a demand and a supply is not allowed in any time instance.
In fact, the current grid can handle some amount of mismatches between a demand
and a supply by various instruments including an ancillary service, an energy storage,
and a curtailment. This allows more installations of PV systems. In addition, it is
unlikely that the actual PV power output reaches the maximum as quoted in the
maximum power curve. We may construct a better reference than the maximum
power curve once we understand the volatility of the PV power curve in order to
assess the maximum installed capacity. Hence, it is too pessimistic to claim such a
low installed capacity limit based on the second scenario. We will discuss how to
refine the maximum penetration with extra information in a subsequent chapter.

5.4 Conclusion

In this chapter, we illustrate some basic applications of maximum PV power curves
generated by a reduced form approach. With support from maximum PV power
curves, we are able to distinguish different notions of PV capacities. Using maximum
PV power curves, we can define performance ratios and construct expected PV power
curves, which are useful for a day-ahead planning. Finally, we can use maximum
power curves to estimate the maximum PV penetration to the grid with a set of
simple scenarios.

In subsequent chapters, we show more sophisticated applications of maximum
PV power curves in an hour-ahead forecast. Using maximum PV power curves and
performance ratios, we construct a system for an hour-ahead forecast, which is useful
in hour-ahead energy scheduling. A performance analysis of the forecast system
informs us about a capacity necessary to accommodate errors in the prediction. Once
we know such a capacity, we are able to refine our procedure to estimate the maximum
PV penetration and give a more realistic estimate of the maximum PV penetration
to the grid.



Chapter 6

A forecast system for distributed
PV generation

Highlights:

• A short-term PV power forecast is important in a grid operation under high
PV penetration.

• A formal definition of volatility is introduced and validated. It gives a more
informative illustration of a forecast system’s performance, which leads to a
procedure to manage potentially many complementary prediction models in a
system.

• We investigate prediction models in three features: a use of indirect prediction
via performance ratios, a set of predictors, and size of training data.

• We give an example of a forecast system where several prediction models are
assembled. We give a protocol to switch between models depending on infor-
mation available at an instance and volatility of the past hour.

As a part of grid operation, a short-term load forecast is essential to matching
energy demand and supply. An ability to forecast distributed PV power in a short
term is also essential as it is a part of net loads. Even though the variability of
PV generation and the regular load are related by common factors such as time of
a day and day of a year, since we model the net loads under different levels of PV
penetration, it makes sense to forecast the PV generation and regular loads separately
instead of forecasting the net load with a single model. Here we see that a concept of
performance ratios with respect to maximum PV curves becomes useful in a short-
term PV power forecast system.

We introduce a formal definition of volatility that is different from the concept of
variability. With this definition, the volatility leads to our understanding of a forecast

75
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system’s performance. Then we test several prediction models with three features: a
use of indirect prediction via performance ratios, a set of predictors (previous power
outputs and other variables), and a size of training data as shown in Figure 6.1.
Finally we illustrate how volatility informs us how to switch back and forth between
an ensemble of several models in order to maximize the performance of a forecast
system.

Figure 6.1: Three features of a short term PV power forecast model

6.1 Volatility

6.1.1 How to measure volatility

Given a daily PV power curve, we would like to give a formal definition of volatility.
A basic idea is that the volatility should capture variation in power output that
cannot be explained by daily variation due to the sun’s position. We use a term
variability separately for a variation due to the sun’s position. The variability is
already captured in a shape of a PV maximum power curve. Hence, the volatility of a
PV power curve from uniformly performing PV systems should be small. In addition,
volatility should have units and magnitudes that are useful to grid operators. We
then want the volatility to be additive and scalable upon the installed capacity of PV
systems. To summarize, the definition of the volatility should satisfy the following
properties.

1. Volatility of any part of well behaved PV power curves should be small. Simi-
larly, volatility of any part of maximum PV power curves should be small.
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2. Volatility of a daily PV power curve with a low energy generation should be
small.

3. Volatility of a union of two sections of a PV power curve should be equal to the
sum of values of each section’s volatility.

4. Volatility of a scaled PV power curve should be equal to the volatility of a
normalized PV power curve multiplied by the scaling factor.

Following are several definitions of volatility in the literature that do not satisfy
at least one of these desirable properties. Hoff and Perez (2010) [37] define volatility
by the sample standard deviation of changes in the generated power values, or ramp
rates, between neighboring time stamps:

V =
1

Cgroup
SD{

N∑
n=1

∆Pn},

where SD{x} is the sample standard deviation of the quantity x. ∆Pn is a difference
of PV outputs between neighboring time stamps of the n-th system. N is the number
of PV systems in the group and Cgroup is the total installed capacity of a group of
PV systems. The sample standard deviation is computed from a set of neighboring
time-stamp pairs in a given time interval. Using our definition of normalized power
curves, we may rewrite this as

V = SD{∆p},

where now ∆p is a difference of PV normalized outputs between neighboring time
stamps.

This definition has a serious shortcoming since the volatility of well behaved or
maximum PV power curves is deemed highly volatile. Goldstein et al (2013) [6]
rectified this shortcoming by considering the difference between changes in the gen-
erated power values and the expected changes in the generated power values. In our
formulation, it is equivalent to

V = SD{∆p− E(∆p)},

where E(∆p) is the expected changes in the generated power values. Goldstein et
al compute such values by averaging ∆p for each month. This definition also has a
shortcoming since the volatility of a daily PV power curve with low energy generation
is deemed volatile. We need a new definition to overcome this issue.

One way is to consider higher-order differences rather than first-order difference.
Higher-order differences correspond to higher-order derivatives. From previous chap-
ters, we know that maximum PV power curves and expected PV power curves can be
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approximated by splines of degree-3 polynomials. Hence, we expect that the fourth
derivatives of those curves are negligible. This leads to a derivative-based definition
of volatility:

V = SD{∆4p},

where ∆4pi = pi+2 − 4pi+1 + 6pi − 4pi−1 + pi−2 and pi refers to a power reading at
time stamp i. By this definition, we will have low values of volatility for both well
behaved PV power curves and PV power curves with low energy generation. Sudden
changes in power outputs give high values of the fourth order differences and makes
high values of volatility. However, this definition still has a shortcoming: it does not
have units and magnitudes that are useful to grid operators. The first-order difference
corresponds to the ramp rate, the second-order corresponds to the acceleration rate,
but the fourth-order difference is difficult to interpret.

We may define volatility in a more sensible way using normalized maximum PV
power curves and performance ratios as

V =
∑
|Pi − ri−1pmax

i Cgroup| = Cgroup
∑
|pi − ri−1pmax

i |,

where Pi (pi) are power outputs of (normalized) power curves power curves at time
stamp i, and ri−1 is a performance ratio at the previous time stamp i− 1. Note that
there are several differences between this definition and previous versions. First, the
definition uses a sum instead of a standard deviation. Hence, this definition satisfies
property 3. Second, the definition has an explicit factor Cgroup in the equation. Hence,
this definition satisfies property 4 in the check list. Finally, this definition of volatility
looks into differences between actual power outputs and hypothetical power outputs if
the latest performance retains. Any power curves that persist on a fixed performance
have a low volatility. Hence, this definition satisfies property 1 and 2.

To simplify the discussion, we can define normalized volatility as v = V/Cgroup =∑
|pi− ri−1pmax

i |. We can convert it back if needed by scaling with the total installed
capacity of a group of PV systems.

In the following subsections, we investigate further the volatility under this def-
inition. In the first two subsections, we illustrate quantitatively that our volatility
has the desirable properties addressed earlier by measuring the volatility of artificial
data sets where a human assessment of volatility would be obvious. In addition, we
show that the normalized volatility measures from two distinct geographical areas are
likely to be different, while the normalized volatility measures from two neighboring
geographical areas are likely to be the same. In the next two subsections, we show
how the volatility depends on two quantities: a number of PV systems in a calculation
and a frequency of PV power readings. In the last section, we investigate how the
volatility depends on the time of day and the date.
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(a) Set I (b) Set II

Figure 6.2: Normalized power curves from different sets

6.1.2 Demonstration of consistency using artificial data

In order to show quantitatively that our definition of volatility indeed gives reasonable
values, we measure values of volatility from different artificial PV power curves, sort
them according to these values, and compare their ranks with how humans rank
those PV power curves according to our intuition of volatility. We consider two sets
of different PV power curves:

1. Set I: a set of power curves with alternating values between zero and maximum
every 15, 30, 45 and 60 minutes.

2. Set II: a set of power curves with alternating values such that a performance
ratio oscillates between 1−e and 1 every 15 minutes. Here we use e = 0.2, 0.4, 0.6
and 0.8.

We select a maximum PV power curve on a day in Summer 2014 from the data
set in CA. Then we construct two sets of different PV power curves from the power
curve shown in Figure 6.2. The normalized volatility of each curve is shown in Figure
6.3. In the set I, judging by a human interpretation, a power curve with a higher
frequency of oscillation has a higher value of volatility. Our measure agrees with this
fact. Finally, in the set II, judging by a human interpretation, a power curve with a
higher amplitude of oscillation has a higher value of volatility. Again, our measure
agrees with this fact. Hence, all different power curves here support the validity of
this definition of volatility.
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(a) Set I (b) Set II

Figure 6.3: Values of volatility from different power curves

6.1.3 Variation of volatility with geographical areas

Another way to show by numbers that our definition of volatility indeed gives rea-
sonable values is that, we measure values of normalized volatility from various geo-
graphical areas. We expect that the normalized volatility measures from two distinct
geographical areas are likely to be different, while the normalized volatility measures
from two neighboring geographical areas are likely to be the same.

To compare distinct geographical areas, we measure values of normalized volatility
of daily power curves from the data set in CA and the data set in NJ. Figure 6.4
compares the values with a scatter plot where each point represents a day in a year.
We found that there is no correlation between values of volatility from two data sets.
The value of volatility in the data in NJ is generally higher than the value of volatility
in the data set in CA. This agrees with the fact that the weather in New Jersey is
less predictable than the weather in California.

To compare neighboring geographical areas, we use another set of power readings
data in a neighboring zip code. Figure 6.5 compares the values of volatility from
an original data set and a neighboring data set using a scatter plot. Black diagonal
lines in the scatter plots are guidelines for equal values of volatility. We found that,
unlike Figure 6.4, there is a high correlation between values of volatility from two
neighboring data sets. This agrees with our expectation.

6.1.4 Variation of volatility with the number of PV systems

Here we show how the volatility depends on a number of PV systems in a calculation.
Similar to our study of how a higher number of PV systems leads to a convergent
power curve for a group of PV systems, we expect to see that a higher number of PV
systems leads to a convergent value of volatility for a daily power curve as well. In
order to show this quantitatively, we consider the data set in NJ from 241 systems
with a capacity less than 20 kW. First, we use data to generate normalized maximum
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Figure 6.4: Comparison between values of volatility from daily power curves from two
data sets

PV power curves as a reference for performance ratios computation. Then we group
data into following sets:

• Set A-1: data from the 1st to the 10th system

• Set A-2: data from the 11th to the 20th system

• Set B-1: data from the 1st to the 20th system

• Set B-2: data from the 21st to the 40th system

• Set C-1: data from the 1st to the 40th system

• Set C-2: data from the 41st to the 80th system

• Set D-1: data from the 1st to the 80th system

• Set D-2: data from the 81st to the 160th system

• Set E-1: data from the 1st to the 160th system

Note that sets with same letters but different numbers are mutually exclusive. In
addition, the union of sets with same letters equal to a set with the next letter and
the number 1. We generate normalized power curves from these sets and compute the
values of normalized daily volatility. Figure 6.6 shows the average values of volatility
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(a) CA (b) NJ

Figure 6.5: Comparison between values of volatility from daily power curves in neigh-
boring data sets

from all daily power curves in 2014 for different sets. Each blue dot represents a value
for each set, and black lines connect averages of two groups with the same number of
systems. One can see that the volatility of a union of two sets is always less than or
equal to an average of the values of volatility from individual sets. In addition, as a
number of systems increases, a volatility decreases and converges. These observations
agree with our expectation.

6.1.5 Variation of volatility with the frequency of PV power
readings

Here we show how the volatility depends on a frequency of PV power readings in a
calculation. For the data sets in CA and NJ, the frequency of PV power readings is
15 minutes, which is common in solar PV monitoring practices. However, a volatile
change in a PV generation is likely at a higher frequency. We look for PV generation
data with a higher frequency and found a 5-month long data of a single PV system
with a frequency of one minute. We call this data set as the Stanford data set.

From the Stanford data set, one may calculate a value of volatility for each daily
PV power curve from power readings every 1, 2, 5, 10, 15, 30 and 60 minutes. Each
line in Figure 6.7 shows a value of daily volatility of a PV power curve at different
frequencies. As the frequency of PV power readings increases, the value of volatility
increases. In addition, as the frequency of PV power readings increases, the gap
between values of volatility of less volatile and more volatile days expands. Such an
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Figure 6.6: Average values of volatility from all daily power curves in 2014 generated
from different number of systems

increase comes from the refinement in measuring a smooth change in power outputs.
It is analogous to measure a length of a smooth curve with a smaller ruler. As we use
a smaller ruler, we may increase the chance of observing changes in a smaller time
period. As the size of the ruler goes to zero, according to our intuition of a physical
process over time, we expect our measurement of power output’s volatility converges
to a finite value.

Figure 6.7: Values of daily volatility of different daily PV power curves with different
frequency of power readings.



CHAPTER 6. A FORECAST SYSTEM FORDISTRIBUTED PVGENERATION84

The question is what should be a sufficient frequency so that the value of volatility
captures a reasonable amount of sudden changes that are problematic for a grid
operator. There is no clear answer but one may guess by looking at a value of daily
volatility divided by a number of readings. As a frequency decreases to zero, we
expect that the value of daily volatility divided by the number of readings decreases
to zero since the daily volatility converges to a finite value. Figure 6.8 shows such
smooth decreasing trend for all days when the frequency is below 5 minutes. The
transition from frequency higher than 5 minutes is not smooth and even increasing.
This is because, as the frequency decreases, changes in the smaller time period in
power outputs are discovered. We do not see it below 5 minutes. Hence, we claim
that a frequency of 5 minutes is sufficient to capture a reasonable amount of volatility
in power outputs. This frequency can be different for a different data set.

Figure 6.8: Values of daily volatility of different daily PV power curves divided by
numbers of power readings.

6.1.6 Variation of volatility with the time of a day and the
day of a year

It is worthwhile noting how the volatility depends on the time of a day and the
date in the measurement. We can measure values of volatility of each time stamp
and consider them in buckets as we have done with performance ratios. Figure 6.9
shows the mean volatility for different buckets of (s,DBW ) where s is a parameter
associated with the time of a day from a sun rise (s = −1) to a sun set (s = 1), while
DBW is a parameter associated with the date from a day after a winter solstice
(DBW = −364) to the next winter solstice (DBW = 0). In both data sets, the
volatility near sunrises and sunsets tends to be low, this is because the PV power
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(a) CA (b) NJ

Figure 6.9: Mean value of the volatility for each bucket of (s,DBW ) in 2014

generation itself is low. However, two data sets have different patterns of volatility
over days of a year. For the data set in CA, the volatility in the winter is higher than
the volatility in the summer. For the data set in NJ, on the contrary, the volatility in
the summer is higher. This information is useful when we are planning on ancillary
services in an hour-ahead operation.

6.2 Short-term prediction models

We investigate some short-term prediction methods for PV power outputs. There are
several features of prediction models that we can investigate. In the first feature, we
investigate whether a prediction of power via a prediction of performance ratios is
better than a direct prediction of power. In the second feature, we investigate what
is the optimal set of predictors used in the model. In the last feature, we investigate
what is a sufficiently good size of training data.

6.2.1 Definition of performance of prediction models

We frequently use a concept of a prediction model’s performance. There are many
ways to construct a measure of this concept from differences between predicted power
outputs and actual power outputs. Two simple measures are the mean and the
maximum of those differences. In some circumstances, a measure with more detail is
required in order to develop a meaningful policy based on the forecast performance1.

1An example of the policy is the PV curtailment in Chapter 10
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Since we have a formal definition of volatility of power outputs over a time period,
we may break down a model’s performance according to the level of hourly volatility.
First, for each time stamp, we calculate a value of volatility over an hour before
the time stamp (most recent 3 time stamps). Then we use a prediction model and
calculate a difference between a predicted power output and a true power output at
that time instance. After that, we set up bins with different ranges of volatility and
calculate the mean and the maximum of differences in each bin. We call the outcome
of this procedure a prediction performance curve. The prediction performance
curve gives a broader ground for comparison and gives an insight on how to switch
back and forth between prediction models in order to maximize the performance of a
forecast system using an ensemble of several models.

As an example of a prediction power curve construction, consider the zeroth
method, which is to predict the power output from the day-ahead scheduling without
any update. As addressed in the chapter on applications of maximum PV power
curves, we may use an expected PV power curve as a power curve in a day-ahead
scheduling. In this simple short-term prediction method, we predict that the power
output in the next time instance, which is the next 15 minutes in this data set, is
equal to the power output as the expected PV power curve. That is, we do not use
actual ongoing power outputs to train the model at all.

We test this prediction method with the data sets in CA and NJ in 2014 and
compute performance measures. It turns out that the mean and the maximum of
prediction differences are equal to 0.0659 and 0.6349 for the data set in CA, and
0.1323 and 0.5896 for the data set in NJ. Figure 6.10 shows prediction performance
curves of two data sets. Here one can see that the mean of prediction differences
correlates with the volatility of the most recent hour. An outlier, which is the last
point in the data set in CA is likely because there is a small number of values in a
(0.6,0.7) bin.

It is worth noting that, under this prediction method, the maximum prediction
differences likely occur when the power output is extremely low. Such occurrence can
happen even when the volatility of the recent hour is low because we never change
our prediction from the expected value. Hence, we do not observe a strong correlation
between maximum prediction difference and the volatility of the recent hour.

In the next subsection, we will adopt these prediction model’s performance mea-
sures to compare prediction models with various features.

6.2.2 A prediction of power via a prediction of performance
ratios

Our end goal of a short-term PV power forecast system is obviously to predict the
value of a PV power from a group of PV systems in a future time instance. However,
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(a) CA (b) NJ

Figure 6.10: Prediction performance curves for the zeroth method with data sets in
2014

one can predict a future actual power, p, directly, or one can first predict a future
performance ratio, r, to obtain p. We compare performances of a prediction model
predicting a future actual power directly and a prediction model first predicting a
future performance ratio. To avoid complexity from other features of prediction
models, we will focus on three simple methods that do not require a training set:

• Method 1: a persistent method 2 xi+1 = xi

• Method 2: an extrapolation method xi+1 = xi + (xi − xi−1) = 2xi − xi−1

• Method 3: a moving average xi+1 = 1
2
(xi + xi−1)

Here x can be either p or r. Note that we add an extra condition 0 ≤ pi+1 ≤
pmax,i+1 or 0 ≤ ri+1 ≤ 1 to prevent overestimated and underestimated prediction.
This overestimated prediction can be prevented because of the existence of maxi-
mum power curves. Table 6.1 compares the mean and the maximum of prediction
differences using different variables among three methods addressed above.

From the table, one can see that the models predicting a performance ratio, r,
give significantly lower mean prediction differences in general. However, there is no
significant difference between maximum prediction differences. From prediction per-
formance curves in Figure 6.11 and 6.12, one can see that predicting a performance
ratio (dash lines) reduces the mean prediction differences especially when a volatility
of a recent hour is low. It does not clearly reduce the maximum prediction differ-
ences. Based on these observations, we conclude that, to achieve a better prediction
performance, at least in terms of the mean prediction differences, one should first
predict a future performance ratio, r, then convert it to an actual power.

2The term “persistent” illustrates the idea of the method where the predicted value is the same
as the current value. This concept is similar to the persistence forecast discussed in the literature
but the detail of the methods are slightly different [31, 67].
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CA Predict p directly First predict r then p
Method 1 (0.034, 0.412) (0.016, 0.420)
Method 2 (0.021, 0.466) (0.020, 0.470)
Method 3 (0.048, 0.408) (0.019, 0.422)

NJ Predict p directly First predict r then p
Method 1 (0.043, 0.546) (0.035, 0.549)
Method 2 (0.050, 0.672) (0.050, 0.680)
Method 3 (0.052, 0.505) (0.039, 0.510)

Table 6.1: Value comparison of performance measure (the mean prediction difference,
the maximum prediction difference) for three different forecasting methods for CA and
NJ data sets.

(a) Method 1 (b) Method 2 (c) Method 3

Figure 6.11: Prediction performance curves of the data set in CA for three methods
with different variables to predict.

(a) Method 1 (b) Method 2 (c) Method 3

Figure 6.12: Prediction performance curves of the data set in NJ for three methods
with different variables to predict.
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CA mean max
Persistent 0.018 0.315

AR(1) 0.019 0.307
AR(2) 0.018 0.304

NJ mean max
Persistent 0.032 0.354

AR(1) 0.033 0.343
AR(2) 0.033 0.346

Table 6.2: Value comparison of performance measure from different simple methods

(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 6.13: Prediction performance curves for simple methods

6.2.3 Predictors of prediction algorithms

We investigated whether models with different predictors gives significantly better
performance than models based on previous power outputs only. First, we consider
three simple methods that rely on previous power outputs only including a persistent
method used in the previous subsection, an auto-regression of order 1 (AR(1)), and
auto-regression of order 2 (AR(2)).

To make a fair comparison, we measured the performance of all methods on the
test set consisting of data on the last quarter of 2014 and used the remaining data as
a training set if needed (the persistence method does not use any training set).

In Table 6.2 and Figure 6.13, we compared performances of three simple algo-
rithms: persistent, AR(1) and AR(2). One can see that auto-regressive models do
not perform better than the persistent model. There are two implications. First, pre-
vious power outputs other than the most recent one may not be necessary. Second,
we may need a non-linear model for a better performance.

To improve the prediction performance, we may add additional predictors into
the model including s and DBW of the time instance we want to predict. We may
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(a) CA (b) NJ

Figure 6.14: Prediction performance curves for the SVR with different sets of predic-
tors

also add some weather information of the recent time instance in the model as well.
Each quantity in weather information is normalized so that the minimum value in
the data is zero and the maximum value in the data is one. DBW is also normalized
so that the range is [−1, 0]. There is no need to normalize s since its range is already
between -1 and 1. We may add V , the hourly volatility of the recent hour into the
model as well. This leads to five sets of predictors as follow:

• {ri−1}

• {ri−1, s,DBW}

• {ri−1, s,DBW, V }

• {ri−1, s,DBW} ∪ Weather

• {ri−1, s,DBW, V } ∪ Weather

Due to the complexity of how different predictors might affect the prediction, a non-
linear model is required.

First, we look at a Support Vector Regression (SVR)[63]. In Table 6.3 and Figure
6.14, we compare performances of the SVR with different sets of predictors after
tuning SVR parameters C and e. From both data sets, adding s and DBW in
the set of predictors improve overall performance. Adding weather information and
V does not improve the performance for the data set in CA, but it improves the
performance for the data set in NJ. Note that the main benefit of complex models
with more predictors is to reduce the maximum prediction difference rather than the
mean prediction difference.

Next, we look at a Gradient Boosted Regression (GBR)[64]. In Table 6.4 and
Figure 6.15, we compare performances of the GBR with various set of predictors after
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CA mean max
{ri−1} 0.018 0.313

{ri−1, s,DBW} 0.017 0.296
{ri−1, s,DBW, V } 0.017 0.293

{ri−1, s,DBW} ∪ Weather 0.019 0.319
{ri−1, s,DBW, V } ∪ Weather 0.019 0.325

NJ mean max
{ri−1} 0.032 0.352

{ri−1, s,DBW} 0.031 0.340
{ri−1, s,DBW, V } 0.031 0.332

{ri−1, s,DBW} ∪ Weather 0.031 0.329
{ri−1, s,DBW, V } ∪ Weather 0.031 0.325

Table 6.3: Value comparison of performance measure from the SVR with different
sets of predictors

tuning GBR parameters including a number of estimators, a depth, and a learning
rate. From both data sets, adding s andDBW in the set of predictors improves overall
performance. Adding weather information does not always improve the performance
for the data set in CA, but it improves the performance for the data set in NJ. We
observe again that the main benefit of models with more predictors is to reduce the
maximum prediction difference rather than the mean prediction difference.

At this point, we see that the GBR performs better than the SVR and other simple
models in general. With a different set of predictors of each data set, we can bring
both the mean and the maximum prediction differences down by about 10 percent

(a) CA (b) NJ

Figure 6.15: Prediction performance curves for the GBR with different sets of pre-
dictors
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CA mean max
{ri−1} 0.018 0.300

{ri−1, s,DBW} 0.017 0.307
{ri−1, s,DBW, V } 0.017 0.307

{ri−1, s,DBW} ∪ Weather 0.017 0.302
{ri−1, s,DBW, V } ∪ Weather 0.018 0.304

NJ mean max
{ri−1} 0.032 0.348

{ri−1, s,DBW} 0.031 0.333
{ri−1, s,DBW, V } 0.031 0.331

{ri−1, s,DBW} ∪ Weather 0.030 0.318
{ri−1, s,DBW, V } ∪ Weather 0.030 0.318

Table 6.4: Value comparison of performance measure from the GBR with different
sets of predictors

relative to the persistent model. In the next subsection, we use the GBR method to
study the effect of training-data size.

6.2.4 Size of training data

In a batch approach, we train a prediction model from fixed training data, then we
apply that prediction model to any data point we would like to predict. This is the
approach we have used in previous subsections. However, in practice, there are new
data points that we can use to improve our prediction model. This raises a question
of what should be the size of training data in this on-line approach. One may keep
adding to training data while doing prediction, or one may limit training data to a
certain number of most recent data points.

To answer this question, we start with the best model we have at hand. For the
data set in CA, we use a GBR method to predict the next performance ratio first
based on ri−1, s,DBW, and V . Then we obtain the actual load from the ratio. For the
data set in NJ, we have a similar model weather information is included as predictors
as well. We consider five schemes for an on-line approach:

• There is no limit on size of training data. Keep adding new data points of a
day in the data set and retrain every day.

• Limit training data to be at most 12 months of data. For the remaining scheme,
we add new data points of a day, delete data points of the oldest day, and retrain
every day.
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CA mean max
No limit 0.017 0.298

12 months 0.017 0.301
6 months 0.017 0.309
3 months 0.017 0.307
1 month 0.019 0.259

NJ mean max
No limit 0.030 0.313

12 months 0.030 0.319
6 months 0.032 0.314
3 months 0.033 0.320
1 month 0.037 0.300

Table 6.5: Value comparison of performance measures from an on-line approach with
different sizes of training data

• Limit training data to be at most 6 months of data.

• Limit training data to be at most 3 months of data.

• Limit training data to be at most 1 months of data.

All schemes are applied to the same test set, which is data of the last quarter in
2014. We choose to update the training data every day instead of every new data
point (15 minutes) because the GBR is computationally expensive. In practice, an
update can be done for every new data point since there is enough time between
arrivals of new data points. It might be worthwhile updating more frequently, but
we did not investigate this option.

In Table 6.5 and Figure 6.16, we compare performances of on-line prediction mod-
els with various sizes of training data. From both data sets, adding new data points
of a day in the data set without deleting gives the best mean performance measure.
Even though there is no observable clear trend on the maximum prediction difference,
the mean prediction difference is monotonically decreasing as the training-size data
increases. It means that the optimal amount of data to produce the best performed
model is more than 1 year of data. Larger size of training data is not investigated
because our data is limited.
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(a) CA (b) NJ

Figure 6.16: Prediction performance curves from an on-line approach with different
sizes of training data

6.3 A forecast system: ensembles of prediction

models

In the previous section, we have found that for each prediction model the performance
depends on a use of indirect prediction via performance ratios, a set of predictors,
and the size of training data. We have established from our two data sets that it
is good to first predict a performance ratio then obtain an actual power. We also
established that the size of data should be as large as possible in our data set. For
a set of predictors, for the data set in CA we use a performance ratio of the most
recent instance, s, DBW and the hourly volatility of the most recent hour. For the
data set in NJ, we include weather information as well. It is worthwhile comparing
prediction performance curves of three algorithms: the zeroth method, the persistent
method, and the GBR with predictors and sizes of training data as described above.
Figure 6.17 shows that the GBR performs better than other methods except for the
data set in CA where the volatility of a recent hour is higher than 0.6. Due to a low
number of data points in which the volatility of a recent hour is higher than 0.6, it
is difficult to conclude that such trend is generalizable. Still, we will assume that the
GBR performs worse than a simple method like the zeroth method when the volatility
of a recent hour is higher than 0.6. This leads to a protocol to switch between the
GBR and the zeroth method when the volatility of a recent hour passes 0.6.

To conclude our short-term forecast system of PV power output, its procedure is
listed below.

For the data set in CA, since weather information is not needed, we just need
to keep track of GBR models with two sets of predictors: the 2nd and the 3rd sets.
For the data set in NJ, since we use weather information, we keep track of GBR
models with four sets of predictors: the 2nd, the 3rd, the 4th and the 5th sets. We
follow these instructions, start a batch training with all data except the last quarter
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(a) CA (b) NJ

Figure 6.17: Prediction performance curves from the zeroth method, the persistent
method, and the GBR

Algorithm 3 Short-term forecast system for PV power output

1: At sun rise, there is no performance ratio to use as a predictor it the first place,
so the zeroth method is used.

2: From the next time stamp to the following hour, there is no volatility of a recent
hour as a predictor, so the GBR model without volatility is used.

3: After that, if the volatility of a recent hour is less than 0.6, the GBR model with a
full set of predictors as discussed earlier is used, otherwise use the zeroth method
is used.

4: If weather information is not available, the GBR model without weather infor-
mation is used.

5: After sun set, add data points of the day into a training set and retrain all models.
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(a) ‘CA’ data set (b) ‘NJ’ data set

Figure 6.18: Distribution of prediction differences from a short-term forecast system.
The histogram shows actual data. A red line shows a fit of a normal distribution and
a green line shows a fit of a Laplace distribution.

of 2014, and perform an on-line training with data from the last quarter of 2014. If we
consider basic performance measures, we found that the mean prediction difference
equals to 0.0165 for the data set in CA and 0.0281 for the data set in NJ. The
maximum prediction difference equals to 0.2981 for the data set in CA and 0.3157
for the data set in NJ. To get a sense of performance relative to the actual power,
one may compute the mean power output in the test set. It turns out that the mean
power output in the test set is 0.5225 in the data set in CA and 0.3860 for the data
set in NJ. It means that the mean error is at most 9 percent, while the maximum
error can be as large as 82 percent.

To tell how likely a bad prediction will happen, a distribution of prediction dif-
ferences is needed. Figure 6.18 shows a distribution of differences between predicted
power outputs and actual power outputs on the test set with this short-term forecast
system of PV power output. One can see that the distribution of such differences
is a Laplace distribution rather than a normal distribution. One can fit a Laplace
distribution and get the best fit with parameters (µ, b) = (−0.0001, 0.01652) for the
data set in CA and (µ, b) = (−0.0002, 0.0281) for the data set in NJ. The bias of
prediction is negligible. From this, one can calculate how likely a bad prediction will
happen in general when using this short-term forecast system.

6.4 Conclusion

After an investigation in a short-term PV power forecast system, we found that
there are some generalized results across different data sets. First, our concept of
performance ratios is useful to constructing a good model. Next, our definition of
volatility is helpful as a means of communicating the performance of a prediction
models and a parameter to toggle between several prediction models in an ensemble.
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However, there are several aspects of the system that needs to be customized for each
data set such as adding weather information as predictors in a model. We need more
data to give a clear procedure on the size of training data and to understand what
really happens when the volatility is high.
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Chapter 7

Overview of load modeling

Highlights:

• Load pattern is simple compared to PV generation pattern. It depends on
number of factors including time, location, weather, and human behavior.

• The load variability and volatility is critical to the cost of grid operation. Higher
variability means higher cost of generation with high ramp rate. Higher volatil-
ity means higher cost of generation to correct differences between forecasted
and actual load.

• There have been new techniques and improvement in load forecasting over the
years. However, there are new challenges in the load model. Distributed PV
generation as a part of net load is one of the challenges.

Modeling load is a necessary task for energy scheduling and grid operation. At the
level of substation and beyond, modeling load is relatively simple. While load at the
level of household is volatile, aggregation of loads at the level of substations and the
grid is likely to be smooth and predictable. Despite significant differences from day
to day, modeling load at substation is accurate provided contingencies do not arise.
Here we will give an overview of the load pattern at substation and the grid. We will
give an overview of different types of forecast needed in general operation and discuss
a relevant forecast in our study in detail.

7.1 Energy and electricity consumption by sector

In order to model the load accurately, it is useful to understand where energy con-
sumption and electricity consumption take place. Figure 7.1 [1] shows US energy
consumption by sector, while Figure 7.2 [1] shows US electricity consumption by

99
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sector in 2012. The consumption under building operations comes from about half
residential and half commercial operations [24]. Traditionally, a schedule for elec-
tricity consumption from all sectors, especially residential operations, is quite rigid
and bumpy because of human behavior. However, with new technologies including
smart appliances in building operations and automated controls in the industry sec-
tor, a schedule for electricity consumption can be more flexible and flat. It is worth
noting from two figures that even though the transportation takes more than a quar-
ter of energy consumption, it is less than one percent of electricity consumption. A
large potential for an electrification of the transportation sector is still available. Au-
tomated transportation system and energy storage is electric vehicles are potential
technologies that make a schedule of electric consumption more flexible and flat as
well. However, these technologies are not currently mature and widely used enough
to alter the schedule of electricity consumption or the load pattern.

Figure 7.1: US Energy Consumption by Sector.

7.2 Load pattern

In order to understand a pattern of load, one may start plotting load with respect
to time. Such plot for 24 hours is known as daily load curve. The shape of such
curve depends on types of loads (residential, non-residential), time of the year, and
geographical areas. The daily load curve can be drawn from single household to entire
area under the control of an independent system operator (ISO). Here Figure 7.3 [57]
shows an example of daily load curves in different seasons of PJM, an ISO in the east
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Figure 7.2: US Electricity Consumption by Sector.

coast. The orange curves in Figure 7.4 [25] shows an example of daily load curves in
different seasons of CAISO, an ISO in the west cost.

Figure 7.3: Daily Load Curve Example from PJM under different seasons.

In daily load curves from both areas of the US, one can see a pattern. First, in
a daily basis, the load peaks from 7 AM to 10 PM. The load increases with a high
ramp rate in the morning. The highest peak usually occurs in evening. Next, on a
seasonal basis, the load peaks in the summer, is smaller in Winter, and is smallest in
Fall and Spring. This is likely because weather during summer and winter in the US
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Figure 7.4: Daily Load Curve Example from CAISO under different seasons.

is so uncomfortable that people needs to use cooling or heating system. The load in
winter tends to smaller than the load in summer because cooling systems mainly use
electricity while heating systems mainly do not use electricity.

Another pattern of load, which cannot be seen from figures above, is in weekly
basis. The load peaks during weekdays. We expect to see the load change significantly
during holidays and major events as well.

The load pattern is highly dependent on the location. Weather, human behaviors,
and human response to the weather change at a location attributes to the load pattern.
As a result, unlike a PV system model, there is no generic formula to determine the
load pattern. Historical load data in the location, weather data and time are only
ingredients to build an accurate model to forecast the load.

7.3 Load variability is bad

Load variability is bad for grid operators in two ways. First, imagine an ideal scenario
where the daily load curve is constant. In order to supply power the load, one needs
only a power plant with capacity just equal to the load. Now suppose that the daily
load curve has variability: one hump in the early morning and one peak in the evening.
Suppose that this new daily load curve still has the same under the curve. That is,
the total energy load over a day stays the same. Yet the same power plant cannot
cope with the daily load curve. One needs to build a new power plant or upgrade the
old plant to match the peak load. This leads to extra cost.

Next, imagine a similar load curve with but higher variability: the hump and peak
has a shorter width. Comparing with the previous load curve, this daily load curve
requires the same capacity and total energy. Yet the same power plant may not be
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able to cope with such a daily load curve due to a high ramp rate. The current power
plant may not increase or decrease fast enough to serve the energy need. One may
need to build a new power plant or upgrade the old plant that is capable of reacting
faster. Again, this leads to extra cost.

Because of load variability, the grid operator requires energy supply with higher
capacity and ramp rate. This increases the cost of grid’s operation. It is worthwhile
noting that high the penetration of distributed PV power changes the daily load curve
significantly and introduce more variability in term of the ramp rate as shown, for
example, in Figure 7.5 [25].

Figure 7.5: Average Daily Load Curve from 2011 to 2014

The load variability is not the only issue since the actual daily load curve can be
different from the expected daily load curve. We will address this issue in the next
section.

7.4 Load volatility is bad

Given perfect foresight of the daily load curve, one can plan day-ahead scheduling
of energy supply to match the load perfectly. In the day of operation, demand and
supply balances out perfectly. In reality, no one has the perfect foresight of the daily
load curve. In the day of operation, one may perform an hour-ahead forecast and
schedule extra energy supply or load to adjust demand and supply to be as close as
possible. The hour-ahead energy scheduling involves highly responded instruments,
which is more expensive than power plants in day-ahead scheduling. Within the hour
of operation, one may perform a ”real-time” forecast and schedule extra energy supply
or load to readjust. The cost of real-time energy scheduling is even more expensive.
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Now if the load has no volatility, we expect that with a horizon of 1 day we can
predict the load perfectly and pay no cost for extra hour-ahead scheduling and real-
time adjustment. If the load has low volatility, we expect that with a horizon as 1
hour we can predict the load well and pay no cost for extra real-time adjustment.
However, if the load has high volatility, we expect to pay cost for both hour-ahead
scheduling and real-time adjustment. Note that the cost has two dimensions: capacity
and operational cost. The capacity cost is associated with maximum error in forecast
and the operational cost is associated with mean absolute error in forecast.

Because of load volatility, the grid operator requires extra energy supply and an-
cillary service. This increases the cost of grid’s operation. It is worth noting that PV
power introduces both short term and long term volatility due to the unpredictability
of weather.

7.5 Load forecast: types, history, trend, and accu-

racy

One can categorize load forecast based on forecast horizon: (1) long-term load fore-
casting (LTLF) with a forecast horizon of years or decades (2) short-term load fore-
casting (STLF) with a forecast horizon of days, hours or minutes.

The report by Tao Hong [38] is a comprehensive review of load forecast from
Thomas Edison’s time to present. Alfares and Nazeeruddin (2002) [4] gave a literature
survey and classified methods for load forecast. Singh et al (2013) [7] gave a more
compact and up-to-date classification for forecast techniques. As we are interested
in grid’s operation rather than planning, we will give a brief overview of a long-term
load forecast and discuss more on a short-term load forecast.

In the pre-PC period, long-term load forecasting is conducted for the whole US
with limited information and techniques. In the post-PC period, more detailed fore-
casting about when, where and how much the load growth will occur is conducted
known as spatial load forecasting. The forecast can be done by regression analysis
on load trend, simulation to reproduce historical load data and to project the fu-
ture load, or the mixture of both. With new techniques from artificial intelligence,
the mean absolute percent error (MAPE) for year-ahead forecast can be as low as
2% using just historical loads data [39]. In longer horizon, we still need simulations
with additional adjustments. In 2009, California energy commission included detail
of energy efficiency and electric vehicles in the long-term forecast, disaggregated the
forecast of the State load into more than 10 planning areas, and suggested to model
load for each Utility [45]. Segmentation is a useful concept in order to improve the
accurarcy of a forecast.
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In the pre-PC period, short-term load forecasting utilized just charts and tables.
Temperature and day type are key elements in the model similar to the post-PC
period. However, the techniques used were limited to simple regression and similar
day method. In the post-PC period, regression techniques are further sophisticated
such as multiple regression or localized regression. More techniques from artificial
intelligence including artificial neural networks, fuzzy logic, and support vector ma-
chines are introduced but not well received by Utilities because they are ”black-box”
techniques. Time series analysis performs accurately but for only very short terms.

Recently, Utilities start to be open to more non-traditional techniques for short
term load forecasting. IEEE Working Group on Energy Forecasting (WGEF) or-
ganized the Global Energy Forecasting Competition 2012 (GEFCom2012). Some of
their goals are to improve the forecasting practices of the Utility industry and to
bridge the gap between academic research and industry practice. Out of the top 10
teams 7 had at least one non-parametric method as a part of their prediction model.
The ensemble, a procedure to combine prediction from multiple methods, is used as
well [69]. The introduction of non-traditional techniques and the ensemble forecast
will be crucial in the future short term load forecasting as we have data with more
variety and granularity.

Another important subject in short-term load forecasting is hierarchical load fore-
casting. Traditionally, most STLF jobs are conducted using system level data only.
Because of issues with correlations and extra work, a bottom-up forecast from smaller
geographic regions may not be worthwhile. However, there are several attempts to
predict the load at a smaller level first as different segments of the grid have different
attributes. In the GEFCom2012, participants were encouraged to forecast the load at
zonal level before forecasting the load at the system level. Fan, Methaprayoon, and
Lee (2009) [65] claimed that there exists an optimal region partition under diverse
weather and load conditions so that more accurate forecasts for aggregated system
load is achieved. In our problem, the ability to predict the load at the substation
level is necessary. The practice of hierarchy load forecasting will be even more crucial
once we have access to smart meter information.

Note: The load modeling at a substation level with application in forecast have
been investigated at least since 1988 [36]. In 2012, Western Electricity Coordinating
Council (WECC) Modeling and Validation Work Group attempted to build a load
model for each distribution substation for 12 climate zones and 5 seasonal conditions
with the detail of electrical end-uses under the substation especially air-conditioners
[51]. Unfortunately, the purpose is for dynamic simulations and outage explanations
rather than the load forecast. We should seek a new load model at substation with
applications in forecast and aggregate them in order to predict the load at system
level.
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It is difficult to justify what is the most accurate method in short term load
forecasting. It depends on the load size, forecast horizon, additional predictors allowed
in the model, and even time/location where data is collected. The measure of accuracy
is also an issue. A common practical measure is the mean absolute percent error
(MAPE) but another relevant measure is the maximum absolute percent error. The
table below shows some examples of hourly day-ahead models and their accuracies.
Unfortunately, the most equal ground competition GEFCom2012 used neither of these
measures.

Note: the models with temperature tends to assume that they have perfect fore-
sight on temperature, which is not true in real day-ahead practice.

In the future the load forecast task is more challenging. Renewable generation,
which will be counted as negative loads in the grid is an issue which we will address
in this study. Coupling between the load and the electricity price is also an issue
especially when the pricing is highly variable over a day. Such an event is likely
to occur when volatile renewable generation has high penetration. In addition, new
kind of loads such as electric vehicles and smart appliances may be an issue as well.
However, we will not address them in this study.

7.6 Conclusion

Modeling load is relatively simple compared to modeling PV. The variability and
volatility of load pattern are essential features as it affects additional cost of grid
operation. The load forecast, especially short term load forecast of our interest,
closely links to the volatility of load pattern. There are variety of techniques and
improvement in accuracy over years but new challenges are coming in term of new
energy policies, new types of loads, and renewable generation. In subsequent chapters
we address how to establish variability, volatility and forecast practice for distributed
PV generation, which in turn contributes to better practice in net load modeling.
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Chapter 8

A forecast system for load

Highlights:

• A short-term load forecast at the grid is highly accurate compared to a short-
term PV power forecast.

• Due to a consistent load pattern, a methodology to construct a reference load
curve, which is analogous to a maximum PV power curve in the PV power
forecast, is simple.

• We investigate prediction models for loads in three features: a use of indirect
prediction via load ratios, complexity of predictors, and a size of training data.

• It is not necessary to apply a concept of volatility and a forecast system where
several prediction models are assembled. It is because one current load forecast
model performances significantly better a forecast system of PV power.

As a part of grid operation, a short-term load forecast is essential to match energy
demand and supply. In Chapter 7, we discussed a history, a trend and the accuracy
of short-term load forecast models. While a short-term load forecast model can be
complex, a simple model from the load pattern, as we noted in Chapter 7 is accurate.

Similar to short-term PV power forecast models, one can construct a set of refer-
ence load curves, a combination of daily load curves from a previous day, a previous
week, and a previous year. The reference load curve is analogous to a maximum PV
power curve. This curve leads to a definition of a ratio between an actual load and a
reference load, which is analogous to a performance ratio. We then apply the same
analysis as in PV forecast models. That is, we test several prediction models with
three features: a use of indirect prediction via load ratios, complexity of predictors
(previous loads and other variables), and a size of training data. We see that even
with a simple model, a short-term load forecast model is relatively accurate compared
to a short-term PV power forecast model.
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8.1 Load pattern and a reference curve

As we have shown earlier, a maximum PV curve is useful in many ways. It gives
an expected PV curve, which informs a grid operation the amount of generated PV
power for a next day energy planning. It also leads to a better forecast model via a
concept of a performance ratio. It is good to have a smooth curve that represents an
ideal variation of a quantity that we want to predict. For PV power, such a curve
is a maximum PV curve. For loads, the existence of such curve is not obvious since
individual loads can be volatile due to human behavior. However, it turns out that
loads at substation and hence the grid are well-behaved. A daily load curve from the
previous day, previous week, and previous year tend to have a similar shape as a daily
load curve on a current day despite the magnitude of the load changing markedly from
day to day. This comes from our observation on load patterns in an Chapter 3.

To illustrate this observation, we analyze daily load data from CAISO and PJM
for 2014. For each hour instance, we compute a ratio of a current load and a load
of a previous day. We collect these ratios and plot their distribution for each day.
Figure 8.1 provides the distribution of such ratios in the whole year of 2014 (a, c) to
see possible yearly pattern and the last quarter of 2014 (b, d) to see other possible
patterns in a smaller timescale. One can see that most of ratios over a year are
between 0.9 and 1.1. It just means that the load does not usually change much from
one day to another. However, there are days where most of ratios are significantly
different than one. In addition, some ratios on those days can be as small as as 0.8 and
as large as 1.3. It means that for those days, the average load is significantly different
from the previous day, and the profile of daily load curve is significantly different as
well. It turns out that those days correspond to Mondays and Saturdays. A drastic
difference between two consecutive days across weekdays and weekends discovered
here agrees with our discussion earlier on a load pattern.

From this observation, it makes more sense to compare a current load and a load
of a previous week to avoid comparison between a weekday and a weekend. Figure
8.2 shows the distribution of ratios between a current load and a load of the previous
week in 2014. The outliers on Mondays and Saturdays vanish. Overall, ratios within
a same day tend to cluster together. That is, a shape of a daily load curve is similar
to the same day of the previous week. However, some ratios shift collectively away
from one. It means that the magnitude of a load may be significantly different from
the same day of the previous week. Note that the occurrence of collective shifts is on
a weekly basis rather than a seasonal basis. It means that such occurrence is likely
to be random rather than a consistent variation due to a seasonal change.

Another comparison one can make is to compare a current load and a load of a
previous year. To avoid an effect of a comparison between a weekday and a weekend,
we align data to compute a ratio such that the first day of 2014, which is Wednesday,
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(a) CAISO - the whole year

(b) CAISO - the last quarter

(c) PJM - the whole year

(d) PJM - the last quarter

Figure 8.1: Ratio between a current load and the load from the previous day in 2014.
Each point represents an hour instance.
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(a) CAISO - the whole year

(b) CAISO - the last quarter

(c) PJM - the whole year

(d) PJM - the last quarter

Figure 8.2: Ratio between a current load and the load from the previous week in
2014. Each point represents an hour instance.
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is paired with a first Wednesday of 2013 and so on. Figure 8.3 shows the distribution
of ratios between a current load and a load of the previous year in 2014. Similar
to Figure 8.2, ratios within a same day tend to cluster together but not as tight as
appeared in Figure 8.2. That is, a shape of a daily load curve of a current day is
similar to one of the previous year, but it is more similar to one of the previous week.
Note that some ratios shift collectively away from one. The occurrence of collective
shifts also looks random.

From comparisons with a previous day, a previous week, and a previous year,
it is difficult to pick the most sensible reference curve for a comparison since load
curves from different times have different characteristics. One may try to build a
single set of reference curves by patching daily load curves from a previous week on
Mondays and Saturdays with daily load curves from a previous day on other days of a
week. However, it is difficult to make a seamless patching without drastically altering
original load curves. It is also important not to destroy a sharp variation in daily
load curves during the construction of reference load curves. Hence, we decide to
build three hour-ahead load forecast models from three unprocessed reference curves
(day, week, and year) and find the best way to combine forecast results from them in
Section 8.3.1.

8.2 Comments on volatility of load curves

Since we have constructed a reference load curve, it seems natural to apply our defi-
nition of volatility on daily PV power curves into daily load curves. The problem is
that our reference load curve is not necessarily smooth, especially when we use only
a daily load curve of a previous day as a reference curve. If the daily load curve of
a previous day is not smooth, then, according to our definition, the volatility of a
daily load curve may be high even though the daily load curve is relatively smooth.
If we want to apply this persistent definition of volatility, we need to sophisticate the
construction of a reference load curve. However, as shown in the next section, our
construction of reference load curves gives a much better performance than a forecast
system of PV power. For a purpose of prediction accuracy, it is not necessary to
refine our construction of reference curves and apply the notion of volatility for load
curves at this point.

8.3 Short-term prediction models

Similar to models for PV power outputs, we considered three features of models for
loads. In the first features, we investigated whether a prediction of power via a
prediction of load ratios is better than a direct prediction of load. In the second
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(a) CAISO - the whole year

(b) CAISO - the last quarter

(c) PJM - the whole year

(d) PJM - the last quarter

Figure 8.3: Ratio between a current load and a load from the previous year in 2014.
Each point represents an hour instance.
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CAISO p rday rweek ryear
Method 1 (846,3478) (245,2418) (253,1707) (336,2111)
Method 2 (539,2658) (290,2574) (307,2319) (448,3250)
Method 3 (1231,4611) (302,2904) (309,2003) (385,2811)

PJM p rday rweek ryear
Method 1 (2367,9951) (774,7153) (688,6700) (1697,8677)
Method 2 (1573,8349) (574,8093) (512,6917) (1414,11360)
Method 3 (3448,12830) (1094,9476) (970,8646) (2282,10068)

Table 8.1: Value comparison of performance measure (the mean prediction differ-
ence, the maximum prediction difference) from different methods predicting different
variables

feature, we investigated what is the optimal set of predictors used in the model.
Lastly, we investigated what is a sufficiently good size of training data.

To make a fair comparison among all models, we measured the performance of all
methods on the test set consisting of data on the last quarter of 2014. To get a sense
of a model’s accuracy, one may compute the mean load in the test set. It turned out
that the mean load in the test set is 24614 MW in the CAISO data set and 86469
MW in the PJM data set.

8.3.1 A prediction of power via a prediction of load ratios

Our end goal of a short-term load forecast system is obviously to predict the load at
a future time instance. However, one can predict a future actual load, p, directly,
or one can first predict a load ratio, r, to obtain p. We compare performances of a
prediction model predicting a future actual power directly and a prediction model first
predicting a future load ratio. To avoid complexity from other features of prediction
models, we will focus on three simple methods that do not a require training set:

• Method 1: a persistent method xi+1 = xi

• Method 2: an extrapolation method xi+1 = xi + (xi − xi−1) = 2xi − xi−1

• Method 3: a moving average xi+1 = 1
2
(xi + xi−1)

Here x can be either p or r. Table 8.1 compares the mean and the maximum of
prediction differences using different variables among three methods addressed above.

From the table, one can see that the models first predicting a load ratio, r, gives
significantly lower mean prediction differences in general. Among models first pre-
dicting a load ratio, the model based on daily load curves from a previous year gives
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CAISO rday rweek combined
Method 1 (245,2418) (253,1707) (203,1598)
Method 2 (290,2574) (307,2319) (251,1765)
Method 3 (302,2904) (309,2003) (248,1799)

PJM rday rweek combined
Method 1 (774,7153) (688,6700) (606,5133)
Method 2 (574,8093) (512,6917) (451,6586)
Method 3 (1094,9476) (970,8646) (856,6402)

Table 8.2: Value comparison of performance measure (the mean prediction difference,
the maximum prediction difference) from individual models and the combined model

a significantly high error. In the CAISO data set, the model based on daily load
curves from a previous day performs well in term of the mean prediction difference,
while the model based on daily load curves from a previous week performs well in
term of the maximum prediction difference. In the PJM data set, the model based
on daily load curves from the previous week performs well on both measures. Since
models based on values from a previous day and a previous week both perform quite
well, Here we propose to combine the models by averaging their prediction output.
The performance with this new model is shown in Table 8.2. Here one can see that
combining results from two models based on different reference curves improves both
performance measures in both data sets. Hence, we conclude that, to achieve a better
prediction performance, one should build two models, predict load ratios, rday and
rweek, then obtain actual loads and average them.

8.3.2 Predictors of prediction algorithms

We investigated if models with different predictors gives significantly better perfor-
mance than models based on previous loads only. We considered three simple methods
that relies on previous loads only including a persistent method used in the previous
subsection and several auto-regression models.

Table 8.3 compares the performances of four simple algorithms: persistent, AR(1),
AR(2) and AR(3).

One can see a general trend that as the number of previous ratios increases, the
mean prediction difference decreases. However, adding the third ratio does not yield
a significant change. It is not clear how the maximum prediction difference behaves.

To improve the prediction performance, we may add additional predictors into
the model including an hour number from the local time h from 0 to 23 and a date
number d from 0 to 365 of an instance we want to predict. We may also add some
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CAISO Performance measure
Persistent (203, 1598)

AR(1) (200, 1546)
AR(2) (194, 1584)
AR(3) (193, 1573)

PJM Performance measure
Persistent (606, 5133)

AR(1) (608, 5132)
AR(2) (415, 5729)
AR(3) (412, 6804)

Table 8.3: Value comparison of performance measure from different simple methods

weather information of the recent time stamp in the model as well. Each quantity in
weather information is normalized so that the minimum value in the data is zero and
the maximum value in the data is one. h and d are also normalized so that the range
is [0, 1]. This leads to six sets of predictors as follow:

• {ri−1}

• {ri−1, ri−2}

• {ri−1, h, d}

• {ri−1, ri−2, h, d}

• {ri−1, ri−2} ∪ Weather

• {ri−1, ri−2, h, d} ∪ Weather

Due to the complexity of how different predictors might affect the prediction, a non-
linear model is required.

First, we considered Support Vector Regression (SVR). Table 8.4 compares per-
formances of the SVR with different sets of predictors after tuning SVR parameters
C and e. It turns out that, for the CAISO data set, the best set of predictors is
{ri−1, ri−2, h, d}. For the PJM data set, the best set is {ri−1, ri−2h, d} ∪ Weather.

Next, we considered Gradient Boosted Regression (GBR). Table 8.5 compares
performances of the GBR with various set of predictors after tuning GBR parameters
including a number of estimators, a depth, and a learning rate. It turns out that, for
the CAISO data set, the best set of predictors is {ri−1, ri−2, h, d}. For the PJM data
set, the best set is {ri−1, ri−2, h, d} ∪ Weather.
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CAISO Performance measure
{ri−1} (199, 1529)

{ri−1, ri−2} (195, 1548)
{ri−1, h, d} (189, 1485)
{ri−1, ri−2, h, d} (188, 1468)

{ri−1, h, d} ∪ Weather (191, 1548)
{ri−1, ri−2, h, d} ∪ Weather (188, 1552)

PJM Performance measure
{ri−1} (609, 5157)

{ri−1, ri−2} (413, 5703)
{ri−1, h, d} (611, 5033)
{ri−1, ri−2, h, d} (411, 5673)

{ri−1, h, d} ∪ Weather (623, 6699)
{ri−1, ri−2, h, d} ∪ Weather (418, 5513)

Table 8.4: Value comparison of performance measure from the SVR with different
sets of predictors

CAISO Performance measure
{ri−1} (201, 1540)

{ri−1, ri−2} (190, 1573)
{ri−1, h, d} (183, 1238)
{ri−1, ri−2, h, d} (182, 1250)

{ri−1, h, d} ∪ Weather (183, 1250)
{ri−1, ri−2, h, d} ∪ Weather (182, 1351)

PJM Peformance measure
{ri−1} (615, 5510)

{ri−1, ri−2} (417, 4525)
{ri−1, h, d} (586, 5154)
{ri−1, ri−2, h, d} (397, 4383)

{ri−1, h, d} ∪ Weather (588, 5199)
{ri−1, ri−2, h, d} ∪ Weather (415, 4364)

Table 8.5: Value comparison of performance measure from the GBR with different
sets of predictors
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It may be seen that the GBR performs better than the SVR and other simple
models in general. With a different set of predictors of each data set, we bring
both the mean and the maximum prediction differences down significantly. It is
worth noting that adding weather information is not distinctively beneficial. Since
our weather data is for a specific zip code, it may not relevant to the load data for
an entire balancing area. Furthermore, the effect of weather to the load may be
already captured in reference load curves. We used the GBR method with the set
{ri−1, ri−2, h, d} both data sets to study the effect of a size of training data in the
next subsection.

8.3.3 Size of training data

The size of training data is the last feature of a prediction model. Similar to a
forecast model for PV outputs, we compare performances from the best model we
have at hand with different sizes of training data in an on-line approach. One may
keep adding training data while doing prediction or one may limit training data to a
certain number of most recent data points. For boyh CAISO and PJM data sets, we
use a GBR method to predict the next load ratio first based on {ri−1, ri−2, h, d}. Then
we obtain the actual load from the ratio. We consider four schemes for an on-line
approach:

• There is no limit on size of training data. Keep adding new data points of a
day in the data set and retrain every day.

• Limit training data to be at most 6 months of data. Adding new data points
of a day, delete data points of the oldest day, and retrain every day.

• Limit training data to be at most 3 months of data.

• Limit training data to be at most 1 months of data.

All schemes are applied to the same test set, which is data of the last quarter in
2014. The training data was updated daily instead of hourly because the GBR is
computationally expensive. In practice, an update can be done for every new data
point since there is enough time between arrivals of new data points. It might be
worthwhile updating more frequently, but we did not investigate this option in this
study.

In Table 8.6, we compare performances of on-line prediction models with various
sizes of training data. From both data sets, adding new data points of a day in the
data set without deleting gives the best performance. It means that the optimal
amount of data to produce the best performed model is more than 6 months of data.
Larger size of training data is not investigated because of our data is limited.
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CAISO mean max
No limit 180 1269
6 months 199 1583
3 months 205 1659
1 month 205 2438

PJM mean max
No limit 396 4340
6 months 525 7477
3 months 569 7265
1 month 569 7374

Table 8.6: Value comparison of performance measures from an on-line approach with
different sizes of training data

8.4 Comments on a forecast system

In the previous section, we have found that for each load prediction model the per-
formance depends on a use of indirect prediction via load ratios, a complexity of
predictors, and a size of training data. We have established from our two data sets
that it is good to first predict a load ratio then obtain an actual power. We also es-
tablished that the size of our data set should be as large as possible. For a complexity
of predictors, in both data sets, we use load ratios from two most recent instances, a
date number and an hour number. It is worth noting again that weather information,
especially the temperature, does not improve the performance of a prediction model.
It might be because the weather data is for a specific local area, while the load data
is for an entire balancing area. Another possible reason is that the effect of weather
to the load is already captured in reference load curves.

In a task of forecasting a load, we do not construct ensembles of prediction models
with a protocol to switch between models as we do not apply a concept volatility
used in PV power outputs into loads. As we have addressed earlier, our rough call
of reference load curves may cause an incorrect measure of volatility. Even though
we do not have ensembles of prediction models, a single prediction model works well.
Recall that the mean load in the test set is 24614 MW in the CAISO data set and
86465 MW in the PJM data set. From the best prediction model, the mean prediction
difference equals 180 MW in the CAISO data set and 397 MW in the PJM data set.
The maximum prediction difference equals 1293 MW in the CAISO data set and 4366
MW in the PJM data set. It means that the mean error is about 1 percent of the
mean load in the test test, while the maximum error is at about 6 percent of the
mean load in the test set. These numbers are about 10 times smaller than PV power
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(a) CAISO (b) PJM

Figure 8.4: Distribution of prediction differences from a short-term forecast model.
The histogram shows actual data. A red line shows a fit of a normal distribution and
a green line shows a fit of a Laplace distribution.

prediction. Furthermore, in the CAISO data set, there are only one instances where
the error is higher than 5 percent of the mean load in the test set. In the PJM data
set, there is only one instance where the error is higher than 5 percent.

To tell how likely a bad prediction will happen in detail, a distribution of prediction
differences is needed. Figure 8.4 shows a distribution of differences between predicted
loads and actual loads on the test set with this short-term forecast model of loads.
The vertical dotted lines show values equivalent to 5 percent of the mean load in the
test set. One can see that the distribution of such differences is a Laplace distribution
rather than a normal distribution. One can fit a Laplace distribution and get the best
fit with parameters (µ, b) = (−0.4, 175) for the CAISO data set and (µ, b) = (4, 397)
for the PJM data set. The bias of prediction is relatively small. From this, one can
calculate how likely a bad prediction will happen in general when using this short-term
forecast model.

8.5 Conclusion

After an investigation in a short-term load forecast system, we found that applying
procedures from a short-term PV power forecast system is useful. A concept of load
reference curves and load ratios is useful to construct a good model. A simple use of
load reference curves makes our definition of volatility inapplicable, yet an accuracy
of the forecast model based on such reference curves is high. One may refine a concept
of load reference curves to be more formal if needed. In addition, we need more data
to establish an optimal size of training data.



Part III

Grid under high distributed PV
generation
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Chapter 9

Overview of grid operations

Highlights:

• A definition of a grid operator and its role are explained.

• A grid operator achieves demand-supply balance using different stages of oper-
ation. It requires energy scheduling to prepare supply as accurate as possible,
and ancillary services planning to correct a demand-supply imbalance.

• We define and categorize ancillary services. We also introduce a rule of ancillary
services requirement relates to a risk of demand-supply imbalance.

The main goal of a electric grid operation is to supply electric energy from gen-
erators to customers that satisfies operational limits and minimizes both the cost of
operation and the risk of degradation of the infrastructure. In a grid operation, an
electric power produced by generators called a generated power or supply must
be equal to an electric power required by consumers called a load or demand at all
times. What makes the grid operation complicated is that there is a large number
of non-linear constraints coming from operational limits in generators, transmission
networks, distribution networks, and customer units. The reliability of components
in the grid also makes the grid operation complicated. Another source of complica-
tion is an uncertainty in loads. Once a high amount of distributed PV generation is
added to the demand side as a negative load, the net load, which is a summation of
a regular load and a negative load, become even more uncertain.

In this chapter, we define a grid operator and its actions as needed in our study.
We focus on a demand-supply balance and stages of operation to ensure the balances
using energy scheduling and ancillary services. We further discuss the ancillary ser-
vices requirement, its relation with a risk of demand-supply imbalance, and different
categories of ancillary services.
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9.1 Definition of a grid operator

A grid operator is an entity who controls an electricity transmission system to keep
it in balance and operates a wholesale electric market in order to minimize the cost
of operation. In the US, these two functions are not necessarily executed by the same
entity. In this section, we clarify how the two functions are executed in US.

In terms of the electricity transmission system, a basic operating unit of the elec-
tric power industry is called a balancing authority controlling a balancing area or
a control area. Each control area may have a different number of nodes representing
points where two or more elements in the grid are connected. Some nodes can be
physical transmission substations where generators and loads are connected to the
transmission lines. Some nodes can be just intersection points in the transmission
network. There are more than 100 balancing authorities under North American Elec-
tric Reliability Corporation (NERC). Balancing authorities are united to improve the
reliability of the bulk power system together as NERC regional entities. A map of
regions and balancing authorities is shown in Figure 9.1 [53]. A total of eight NERC
regional entities are distributed throughout the Northern America electric grid, which
is actually comprised of three smaller grids, called interconnections as shown in Figure
9.2 [52]. The responsibility of balancing authorities is to continuously maintain load-
interchange-generation balance within balancing authorities and to help the entire
interconnection regulate and stabilize the frequency. A balancing authority is not re-
sponsible for managing retail or distribution-level power systems. More importantly,
a balancing authority does not have a direct role to minimize the cost of operation.

In terms of the wholesale electricity market, a basic supplier of the electric power
market is called a Utility. In a traditional wholesale electricity market, vertically-
integrated utilities own the generation, transmission and distribution systems used
to serve electricity consumers. In order to facilitate a competition for electricity gen-
eration using bid-based markets, an Independent System Operator (ISO) or Regional
Transmission Organization (RTO) is formed to operate the transmission system inde-
pendently. With this arrangement, Utilities are just generators or distribution units.
Currently there are 10 main wholesale electricity markets in the US. A map of those
markets are shown in Figure 9.3. Note that these market regions are not aligned with
balancing regions. While major sections of the country operate under more tradi-
tional operating structures, two-thirds of the nation’s electricity load is now served
under ISOs or RTOs [32].

In our definition, a grid operator must function as a balancing authority and a
market. Hence, we count ISOs, RTOs and some vertically-integrated Utilities who
balances its control area as grid operators. Balancing Authorities without an au-
thority to settle the cost of operation, Utilities without ability to control the grid at
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Figure 9.1: Balance authorities in US, 2015.

a transmission level, and market operators with no control on the transmission and
generation are not grid operators.

9.2 Actions by a grid operator

In order to operate a power system, different entities make decisions on time scales
covering fifteen order of magnitude prior to real-time operation as shown in Figure 9.4
[13]. In this section, we will focus only scheduling and demand-supply balance within
a control area from a time scale of at most one day without concerning stability and
congestion within the balancing area.

At the time scale of a day before the real-time operation, a grid operator conducts
a day-ahead scheduling by determining how much power is needed and which
generators are scheduled to serve during each hour of the operating day. In CAISO,
a day-ahead scheduling is made from a bidding market opening 7 days prior to the
operating day and closing the day prior to the operating day. A complete schedule is
published at 1 PM prior to the operating day. Note that the time resolution of a day-
ahead scheduling is one hour, but it can be further refined to account for 20-minute
ramps between hours.
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Figure 9.2: NERC Interconnections

Figure 9.3: 10 main wholesale electricity markets in US.
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Figure 9.4: Schematic of time scales involved in power system planning and operations

At the time scale of an hour before the real-time operation, a grid operator con-
ducts an hour-ahead scheduling. It is sometimes called misleadingly real-time
scheduling. A grid operator conducts an hour-ahead scheduling by determining
how much power is needed and which generators are scheduled to serve during each
5-minute block of the operating hour. In CAISO, an hour-ahead scheduling is made
from a bidding market opening 1 PM prior to the operating day and closing 75 min-
utes prior to the operating day. A complete schedule is published 45 minutes prior to
the operating hour.

In the next time scale before the real-time operation, a grid operator dispatches an
ancillary service called operating reserves or contingency reserves, in order to
generate power to the grid within minutes. A bidding market is not practical at this
point. The grid operator just dispatches this type of reserves in operating 5-minute
blocks.

At the real-time operation, a grid operator dispatches an ancillary service called
regulating reserves in order to match the demand within seconds. When a demand
and a supply are out of balance, Area Control Error (ACE) increases, which is mea-
surable via a change of the system frequency and other metering. The grid reacts
to this change using Automatic Generation Control (AGC) that controls regulating
reserves to bring a balance back.

The operation of a grid operator from a day before to the real time is summarized
graphically in Figure 9.5.

It is worthwhile noting that, since ancillary services are dispatched close to or
right at the operating instance, the market to decide how much capacity is needed
and which services are chosen is conducted a day prior to the operating day. Since
there is no specific amount of power assigned until the last minutes or seconds, the
capacity and its ramp rate are important factors when choosing ancillary services.
Other than traditional resources, renewable energy resources paired with storage and
demand responses can function as fast responsive ancillary services.
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Figure 9.5: Timeline of actions by a grid operator

A grid operator needs to adjust their actions when high levels of distributed PV
generation are introduced to the grid in term of both energy scheduling and ancillary
services planning. In energy scheduling, as we have seen in a previous chapter, the
variability of PV generation alters the shape of the net load drastically which requires
generators with high ramp rates. In ancillary services planning, the volatility of
PV generation turns into a high uncertainty of net load prediction, which requires
ancillary services with larger capacity and faster response. For energy scheduling,
preparing generators to cope with variability of net loads has an additional cost yet
manageable since it can be scheduled ahead and the mismatch between demand and
supply can be corrected by ancillary services later. Ancillary services planning is
discussed in the next section.

9.3 Ancillary services

9.3.1 Ancillary services requirement

As addressed the previous section, an ancillary service is essential to maintain the
power balance within the grid. As a result, NERC directs some ancillary service
requirements and several ISOs further define them. Other than reserves and regu-
lations, there are additional required ancillary services for other purposes including
reactive power and voltage control, real-power loss compensation, and power recovery
when the system collapses. However, we are not concerned with ancillary services for
those purposes. Here we are concerned with the ancillary services requirement as
discussed in Ela et al [29].
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For operating reserves, the NERC Disturbance Control Standard (DCS) requires
that each balancing area have enough reserve to cover its largest credible contingency,
which equals to the capacity of the largest generating unit in the area. In addition,
most regions require that at least 50% of reserves are spinning reserves, also called
synchronous reserves and responsive reserves, which is on-line, synchronized,
and ready to respond within 10 minutes. Note that the definition of spinning reserves
from different literature can be different [74]. Some examples of spinning reserves are
pumped-storage hydroelectricity stations and gas turbines. The rest of reserves are
non-spinning reserves, also called non-synchronous reserves and supplemen-
tary reserves, which is off-line and ready to respond within from 10 to 30 minutes.
Some examples of non-spinning reserves are combustion turbines. Again, both quan-
tity (power) and speed (ramp rate) are key quantities to decide which reserves will be
used. Ortega-Vanquez [70] summarized spinning reserve requirements from different
power systems. In CAISO, the rule for spinning reserve requirement is complicated.
A rough estimate is about 3% of the peak load of the day. In PJM, the rules for
spinning reserve requirement depends on the region. A rough estimate is about 1.5
% of the peak load of the day.

For regulating reserves, the NERC Control Performance Standard (CPS) directs
how much and what type of regulation to procure. Each ISO adjusts its requirements
based on extra information on time of a day, day of a week, and season. The regulation
is required to be fully available within 5 minutes, which is an economic dispatch in-
terval. Note that the regulation requirement may be uni-directional or bi-directional,
meaning that both upward and downward capacity must be made available. Ela et al
summarized regulation requirements from different ISOs. In CAISO, the rule of reg-
ulation requirement has a floor of 350 MW, which can be adjusted based on different
factors. Such a minimum is about 350/45832 = 0.8% of the peak load of the year. In
PJM, the rule for regulation requirement is based on 1% of the peak load during the
peak hours and 1% of the valley peak during off-peak hours.

In conclusion, an ancillary requirement for spinning reserves, non-spinning re-
serves, and regulation adds up to roughly 4-7% of the peak load of the year. Whatever
the rule for ancillary service requirement is, it should be set based on reliability of the
individual scheduled generators and the accuracy of the load forecast. An amount of
PV generation, which can be viewed as a negative load, clearly affects the accuracy
of the net load forecast and hence the ancillary services requirement.

9.3.2 A risk of demand-supply imbalance and a rule of an-
cillary services requirement

In order to set a reasonable rule for an ancillary services requirement, especially when
volatile resources like PV generation are included, it makes sense to establish a risk
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of demand-supply imbalance. If we assume that there is no risk of energy delivery
failure from both scheduled supply and ancillary services, then we can consider only
a probability distribution of demand-supply imbalance between the net loads and
the scheduled generation at an instance. Ancillary services available at that instance
gives an interval in which an imbalance in such interval is acceptable since available
ancillary services can re-balance it. A probability that a demand-supply imbalance
falls outside the interval provided by available ancillary services defines the risk of
demand-supply imbalance.

A rule of ancillary services requirement should assign ancillary services enough
to keep a risk of demand-supply imbalance to a certain threshold. For example, if
we check every hour whether a demand-supply imbalance beyond ancillary service
capability, and we expect to find the imbalance less than once in a year, we need a
risk of demand-supply imbalance to be smaller than 1/(24× 30× 12) ≈ 0.01%.

9.3.3 Comments on Type I and Type II ancillary services

In the discussion of a grid operation, we categorize ancillary services by their re-
sponsiveness into operating reserves and regulating reserves. We can also categorize
ancillary services by active capability to generate or consume power into Type I and
Type II services. A Type I service is an ancillary service that active puts power
into the grid or takes power out of the grid. As a result, operating a Type I service
does not require sophisticated scheduling as long as there is a sufficient capacity. An
example of Type I services is a gas turbine generator. On the other hand, a Type II
service is an ancillary service that shifts demand and supply existing in the grid to co-
incide. One may call Type II service as a load shifting service. As a result, operating
a type II service requires sophisticated scheduling with constraints on the maximum
stored energy and the maximum shift time. Some examples of Type II services are a
flywheel, an energy storage, and a demand response service. The majority of ancillary
services in the current grid is Type I services, but with a small operational cost and
a decreasing up-front cost, Type II services may take a larger share in the future.

Note that in energy scheduling, we tend to use generators, such as fossil fuel power
plants, to serve the load. However, a grid operator may schedule Type II instruments
to reduce consistent variation in the net load as well. For example, one may assign
a thermal storage in a day-ahead energy schedule to flatten the daily net load curve
in addition to traditional power plants. This kind of use does not function as an
ancillary service.
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9.4 Conclusion

In this study, we discussed how a grid operator achieves a demand-supply balance
within its control area using energy scheduling and ancillary service. With high
distributed PV generation, the variability and volatility of the net load increases,
leading to a need of better instruments. For energy scheduling, a grid operator needs
generators with higher ramp rates or energy storage to cope with the variability of
daily load curves. For ancillary services planning, a grid operator needs ancillary
service units with higher capacities to cope with the volatility of the net load. If
there is no instrument updates, we expect that the risk of demand-supply imbalance
increases as the distributed PV generation increases.

In the next chapter, we assess the risk of a demand-supply imbalance under differ-
ent levels of distributed PV generation. We investigate options of ancillary services
and PV curtailment required to keep the risk of a demand-supply imbalance down to
an acceptable amount.



Chapter 10

Risk management of
demand-supply imbalance

Highlights:

• The risk of a demand-supply imbalance under high distributed PV generation
can be assessed using simulation based on our forecast system of the net load
given a set of generators and ancillary services.

• Based on our data set, the risk of demand-supply imbalance increases as in-
stalled PV capacity in the grid increases. In order to maintain an acceptable
risk, the maximum level is 15 percent of the peak load for the western example
and 9 percent of the peak load for the eastern example.

• In the simulation, the limiting factor to the maximum level of PV installation is
volatility rather than variability. Hence, the ancillary services and PV curtail-
ment are primary options to reduce the risk when the level of PV installation
increases.

• Adding Type I ancillary service or adding Type II ancillary service with a simple
heuristic can increase the maximum percentage of installed PV capacity by 6-
8% of the peak load without an extra modification on generators in day-ahead
and hour-ahead scheduling.

• Adopting the PV curtailment with a policy based on the normalized volatility
of PV generation allows extra PV installation of about 2% of the peak load.

A grid operator delivers electric energy from generators to customers reliably using
two actions: scheduling and ancillary services control. With high distributed PV
generation, the net load that a grid operator needs to serve becomes more variable
and volatile. In order to keep the risk of a demand-supply imbalance down to an
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acceptable level, new infrastructures such as generators and ancillary services are
required. Operational procedures including Type II services control and PV power
curtailment are also relevant.

In this chapter, we first assess the risk of a demand-supply imbalance under a
different level of distributed PV generation with a typical set of infrastructures in-
cluding generators and Type I ancillary services. Then, we determine specifications
of new ancillary services in order to reduce the risk of a demand-supply imbalance
down to an acceptable level. We investigate how PV curtailment can help reduce the
risk as well.

10.1 Limitation of data

We want to simulate how a grid operator controls its balancing area using scheduling
and ancillary service control under a high PV installation according to procedures
described in the previous chapter. However, some limitations of data prevents us
from doing this. First, our data is not frequent enough. The typical resolution that a
grid operator needs to actively manage is 5 minutes. Our data on the PV generation,
however, has a resolution of 15 minutes, while our data on the load and the weather
information has a resolution of 1 hour. Hence, we cannot fully simulate the grid
operation at the same level as the actual grid operation. Still, we are able to simulate
both a day-ahead scheduling and an hour-ahead scheduling without any problem.
We may calculate differences between actual net loads and generating powers, and
compare them with capacities of available ancillary services at the beginning of hours.
In an ideal situation, we may do calculations and comparisons at the beginning of
all 5-minute blocks. In our situation, we just do calculations and comparisons with a
frequency of 15 minutes. We expect that such a sampling frequency is sufficient.

Other than the issue with the frequency of data, the aggregation of data is also a
limitation. While each load data set from CAISO or PJM is aggregated from the entire
balancing area, the PV generation and weather data are not. As described earlier,
each PV generation data set in CA or NJ is aggregation from PV systems clustered
in a certain zip code, which is comparable to a PV generation under a substation,
not the entire balancing area. The weather data is also specific to a certain zip code.
In an ideal situation, we may build each model for each substation or zip code, and
aggregate results from the models. In our situation, we just use our PV generation
and weather data as if it is sampled from the entire balancing area. Our approach to
combine two sets of data in the grid integration analysis is significantly different from
what the grid operator should do in practice. Once again, to highlight the distinction
between the example and real operations, we call the combination of the PV data
from a zip code in CA and the load data of a whole grid where the zip code is located
the western example. We call the combination of the PV data from a zip code
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Infrastructure Power capacity Ramp rate capacity
Generators (day-ahead) Unlimited +5% of the peak ramp rate
Generators (hour-ahead) Unlimited +10% of the peak ramp rate

Ancillary services 5% of the peak load Unlimited

Table 10.1: Specification for infrastructure in the simulation

in NJ and the load data of a whole grid where the zip code is located the eastern
example.

10.2 Simulation setup

Before explaining the simulation procedures, we address set-ups on infrastructures,
forecast systems, and how to measure the risk. We need to make various assumptions
based on our best knowledge in the grid operation in general. None of the assumptions
critically alter the conclusion. In fact, many assumptions are on the side that favors
PV integration.

10.2.1 Infrastructure

In the simulation, we set up a typical set of infrastructures such as generators and
ancillary services. We assume the following specifications. In a day-ahead market,
the combined ramp rate of all generators in the balancing area is 5% higher than the
maximum ramp rate of the load in a year. In an hour-ahead market, the combined
ramp rates for all generators in the balancing area is 10% higher than the maximum
ramp rate of load in a year. For ancillary services, the amount of Type II services is
negligible. Combined capacity of ancillary services at all times is 5% of the peak load
of a year. Ancillary services are fast enough to correct any level of imbalance within
their combined capacity at all times. These specification is summarized in Table 10.1.

10.2.2 Forecast system

In the simulation, we set up a forecast model of the load and the PV power for both
a day-ahead scheduling and an hour-ahead scheduling. For a day-ahead scheduling,
we predict a daily net load curve of the operating day with a resolution of one hour.
Since the schedule is finalized at 1 PM prior to the operating day, only PV power,
load, and weather data before that time are available for forecasting a daily net load
curve. For a daily PV power curve, we use an expected PV power curve as a predicted
PV power curve. Hence, there is no issue if recent data is not available. For a daily
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load curve, one may use a combination of daily load curves of a previous week and
a previous day. However, the daily load curve of a previous day is not available yet.
Hence, we choose daily load curves of a previous week instead.

For an hour-ahead scheduling, an hourly net load curve of the operating hour
should be predicted with a resolution of five minutes. However, since the finest
resolution of available PV data is 15 minutes, we decide to consider the system at the
resolution of 15 minutes. Since the schedule is finalized at 45 minutes prior to the
operating hour, only PV power, load, and weather data before that time are available
for forecasting net load in the hour block. We decided to use only data from at least
60 minutes prior to the operating hour. For a PV power prediction, our forecast
system for the next time stamp is not relevant here since a gap between consecutive
data points is 15 minutes. We need a forecast system that predicts the PV power in
the next 60, 75, 90, 105, and 120 minutes. To simplify the forecast system, we built a
model to predict the PV power in the next 60 and 120 minutes. Then we predict the
PV output for other instances by interpolation. For the load prediction, our forecast
system of the next time stamp is relevant since a gap between consecutive data points
is 1 hour. Still, we want to predict the load in the next two hours as well in order
to complete the hour block. Hence, we need a forecast system that predicts the load
in the next 60 and 120 minutes. Then we predict the load for other instances by
interpolation. We built forecast systems using the same features as we used in the
last sections of Chapters 6 and 8.

10.2.3 Risk measurement

In order to measure the risk of a demand-supply imbalance, we first count the number
of instances where the demand-supply imbalance exceeds the ancillary service capacity
at each instance. Then we calculate the risk equal to that number divided by the
number of instances in the period of consideration. Ideally, the period of consideration
should be multiple years. However, in this simulation with the limited amount of data,
the period is the last 3 months of 2014. Since the time interval is 15 minutes, we are
accounting 3 × 30 × 24 × 4 = 8640 total instances. We define an acceptable risk of
demand-supply mismatch to be 0.05 %. This risk allows about 3×30×24×4×0.05% ≈
4 imbalance instances in 3 months period. Note that if we sample instances every
hour instead, the number of instances should be 1 instance in 3 months period or 4
instances in 1 year. It is equivalent to 4 loss of load events (LOLE) [43] per year.

10.3 Simulation procedure

The simulation procedure to assess the risk of a demand-supply imbalance is listed
below.
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1. Define the simulation period. In this study, it is the fourth quarter of 2014.

2. Identify the peak load and the maximum hourly ramp rate of load from the
most recent year before the simulation period. In this study, we identify them
from the load data from fourth quarter of 2013 to the third quarter of 2014.

3. Identify the maximum hourly ramp rate capacity of generators in both a day-
ahead scheduling and an hour-ahead scheduling. Identify the capacity of ancil-
lary services.

4. Assign the PV capacity as some percentage of the peak load.

5. Build a forecast system for a day-ahead scheduling from the data before the
simulation period. In this study, we use data of the first three quarters of 2014.

6. Build a forecast system for an hour-ahead scheduling from the data before the
simulation period. In this study, we use data of the first three quarters of 2014.

7. For each day in the simulation period, predict a daily net load curve. Then as-
sign generators under a day-ahead scheduling without exceeding the maximum
hourly ramp rate limit. Record when the ramp limit is reached.

8. At each hour in that day, predict the net load of an entire hour block for the
next hour. Readjust generators accordingly. Make sure that the addition of
generators does not exceed the maximum ramp rate limit in an hour-ahead
scheduling. Record when the ramp limit is reached.

9. Every 15 minutes, measure the difference between the net load and the assigned
generation from scheduling. Record when such difference is higher than the
capacity of ancillary services.

10. Once the simulation is completed, compute the risk of a demand-supply imbal-
ance as explained in the previous subsection.

10.4 The risk of demand-supply imbalance

Figure 10.1 shows the risk of demand-supply imbalance from the simulation in two
regions as a function of the installed PV capacity in the grid. The risk of demand-
supply imbalance increases as the installed PV capacity in the grid increases. For
the western example, the grid with the installed PV capacity greater than 15 percent
of the peak load has a significant risk of demand-supply imbalance. For the eastern
example, the grid with the installed PV capacity greater than 9 percent of the peak
load has a significant risk of demand-supply imbalance.
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(a) Western (b) Eastern

Figure 10.1: Risk of demand-supply imbalance given a typical set of infrastructures

Here are some statistics of interest for the grid operator. For the western example,
with the limit of 15 percent of the yearly peak load, PV systems provide 6.5% of
the total energy demand in the simulation period. The maximum ratio between
the actual PV power output and the load at any instance in the simulation equals
0.24. For the eastern example, with the limit of 9 percent of the yearly peak load,
PV systems provide 4% of the total energy demand in the simulation period. The
maximum ratio between the actual PV power output and the load at any instance in
the simulation equals 0.16. Here one can see that there are various references one can
use to communicate: the peak load, the total energy demand, and the actual load at
each instance. Most of values in this paper make a reference to the peak load. This
agrees with how the grid operator sizes the ancillary services capacity. However, in
the operation with the high level of PV penetration, other types of references may be
more informative.

To see the distribution of demand-supply imbalances, one may plot when the
demand-supply imbalances occur from the simulation. Figures 10.2 shows the dis-
tribution of demand-supply imbalances when the installed when the installed PV
capacity is 20 percent of the peak load. Black dots show imbalances while the rain-
bow map is a ratio of the actual PV generation and the actual load. It is worth
noting that it is possible that imbalance occurs even the level of PV penetration is
0%. However, in our test data set, it occurs only once for the Eastern example and
none for the Western example. One may see from the figures that the demand-supply
imbalance due to PV generation tends to happen from the late morning to the early
afternoon.

To understand how variability and volatility in PV generation contribute to the
risk of demand-supply imbalance, we look at the number of 15-minute instances when
the maximum ramp rate of generators is reached in a day-ahead scheduling and an
hour-ahead scheduling as a function of the installed PV capacity in the grid as shown
in Figure 10.3.
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(a) Western (b) Eastern

Figure 10.2: The distribution of demand-supply imbalances over time domain example
where the level of PV penetration is 20% of the peak load

(a) Western (b) Eastern

Figure 10.3: Number of instances when the maximum ramp rate of generators is
reached
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In the western example, an instance where the maximum ramp rate of generators
is reached in the day-ahead scheduling occurs when the installed PV capacity is
10 percent of the peak load. However, there is no incidence where the maximum
ramp rate is reached in the hour-ahead scheduling. Furthermore, the risk of demand-
supply imbalance is acceptable. It means that the typical infrastructure can handle
the variability of PV generation at this level of PV installation. The risk of demand-
supply mismatch induced by the volatility of PV generation grows larger than the
acceptable value when the installed PV capacity is 15 percent of the peak load. The
risk induced by variability emerges when the maximum ramp rate is reached in the
hour-ahead scheduling. It happens when the installed PV capacity is higher than 23
percent.

In the eastern example, an instance where the maximum ramp rate of generators
is reached in the day-ahead scheduling occurs when the installed PV capacity is 10
percent of the peak load. At that time, there is no incidence where the maximum
ramp rate is reached in the hour-ahead scheduling. However, the risk of demand-
supply imbalance is higher than the acceptable value. It means that the typical
infrastructure can handle the variability but not volatility of PV generation at this
level of PV installation. The risk induced by variability emerges when the maximum
ramp rate is reached in the hour-ahead scheduling. It happens when the level of
installed PV is higher than 15 percent.

The observation of risk induced by variability and volatility is helpful in the risk
reduction. In the western example, when the level of PV installation is in the range
of 15 to 23 percent of the peak load, the grid operator may add ancillary services to
reduce the risk due to the volatility. In the eastern example, when the level of PV
installation is in the range of 10 to 15 percent of the peak load, the grid operator may
provide additional ancillary services to decrease the risk without modifying genera-
tors. Such risk reduction by additional ancillary services is discussed in the next two
sections.

10.5 Risk reduction by adding Type I ancillary

services

A simple way to reduce the risk of demand-supply imbalance is to add more Type
I ancillary services. In a typical infrastructure, most of available ancillary services
are Type I. In the previous section, we set all ancillary services to be Type I with a
capacity of 5 percent of the peak load. In this section, we explore the risk of demand-
supply mismatch given different amounts of Type I ancillary services when the level
of PV installation is 15-23 percent of the peak load in the western example and 10-15
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(a) Western (b) Eastern

Figure 10.4: Risk of demand-supply imbalance given a different capacity of additional
Type I ancillary services

percent of the peak load in the eastern example. The same simulation was executed
but the additional capacity of Type I ancillary services was varied from 0 to 3 percent.

Figure 10.4 shows the risk of demand-supply imbalance from the simulation as a
function of the installed PV capacity in the grid given different amounts of Type I
ancillary services. Each line represents each value of Type I ancillary services capacity
relative to the peak load. In the western example, increasing the capacity of Type
I ancillary services by 3 percent of the peak load reduces the risk of demand-supply
imbalance down to the acceptable value when the installed PV capacity is 23 percent
of the peak load. In the eastern example, increasing the capacity of Type I ancillary
services by 3 percent of the peak load reduces the risk of demand-supply imbalance
down to the acceptable value when the installed PV capacity is 15 percent of the
peak load.

10.6 Risk reduction by adding Type II ancillary

services

Another procedure to reduce the risk is to add Type II ancillary services. In the
previous section, we set all ancillary services to be Type I with a capacity of 5 percent
of the peak load. In this section, we explore the risk of demand-supply imbalance
given a different amount of Type II ancillary services when the level of PV installation
is 15-23 percent of the peak load in the western example and 10-15 percent of the
peak load in the eastern example. We need to modify the simulation by adding Type
II ancillary services and a control as follows:

1. At the beginning of the simulation period, the initial available energy of Type
II ancillary service is at 50% of its total capacity.
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2. Every 15 minutes, measure the difference between the net load and the assigned
generation from scheduling.

3. If possible, counterbalance the difference using Type II units. Change the
amount of stored energy in the Type II units accordingly. if the capacity of
Type II units is not enough, use Type I units. Record when combined ancillary
services cannot counterbalance the difference.

4. After each counterbalance, prevent the Type II units from reaching either 0%
or 100% of the capacity using type I units if possible. When the stored energy
is below 20% or above 80% of the capacity, trigger the Type I units to use
their remaining capacity after the counterbalance process to push the stored
energy back to 50% of the capacity. Note that this adjustment may take several
instances after the trigger.

Note that the capacity of Type I ancillary services is set at 5 percent of the peak
load as it is in a typical infrastructure. The capacity of Type II ancillary services
varies from 5 percent of the peak load multiplied by 0 hour to 5 percent of the peak
load multiplied by 0.8 hours.

Figure 10.5 shows the risk of demand-supply imbalance from the simulation as
a function of installed PV capacity in the grid given different amounts of Type II
ancillary services. Each line represents each capacity value of the Type II ancillary
services. In the western example, increasing the capacity of Type II ancillary services
to 5 percent of the peak load multiplied by 0.4 hours reduces the risk of demand-
supply imbalance down to the acceptable value when the installed PV capacity is 23
percent of the peak load. In the eastern example, increasing the capacity of Type II
ancillary services to 5 percent of the peak load multiplied by 0.8 hours reduces the
risk of demand-supply imbalance down to the acceptable value when the installed PV
capacity is 15 percent of the peak load.

Adding Type II ancillary services has an advantage over adding Type I ancillary
services because it may not require extra energy to execute demand-supply balancing.
While a load shifting in demand response induces no energy loss, an electrical storage
may lose few percentage of energy during charging process. If Type II ancillary
services are not deployed, the Type I ancillary services will be called at all instances.
However, if Type II ancillary services are deployed, the Type I ancillary services will
be called less often. For example, in the simulation for the western example with
additional Type II capacity of 5 percent of the peak load multiplied by 0.4 hours, the
type I ancillary services are called only 1639 instances out of 3× 30× 24× 4 = 8640
instances when the installed PV capacity is at 23 percent of the peak load. This
implies that the operational cost of Type I ancillary services is likely reduced while
the capital cost of type I ancillary services remains.
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(a) Western (b) Eastern

Figure 10.5: Risk of demand-supply imbalance given a different capacity of Type II
ancillary services

A question one might ask is whether it is possible to limit the risk of demand-
supply imbalance using the Type II ancillary services only. The answer is no. Because
the bias of any predictive model of the net load is small yet non-zero, the energy in
type II ancillary services to accommodate the bias eventually hits either zero or one
hundred percent of its total capacity. There must be a Type I ancillary service to
actively offset such the bias. Hence, there should be an optimal combination of
Type I and Type II services that minimizes the overall cost of accommodating high
distributed PV generation. There should also be a better control policy of those
services than our current control procedure.

The optimal combination of infrastructures and control policy is not an easy prob-
lem to solve. One of the reasons is that the true operation cost of Type II services is
not fully known. For instance, it is commonly known that frequent charge-discharge
switching and fully discharging down to zero can shorten the lifetime of some energy
storage devices. However, there is yet no quantitative function for how these opera-
tions decrease the lifetime of an energy storage device and increase the overall cost.
To avoid frequent charge-discharge switching, one may constrain the number of cycles
that the storage can be switched. Another heuristic is to assign one group of electric
storage responsible for charging and another group for discharging for a certain pe-
riod such as 12 hours. To avoid fully discharging, one may constrain minimum level
of discharge in the operation. These procedures may provide a legitimate control
policy, but there is no guarantee of optimality. A similar situation arises with Type
I ancillary services since the frequency of their use may change significantly from the
current use. The current cost function of Type I ancillary services, consisting of just
the capital cost and the fuel cost, should be reformulated as well. A more rigorous
formulation of the problem and its solution should be investigated once the complete
cost function of both Type I and Type II ancillary services is known, but that is
beyond the scope of this study.
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Western Volatility of the most recent hour
Level (% Peak load) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 > 0.4

13 0 0 0 0 0
14 1 0 1 0 0
15 1 0 1 0 0
16 2 1 2 0 0
17 3 1 3 2 0

Eastern Volatility of the most recent hour
Level (% Peak load) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 > 0.4

7 0 0 0 0 0
8 0 0 0 2 0
9 0 1 0 3 0
10 2 2 1 5 1
11 2 2 3 6 3

Table 10.2: The number of demand-supply imbalance instances associated with dif-
ferent ranges of normalized volatility from various levels of PV installation. The rows
represent levels of PV installation, and the columns represent ranges of normalized
volatility.

10.7 Risk reduction by PV curtailment

Other than adding ancillary services, the grid operator may curtail PV generation in
order to reduce the risk of demand-supply imbalance. It is known that the volatility
is closely related to the prediction performance, and the effect of prediction errors
scales with the amount of PV capacity connected to grid. A simple strategy is to
disconnect some PV panels when the volatility is high in order to prevent a potential
imbalance. This strategy leads to a couple of questions. What should be the threshold
of normalized volatility to trigger the PV curtailment and how much capacity should
be curtailed?

To answer those questions, one should consider the distribution of normalized
volatility measured when a demand-supply imbalance occurs. Table 10.2 shows the
number of demand-supply imbalance instances associated with different ranges of the
normalized volatility from various levels of installed PV capacity. The numbers in
Table 10.2 are counted from the simulation with a single set of data of 3 months.
One may see that the distribution as a function of volatility in this table is not quite
smoothly monotonic. To obtain a better distribution, one may find a probabilistic
model of each component in the grid operation and perform a Monte-Carlo simulation
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to produce a large sample and average the number of demand-supply imbalances in
each entry of the table. However, we will not perform this task in the study.

Since an acceptable risk is defined to be 0.05 %, for 3 months of our simulation
period, we want to keep the number of such instances less than 0.05%×3×30×24×4 ≈
4. We can control the total number of instances by operating the PV systems at a
high level of penetration when the volatility is small, and operating the PV systems
at a low level of penetration when the volatility is large. For example, in the western
example, one may install PV systems with the installed capacity being 17 % of the
peak load. If the volatility is lower than 0.1, the grid operator does not curtail any
PV generation. Then the PV capacity is curtailed down to 15 % of the peak load
whenever the normalized volatility is higher than 0.1. In this way, the total number
of instances from this policy highlighted in green becomes 3 + 0 + 1 + 0 + 0 = 4.

It is worth noting that implementing PV curtailment is challenging. First, in
order to disconnect and reconnect PV systems to the grid, the two-way automatic
communications between panels and the grid operators must be mandatory. Second,
the grid operator needs to pay PV system owners since the curtailment becomes an
ancillary service for the grid operation. Finally, PV curtailment by disconnecting too
many PV systems may lead to significant PV energy loss. The grid operator needs
to coordinate extra generators in their hour-ahead scheduling to make up the loss.

10.8 Conclusion

In this chapter, we illustrate the risk assessment of demand-supply imbalance under
different levels of distributed PV generation. With a typical set of infrastructures, the
grid can operate within an acceptable risk when the installed PV capacity is up to 15%
relative to the peak load for the western example, and 9% for the eastern example.
By adding Type I ancillary services or Type II ancillary services coupled with a
simple control heuristic, one may increase the PV installation within an acceptable
risk. We found that the grid may have the PV capacity up to 23 % relative to
the peak load for the western example and 15% for the eastern example. Beyond
this level, an extra modification on generators in a day-ahead and and hour-ahead
scheduling is required. Another way to increase the maximum level of PV installation
without increasing the risk is to implement the PV curtailment with a policy based
on the normalized volatility of PV generation. It allows some extra PV installation
of about 2% of the peak load. Still, there are several challenges to implement the PV
curtailment. An indirect control such as real-time pricing is another way to manage
the risk of demand-supply imbalance. Overall, any policy has diminishing returns as
we try to increase the level of PV installation into the grid. The economical aspect
of these policies is left as an open question.



Conclusions

Distributed PV generation is growing fast due to government policy, technology, and
finance innovation, and it is still far from the upper bound. However, despite its
benefits, distributed PV generation introduces challenges to the grid operator due to
the particular nature of distributed and solar aspects of the generation. Distributed
PV generation will have a limited but non-trivial role in an electric grid. The major
achievement of this thesis is to model distributed PV generation in a manner that
enabled us to estimate the limit of PV generation under the current physical structure
and operational policy.

To set up a framework, we reviewed the current PV system modeling in the first
part of this study. We found the notion of the maximum power curve is useful in
estimating the bound of distributed PV installation and other applications. However,
that it is not practical to construct the maximum power curve based on the struc-
tural approach. The data-driven model based on the power output from a sample
of currently installed PV systems is more useful in this problem. We constructed
the maximum power curve using time series of power outputs and its total installed
capacity only. From a set of daily maximum normalized power curves for all the days
in a year, we established the first upper bound of distributed PV generation into the
grid by comparing it with a set of daily load curves of the entire grid. It is worth
noting that this upper bound emerges without consideration of the volatility aspect
of distributed PV generation.

In order to take the volatility aspect of distributed PV generation into consider-
ation, we looked into a grid operation in the daily and hourly time-scale. Since this
operation involves a forecast, we built an example of forecast systems for both PV
generation and load. In the first part of study, we showed that the maximum PV
power curves can be used to improve the accuracy of a PV power forecast. In addition,
we clearly defined the volatility of distributed PV generation and confirmed that the
volatility correlates with the prediction performance. In the second part of the study,
we reviewed examples of load modelling and constructed a simple forecast model of
load. With a reference curve from historical data, which is analogous to the maximum
PV power curve, we obtained a desirable prediction performance even without addi-
tional information. In the third part of this study, we simulated the grid operation
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comprising of energy scheduling, ancillary services control, and the net load forecast
systems. By varying the amount of installed PV systems in the grid, we measured
the probability that the demand-supply imbalance cannot be coped using the current
infrastructures. We then established the second upper bound of distributed PV gen-
eration into the grid by limiting the probability. Furthermore, our result shows that
the current limiting factor to the level of PV installation is in the ancillary service
rather than generators in energy scheduling. In order to increase PV installation, we
have a choice of curtailing PV generation or adding additional ancillary services. The
modification on generators in energy scheduling is not required.

Other than establishing the limit of distributed PV generation to the grid under
a typical set of infrastructures and suggesting how to increase the limit, our work
can be helpful in planning and policy making in many ways. First, from a simple
scheme to minimize the cost of grid operation based on the shape of expected net
load curves in Chapter 3, policy makers may regulate or recommend installers to put
solar panels in the direction that minimizes the cost of grid operation. The policy
makers may encourage or discourage installing solar panels for different areas based
on this optimization scheme as well.

Second, with expected net load curves and hourly operation analysis, an electric-
ity market can propose a fair real-time price. Since the volatility and variability are
distinguishable and affect different mechanisms, namely energy scheduling and ancil-
lary services, the market can set a part of the price to reflect the cost of generators
based on the expected net load curves, and another part of the price to reflect the
cost of ancillary services based on the volatility measure. This pricing can motivate
consumers to use electricity at the right time where the overall cost of electricity is
the cheapest.

Third, once the limit of PV installation is known, the policy makers may discour-
age extra installation by expiring some incentives. If the level of PV systems still
increases, the grid operator can modify the grid infrastructure as we suggested in
Chapter 10. The grid operator may pursue the curtailment procedure based on the
volatility as described in Chapter 10 directly or use the price mechanism to encourage
PV owners with storage to store the power when it is volatile instead of putting it into
the grid. It should be noted that the policy makers may mandate that an electrical
storage needs to be equipped with any additional PV system beyond the limit.

It is worth noting that, in order to provide a legitimate policy, there might be
a need to check the consistency of the estimated distributions over the solar output
and load over time as structural factors like climate change will likely change both
distributions. The re-estimation of both distributions should be conducted regularly
anyway as the system configuration and characteristic of the energy customer base
change. Accounting climate change explicitly might be helpful especially in a longer
range capacity planning.
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There are two possible directions worth further investigation. The first direction
is a detailed analysis where the network constraint is taken into consideration. In
this work, the distributed PV power analysis in this study is modeled from a group of
PV systems equivalent to the area under a substation, while the load analysis in this
study is modeled from a whole grid. In practice, we suggest that both distributed
PV power and load should be analyzed with our approach for each substation. An
individual net load analysis can then be conducted to get a better estimate for maxi-
mum PV installation if a back flow is not allowed. Once analysis for each substation
is conducted, one may find a more realistic estimate for maximum PV installation
by taking the power flow equations into account. The concern here is not only the
balance of the demand and the supply of the whole grid, but also transmission con-
straints within the grid itself. As the net load is equal to the normal load subtracted
by the distributed PV generation at each node, the net load becomes the source of
uncertainty in the power flow equation. One may assess the risk of the grid failure
from either demand-supply imbalance or breaking constraints based on the simulation
as we have done in this work. Then the limit of distributed PV installation is the
amount corresponding to the maximum tolerable amount of risk. Another approach
is to turn the problem into a contingency analysis where the net load ranges between
extreme values. The limit of PV installation is then the maximum amount such that
the set of power flow equations with extreme values of the load is still feasible. Due
to the limited access on the load data under a substation, we were not able to pursue
this direction.

The second direction is a cost-benefit analysis of adding distributed PV generation
into the grid. In this study, we tend to find a solution favorable to PV industry
without causing a major risk to the grid operation. However, it may not be eventually
beneficial to all customers in the grid to have a large amount of distributed PV
generation. As we push additional PV installations to the grid, the grid operator needs
to provide extra ancillary services or curtailment policy in order to reduce the risk of
demand-supply imbalance. In this work, we did not answer if it is profitable to modify
the grid to accommodate the increased PV installation. If it is profitable, the next
question is how to modify and operate the grid with the least cost. Such the question
involves a dynamic programming problem to minimize the cost of operation. However,
the cost function of Type II reserves, especially an electric storage, is complicated
and unsettled. Even the cost function of Type I reserves under high volatility is
under question, not to mention the cost of curtailment execution which involves the
loss in benefit of PV owners. The problem remains unsolved until we are able to
systematically quantify these costs.

Distributed PV generation is a choice of sustainable energy resource. However, it
cannot be the only the sole supplier. As addressed in this study, the variability and
the volatility nature become limiting factors of how much distributed PV generation
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can be deployed to the grid. In order to have more distributed PV generation or any
other intermittent renewable resource, one should look at a bigger picture than the
electricity sector. The whole landscape of energy should be taken into consideration.
Nowadays, water heating systems in household and in traditional turbine power plant
can be integrated to alleviate the variability and the volatility from intermittent
renewable resources. In the future, we hope the electrification of the transportation
sector may be a part of solution as well. With a holistic view and a systematic
management, the energy industry can be both sustainable and reliable.
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